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Abstract

:

Internet of Things (IoT) applications are critical for the fast delivery of health information/data in different environments. The wireless sensor network (WSN) can be used within IoT applications to collect this information in the electronic-health sector. However, the essential drawback of WSN and health applications is ensuring that patient and healthcare provider data/information is protected. In addition, exchanging keys and joining the network is the first/most important line of defense to protect health information. Amid all this, the previous search has introduced many key exchange protocols but still suffers from security and performance issues for WSNs and user devices. In this research, we propose a new protocol for exchanging keys and joining the network using security algorithms that are Elliptic-curve Diffie–Hellman (ECDH) and QUARK hash (qh). We focused on applying lightweight and high-security techniques to reduce the burden on WSN resources, by adopting a solid methodological approach to support security first and performance second. The security analysis is simulated with the Scyther tool, and the results indicate that our protocol is able to block key exchange attacks known in the existing research. Furthermore, we carried out a comparison with the results of the recent search in terms of performance, our protocol provides better performance results than the results of the existing search.
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1. Introduction


As part of the Internet of Things (IoT), small, dynamic, smart, fast, and wireless nodes communicate with online platforms that provide various applications, including electronic-health (e-health), electronic-banking (e-banking), smart cities, industry 4.0, and smart homes. Recently, there has been a big surge in the use of IoT applications in the health sector (home, clinic, health center, hospital or even health institutions that include the whole city or country). One feature of the IoT which remains to be studied is the technology of wireless sensor networks (WSNs). IoT has increased the level of investigation into WSNs even more than before. The recent advancements in the field of telecommunications and various services have made it possible to develop low-cost, low-power, compact, high-performance sensors that are small enough to fit a variety of uses. Basically, WSNs consist of four basic components: sensors (Ss), cluster heads nodes (CHs), base stations (BSs) nodes, and interfaces (Is) [1,2]. The widespread use of WSNs that have been composed of resource-limited sensors in connection with BSs in open-space environments and health sectors focused on the necessity of a fast yet secure connection approach between users, Ss, CHs, and BSs. Security is one of the essential controversies in WSNs, as weak precautions may disrupt the whole WSN and may have a serious impact on data storage/transmission and detection of secret keys. Additionally, security procedures for health records and databases can significantly affect WSN performance. In the interests of balance, WSNs require safe key exchange at a high rate while ensuring data integrity and lightweight processes. In light of WSN limitations, elliptic-curve cryptography (ECC) sounds like the most attractive option since it uses fewer resources than most other alternatives. For instance, standard asymmetric algorithms are impractical. Most IoT devices in the health sector currently handle the use of assorted types of symmetric algorithms such as shared and predistribution keys algorithms. Cryptographic algorithms are compelling in maintaining the protection of WSN data to curb the impact of such malicious threats in terms of key exchange [3,4,5].



WSN nodes are increasingly using asymmetric key cryptography to exchange and authenticate keys while dealing with the Internet. Nonetheless, because of the resource requirements of these sensors, it is frequently difficult to execute public key and hash algorithms as these algorithms are computationally costly. Previously, some key exchange administration implementations on WSN nodes depend on preshared symmetric keys. Before the sensors are deployed, keys are pre-introduced on these implementations. This manner does not provide adaptability to organizations that include a huge number of sensors (tens of hundreds of thousands or even millions). For instance, pre-installing 10,000 advanced encryption standard (AES) keys with 128 bits length on a sensor needs storage memory of 160 KB, and furthermore presents with critical look-up latency. Furthermore, WSNs are decentralized and especially ad hoc, making customary key exchange algorithms difficult to implement. An ad hoc structure has decentralized sensor placement, uncontained fixed positions, and furthermore does not provide information about adjacent sensors [1,6]. Numerous applications in WSNs should be secured in assorted aspects, including pre-deployment, registration, distribution, routing, session key agreements, management, and key update. Cryptography approaches undertake a fundamental part in the security construction of sensor networks. Hence, WSNs cannot adapt to conventional cryptographic key exchange algorithms. Subsequently, there are three crucial difficulties related to WSN’s protection solutions. First, the memory limit should be decreased, i.e., the length and size of the key as well as the size of the encrypted and explicit data. Second, key information over-burden ought to be limited since each data item moved consumes energy, decreasing the sensors’ lifetime. Because of the nature of the radio frequency for wireless, anybody can eavesdrop or take part in the connection [7]. Thirdly, the randomization of the key should be appropriate to secure the network connection [8].



Indeed, even keys agreement protocols, which are a fundamental requirement of specific security schemes, are as yet the protocols that are not fully secure and not addressed accurately. Because of the resource constraints in terms of computing cost, battery power, and memory of low cost sensors and other limitations introduced in previous studies, WSN is a predestined target for security threats and common security protocols are hard to execute [9]. Protecting keys is a significant point in WSNs since messages are communicated/encrypted through channels using these keys wirelessly where adversaries ( A s) might gain penetration to collected data if the keys are hacked. Some current solutions do not take into account WSN limitations, such as constrained resources when addressing critical resource-constrained nodes [10,11]. Guaranteeing the security of WSN collected data and transmitted remains a real test for developers and researchers [10,12]. Certainly, the absence of a trustworthy key management protocol does not support applying symmetric cryptographic procedures. The low calculating and data storage capabilities of WSN components complicate asymmetric cryptography execution. Furthermore, lightweight computational sensors, which were deployed in the WSN framework, make security difficulties for many existing health applications. The heuristic function obtained is adjusted to decrease the divergence issue [10]. Because of such conditions, it is important to determine the requirement for comprehensive and intact protection to guarantee WSNs are settled and secured. Elliptic Curve Diffie Hellman (ECDH) is one of the most popular key exchange protocols. In Aikins-Bekoe and Hayfron-Acquah [13] and Al Zubaidie et al. [14], the ECDH algorithm for key exchange is analyzed and studied.



Henceforward, the fundamental issue with WSNs is to provide a more suitable and protected network, for which the state-of-the-art needs to pay attention to the method of setting up simple, reliable, robust, and secure networks. Due to the unusual/unpredictable nature of wireless channels and network security, conventional key exchange mechanisms are unable to secure WSNs from threats. This comes up as a result of the many constraints of resources such as limited energy, running time cost, and lower memory [13,15]. Cryptography includes the procedures for protecting connections in the existence of third parties, which are categorized into a hash function (one-way cryptography), session key, secret key and public key cryptography based on the keys employed [13]. Asymmetric cryptography relies on mathematical methods that can be calculated simply but are comparably strenuous to calculate its opposite. Among the asymmetric algorithms used at present for key generation/exchange, ECC is found to be the latest method to provide an elevated level of protection [13].



The problem of key exchange is crucial in WSNs. The unattended/decentralized nature of some WSNs makes them susceptible to sensor compromise attacks. The network and resource limitations alongside exceptionally various threats impose many severe requirements for the security manner in WSNs. However, the reliable construction to perform the best security is usually not performed during WSN which often relies on the engaged keys and their management operation. In addition, longer cryptographic keys need more space, more bandwidth and extra processor power. Furthermore, these keys take time for key generation, registering and distributing, which is mostly associated with most modern used cryptographic keys such as the RSA and ECDH [13]. Wireless sensors and their data must be secured using a lightweight key exchange method to enable real-time data access [16]. Many cryptography protocols have been designed using symmetric and asymmetric algorithms. According to the security perspective, an asymmetric algorithm is more attractive due to its improved security level. Digital Signature Algorithm (DSA), Elgamal cryptosystem (ECS), ECC, Rivest–Shamir–Adleman (RSA), and other methods have been designed for realizing asymmetric cryptosystems. These algorithms are basically used to guarantee a reliable and secure connection. A smaller key size and the same level of security are provided by ECC [17]. In this case, ECC-ECDH is used and both parties will exchange keys based on the points that have been agreed upon [17].



