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Abstract: We introduce and study a new class of nonlinear coupled Hilfer differential equations with
nonlocal boundary conditions involving Riemann-Liouville and Hadamard-type iterated fractional
integral operators. By applying the Leray-Schauder alternative and Krasnosel’skii’s fixed point
theorem, two results presenting different criteria for the existence of solutions to the given problem
are proven. The third result provides a sufficient criterion for the existence of a unique solution to
the problem at hand. Numerical examples are constructed to demonstrate the application of the
results obtained. Two graphs show asymmetric solutions when a Hilfer parameter is varied. The
work presented in this paper is novel and significantly enriches the literature on the topic.
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1. Introduction

The tools of fractional calculus are found to be of great utility in improving the
mathematical modeling of many real-world processes and phenomena occurring in nat-
ural and social sciences. Examples include fractional calculus in financial economics [1],
fractional dynamics [2], fractional viscoelastic fluid model [3], ecology [4], the fractional
Cattaneo—Friedrich Maxwell model [5], bio-engineering [6], diffusion-thermo phenomena in
a Darcy medium [7], COVID-19 infection and epithelial cells [8], fractional advection-reaction—
diffusion equations with a Rabotnov fractional-exponential kernel [9], the fractional-order
model of the Navier-Stokes equation [10], vaccination for COVID-19 with the fear factor [11],
etc. For a theoretical background of the topic, for instance, see the monographs [12-17].
Unlike the classical derivative, there exist a variety of fractional derivatives due to Riemann-—
Liouville, Caputo, Hadamard, Hilfer, and derivative of a function with respect to another
function, etc.; for details, see [12,15].

Fractional order boundary value problems (FBVPs) have been extensively investi-
gated in the literature. One can find a detailed account of some recent works on FBVPs
involving Caputo, Riemann-Liouville, Hadamard, Hadamard-Caputo, and generalized
fractional derivative operators and different kinds of boundary conditions in [18-27] and
the references cited therein.

In particular, the Hilfer fractional derivative operator [28] gained much interest as it
includes both Riemann-Liouville as well as Caputo fractional derivative operators. The
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Hilfer-type fractional differential equations appear in the mathematical modeling of filtra-
tion processes [29,30], advection-diffusion phenomena [31], glass forming materials [32],
etc. For more details on application of Hilfer fractional differential equations, for instance,
see [33-35], while some recent theoretical results on Hilfer fractional neutral evolution
equations and functional integro-differential equations can, respectively, be found in [36,37].

Let us now dwell on some recent works dealing with theoretical aspects of Hilfer-
fractional differential equations. In [38], the authors discussed the existence of solutions for
a Hilfer-fractional differential equation supplemented with nonlocal multi-point integral
boundary conditions. Recently, in [39], a boundary value problem involving Riemann-—
Liouville and Hadamard-Caputo-type sequential fractional derivatives and iterated frac-
tional integral boundary conditions was investigated. More recently, the authors studied a
nonlinear Hilfer iterated-integro-differential equation combined with Riemann-Liouville
and Hadamard-type iterated fractional integral boundary conditions in [40].

On the other hand, coupled systems of fractional differential equations are also of
significant importance as they appear in the mathematical models of several natural phe-
nomena such as chaos synchronization [41], anomalous diffusion [42], ecological effects [4],
disease models [43], etc.

Motivated by the work established in [40], we enrich the literature on this class of
problems by introducing a new class of coupled systems of nonlinear Hilfer iterated-
integro-differential equations equipped with multi-point iterated Riemann-Liouville and
Hadamard fractional integral boundary conditions. Precisely, we explore the criteria
ensuring the existence and uniqueness of solutions for the following problem:

(D) (1) + s (D) (1) = £ (1 x(8), RO (), (1)), £ € (0,T]

(FD2b2y) (1) + Ao (D% By) (1) = g (1, x(8), y(1), RE 40y (1)), t € (0,T]

m 1
X(0) =0, x(T) = Y- eRUw My (), i € (0,T), @
i=1

y(0) =0, y(T) = ) 6;RUP*x(g)), & € (0,T),

j=1

where ' D¥/f1 is the Hilfer fractional derivative operator of order a; with parameters f;,
1e{1,2},1<a <2,0< B <1,A1,A0,8;,0, e R\{0},i =1,2,--- ,m,j=1,2,--- ,n,f,g:
[O, T] x R x R x R — R are nonlinear continuous functions, and R(¢T""'¢1), ¢r € {(5, Z, y,v},
r € {q,p,p| 9, p,p € N}, involves the iterated Riemann-Liouville and Hadamard fractional
integral operators defined by

HI‘P? I¢r71 HI‘P}'*Z I¢r73 . HI4)4 I¢3 HI‘PZ I¢1x(t>/ ris even,
R ) x(¢) =
19 191 [¢r2 H¢rs .. H¢s [¢3 HI®2 [915(¢); ris odd,

1?0 and HI90), respectively, represent the Riemann-Liouville and Hadamard fractional
integral operators of order ¢y > 0.

Here, we emphasize that the problem investigated in this paper is novel in the sense
that it consists of coupled multi-term Hilfer fractional differential equations with nonlin-
earities and nonlocal boundary data depending upon the iterated Riemann-Liouville and
Hadamard-type fractional integral operators. Two results (Theorems 3.1 and 3.2) containing
different criteria for the existence of solutions for the given problem are presented. In the
third result, we provide a sufficient criterion for the the unique solution of the problem at
hand. We believe that the work accomplished in this paper is a useful contribution to the
existing literature on Hilfer-type fractional boundary value problems in view of the fact
that the Hilfer fractional derivative reduces to Riemann-Liouville and Caputo fractional
derivatives for § = 0 and B = 1, respectively.
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The remaining part of this manuscript is outlined as follows. Section 2 is devoted
to some basic concepts of fractional calculus. Section 3 contains the main results, which
rely on the standard tools of the fixed point theory. In Section 4, we present examples
illustrating the main results.

2. Preliminaries

This section is devoted to the basic concepts of fractional calculus related to our work.