Data connections are secure with a public-key cryptosystem since a secret/private key is not shared between the client and server. A symmetric key cryptosystem is quicker than an asymmetric one because of producing two keys. A lot of academics/developers have designed many manners to increase the quickness and performance of asymmetric public keys. ECDH has been designed with a less key size that supports high security. ECDH is the best substitute for an RSA cryptosystem. RSA uses a 1024-bit key size while ECDH uses only 160-bit for equivalent security. Among these different cryptographies (RSA, Elgamal, ECDH, etc.), ECDH is effective in view of its higher security and more modest key length [17].



1.1. Significance of Proposed


The exchange/collection of health data via IoT applications using WSN is a significant/critical issue, as any manipulation of this data will generate negative consequences for the health of patients and the reputation of the health institution. Any institution that does not apply strict security measures in protecting patient data will be rejected by individuals and society. It is well known that the exchange of keys in WSN is carried out through insecure channels that are vulnerable to hacking at any time. In addition, the first line of defense in cryptographic systems is to secure the exchange and management of keys for user devices and sensors. If the adversary can hack and gain access to the keys, this means that this adversary may be able to access the network and modify the health data, which negatively affects the health of patients, especially in emergency, critical situations, and online surgeries. Therefore, the security of key exchange is an important and crucial issue, especially in health systems, as the motive of this research is to build a secure and robust key exchange protocol and to overcome the shortcomings of previous protocols in terms of key exchange.




1.2. Main Contributions


We propose a new protocol for addressing security drawbacks in key exchange schemes that is based on the following major contributions:




	
Support for parameter security and public key exchange is through the establishment of strict rules in the protocol methodology. Completely hiding public key exchange is to prevent any information or parameters from being leaked to adversaries.



	
Integration of QUARK with ECDH is to provide robust keys for both user devices and WSN devices in the health sector.



	
Providing a security analysis that tests the proposed protocol using the Scyther tool, in addition to comparing performance and security with the results of recent research.









1.3. Paper Structure


Following is a description of how the research is structured: Section 1 provides a comprehensive introduction. In Section 2, we provide a critique of recent research on key exchange security. Basic concepts are introduced in Section 3. Section 4 provides details of the proposed protocol. The proposal results and findings discussion are described in Section 5. Limitations of the proposed protocol are presented in Section 6. In Section 7, we briefly present the conclusions of this study and future work.





2. Keys Exchange Studies of Related Work


In this section, we will cover a set of recent protocols that suggested by existing research around key exchange in IoT-WSN applications.



Wu et al. [18] provided a key agreement scheme using fog nodes secure authentication for wearable health sensor application. The cloud server and the patients of smart wearable medical devices (SWMDs) are connected by fog nodes. Through the connection protocol, these patients’ sensors send data pertaining to their bodies to the fog node. However, our protocol does not deal with the wireless body sensor network (WBSN). Furthermore, the authors did not locate sensors on the patient’s body to assess performance in terms of transmitted packets. In addition, the key exchange and authentication phase of their protocol performs heavy operations, for example, a wearable medical device performs seven standard hashes. A data integrity scheme based on signatures and hashes was proposed to alleviate security issues associated with wireless sensor networks for health applications [4]. The researchers focused on signatures for the integrity of patient data and did not focus on important security issues in key exchange. In addition, Kim et al. [19] revisited the three-party password-authenticated key exchange. Their protocol provides patients’ anonymity to prevent privileged insider and impersonation attacks. They presented an authentication key agreement protocol in order to protect patient data and support efficient performance. However, their protocol does not provide protection for most key exchange threats such as key recovery and known session key. Alzahrani [20] designed a telecare medical information system protocol using symmetric key exchange procedures. Their protocol applied in electronic-health WSNs with three phases, which are Initialization, User Registration, and Mutual Authentication. They claimed that their protocol was validated with the ProVerif tool. The authors indicated that their protocol addresses preventing attacks such as replay. However, their protocol does not address the issue of protecting keys stored on users’ devices, sensors, and servers. Butpheng et al. [21] investigated the use of intelligent security and privacy techniques in health applications and its evolution over time (from 2017 to 2020), with a particular focus on IoT sensor devices and cloud computing. They pointed out the issues of security, privacy and key exchange and the importance of their application in health-WSN projects. In their review, they stated that security solutions in health applications still are insufficient to protect health data and services.



Abdulhameed et al. [7] proposed a hybrid algorithm. The authors claimed that their protocol provides confidentiality, authentication and integrity. They relied on the algorithms Blowfisth, Rivest Cipher 4 (RC4) for encryption, ECDH for authentication, and Message Digest 5 (MD5) for integrity. However, the algorithms Blowfish, RC4, and MD5 are vulnerable to attacks. Their proposed also does not have an accurate analysis of the security keys of ECDH. ECDH-AES protocol [10] is proposed for key exchange in WSN. The authors relied on classic ECDH which may not provide sufficient security to protect data collected/transmitted by sensors. Furthermore, their protocol does not provide perfect forward secrecy. Aikins-Bekoe and Hayfron-Acquah [13] implemented an analytical study of key exchange protocols (ECDH and RSA) using the PyCryptodome package. The obtained analysis results indicate that ECDH provides higher security with smaller keys than RSA which makes it applicable in WSN. Kardi and Zagrouba [22] proposed a dynamic hybrid protocol based on ECDH and RSA. This protocol takes advantage of the advantages of ECDH and uses them to improve RSA. However, their protocol still uses long RSA keys which are a significant cause of sensors running out of storage space and computational complexity. Another paper Nagesh and S Naresh [17] improved the ECDH protocol to Modified-ECDH (MOD-ECDH) to reduce the key size and improve performance. However, there is no security analysis of their proposed protocol and nor did the authors provide an in-depth analysis of key sizes and lengths.



Phimphinith et al. [23] proposed an ECDH-key agreement based on cureve25519 in IoT applications for communications between ESP866. They indicated that their scheme resists man in the middle (MITM) attacks, replay and modification. Nonetheless, their protocol requires additional hardware/software to support its use ESP8266. Moreover, their protocol relies on a key of length 192 which is not very safe against attacks. In addition, there are some clearly published parameters such as ID that can lead to hacking and exposing the keys. Another paper Hasan and Farhan [24] proposed a scheme for key distribution protection using logistic map Diffie Hellman (LMDH), SubMAC to prevent replay and MITH attacks, and RSA to improve key cryptographic security in WSN-ZigBee. However, their scheme does not provide enough randomness for key generation. Additionally, recent studies have indicated that RSA is not very suitable for application in a WSN. In addition, the authors did not discuss key-bargaining attacks. Lin [25] introduced a key synchronization protocol to support hierarchy in WSN-IoT by proposing a hierarchy-based cluster elliptic curve key agreement named (HCECKA). They claimed that their protocol provides efficiency and speed in key agreement and data transfer. Their protocol relies on an elliptic curve key agreement to accomplish group key agreements. They indicated that RSA and Diffie Hellman are inappropriate for group key agreements in WSN. In addition, they pointed out that ECDH provides keys that are safe and small compared to previous algorithms. However, the authors do not describe a threat model for their proposed protocol, as it is not possible to determine how their protocol is able to fend off key exchange attacks. Rangwani et al. [26] proposed a lightweight authentication and session key negotiation scheme that uses ECDH and SHA256 for agricultural WSN. They claimed that their scheme is able to fend off attacks such as the impersonation, key compromise, known session-specific temporary information, sensor node capture, and session key leakage attacks. However, they did not specify the key length used for ECDH. In addition, using SHA256 will perform heavy computations on the sensors, which can lead to a rapid loss of sensor power. Recently, another paper Thabit et al. [27] proposed a lightweight cryptographic algorithm to secure shared keys and data. Their algorithm consists of a 128-bit block cipher and a 128-bit key. They pointed out that their symmetric algorithm requires efficient execution time for key generation and data encryption in cloud computing applications but that their algorithm is not suitable for large WSNs, as symmetric algorithms are known to suffer from scalability problem.



Gope and Sikdar [28] proposed a key exchange protocol based on the principle of reconfigurable physical unclonable functions. They indicated that their protocol provides efficient security in smart grids and that it provides low communication and computation costs. They claimed that their protocol counteracts several threats such as session-key and impersonation. However, their protocol does not provide protection against critical attacks for key exchange protocols such as stolen verify, key recovery and session key computation. Mehra et al. [29] proposed a lightweight routing protocol based on attested key exchange in wireless sensor networks. The authors pointed out that performance efficiency greatly affects security and makes it more challenging, especially on source-restricted devices. Their protocol relies on codeword, hash function and one-time password authentication to fend off WSN key exchange attacks. However, their protocol does not provide randomness when calculating the hash function in the registration phase of the user’s device and sensor, which makes their protocol vulnerable to session key computation threat. Another paper Wu et al. [30] proposed the three factors (password, biometric and smart card) authentication key exchange protocol to prevent impersonation threats and known session specific temporary information. They indicated that their protocol provides perfect forward secrecy and anonymity for WSN health applications. However, their protocol does not provide a security condition for session key and random parameters detection. Wu et al. [31] proposed an authentication key exchange (AKE) that relies on relay sensors to improve the performance and security of their protocol. The authors pointed out that their protocol uses elliptic curve, bitwise operation, and hash function techniques to ensure network security. However, their protocol suffers from the threat of sensor impersonation and does not provide the user/sensor session key verification property.




3. Preliminary Techniques for Key Exchange


In this section, we will cover some basic concepts/algorithms in key exchange protocols.



3.1. Elliptic Curve Diffie-Hellman (ECDH)


Standard Diffie-Hellman (DH) was proposed in 1976 by Whitfield Diffie and Martin Hellman. An elliptic curve with DH was used to solve the problem of large key sizes and lengths. A secret key is generated using an elliptic curve Diffie-Hellman analog. With ECDH, Diffie-Hellman key agreement is enhanced using elliptic curves instead of conventional Diffie-Hellman analog. Through the Diffie-Hellman method, two parties create secret keys that are shared between them, keeping the secrets from third parties. An elliptic curve Diffie-Hellman algorithm is a key agreement protocol that permits network entities, Alice (A) and Bob (B), to create shared secret keys that are used for public key protocols. Public information is exchanged between the two parties. A shared secret key could be generated by two parties using public and private information. It is impossible for third parties without any knowledge of both parties’ private information to calculate the shared secret key from publicly accessible parameters [13,22]. The ECDH protocol presents parties with public and private keys for encrypting data they transact among one another in an insecure environment. As a result, these derived keys can be used as keys to secure subsequent data transactions between the channel’s parties. For sending and receiving keys, ECDH algorithms follow the following steps [17] (Figure 1 describes these steps).



	
First, all parties should agree publicly on elliptic curve parameters (p: prime, a and b: define a curve, G: curve’s generator, n: large integers, h: cofactor) and generate an elliptic curve together.




	−

	
Elliptic curve equation values and p,




	−

	
Elliptic group from elliptic curve equation values




	−

	
G is calculated from that equation of elliptic group









	
Next, each party should generate a pair of keys: A private key (  P r K  ), a random point on the curve, and a public key (  P u K  ) derived from   P r K . G  .




	−

	
  P r K   is a random integer, n, chosen from [1,   p −  1]




	−

	
  P u K   is the product of base point and private key (i.e.,   P u K = P r K . G  )









	
Suppose the keys of sender (Alice) be (  P r  K A   ,   P u  K A   ) and keys of the receiver (Bob) be (  P r  K B   ,   P u  K B   ). In order for a message to be encrypted/decrypted, the sender must share their or her   P u K   with others during communication.



	
In the ECDH protocol, a message or data denotes a point in the elliptic curve (x, y).



	
The receiver can calculate the point (x, y) and decrypt the message using   P u  K B  . P r  K A    or   P u  K A  . P r  K B   .



	
Asymmetrical property of ECDH encrypted messages is as follows:   P r  K A  . P u  K B  = P r  K A  . P r  K B  . G = P r  K B  . P r  K A  . G = P r  K B  . G   [3,17].






With ECDH, two parties can share secrets over an insecure channel by having a pair of public and private keys. Assuming A has a private key (  P r  K A   ) and a public key (  P u  K A   ) pair based on an elliptic-curve of characteristic p, and B has a private key (  P r  K B   ) and public key (  P u  K B   ) pair. The two parties are then able to come to an agreement on a secret key (  P r  K A  . P r  K B  . G  ) or some function of it, since:   P r  K A  . P u  K B  = P r  K B  . P u  K A  = P r  K A  . P r  K B  . G   [3].



Using the public key,   P u K = P r K . G  , each party creates a secret key by multiplying   P u K   by the secret integer (i.e.,   P r k  .  P u K  ) [13]. ECDH keys can be static (ECDHS) or ephemeral (ECDHE). Static keys can be vulnerable to a variety of attacks as they allow an adversary to perform analytic attacks. ECDH security is determined by the difficulty of solving the discrete logarithm problem on elliptic curves. Solving the ECDLP is more difficult than solving many problems such as the discrete logarithm problem (DLP) and the integer factorization problem (IFP). ECDH is more lightweight as compared to classic DH because ECDH depends on the elliptic curve. Many recent studies have implemented ECDH with source-restricted devices such as WSN because this protocol provides relatively small keys compared to existing public-key protocols. Figure 2 shows a hypothetical use of the ECDH protocol within hospital WSN. After ECDH keys are safely generated and distributed to network entities, encryption (symmetric or asymmetric) and signature algorithms can be applied.




3.2. QUARK Hash Function


QUARK was proposed by Aumasson et al. in 2010. The stream ciphers Grain and KATAN are used in QUARK’s permutation function (Pb), depending on sponge construction. In QUARK, the permutation function is implemented using feedback shift registers (FSRs). QUARK uses three FSRs: two of which are non-linear, and one of which is linear. Three versions are included in this hash function: the u-QUARK (136 bits), the d-QUARK (176 bits), and the s-QUARK (256 bits). In this algorithm, shift registers replace the s-box in SPONGENT and PHOTON hashes, and it is inspired by the Grain (stream) and KATAN (block) ciphers. It also uses sponge construction to improve operation and core permutation. Researchers pointed out that there are devices constrained source (such as sensors, radio frequency identification (RFID) … etc.) that uses little power at the same time, these devices need protection from attacks. Results discussed by researchers that this algorithm implements short light calculations, leading to reduced time (reduction of consumption energy) to generate keys in addition to the QUARK algorithm’s ability to repel the attacks [32].



According to the inputs of all three FSRs, QUARK used the “h” function. To update the first non-linear FSR (NFSR), the “h” function is used in conjunction with another “f” function and the second NFSR values. In addition, the second NFSR updates are performed based on “h” function and “g” function. A linear FSR (LFSR) is updated based on an independent “p” function. Inputs to the first NFSR are derived from the “f” function, and inputs to the second NFSR are derived from the “g” function. A digest with the same length as the input state is generated after four rounds of updates. The highest area requirement for this hash function is 4640 GE, in contrast, 1379 GE is the lowest requirement. Figure 3 shows the permutation treatment of a function.