Definition 1 ([12]). The Riemann—Liouville and Hadamard fractional integrals of order « > 0 for
an integrable function f : [0,00) — R are, respectively, defined as

L /t(t—s)“_lf(s)ds, 0<t<o,

(I“f)(t) = (@) Jo

¢ a—1
(M1 f)(t) = F(la)/o <log;> f(s)? 0<t<eo

where T'(-) is the Euler Gamma function.

Definition 2 ([28]). For 0 < n—1 < a < n(n € N)and 0 < B < 1, the Hilfer fractional
derivative of order « with parameter p for a function f on [0, 00) is defined as

(D)0 = 10 () 1P,

dt
where 1) denotes the Riemann—Liouville fractional integral operator of order (.).
We use the following known results in the sequel.

Lemma 1 ([44]). Let f € LY(0,T) and I(”’"Y)f € C'([0,T,R),« € (n—1,n],n € N,
B €10,1],y =a+np —ap. Then,

- (n=7) dk
« Hpya,B t] nery . B

Lemma 2 ([12]). For positive real numbers « and m, Hyapm — py—apm,
Lemma 3 ([39]). Foem > —1,4; >0,i=1,2,--- ,n, we have

L7] i ~Hai
I (m iy m_1> n
=1 k=1

[51
o % tm+z,£1 Fak-1, ()
7

F<m+1+ ). ﬂzk1)

k=1

where [n], | n], respectively, represent the ceiling and floor functions of n.

The following lemma, related to the linear variant of the system (1), is of fundamental
importance to convert the problem (1) into a fixed point problem.

Lemma4. Let1 < aq,ap <2,0<B1,B2 <17 =a;+Bi(2—w;),i=12A# 0and
h1,hy € C([0, T],R). Then, the pair (x,y) is a solution of the coupled system is
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(HDMPix) (1) + A (HDVhix) (1) = by (t), t € [0, T],
(HDth,,Bzy)(t) + )\Z(HD“Z_lfﬂZy) (t) = hz(t), t e [0, T]r

x(0) = Zs RUe )y (), 1 € (0,T), )

y(0) = 29 RUPMx(g), &€ (0,T),

if and only if

g1 1

x(t) = Al"('yl){c<)tl /Tx(s)dS— IW/OT(T—S)Mlhl(S)ds

—A2 Ze R a1ty (o, Zg RUer At D) (i ))
i=1

+B </\2 /OTy(S)dS - l"(iz) /OT(T —5)2 7y (s)ds (4)

n n
_)Ll Z ejR(vp’m'Verl)X(éj) + Z GjR(Vp,...,vp—l-l)hl(Cj))]
j=1

=1

M /Ot x(s)ds + 1"(161) /t(t —8) 7y (s)ds,

0

tr2-1 T 1 /T o —
y(t) = M{D(Al/o x(s)ds—m/o (T —s) "1y (s)ds

m m
A2 Y e RUer it Dy () + ZsiR(”P"”'““’hz(ﬂi))
i i=1

+A <)\2 /OTy(s)ds - 1"(12) /OT(T —5)2 1, (s)ds 5)

n n
—A Z ij(Vpr“' er"‘l)x(éf].) + Z QjR(Vp""'VP+1)h1 (g]))}
=1 =1

—Ay /Oty(s)ds + r(l) /(:(t —5) 27y (s)ds,

X3

where

5] 5]
Ny = F<’72+ ZHZl—l), Aq —F<’71+ ZV21—1>,

1=1 I=1
5] —Hak
) Y2— 1+21 1 Hai—1

€ <72—1+ZV21 1

k =1

N

-1 1
A = ,B=—
I'(7) Ao !

Ms

X 1; ;o (6

I
—
Il
—_

N\‘b
[

7721 1

- k o 71—1+Z(§] Vor—1
Cc = 0; =14+ vy x ¢ =174
1"(72) 1]; ]k: IZZ{ 2 6

—_

and
A= AC — BD.

Proof. Let the pair (x,y) be a solution of the system (3). Operating the Riemann-Liouville
fractional integral operators of orders a; and a; on both sides of the first and second
equations of (3), respectively, we obtain
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x(#) — FEOJT_; - Cllf(:l)l A /Otx(s)ds - r(il) /Ot(t—s)””’lhl(s)ds, @)
and

O~ T~ Ty 42 ¥ = i 4= o,
where

co = (P"Mx)(1)] g 1 = (I M2)(1)],_y, do = (1P~ 72y)(t)|,_g and d1 = (') (1),

Using the conditions x(0) = 0 and y(0) = 0, respectively, in (7) and (8), we have ¢y = 0
and dy = 0. Consequently, (7) and (8) become

0 = W /t (5)ds + i [ (1= I (s)d ©)
x = — - x(s s—|—7/ — )M hy(s)ds,
T(y) "o T'(a1) Jo !
dytr2—1 t 1 t 1
t) = —/\/ sds+7/ t—5)27 hy(s)ds, 10
y( ) 1—-(,)/2) 2 0 3/( ) r(ﬂéz) 0( ) 2( ) (10)
m
which, after insertion into x(T) = ZeiR(?‘P' M)y (n;) and y(T Z 6:R x(&),
i=1
yields
ClTrh_1

T 1 T o
r(“n) 7/\1/0 x(s)ds+m/0 (T — ) hy(s)ds

m
— (7 Ze R (o P‘l)”'YZ 1 A Zs R ';‘1“)3/(711') + Z giR(%pwvmwz)hz(m),
i= i=1 i=

—

Ms

ng ~Hak 1+Z m
€ (72 —1+) #211) X 77?2 = 1 A, ZSiR(””""’mH)]/(’?i)
k=1 =1 i—1

Il
—_

ZR ""1”2)}12(771‘),

HMS >‘§*

leﬂyzf] T 1 T -1
—_— )\2/0 y(s)ds + W/O (T —s)* "hy(s)ds

0 —v 5

g n o [5] . k % 71—1-&-21{:23 Va1 A - G-R( ,” V1+1)

7A712 ]-I—Il m—14+) v, X - 12; I x(8))
=1 k= =

In view of the notation (6), the above system can be written as
citA—diB=P, —¢1D+diC=Q, (11)
where

[ L P " o ROt a1 1)y
P—Al/o x(s)ds—m/0 (T —s) hl(s)ds—/\zlge,R o y(1:)

m
+ 2 SiR(”p""’”l+“2)h2(17i),
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and
Q=1 [ ylo)ds — s [T sy n(s)ds — Ay Y GRU ()
0 I'(az) Jo =1 ! :

+ Z GjR(Up'm'UlJrlxl)hl ((:])

Solving the system (11) for c¢; and dq, we have

_ CP+BQ _ DP+ AQ
“=4c_pp ™ 4h=4c3pp

Substituting the values of ¢; and d; in (9) and (10), respectively, we obtain the solution (5)
and (6). The converse of the lemma follows by direct computation. The proof is finished. [J

3. Existence and Uniqueness Results

Throughout the paper, we denote by 7 the Banach space of all functions x € C([0, T, R)
with the norm ||x|| = sup{|x(¢)| : t € [0, T]}. Obviously, the product space J x J is a
Banach space endowed with the norm: || (x1, x2)|| = |[x1]| + [|x2]], (x1,x2) € T x J.

In view of Lemma 4, we define an operator G : J x J — J X J associated with the
problem (1) as follows:

G(x,y)(t) = (Gi(x, y)(1), G2 (%, y) (1)), (12)

where

-1

Gie)(t) = s [e(h [ x(os = s [HT -9 Fwnods

m m
—A2 ) eiRUWer it )y () ) fiR(”P""”‘1+1)§(x,y)(771)>

i=1

+5(ha [ ylsias - F(12) [T sy g ) () 13)
A LR () + oK) @)

j=1

[ s+ s /Ot<t — ) F(x,y)(s)ds, t € [0,T),

2—1 ~
Ge)(t) = [ /Tx<s>ds—r(jq) T Fly) )

da Ry +DR ”ﬁlg(x,y)(m))

i=1

wa (e [ visis - o | T(T — 9 1g(x, ) (s)ds (1)

A Y 0RO () Y 0RO D Fz, ) (c,-))]

j=1 =1
—A /t (s)ds + L /t(t —5)271g(x,y)(s)ds, t € [0,T]
2 0 ]/ F(DQ) 0 g /]/ ’ 7 7
with

Fley) () = £ (£ x(0), RO Sx(0),y(8)), 2(xy)() = g (b x(t),y(8), REHy(n)).
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In the sequel, we use the following notations:

4] 2]
Ay = T(2+4) pya|, A3:=T(2+) vy1],
=1 =1
4] &
Ay = T+ ) &a |, Asi=T|1+) G|,
=1 =1
_ 5] K e 51
BA T L e v
P11 = Y _ 6] T+ ) v x g T
MW%M&E‘J} & :
[Cl[A1]T™
BN - AT,
AT T
£] x ~H2x 151
|C||)\2|T71 1 m L3 14+Y,2 Mo
¢ = e 14+ ) pau xa; T
JAIT(11)A2 lg l k=1 l; 1
[BJ[A2|TT
AT (1)
1] k —V2k
|B|T 1—1 n 2 1+):1 ]VZI 1
$3 = 16;] 1+ ) vy X
[AIT(71)As A3 Z k=1 l;
N - L
AT ()T (e +1) " Ty +1)7
£ k ~H2k r41
|C|Tn—1 & L3 4,2 pa
$s = & 14+ ) mau xn; T
[AIT(11)A2 Z Tk l; l
|B|T"‘2+71_1 15
BRI "
[ —Vak M4
Al o B e LA
w = 10;] 1+ ) vy x g
AT (72)As ;1 M l; :
[D[[ AT
AT (72)
£] x ~H2x 151
|D\/\2]T72 1 m & 42 para
w0y = e TT(1+ Y mara xa; T
(AT (72) A2 1; i I:Zl l
|A|A| T2
TaC) T

|A|T'yz 1 n ng

—V2k
._ 1+): Va1-1
Ws = |A|F72A32|J”<1+2V21 1) x & 4

k=
|D|T061+"{2 1
+ ,
|A[T(72)T (a1 + 1)
15) k —Hak r41
|DjTt & 2 1452 poa
wy = lei] 1+ ) po /.
[AIT(72)A2 A2 = Z l k=1 1;1 l
l¥2+’Yz 1 oy
|A|T T

AT+ 1) | Tt

1 3] / & —Ox% EA
O == LTI(Leus) w1,
A g\ /5
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L%J k —0ok 2
L H (Z §21—1> X Tzlzzl 521—1'

As o \io

Now we prove our first existence result for the system (1) with the aid of the Laray—
Schauder alternative [45].

Theorem 1. Assume that f,g € C([0, T] x R3,R) and satisfy the following condition:
(Hy) 3 constants x;,y; >0, i =1,2,3and xo,yo > 0 forall u,v,w € R, such that

[£(tu,0,0)]
8(tu,0,0)

xXo + x1ul + x2|o| + x3|wl,

<
< yo+yalul +y2lo] +yslwl.

Then, the system (1) admits at least one solution on [0, T, provided that

((P3 + wg)xl + (473 + (U3)®1X2 + (474 + a)4)]/1 +¢1+wi <1, (16)

and
(3 + w3)x3 + (P + wg)y2 + (Pg + wg)O2y3 + o + wp < 1, (17)

where ¢;, w; (i =1,2,3,4) and ©1, O, are given in (16).

Proof. Observe that continuity of the operator G follows from that of f and g. Now, let us
verify the hypotheses of the Laray-Schauder alternative [45]. Firstly, it will be established
that G maps bounded sets into bounded sets in 7 x J. Let us consider a bounded set
B, :={(x,y) € I x T :||(x,y)|| <r}. Then, for any (x,y) € By, 3 M1, My > 0 such that
j?( y)(t)] < Mj and |g(x,y)(t)| < Ma. In consequence, we have

1 T a =17,
Gien ) < s liel (Il [ ks s [1= s e

+Az] Z Jei RUer 49 Wy ()| + Z e RWor - #1+0) §(x/y)(ﬂi)|>
i=1 i=1

T T
1 (al [ to)lds + s [T =90 gl (o)
] L IR ()] + 3 IR ) @)1 ) |
j=1 j=1
t t -~

] [ el + s [ (=971 ) (o)l
CllllxTn |, |ClMyT

|AIT(71) |AIT(y1)l (a1 +1)