There are three properties of QUARK: length, capacity, and rate. This can be referred to as QUARK-n/c/r. The internal state has a size of b bits, where b equals the sum of capacity and rate. This hash function provides three different versions representing three different levels of security: u-QUARK (64-bit security), d-QUARK (80-bit security), and s-QUARK (112-bit security). An initialization phase begins with padding the message and dividing it into r-bit blocks, as the last bits in the internal state of the absorbing phase are permutated, it is XORed with the last bit in the internal state of the absorbing phase. After that comes the squeezing phase, which involves making r-bits until each n-bit hash is returned [33].



It incorporates three FSRs that include two NFSRs that contain f, g (such as the Grain algorithm), and h; and LFSR that contains p. The Pb function goes through three phases: initialization, state updating, and result computation. Each version has different non-linear capabilities f, g, and h [33]. The last version is c-QUARK (160-piece security) that developed in 2012. It is designed for the situation of key exchange and authentication protocols with related information [32]. Our research focuses on the version of s-QUARK (QUARK-256) and c-QUARK (QUARK-384). Abed et al. [33] pointed out that QUARK is better than the popular lightweight hashes (SPONGENT and PHOTON) in terms of power and energy and therefore may be better to implement in WSN. Figure 4 shows the advantage of QUARK over SPONGENT and PHOTON in terms of power and energy consumption. In addition, QUARK hash function is designed to resist slide resynchronization, side channel, simple truncated differential, conditional differential, cube threats and cube testers, and is supported by the principles of resistance for collision, pre-image and second pre-image [34].





4. The Proposed ECDH Protocol


This section will describe the proposed protocol for secure key exchange that ensures that subsequent procedures such as authentication, authorization, access control, data availability …, etc. are performed reliably. The proposed protocol contains five phases which are pre-deployment, registration, key update, session key distribution and session key protection, which will be described in the following subsections.



4.1. Trust Model and Threat Model


In terms of the trust model, we considered that our protocol has confidence aspects, including that the sensors have a specific distance to transmit the signal, such, for instance, that the sensors’ signal does not extend beyond the boundaries of the area of specific fields such as a hospital or health center. In addition, all sensors are placed in specific locations, and any sensor that sends data from different locations will be rejected. If the sensor locations are changed legitimately, this should be specified in the BS. Furthermore, requests to send and receive between BS and remote servers in IoT applications are secure. The security of remote servers is behind this study.



In terms of the threat model, we defined a range of attacks/threats tested under the proposed key exchange protocol. We considered attacks that are known session key, stolen verify, condition for the session key, forward secrecy, exposing the random parameters, key recovery, known session-specific temporary information, user-impersonation, sensor node impersonation, postdeployment, session key verification property, session key computation, offline password guessing and jamming to be within our field of study. These attacks target key exchange protocols to hack either by changing them or using them to access the network legitimately. Adversaries ( A s) try to penetrate session keys, or even private keys. These threats are considered serious due to the frequency explained in much research. In addition, adversaries use analytical methods, mathematical algorithms and deception methods to penetrate these keys and destroy key exchange protocols.




4.2. Network Model


In this section, we will explain the network model of our proposed protocol. Our proposed protocol goes through several phases until the key exchange is completed securely. It is designed to operate in health environments (hospitals, health centers …, etc.), our model is made up of sensors, BS and users’ devices as well as remote servers. It achieves five phases before the legitimate keys are approved. First, the pre-deployment phase takes place where both sensors and users’ devices are configured with security parameters, then the registration phase is completed to ensure that the devices use legitimate security parameters with validation of these parameters and proof of registration. Next, the protocol uses the key update phase to ensure freshness and randomness. Then our protocol covertly implements public key distribution. Furthermore, session keys are generated to be protected by the session key protection phase. Figure 5 shows the network model of the proposed key exchange protocol.



As shown in Figure 5, the sensors are only directly connected to the BS. Users’ devices are connected with BS and remote servers, for example, a user (patient, caregiver) can access the old medical records of a particular patient after passing the authentication and authorization procedures, whereas BS is associated with sensors and users as well as remote servers to store medical reports and data collected by WSN (in the case of sending from a BS to medical database servers) or to receive medical instructions from a doctor or health caregiver (in the case of receiving from medical servers to BS).




4.3. The Proposed Phases


A detailed description of the phases of the proposed protocol will be presented in this section.



4.3.1. Pre-Deployment Phase


In this phase, all network model devices are loaded with default security parameters to allow sensor devices and users’ devices to complete the registration process in BS. All sensors have equipped sensor identifier (  S I D  ), location (  L o c  ), default public (  P u  K S   ) and private (  P r  K S   ) keys of 224-bit length, and a secret key domain (which consists of a file containing a 60 message digest) of 256 s-qh length. Users’ devices (UDs) are equipped with the user identifier (  U I D  ), password (  P W  ), biometric (  B M  ) and default public (  P u  K U   ) and private (  P r  K U   ) keys of 384-bit length. After the sensors are deployed and the parameters are uploaded to the users’ devices, the network is ready to start the registration phase.



At this point, the security and network parameters will be uploaded to the sensors and users’ devices before communicating and exchanging public or session keys. For example, each node (user device) will have UID, elliptic curve, points, PW, BM, default public and private keys, and a file (pool of message digest (MD)) of 708 MD. Each node (sensor) will have a SID, location, elliptic curve, points, a default public and private key, and a file of 60 MD. All devices require these parameters to securely complete the registration and key exchange phase. Because sensors have limited resources compared to users’ devices, we use s-qh-256 with sensors while we use c-qh-384 with users’ devices. Furthermore, the proposed protocol uses ECDH-224 with sensors while ECDH-384 with users’ devices.




4.3.2. Registration Phase


After loading the initial parameters of the user devices (  U D  s) and sensors (Ss), the sensor devices are placed in fixed locations, whether in the hospital or health center. All devices, whether users’ devices or sensors, must complete the registration phase to become legitimate in the network (the registration phase is shown in Figure 6), thus allowing these devices to perform the remaining key exchange phases. To complete the registration phase on the   U D   side, it performs the following steps:




	
  U D   retrieves default parameters received from   B S  .



	
The user’s   B M   is computed by one of the input devices either a finger scanner or a camera for IRIS capture. The   U D   calculates a timestamp (  T S  ) to use in the following steps.



	
The   U D   executes a QUARK hash (  q h   or   c − q h  ) on (  U I D | | P W | | B M | | T S  ) to obtain a 384-bit MD.



	
The user application retrieves the MD from the file stored by default in the user application. This file contains 708 MD (which represents the largest value of time multiplied by 12 × 59). One MD is retrieved depending on the time. For example, if the time is 3:20, the hours are multiplied by minutes to obtain the required input (60). The user application will extract the MD at entry 60 from the   c − q  h s    file and perform the operation   q  h 1  ⊕ q  h 60    to obtain   q  h 2    and to support randomness in the registration phase.



	
Then, the user application generates a user registration request (  U R R  ) by calculating    P u  K ⊕ q  h 2  ⊕ U N  | |  T S ⊕ q h   (where   U N   is a user name and   c − q h   is QUARK hash with 384-bit length to specify the user in registration phase), and then sends the   U R R   to   B S  .



	
When BS receives the   U R R   from the user’s device, initially, it truncates   T S ⊕ q h   to distinguish the user.



	
BS specifies   U N  ,    P u   K U    and   T S   based on   q h  .



	
Furthermore, it retrieves   q  h i    based on   T S   (the number of hours is multiplied by the number of minutes to specify the   q  h i    entry in the stored file).



	
Then   B S   extracts   q  h 2    by calculating    P u   K U  ⊕ U N ⊕ U R R  .