~Hak e
ClAz|[ly|| T~ & 145 2 por
_|_‘ |A|r”’le e 2£1|H<1+ ZFZZ 1) X1 121 Mar1

i=1

IN

— —Hak 3
‘C‘MZT’Y 1o 14,2 paiy

\BllAleyHT”1 IBleT”‘2+71 '
AT (1) AT (1) (a2 +1)

- 15 k vk 191
Bl A ][ x[| T~ & . 1452 v
+ LIOTT(14 L] g™
‘A|r(71)A3 j=1 ! — I=1 J

L5 k vk 19
‘B|M1T% 1L 2 14+, 2 var1
+t e e Z 10;] +Y vy x g =
|A|F g4 A3 k=1 1=1 J
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M;T™
T(ag +1)
< r(gr + ¢2) + Mgz + Mgy,

Al T +

which leads to
1G1(x,y)|| < 7(P1+ ¢2) + M1z + May. (18)

Likewise, we can obtain
ID||M]||x| T2 | |D|MyT*1+721
|A[T(72) |A[T(72)T (a1 + 1)

_ —Hok 3
D|A Tr-1 & 1452, o
DB o (14 E )

i=1

Ga(x,y) (D] <

DM, T2 2—1 m o 1+ZL%J Hai—1
+|A\1"72A2 2|1|H 1+2P’211 N/

i=1
[ AfAa|[ly [ T |A|M2T'Xz+72 1
[A[T(72) AT (72)T (a2 + 1)
n 5] k —Vak
[Al[A][|x]| T & 2 gl
0; 1+ ) vy % g 1= 1
|A[T(72)As L ]|1£[1 ; 211

j=1

|A|M1T'yz 1 n \.gJ(

+——— 0;
|AIT(y2)As & Z‘ |

]
k=1
M T*2
I'(ax+1)
< r(w1 + (4)2) + Miws + Mpwy,

k g
v
1+ZV21_1> )(l;r ’1 2-1
1=1

+A2llyIIT +

which implies that
G2(x, y)|| < (w1 + w2) + Myws + Mawy. (19)

From (18) and (19), it follows that
[G(x, )|l < 7(1+ P2+ w1 +wa) + Mi(¢s + ws) + Mo (s + wa),

which shows that the operator G is uniformly bounded.
Next, it will be established that the operator G is equicontinuous. Let t1,t, € [0, T}
with t; < tp and x,y € B;. Then,

|G1(x,y)(t2) — G1(x, y)(t)]

(t’hfl _ t’Yﬁl)
< —|A|T(71) |C||M|rT +

IC|M T
I'(a +1)

—Ha1

3

ClIAs|r 1+z@ _

+7| |/|\22| Y e 1|H<1+2V21 1) X 1; =1 Fal
k =1

i=1
L5 —Hal

;I H<1+¥Vzl )

k=1

15) k TV 19
B| M, T*2 B||Aqr 2 1+Y, 2, var_
+ | ‘ 2 I || 1 } :|9]| <1 }7: ol 1> % C] 121 V2i-1

T(ay + 1) — palicy
1+Z, 1 ) 1)

|C|M2

1+21 1}‘21 1 |B||)\2|7’T

|B‘Ml 2\9 |H<1+ZV21 1
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M,

Alr(ty — ¢ _
+ | AMr(t2 1)+F(“1+1)

(2(ta =) + 1 —#]1) =0,

as tp — t; independently of x and y. Analogously, we can obtain

|Ga(x,y)(t2) — Ga(x, y)(t1)] = O,

as tp — t1, independently of x and y. Hence, GB, is an equicontinuous set that implies
that GB; is relatively compact, and therefore, G is completely continuous by the Arzelad—
Ascoli theorem.

Finally, we verify that the set K := {(x,y) € 7 x J : (x,y) =0G(x,y), 0 <6 <1}is
bounded. Let (x,y) € K, then (x,y) = 0G(x,y). For any t € [0, T], we have

x(t) = 0G1(x,y) (1), and y(t) = 8G(x,y) (¢).

In consequence, we obtain

x(H)] < [Gi(xy)(t)]
< lxligr + llyllgn + (xo + xallx]| + x2flx ][ |[RC 20 (1) | + x5yl ) ps
+(o + yallxll + yallyll + yallyl[| R4 (1)) )y
< lxligr + llyllgz + (xo0 + x1[[x]| + x2@O1 [|x]| + x3]ly[|) ¢
+ (o + yallxll + v2llyll +y3O2ly[) ¢4,
ly(t) |G1(x,y)(1)]

IN A

[€lleor + llyllewz + (xo + 21 [[x]| + 2201 [[x[} + x3]ly[[)ews
+(yo +yllxll + y2llyll + y3O2 [yl ws.

Hence, we obtain

x| + 1yl < [(¢3+w3)x1+ (¢3 + w3)O1x2 + (P4 + wa)y1 + 1 + wi]||x]|
+[(¢3 + w3)x3 + (P4 + wa)y2 + (P4 + Wa)O2y3 + P2 + wa] ||y ||
+(¢3 + w3)x0 + (P2 + wa)yo,

which yields

||(x,}/)|\ < (4’3+w3)x01:*(¢4+w4)]/0’

where A* = min{1 — (¢3 + w3z)x1 + (¢3 + w3)O1x2 + (P4 + wa)y1 + 1 + w1, 1 — (¢3 +
w3)x3 + (ps + wa)y2 + (s + wa)O2y3 + ¢2 + wr }. Thus, K is bounded. In consequence,
by the Laray—Schauder alternative, we deduce that the problem (1) admits at least one
solution on [0, T|, which completes the proof. [J

Now, we prove our second existence result with the aid of a fixed point theorem due
to Krasnosel’skii’s [46].

Theorem 2. Assume that
(Hp) 3 13,1, > 0, such that forall t € [0, T) and u;,v;, w; € R, i =1,2,

[f(t w1, 01, w1) — f(t, up,v2,w2)| < I1(Jug —up| + [v1 — v2| + |w1 — wy|)
lg(t, uq,v1,w1) — g(t,ug, v, wa)| < DL(|lug —uz| + |v1 —v2| + |w1 — wsl).