	
Next,   B S   extracts   q  h 1    based on   q  h 2  ⊕ q  h i   , and then calculates   q  h 1 ′    through   q  h 1 ′   ( U I D | | P W     | | B M | | T S )  . At this point,   B S   tests   q  h 1 ′  = q  h 1   . If the result matches, it accepts the registration process for that user otherwise the registration process is invalid.



	
If the registration is successful,   B S   generates new public and private keys   P u  K B ′    and   P r  K B ′    and calculating a new   T  S ′    time to check these parameters in the   U D  . In addition, it prepares two new   q  h ′    and   q  h i ′   .



	
  B S   computes confirmation of user registration (  C U R  ) through   q  h ′  ⊕  q h | | q   h i ′  ⊕ q  h i   | |  P u  K B ′     ⊕ P u  K U  ⊕ T  S ′    and then sends   C U R   to the intended   U D  .



	
The user device receives   C U R   from   B S   and then extracts   q  h ′    by truncating the first 384 bits of   C U R   and compute it with   q h   to obtain   q  h ′   . In the same way,   q  h i ′    is obtained, but with the second 384-bit truncation of   C U R  .



	
The user’s device extracts   P u  K B ′    from the third 384 bits in   C U R  .



	
The user’s device calculates the current time   T S   and then checks that   C U R   has reached within the permissible limits of   T S  . Then the user’s device stores   q  h ′    and   q  h i ′    in the   q h   file instead of the old ones.








To complete the registration phase on the sensor’s device side, it performs the following steps:




	
Each sensor uses its stored default parameters (  S I D  ,   L o c  ,   P u  K S    and   P r  K S   ) to start the registration process.



	
Each sensor calculates the current timestamp to prevent many threats such as replay attacks, as well as time is important in our proposal to specify the   q  h i    entry in the hashes file.



	
The sensor obtains   q  h i    by calculating the number of hours (Hs) multiplied by the number of minutes (Ms) to arrive at an entry in the file   q h  .



	
It uses the public key and   q h   (  q  h i  ⊕ P u  K S   ) to obtain   q  h 1   .



	
The sensor calculates   q  h 2    by calculating the QUARK hash (  s − q h  ) 256-bit for the input   ( S I D | | L o c | | T S )   since all sensor parameters (  S I D  ,   L o c   and   T S  ) are hidden and not clearly transmitted in the unsecured channel.



	
The sensor performs the operation   q  h 3  = q  h 2  ⊕ P u  K B    to hide the public key of   B S  .



	
At this point, the sensor computes a sensor registration request (  S R R  ) by executing   q  h 1  ⊕ q  h 3   | |  q h ⊕ T S  , and then sends it to   B S  . It is clear that all parameters are hidden when the   S R R   request goes from the sensor to   B S  .



	
  B S   Receives an SRR request from the sensor. In the same way, it truncates   q h ⊕ T S   from   S R R   and characterizes the sensor by   q h  .



	
In addition, it checks   T S   for attacks.



	
  B S   retrieves the stored   P u  K S    to extract   q  h 1    via   q  h i  ⊕  P u   K S    where   q  h i    depends on   T S  .



	
Then   B S   calculates   q  h 3    by executing the first 256 bits of   S R R   and   q  h 1    (  S S R (  256  1 s t   ⊕ q  h 1   ). Next, use   q  h 3  ⊕ P u  K S    to calculate   q  h 2   .



	
  B S   computes a QUARK hash (  q  h 2 ′    256-bit) by executing   S I D | | L o c | | T S  . Then it checks   q  h 2  = q  h 2 ′    If the result matches, then   B S   completes the rest of the registration procedures. Furthermore, matching the result proves that   S I D   is for a legitimate sensor, the sensor location has not changed and the time is within the specified time period of   B S  .



	
Furthermore,   B S   generates new parameters (  P u  K B ′   ,   P r  K B ′    and   T S  ) to be used in the next phases.



	
  B S   prepares new   M D s   (  q  h ′    and   q  h i ′   ) to be stored in   B S   instead of the old ones, and also sent to the sensor to prevent old   M D   from being used.



	
  B S   prepares a new confirmation of sensor registration (  C S R  ) containing   q  h ′   ,   q  h i ′   ,   P u  K B ′    and   T  S ′    and sends them to the sensor where all parameters are hidden and inaccessible to the adversary ( A ).



	
When the sensor receives a   C S R   request from   B S  , it uses temporary parameters such as   q  h 1   ,   q  h 2    and the quasi-permanent parameters   S I D  ,   L o c   and   P u  K S    to extract new parameters such as   q  h ′   ,   q  h i ′   ,   P u  K B ′    and   T  S ′   .



	
Then   B S   checks   T  S ′    to make sure that the   C S R   request was sent within the time specified on the sensor.



	
  B S   stores the new parameters   q  h ′   ,   q  h i ′    and   P u  K B ′    to be used in the next phases.









4.3.3. Keys Update Phase


After legitimate users and trusted sensors are properly and legally registered, the key update phase comes to ensure that fresh/new keys are used and that safe keys are used, Figure 7 describes the keys update phase. User device side:




	
Initially the   U D   generates keys (private   P r  K U ′    and public   P u  K U ′   ) using the ECDH-384 bits protocol.



	
Then the   U D   computes   q  h 1    by   h ( B M )   which is used to hide the new public key through user key update (  U K U  )  = P u  K U ′  ⊕ P u  K B  ⊕ q  h 1   .



	
Next, the   U D   computes   q  h 2    to produce a   M D   that depends on the password. This operation is important to hide the new public and private keys on the   U D   and store them on the user’s device through the two operations (  q  h 2  ⊕ P u  K U ′    and   q  h 2  ⊕ P r  K U ′   ).



	
At this point, the user’s device sends   U K U   to   B S  .



	
  B S   receives the update request   U K U   from the   U D  . Then it performs the operation   q  h 1    (because   B S   has databases of   B M  ,   U I D   … etc.) to extract the new public key (  P u  K U ′   ) associated with a given   U D   and store it instead of the old one.



	
Then   B S   generates public   P u  K B ′    and private   P r  K B ′    to connect to the intended user’s device.



	
  B S   computes   B S   key update (  B K U  ) to hide the public key of   B S   by   P u  K B ′  ⊕ P u  K U  ⊕ q  h 1   .



	
Then,   B S   computes   q  h 2    through the operation   h ( U I D )   to hide the public and private keys of the   B S   by   q  h 2  ⊕ P u  K B ′    and   q  h 2  ⊕ P r  K B    and then stores them on the   B S   device. At this point,   B S   sends   B K U   to the intended   U D  .



	
Finally, the   U D   receives   B K U   from   B S   and retrieves   P u  K U ′    to extract   P u  K B ′    by the operation   B K U ⊕ P u  K U  ⊕ q  h 1    and store it on the   U D   for use in future connections.








Sensor device side:




	
First, each sensor uses ECDH-224 to generate the public   P u  K S ′    and the private   P r  K S ′   .



	
Then each sensor uses   q  h 1    through   h ( L o c )   to hide the   P u  K S ′    public key associated with the sensor using the   S K U = P u  K S ′  ⊕ P u  K S  ⊕ q  h 1    operation.



	
Next, each sensor uses   q  h 2  = h  ( S I D )    to hide the sensor’s public and private keys, then each sensor stores the new keys and sends sensor key update (  S K U  ) to   B S   to update the public key.



	
The   B S   receives   S K U   and retrieves the location of the sensor to extract the new public key by the operation   S K U ⊕ P u  K S  ⊕ q  h 1    and then stores it in place of the old public key.