(H3) There exist Ry, Ry > 0, such that |f(t,u,v,w)| < Ry and |g(t,u,v,w)| < Ry, for all
te€[0,T) and u,v,w € R.
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Then, the problem (1) has at least one solution on [0, T|, if

™ T2

mll(ﬂ] +1) + mlz(ﬂz + ].) < 1, ¢71 +4)2 < 1, CU] +(»U2 < 1, (20)

where O =1+ O and Oy =1+ Oy and ¢;, w;, ©; (i = 1,2) are given in (16).

Proof. In order to satisfy the hypotheses of Krasnosel’skii’s fixed point theorem [46], let us
split the operator G, defined in (12), into four operators as

-1

Gulxy)(t) = MHM/OT’“(SWS‘ ) [T Fy) )i

Y R0y () + 3 R0 ) )
= 1 =

+B (/\2/0 y(s)ds — T(ay) /0 (T —s)271g(x,y)(s)ds

Y i N N i 6,R0w 0+ F(x, ) (Cj))]
= =

t
—/\1/ x(s)ds, t € [0,T],
0

Gu(xy)(t) = r(il)/ot(t—s)“l1f(x,y)(s)ds,tE[O,T],
2—1 —~
Gn(x,y)(H) = At;(m{D(/\l/oTx(s)ds_r(il)/oT(T—s)mlf(x,y)(s)ds

m m
A Y Ry 4 Y eiRWP"“'W”g“(x,y)om)
=1 i=1
T

+A (/\2 /OTy(s)ds - 1,(1‘2)/0 (T - s)"‘zflg(x,y) (s)ds

~

n n

_/\1 Z GjR(l/p,...,Vp"rl)x(é'j) + Z GjR(Vp,~~~,Vp+1)f(x,y) (6]))]

= =
t

—/\2/0 y(s)ds, t € [0,T],

Galr)(t) = s [ -9 g e)ds € 0,7

Notice that Gy (x,y)(t) = G11(x,y)(t) + Gia(x,y)(t) and Ga(x,y)(t) = Gor(x,y)(t) +
G (x,y)(t). Let Be = {(x,y) € T x J : |[(x,y)]| < e} be a convex, closed, and bounded
subset of the Banach apace J x J, where

c— max{ Rl(P3 + R24)4 ) R16LJ3 + R2W4 },
1= (¢1+¢2)" 1 — (w1 +w)

¢i,w;i (i=1,2,3,4) are given in (16).
In our first step, we show that GB. C Bc. Let (x,y), (w,z) € Be. As in the proof of
Theorem 1, one can obtain the following estimates:

1G11(x,y)(t) + Gra(w, z)(t)| < e(P1+ ¢2) + Rips + Ropy < €,
and

|Go1(x,y)(t) + G(w,2)(t)| < e(w1+wz)+ Riws + Rowy < ¢,
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which imply that GB. C Be. Next, we show that (Gy1, Gp1) is continuous and compact.
Note that continuity of G1; and Gp; follows from that of f and g. For any (x,y) € Be,
we have

ClAllx T |CIRyTHFn
Gi1(x,v)(t <
|G (x, ) ()] AT (71) TN CACES)

— LEJ k —Hak e

ICl[A][lyl| T & 2 1452 Hora

+ lei 1+ 20-1 S/
|AIT (1) A2 E’ N l;y g

—Hok e
|C|R2T71 1o 14,2 o
Al em A, & I l 1+Z#zz o] o

[BllA2lyIT™ |B|R2T"‘2+“rl 1

+

IAT(71) " JAIT(7)T(az + 1)
b —Vak 41
|BJ[ Al Tt & L2 k LI
A, L O T 1+ D) xg
alreuas & j
15 k ~V2k £
|B|RiT 1 & 2 1452 v
+ O T 1+ 2 v x g
aranas &2 j
+HAg x| T

(51

< e(pr+¢2) + Ry <¢3 - F(o:+1)> +Rogpy = T".

In a similar manner, one can obtain
oy

— )|+ Rows = L*.
HM+U> 2

|Ga1(x,y)(t)] < e(wr+wa)+ Ry (ws -

Consequently, we have ||(G11, Go1) (%, ) || < I* 4+ L*. Hence Gy1Be and Gy; Be are uniformly
bounded. Next, we verify that G11Be and Gy Be are equicontinuous. Similar to the argu-
ments used in proving equicontinuity of the operators G; and G, in Theorem 1, it is easy
to find that |Gy1(x,y)(t2) — Go1(x,y)(t1)| — 0 as t; — tp, independently of (x,y) € Be.
Hence, (G11, Go1)Be is equicontinuous.

Finally, it will be established that the operator (Gia, G2;) is a contraction. For any
t € [0, T] and each pair of elements (x1,y1), (x2,¥2) € J x J, it follows by using the
condition (Hy) that

F(x1,y1)(8) = Fx2,y2) (1))
=v0mmmRW”@&ummun—f0mxoRW”%&AOWUD|
< y(Jx1(8) = x(8)] 4[RO A0ty (£) — R 800 (8)| + [y (8) = o 1))
Shﬂm—m%ﬁm—ﬂWW"@ﬂHWm—mm

< Bl = 22 (14 RO (1) + [ly1 — ya )

< hillx = x2f + hllyr = v2ll,

and

80x1, 1) () = 82, 2) ()]
= [g(tx1 (5,3 (8), RGP 2y (1)) = g1, 22 (£), ya (1), R A0y (1)

< b(Jx1(8) = x2(8)] + [y (8) =y (8) + [RE A1)y (1) — RE Ay (1))
< h([lxr = %2l + lyr = v2ll + llyr — y2l|RG40)(1))

< bl = 3] + llyr — yall 1+ R £ (1))
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< bflxr — x2| + 22 ly1 — y2l,

where ()1 = 14 07 and (); = 1 + ©,. In consequence, we obtain

1G12(x1,51) — Gra(x2,12) || < r(:il)(llﬂl + 1) ([l = x2l + [lyr — v2ll)
and
T2
1G22 (x1,y1) — Gaa(x2,2) || < m(lzﬂz +l)(lxr = x2f + lyr — v2ll),
which imply that

1(G12, G22) (%1, 1) — (Gi2, G22) (x2,12) ||

™
< — —
= T(ag+1) (0O + h)([lx1 = xall + llyr — vall)

T%
oy 7 1) 222+ ) (v = 2l + flyr = yal)

™ o+
_<I’(le+1)(l 1+0h)+

+

(%)

—— (LM +1 x1 — x| + |Jy1 — .
gy (a0 ) ) sy = 32+ s = vl
Therefore, by the assumption (20), (Gyz, Ga2) is a contraction. In view of the foregoing
arguments, we note that the hypotheses of Krasnosel’skii’s fixed point theorem [46] are
satisfied. Therefore, the problem (1) has at least one solution on [0, T]. This finishes the
proof. O

Lastly, the uniqueness of solutions for the problem (1) is established by means of
Banach’s fixed point theorem [47].

Theorem 3. Let f, ¢ € C([0, T] x R3,R) satisfy the assumption (Hy). Then, the system (1) has a
unique solution on [0, T], if
ap+Np+h1+0p <1, (21)

where
ay = p1 + Qilips + by, Ry = o + L1z + Dolrgpy,

hy = w14 bhwg + VN liws, iy := wy + bLOowy + Lws.

Proof. For the fixed point problem (x,y)(t) = G(x,y)(t) equivalent to the system (1), we
show that the operator G has a unique fixed point on [0, T] by means of the Banach’s fixed
point theorem [47], where the operator G is defined in (12). Let us consider a bounded,
closed, and convex subset of J x J defined by

Be:i={(x,y) € I x T : [(xy)l <},

where

> M3+ w3) + N(gy + )

- 17(N1+N2+h1+h2) !

supycpo,r) = |f(£0,0,0)] := M < o0, and sup,cjo7) = [8(£,0,0,0)| :== N < oo. For all
(x,y) € Be, t € [0, T], by using (H), we have

(22)

~

Fem®] = [f(tx(e), RO x(),y(1))|
£ (1 x(8), RO x(8), (1)) = £(£,0,0,0)] +£(£,0,0,0)]
B(jx(B)]+ [ROSx()] + [y(1)]) + ¥

IN

A
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< n(llxll(X+RC A1) + ly]) + M
< hOulix]| +hllyll + M
< (Ql+1)£l1+M.

Similarly, we one can obtain

8y )] = lg(tx(1),y(H), RE Wy (1) )| < (1+ )ely + N.

Next, we show that GB; C B.. As in the proof of Theorem 1, it follows by the above
inequalities that

1G1(x,y)(1)] < e(Pp1+¢2) + (DO +1)e+ M)ps + (I + bDp)e+ N)py <,

1Ga(x,y) (1) < e(wr + w2) + (O + h)e+ M)ws + (I + (bOs)e + N)wy < e.
Hence,

Gyl < el@r+¢2) + (1 + 1)e+ M)ps + ((I2 + )e + N) ¢y
+£((U1 + a)2) + ((1101 + 11)6 + M)a)g, + (lz + (1202)8 + N)w4 <g
which implies that GB, C B;.

Next, we want to show that the operator G : 7 x J — J X J is a contraction. For
any (x1,Y2), (x2,¥2) € J x J and for each t € [0, T|, we obtain

|G1(x1,y1)(t) — G1(x2,y2)(t)]
1_1
e el [ () = wate) s

<
~ AT (n

1 ! T a =17 iy d
gy (=9 1) (5) = Flaa ) (0l

m
+ [Ao] Y Jeg RWer Bt |y () — o ()|
i=1

Y e RO 1D 8, ) (1) — §(x2,y2)(ﬂi)|>
=1

181122l [} 1) - (o)l

1 T T 0(271 ~ -~ d
+ W/O (T—s) 18(x1, 1) (s) — §(x2,y2)(s)|ds
] Y2 (0 R4 (&) — xa (&)
j=1

-~

" 21 16 RCo ) Py, 1) () — f(xz,yz)(éjﬂﬂ
L

F il [ ) - xa(s)lds

i 6= M PG 0)8) — Pz ) 5) s
_ [CllAlllxr = x| T
[AT(71)

|C|T“1+71*1
[A[T (1) (a1 +1)

+ (Ml ][x1 — x2f| + Ilyr — y2l])
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CllAal [y — o Tt g L L
AT A, il 11 1+Zuzz 1 xa
i=1 k=1

|C|T m L%J k ~Hak
+ (lf[x1 — 22| + 22 |lyr — yall) AT Z|£i| 1+ Y paa
i=1 k=1 =1

Bl A2llly1 — ol T™
[AIT(71)
|B|T*2+ 71~ 1

+ (l2f|x1 — 22|l + 2o ly1 — y2||)|A|1“( Ty £1)

1 Z(f—‘ Har—1
=1 -

+

_ 5 —Vak 3
[Bl|A1[flxg — x| T & L) 14,2, vy g
+ A T+ ) vy x g Tt
aromas 9l ? j

—Vok
B|TmM L
+ (W3 = x|l + Ly = 2]) |A'|r Z9IH<1+Zsz 1)

1+2 T
2t + [A]l[x1 = 22| T+ (L |21 — 22| + L [lyn — 2ll) (

X6 T(a1+1)

< prllxn — 22l + p2llyr — vall + (Qah[|x1 — x| + hllya — val))¢s
+ (lx1 — x| + 22 ly1 — v2) 4

< (¢1 + Ol + pa)||x1 — x2|| + (P2 + lips + Doladps) |y1 — 2|

< Nyl — 2ol + Ralyr — yall < (N1 + Ro)([[x1 — x2f| + [lyr — v2))-

Therefore, we obtain
1G1(x1,51) = Gi(x2, y2) || < (Ry 4 Ra)([[lx1 — 22| + [|y1 — v2])- (23)
Similarly, one can obtain
1G2(x1,y1) — Ga(x2, y2) | < (1 + F2) (|1 — x2| + [ly1 — y2ll)- (24)
From (23) and (24), we have
1G(x1,y1) — Ga2,y2) || < (N1 4R+ Ty + ) ([[x1 — x2|| + [ly1 — w2,

which, by the condition (21), shows that G is a contraction. Hence, the conclusion of
Banach’s fixed point theorem [47] implies that the problem (1) has a unique solution on
[0, T]. The proof is complete. [