	
Furthermore,   B S   generates the public keys   P u  K B ′    and the private   P r  K B ′    and stores them after they are hidden by the   q  h 2    operation.



	
  B S   computes   B K U   by   B K U = P u  K B ′  ⊕ P u  K S  ⊕ q  h 1    and then sends   B K U   to sensor.



	
Sensor receives   B K U   and retrieves   P u  K S ′    to extract   P u  K B ′    by the operation   B K U ⊕ P u  K S  ⊕ q  h 1    and then stores the public key   P u  K B ′    for the   B S  .









4.3.4. Session Key Distribution Phase


After the legitimate devices (users’ devices and sensors) have completed the registration and update/exchange of public keys phases securely, the session key distribution phase begins through which data and information packets can be transmitted securely, Figure 8 depicts the steps of session key distribution phase.



	
Initially, the   U D   enters   U I D  ,   B M   and   P W   and generates   R  N  U i     to increase the randomness of the session key   S K  . It then extracts the public and private keys (  P r  K U    and   P u  K U   ) using   ⊕ q  h 2   .



	
The   U D   calculates   S  K U    by   h ( P u  K U  | | B M | | P W | | R  N  U i   )  , where   S  K U    can be divided into   S  K  U 1     and   S  K  U 2     to be used in the final   S K   production. Then, the user’s device performs three processes (  P 1  ,   P 2   and   P 3  ) to hide the initial session key, the random number and the user ID (  U I D  ). Then the   U D   sends user’s session key request (  S  K U  R  ) containing   P 1  ,   P 2   and   P 3   to   B S  .



	
At this point,   B S   receives the   S  K U  R   request from the   U D  .   B S   uses the public key (  P u  K B   ) to obtain the   U I D  , then uses the latter to obtain   R  N  U i    . Then   B S   calculates   S  K U    by    P 1  ⊕ P u  K U  ⊕ R  N  U i    . Next,   B S   uses   P u  K U   ,   B M   and   P W   stored plus   R  N  U i     obtained to find   S  K U ′   , and then checks the obtained   S  K U    equals   S  K U ′    computed, if they match, then   B S   completes the procedures of the session key distribution phase, otherwise   B S   refuses to complete the distribution of the   S K   and stops the connection.



	
If   S  K U ′    is validated,   B S   generates a new random number   R  N  B i     and calculates the temporary session key   S  K B    by   h ( P u  K B  | | S I D | | U I D | | R  N  B i   )  . Then   B S   divides both   S  K U ′    and   S  K B    into two parts (  S  K  U  1  ′     and   S  K  U  2  ′    ,   S  K  B 1     and   S  K  B 2    ) to obtain a temporary session key through   S  K  t m p   = S  K  U 1    | |  S  K  B 2    . Finally,   B S   completes three processes to hide the temporary session key,   U I D  ,   S I D   and   R  N  B i     and to create   S  K  B 1   R   by    P 1   | |   P 2   | |   P 3    then send it to the intended sensor.



	
When the sensor receives a   S  K  B 1   R   request, it uses both the public key (  P u  K S   ) and the sensor identifier (  S I D  ) to obtain   U I D   and   R  N  B i    . This procedure also enables the sensor to validate both   P u  K S    and   S I D  . Then the sensor extracts the temporary session key   S  K  t m p     by    P 1  ⊕ P u  K B  ⊕ R  N  B i    , where   S  K  t m p     consists of   S  K  U 1     and   S  K  B 2    . Then, the sensor computes   S  K B ′    by   h ( P u  K B  | | S I D | | U I D | | R  N  B i   )   which consists of   S  K   B 1   ′    and   S  K   B 2   ′   . The sensor tests for a match of   S  K  t m  p 2    = S  K   B 2   ′   , if it matches it means that the temporary   S K   is valid otherwise the sensor will refuse to connect and consider the   S K   to be fake.



	
If they are identical, the sensor generates a new   R  N  S i     and calculates the initial session key   S  K S    by   h ( P u  K S  | | L o c | | S I D | | R  N  S i   )   which consists of   S  K  S 1     and   S  K  S 2    . At this point, the sensor   S K   between the sensor and   B S   is   S  K  S B     consisting of   S  K  t m  p 2      and   S  K  S 1    . It will be used in subsequent encryption and signatures operations that are beyond the scope of this research. Finally, the sensor hides the final session key   S  K  S B    , the sensor location   L o c  , and the   S I D   by   P 1  ,   P 2   and   P 3   and then sends these processes after being combined in   S  K S  R   into   B S  .



	
  B S   receives a   S  K S  R   request and uses   P u  K B    to extract   S I D   and   L o c   to extract   R  N  S i    . Then   B S   calculates   S  K  B S     (where   S  K  B S   = S  K  S B    ) by    P 1  ⊕ P u  K S  ⊕ R  N  S i     consisting of   S  K  S 1     and   S  K  B 2    . Then   B S   tests   S  K  B 2   = S  K   B 2   ′   . If they match then   S  K  B S   = S  K  S 1    | |  S  K  B 2     is the final session key between   B S   and the sensor otherwise it refuses to connect. Then   B S   generates a new   R  N  B i     with the final session key   S  K  B U     (that consists of   S  K  B 1     and   S  K  U 2    ) between   B S   and user, then hides final   S  K  B U     and   R  N  B i     by the processes   P 1  ,   P 2   and   P 3   to prevent adversaries from exposing the exchanged keys and network security parameters. Finally,   B S   sends a   S  K  B 2   R   request containing    P 1   | |   P 2   | |   P 3    to the   U D   to complete the session key distribution phase.



	
On the   U D   side, the   U D   receives the   S  K  B 2   R   request and extracts   U I D   to validate the request and extracts   R  N  B i     to calculate the session key. The user’s device extracts   S  K  U B     (where   S  K  U B   = S  K  B U    ) by    P 1  ⊕ P u  K B  ⊕ R  N  B i    . Then the   U D   splits   S  K  U  B 2      into   S  K  U  B 1      and   S  K  U  B 2      and tests that   S  K  U 2   = S  K  U  B 2      if identical then   S  K  U B     is the final session key between the user and   B S  , otherwise the key is modified by adversaries as the   U D   will reject it.







4.3.5. Session Key Protection Phase


To make a session key secure against attacks, the keys stored on the devices must be protected. On the user’s device, it first requires extracting the private key in the process   P r  K U  = P r  K U  ⊕ q  h 2    and then doing the operation   S  K  U B  ′  = S  K  U B   ⊕ P r  K U  ⊕ q  h 2  ⊕ P W   to hide the   S K   on the device the user. As for the sensor, it performs the operation   P r  K S  = P r  K S  ⊕ q  h 2   . Next, the sensor performs the operation   S  K  S B  ′  = S  K  S B   ⊕ P r  K S  ⊕ q  h 2  ⊕ S I D   to hide the   S K   in the sensors. Implementing these operations provides security robustness to protect exchanged keys, especially session keys.






5. Proposal Results and Findings Discussion


This part of the research will deal with the results obtained from the proposed key exchange protocol in addition to evaluating the results during their discussion with the results of the existing research.



5.1. Analysis of the Proposed Protocol Security


For security analysis, this section will include an extensive formal and informal security analysis.



5.1.1. Informal Analysis of the Proposed Protocol Security


This section will address the attacks identified in the threat model (scope of the study) section and demonstrate the ability of the proposed key exchange protocol to resist these threats. In addition, Table 1 shows a comparison of the threat resistance (TR) between the proposed key exchange protocol and the existing protocols.



	
Known session key threat (KSKT) resistance: In insecure environments, the adversary tries to use the keys of the previous sessions to gain access to the keys of the current session. If the adversary can derive the keys of the current session, it becomes legitimate and can perform malicious activities. In the proposed key exchange protocol, all previous and updated session keys are hidden (e.g.,    P 1  = S  K  t m p   ⊕ P u  K B  ⊕ R  N  B i    ) and not sent explicitly. Furthermore, there is no correlation or relationship between the previous and updated keys. Additionally, there is high randomness using   R  N  B i     to support robust session key protection. Therefore, the proposal resists this attack with high rigidity.



	
Resistance of stolen verify threat (SVT): In this type of attack, the adversary tries to steal security parameters, whether related to users’ devices, sensors, or the network. Stolen validation parameters can simply give the adversary authentication and verification in the network. The adversary tries to access the database containing confidential information by hacking users’ devices and sensors. In the proposed key exchange protocol, all security parameters such as   P W   and keys are either session or private keys, even public keys are not explicitly stored. For example, the public key of a particular user’s device is hidden by   P u  K U ′  = q  h 2  ⊕ P u  K U ′   , also, the password is not stored on the user’s device (  q  h 2  = h  ( P W )   ). Therefore, the adversary cannot derive the keys and security parameters. The proposed protocol thus successfully counters the threat of a stolen verifier.



	
Session key and security condition (SKSC): In order for a session key to be secure, it must be protected from accessing its analysis and derivation by the adversary. In our protocol, the adversary cannot access, derive or analyze security parameters or keys because first the session key is not repeated in subsequent sessions and second, the session key between the user’s device and   B S   such as   S  K  B U   = S  K  B 1    | |  S  K  U 2     is different from the session key between BS and S as   S  K  S B   = S  K  S 1    | |  S  K  t m  p 2     . Furthermore, all security parameters such as sensor location    P 2  = L o c ⊕ R  N  S i     and keys such as the public key are sent to the recipient anonymously as    P 3  = S I D ⊕ P u  K B   . Therefore, deriving or computing the session key by the adversary is very difficult in our protocol. Thus, the security condition of the session key in our protocol is high and suitable for protecting patients’ data.



	
Providing perfect forward secrecy (PFS): In this attack, the adversary tries to take advantage of the current session key and long-term security parameters (assuming that it can access the session key); it cannot take advantage of this key in subsequent sessions because in our protocol the keys for subsequent sessions do not depend on the keys of the current sessions. Furthermore, the session key in our protocol is unique and random through the execution of   S  K B   = h ( P u   K B   | | S I D | | U I D | | R   N  B i    )   , even if the adversary can access the long-term parameters such as   S I D  ,   U I D  ⋯, etc. It cannot be used to derive subsequent (future) session keys because the   R  N  B i     value in our proposed protocol provides randomness within the implementation of the   q h   function. Hence our proposed protocol efficiently provides PFS.



	
Random parameters detection threat (RPDT) resistance: The goal of this attack is to obtain random parameters to help expose the session key and other keys to network entities. The adversary tries to detect random parameters such as   R  N  U i    ,   R  N  B i    , and   R  N  S i     to obtain the other security parameters. Even if the adversary exposes the random parameters, he/she cannot access the session key because the initial session key for each entity consists of two parts such as   S  K U  = S  K  U 1    | |  S  K  U 2     and the final session key is agreed as   S  K  U B   = S  K  U  B 1     | |  S  K  U  B 2      between entities depending on multiple processes as shown in Figure 8. Moreover, random parameters are not explicitly sent over the network such as   S  K U  =  P 1  ⊕ P u  K U  ⊕ R  N  U i    . Therefore, our proposed protocol withstands RPDT.



	
Key recovery threat (KRT) resistance: In this type of attack, the adversary tries to extract the key assuming that the attacker has the plaintext and ciphertext. This attack is not viable if the security parameters are chosen appropriately. The proposed ECDH protocol generates security keys of sufficient length (384 bits) to block this attack. Furthermore, our protocol does not suffer from information leakage or security parameters that help to extract the keys. Moreover, random key generation in addition to the regular generation of these keys prevents hacking of our protocol. Therefore, our proposed protocol successfully counteracts this threat.



	
Known-session-specific temporary threat (KSSTT) resistance: Detection of some temporary information can lead to session key exposure in vulnerable key exchange protocols. For example, the adversary tries to reveal temporary random values or parameters to obtain the session key. In our proposed protocol, it is very difficult for the adversary to obtain the random values, such as   R  N  U i    , but if we assume that the adversary can obtain the random values in the session, he/she cannot obtain the session key (  S  K U   = h ( P u   K U   | | B M | | P W | | R   N  U i    )   ) because it relies on other permanent parameters such as   B M   or semi-permanent parameters such as   P W   and not stored by users’ devices. Even if the adversary can obtain the random value and the   q h   value, it will not be able to reveal the session key. Thus, our protocol reliably combats a KSSTT.



	
User impersonation threat (UIT) resistance: To accomplish the impersonation threat, the adversary needs to prepare a login request that contains valid information (such as keys and security parameters) for a legitimate user. Fortunately, our protocol relies on the security parameters   B M   and   P W   (two factors authentication), the adversary does not have access to these security parameters because these parameters are not stored on   U D s   and are not explicitly transmitted from sender to recipient. Thus, the adversary cannot imitate the user’s device, i.e., our protocol aptly resists this threat.



	
Sensor node impersonation threat (SIT) resistance: Similar to the previous attack, the adversary needs secret information to imitate the sensor. In our protocol, the adversary can only imitate sensors when secret parameters such as   S I D  ,   L o c  ,   P u  K S    and   P r  K S    are obtained. As all these parameters are hidden securely, whether in storage or transmission. For instance, even if the adversary penetrates the sensor, he/she cannot extract the private key   P r  K S ′  = q  h 2  ⊕ P r  K S ′   . Therefore, our proposed protocol successfully resists the SIT.



	
Post-deployment keys threat (PDKT) resistance: Sometimes the adversary exploits key exchange vulnerabilities post-deployment of sensors, adding a user device to the network or in the case of updating the public/private keys of users’ devices and sensors. In all of these cases, the adversary tries to derive, alter or block/intercept the keys. Our protocol generates public and private keys on a regular basis. In the phase of user and sensor key update (Figure 7), the adversary cannot derive the keys because they are hidden (  U K U = P u  K U ′  ⊕ P u  K B  ⊕ q  h 1   ) when transmitting via the unsecured channel and protected (  P u  K U ′  = q  h 2  ⊕ P u  K U ′   ) when stored in users’ devices or sensors. Furthermore, the adversary cannot prevent the user/sensor update request for the keys from reaching the intended target because the user/sensor device will wait for the   B K U   request which means the key update is completed. Thus, our protocol successfully resists PDKT.



	
User/sensor session key verification (U/SSKV) threat resistance: In this attack, the adversary attempts to fail the session key verification completion to prevent the use of a legitimate session key between entities. In our protocol, all entities (  U D  ,   B S   and S) produce primary keys (  S  K U   ,   S  K B    and   S  K S   ) to eventually obtain final keys (  S  K  S B    ,   S  K  B S    ,   S  K  B U     and   S  K  U B    ) after completion of    P 1  = S  K  B U   ⊕ P u  K B  ⊕ R  N  B i     in verification request   S  K  B 2   R  . The adversary does not know the parameters of the verification request   S  K  B 2   R   and cannot falsify it because it is hidden and any manipulation of it will be clear to the receiver. As a result, our protocol worthily provides U/SSKV property.