4. Examples

Example 1. Consider a system of nonlinear Hilfer iterated-integro differential equations with
iterated fractional integral boundary conditions given by
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:0-
=
—~
o~
=
N
<
—~
A ¥
=
N
=
=
S
N
N
N
3
2
2
Gt
<
—
=
N——
N

Here, a1 = 3/2,ap = 4/3,p1 = 1/2, B2 =5/6, T = 34/25, A\, = 1/17, A, = 1/5,

61=1/17,6,=2/25,053 =1/23,64 =3/25,01 =2/25,0p =1/28,03 =2/29,4 = 4/27,
€5 = 1/22, €6 = 2/23, w1 = 2, U2 = 1/2, Uz = 1, Ha = 1/4, Us = 6/5, V1 = 1, V) = 2/3,
v3=1/2,v4 =5/8,v5s =3/2,00 =2/15,0, =4/5,03 =3/7,0, =1/2,61 =1, = 2/3,
e3=1/5,e,=6/5¢e5=1/8, 11 =1/2,130=2/3,13=1/5,41=1,15 =3/4,¢1 =5/14,
¢2 =5/7,83 = 5/13, ¢4 = 2/5. Using the given data, it is found that ¢y = 1.75, v, = 1.8889,

A~

1.3703, B =~ 0.004, C ~ 1.3719, D ~ 0.0172, A =~ 1.8799, ¢; ~ 0.3886, ¢» ~ 0.0014,

¢3 =~ 2.3862, ¢4 ~ 0.0044, w1 ~ 0.0025, wy ~ 0.5013,ws3 =~ 0.0184, wy ~ 2.5311, ®1 ~ 1.7906
and O, ~ 1.8766.

)

(i)

For the illustration of Theorem 1, we consider

f(t,u,0,w)

_ 27! (1+cos’ it +e_“2|u|+ 1 |v|2524 N sirzl\w| 1 e
t+3 2 6 6vV12 +36 (2+0%)  8(2+1) 9

g(t,u,v,w)
_2 . 4 .2

_ e ( |ut] ) |v| sin t n w - (1-1t)u ' 27)
5 \1+ul) 3vo+2 5(1+[wl)  36(1+ |ul)

It easy to see that

4 ul o | |wl

t S L iy ) i

lf(t,u,0,w)| < 9—|— G +36+ g
lg(t,u,0,w)] < é+M+M+M
T - 5 36 9 5

Note that (H;) is satisfied with xg = 4/9, x; =1/6,x, = 1/36, x3 = 1/8,y9 = 4/5,
y1 =1/36,y, =1/9 and y3 = 1/5. Moreover, (¢35 + w3)x1 + (¢3 + w3)O1x2 + (Pg +
wa)y1 + ¢1 +wi ~ 09819 and (P3 + w3)x3 + (P4 + wWa)y2 + (P4 + ws)O2ys + P2 +
wy ~ 0.9091. As all the conditions of Theorem 1 are satisfied, its conclusion implies
that the coupled systems (25) with f and g given by (26) and (27), respectively, has at
least one solution on [0,34/25].

To demonstrate the application of Theorem 2, we take

F(t,u,0,) 8cost |ut] 32 arctan |v|
T 70982 +7) \ 1+ |u] (3t +14)2
8¢~ sin|w| 1
TR AL 8)
gt o) — 3(sint +1)sin|u| = 3(cos?t+1) ( |y )
Y 109+ V169 +#  2(2+61) \1+|v]
6e 3tarctan |w| e ? 29)

22t 1121 1483
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Observe that

8
|f(t ur,v1,w1) — f(t,ug,02,wa)| < E(!ul—u2|+|vl—Uz|+|w1—w2|)/

3
|g(t, uq,01,w1) — g(t,up,vp,wr)| < a(|u1 —up| + |v1 — v2| + |w1 — wal).

Clearly, (Hy) is satisfied with I; = 8/49, I, = 3/61. Moreover, the functions f and g
are bounded as

< 81+ 87 < 134+37‘(.

If(t,u,0,w)| < % and  [g(t,u,0,w)] < = - (30)
Additionally, we have
™ T
Ty 1) Q@ Dt gy (@2 +1) = 09977 <1,
and

Pr+¢r ~ 03900 <1,  w; +wy ~ 05038 < 1.

Since the hypothesis of Theorem 2 is satisfied, its conclusion implies that the coupled
systems (25) with f and g given by (28) and (29), respectively, has at least one solution
on [0,34/25].

(iii) To explain the application of Theorem 3, we choose the functions f and g as follows

12 2 .
e 2u” + |u| sin || |w| 1
t/ 1Yy = a7 31
fltu0,w) 21248 < 1+ 2[ul ) 2+162  128V/4 + 13 T (1)
(tbuo,w) — cos? t u] 2 arctan |v|
SO W) = 122\ 1+ [u] ) " 11t + 288
1 (3w? + 4|w| 1
Sy i A - 2
+144< 4+ 3w >+4’ 32)
which satisfy the Lipschitz condition with [y = 1/256, [, = 1/144 as
1
[f(t w00, w1) = f(tuz, v, w2)| < Sz (Jun — ua| + 01 = 02| + |1 —w2),
1
[8(t,ur,01,w1) = g(t uz, 02, w2)[ < 77 (| — ua| + [o1 — 02 + [w1 — w2

In addition, we find that N; 4+ Ny 4 11 4 1o = 0.9977 < 1. Hence, by the application of
Theorem 3, the problem (25) with f and g given by (31) and (32), respectively, has a
unique solution on [0,34/25].

Remark 1. We observe that the functions f and g given by (28) and (29), respectively, in (ii)
satisfy the Lipschitz condition with 1y = 8/49 and I, = 3/61, but the uniqueness of solutions for
the problem (25) does not follow as (21) is not satisfied. In fact, when Iy = 8/49 and I, = 3/61,
the condition (21) becomes V1 + Ny + fiy + fip = 2.8654 > 1.

Example 2. We examine the behavior of solutions to the following system by varying the values

Of‘Bl.‘
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(MDy) (1) + (DY) (1) = £,
(33)
47 1 1 (a7 2 1 42 3
x0) =0, x(2) = Ry (3 )+ 3ROy (T) 4 2rCEDly (),

Let us take B; as a parameter withay = 3/2, 00 =4/5,,=1/5T =2, 41 =7/10,
Ha :4/5,1/1 = 1/2,]/2 :2/3,81 = 1,82 = 1/2,83 = 1/5,171 = 1/2,1’]2 = 2/3,773 :3/4,
61 =1/2,6, =4/5,and ¢y = 1/5,y = 4/3. By Lemma 4, the solution of the system in (33)
with h () = t? and hy(t) = 3 can be rewritten as

1 t g1/2(14+p1)—1,—(t—s)

x(t) = 71"(7/2)/ e~ (t=3) 5/2ds—|—R/ TA/205 B1) ds,

1 ~1/5(t=s) g10/34 t g12/15-1, 1/5(t—s)d
"0 = crs [,
where
FA-C)+D(E-G) _ H(A-C)+B(E—-0) B
with

. —1,—-A(T—
A = /Te—/\l(T—S) 115%ds, B= /T —5711 Fe ) ds,
0 0

m .
c = ZgiR(”‘P"""’ll) /7]1 e~ M2(1i=s) 2345
~ 0

—1,—A(T—
£ = /T e M2(T—s) I“ZS3dS, F = /T Mds,
0 0 I'(712)

G = f ij(VP/"',Vl) /(:j e~ M(—s) "1s2ds,
j=1 0

n & gm—1p=M(Gj—9)
7—[ = Q.R(fo"'rvl) / ds’
]; ! Jo I'(7r11)

r11 =01 — 1+ (2—aq)B1, and y12 = ap — 1+ (2 — ap) Bo. Next, we give some numerical

approximations and graphs of x(t) and y(t) when the values of B; vary from 0.1 to 0.9.
From Figure 1, we see that if the value of 1 increases from 0.1 to 0.9, (Table 1) the

corresponding graphs of x(t) also increase. The lower curve occurs when 1 = 0.1.
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Table 1. The approximate solutions x(¢) and the values of R with varying values of f.

ﬁ1 R X(t)
01 _1.7587 7/2 f() —(t—s) $5/24s — 1.7587 ft %ds
02 —1.6061 7/2 Jo e (179 $5/2ds — 16061 [y Sty ds
03 —1.4790 77/2 fO e—(t=5) $5/205 _ 1.4790 ft %ds
0.4 ~1.3720 7/2 Sy e 179 $5/2ds —1.3720 [ S Sy ds
05 ~1.2810 7/2 Joe (179 $5/2ds —1.2810 [y Sty ds
0.6 ~1.2030 77/2 fO 67 (t—s SS/ZdS —1.2030 ft %ds
0.7 ~1.1355 7/2 Jye 179 $5/2ds — 11355 [ S ne o ds
0.8 ~1.0769 7/2 Jo e (179 $5/2ds —1.0769 [ Sty ds
B o (5) /245 FISHRE
0.9 1.0257 77y Jo e %) $¥/%ds —1.0257 fy ey ds
0 N
0.2 \\\ \ N Z
AN
oal \\\\\\ -
S 06 \ — — > |
£ AN —
3 \\\\ ‘ / / 3,=0.1
L -~ 5,-02
— 8,=0.3
B,=0.4
8,=0.5
4L [31=0.6
8,=0.7
8,-0.8
-1.2 ! I ! | I ! ! ! imos
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2

value

Figure 1. The graph of solutions x(t) with varying values of f; from f; = 0.1 to f; = 0.9 and
By =0.2.

In Figure 2, if the value of B increases, then the value of y(t) also increases (Table 2).
The lower and upper bounds for the above curves correspond to 1 = 0.1 and ;1 = 0.9,
respectively.
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Table 2. The approximate solutions y(t) and the values of S with varying values of 1.

B1 S y(t)
0.1 ~1.1961 (13/3) g e /309 1073 — 1196 [ 22T ot ds
0.2 ~1.1092 (13/3) o e /300 5101305 — 11092 [ e S ds
0.3 ~1.0360 (13/3) o e /3070 5107305 —1.0860 [ S ppt s —ds
0.4 —0.9737 (13 737 Jo e 1/50 ) s10/3ds — 09737 [ et ds
0.5 ~0.9200 (13 737 Jo e 1/5079) 51073 — 0.9200 fi et ds
0.6 —0.8734 (13 737 Jo e 1/50S) 510735 — 0.8734 [ S Tae ot ds
0.7 —0.8325 (13 737 Jo e 1/5075) 510735 — 0.8305 [ S Tae et s
0.8 ~0.7964 (13 Zay Jo e 1/505) 510735 — 0.7964 [ ST e e ds
_ b _1/5(t— 10/3 30 _ b 12/15-15-1/5(t—s)
0.9 0.7643 sy Jo € P 81073 ds — 0.7643 [ g gy ds
0
\‘\
0.2 i\
c-06f o 7
5 08 — —
34=0.1
B,=0.2
5,=0.3
-1
B,=0.4
B,=0.5
3,=0.6
1.2 8,=0.7
3,=0.8
3,=0.9
714 Il Il Il Il Il Il Il Il
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
value

Figure 2. The graph of solutions y(t) with varying values of p; from B;
B2 =0.2.

= 0.1 to B; = 0.9 and

5. Conclusions

In this paper, the tools of fixed point theory are successfully applied to obtain the
existence criteria for solutions of a new class of boundary value problems involving cou-
pled nonlinear Hilfer iterated-integro-differential equations, and Riemann-Liouville and
Hadamard-type iterated fractional integral operators. The first two results (Theorems
3.1 and 3.2) present the different criteria for the existence of solutions to the problem at
hand, while a sufficient criterion ensuring the unique solution of the given problem is
accomplished in the third result. It is believed that the work established in this paper is
a useful contribution to the existing literature on Hilfer-type fractional boundary value
problems as it takes care of Riemann-Liouville and Caputo fractional derivative operators
as special cases of the Hilfer fractional derivative operator. We have presented numerical
examples to show the applicability of the obtained results by using the Matlab program.
Our results are new in the given configuration and enrich the literature on the topic of
nonlinear coupled Hilfer fractional differential equations equipped with nonlocal boundary
conditions involving Riemann-Liouville and Hadamard-type iterated integral operators.
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