	
Session key computation threat (SKCT) resistance: This attack relies on obtaining a session key creation/updating request. The adversary tries to analyze the session key request to compute it. In our protocol, each session key consists of two parts (  S  K  U 1    | |  S  K  U 2    ,   S  K  B 1    | |  S  K  B 2     and   S  K  S 1    | |  S  K  S 2    ), one part is used to produce the final session key and the other part is used for verification (see Figure 8). For example,   S  K  U 1     (on the user’s device side) is used to produce the session key while   S  K  U 2     is used to verify the session key. In our protocol, the adversary cannot compute the session key because first, all the parameters are hidden, secondly, the adversary does not know how to generate the initial and final keys for the session keys. Thus, our protocol ably resists this threat.



	
Resistance of off-line password guessing threat (OPGT): In this threat, the adversary tries to guess the passwords in the requests transmitted between the sender and the recipient. After the adversary obtains some key exchange or registration request, he/she tries different methods, such as a dictionary and brute force, to guess the correct passwords. In our protocol, first, the passwords are not stored on   U D s  . Furthermore, users’ passwords are not explicitly transmitted over the network. Throughout our protocol phases (Figure 6, Figure 7 and Figure 8), passwords are used within a QUARK hash of length 256 MD with   S i   or 384 MD with   U  D i    (i.e.,   q  h 1  = h  ( U I D | | P W | | B M | | T S )   ) which it is impossible for an adversary to extract the password from   q  h 1    even if the adversary has some parameters such as   U I D   and   P u  K U   . Therefore, our protocol successfully resists the OPGT.



	
Resistance of jamming threat (JT): This is a type of service obfuscation threat that mainly targets servers and   B S s  . The adversary sends unnecessary packets at the same network frequency to stop services. The adversary can use it in many forms such as constant, deceptive, random and reactive. Our protocol uses authentication procedures that greatly mitigate this threat. Since our protocol uses   T S ⊕ q h   in   B S s   to authenticate the registration of both the user and sensor. Thus, our protocol provides resistance to this type of threat.







5.1.2. Formal Analysis of the Proposed Protocol Security


To verify the ability of key exchange protocols to fend off security threats, researchers and academics use formal tools such as Scyther to demonstrate that designed security protocols are immune to known attacks and are free from vulnerabilities. In this section, we will provide a Scyther summary, proposed ECDH-QUARK protocol with Scyther and results.



	
Scyther Summary:






Among the formal tools for checking vulnerabilities is the Scyther checker tool. This tool is effective in testing and analyzing vulnerabilities of security protocols [35]. It is very popular for testing key exchange and security protocols. This tool has the ability to analyze many threats such as password guessing, insider, impersonation, session key and established key that cannot be analyzed in other analysis tools such as ProVerif and Akiss. Scyther uses specific language to describe protocols, roles, parameters, send/receive requests, and claims. Scyther language is a security protocol description language (SPDL) that is similar to the syntax of Java. Furthermore, it provides a graphical interface to check results and test threats easily and simply [36]. The security protocol is designed based on the roles of network entities and implemented a set of claim events on the security parameters in requests to send () and recv (). Among these claims are:




	
Secret: Keeping secret terms



	
Alive: Proof that key exchange protocol steps are implemented in the network entity.



	
Weakagree: Ensuring that an impersonation threat will not be carried out by an adversary



	
Nisynch: Verifying that send and receive requests are between two connected entities



	
Niagree: Ensuring that transmission and receiving requests are transmitted in the correct order and integrated data between network entities



	
Match: Testing the equality of two variables or assigning a value to a variable








Scyther provides pattern discipline, shortened representations and analyzed traces. This checker helps in the analysis of classes of threats and expected protocol behaviors [37], or to prove correctness for an unbounded number of established sessions for protocol. The checker has been swimmingly used in both teaching and scientific research.



	
Proposed ECDH-QUARK Protocol with Scyther:






Our protocol was analyzed by the Scyther checker after writing the protocol code in SPDL. As noted earlier, the design of a security protocol in SYTHER depends on the roles of that protocol. Therefore, our proposed protocol is based on three roles (  U D  ,   B S   and S). Furthermore, our protocol contains four “send” events and four “recv” events to safely complete the session key distribution. It sends and receives four requests (  S  K U  R  ,   S  K  B 2   R  ,   S  K  B 2   R   and   S  K S  R  ) between the designed protocol roles. All security procedures and parameters in Figure 8 have been applied to analyze the security of our proposed ECDH-QUARK protocol. In our protocol, the Secret, Nisynch, Niagree and Match claims are implemented and the confidentiality and concealing of information (such as   S I D   and   U I D  ) and security parameters (such as   S  K  u b 1     and   S  K  u b 2    ) are implemented.



	
Results:






After implementing our protocol in the Scyther tool, the results indicate that our ECDH-QUARK protocol is safe against attacks and threats (shown in Figure 9). Where all session keys (  S  K  u b    ,   S  K  b u    ,   S  K  s b     and   S  K  b s    ) are between roles, and public (  P u K u  ,   P u K b   and   P u K s  ), random parameters (  R  N u   ,   R  N b    and   R  N s   ) and hardware information (  L o c  ,   S I D   and   U I D  ) are secure and confidential. In Figure 9, we notice that the “Comments” section indicates “no attacks” which means that our protocol is secure against known threats.





5.2. Performance Analysis of the Proposed Protocol


In this section, we will analyze the performance of the proposed key exchange protocol. We will demonstrate how our protocol provides lightweight mechanisms of performance while providing trustworthy security.



	
Computational cost



All key exchange protocols require a computational cost evaluation of the embedded security measures to demonstrate their applicability. Therefore, we tested the execution of security processes to obtain the execution time for all these processes, Table 2 shows the execution time for key exchanges such as   T  q h   ,   T  K E    and   T  S M   . To illustrate the computational costs, we compare our protocol with existing key exchange protocols ([3,23,26,28,30,31,38]), where costs are evaluated across all network components (  U D  ,   B S   and S) and then the total cost and time cost are calculated (see Table 3). For comparing costs of computation, there are some acronyms that should be defined and some of which may not be used in our protocol.



	−

	
Execution time for symmetric encryption (  T S  )




	−

	
Execution time for fuzzy extractor (  T  f e   )




	−

	
Execution time for hash function (  T h  )




	−

	
Standard hash function (  S H  ) and lightweight hash function (  L H  )







We tested the computation costs in the user device and sensor session key distribution phase (Figure 8) with existing key exchange protocols, because the registration and update phases are not applied continuously. Furthermore, the costs of the   R N   and XOR operations are small and negotiable so we do not include them in the computation costs comparison. We can see from Table 3 that the computational costs in our protocol are   U D = 1  T  q h     +   1  T  K E     +   1  T  S M    ,   B S = 1  T  q h     +   1  T  K E     +   1  T  S M     and   S = 1  T  q h     +   1  T  K E     +   1  T  S M    , as well as the total cost, is   3  T  q h     +   3  T  K E     +   3  T  S M     that is the best of all recent key exchange protocols. Furthermore, our protocol implements a lightweight hash (  L H  ) algorithm that is QUARK to generate light session keys compared to existing protocols that implement standard hash (SH). Moreover, the cost of execution time for existing protocols such as [3] = 0.1453 s, [26] = 8.9730 ms, [28] = 94.903 ms, [31] = 110.50 s and [38] = 421.25 ms consumes a big execution time (which will negatively affect resource-constrained sensors) compared to our protocol which needs ≈0.012816 ms.



In Baghbanijam and Sanaei [3], the key exchange phase requires encryption and therefore the execution time cost will be very large compared to our proposed protocol. Phimphinith et al. [23] and Wu et al. [30] did not specify execution time costs and thus it is difficult to make a comparison with our protocol. Rangwani et al. [26] and Gope and Sikdar [28] used many parameters such as using more than six hashes, which makes key exchange complicated to calculate. In Wu et al. [31], the authors used the AKE protocol which performs complex operations due to the execution of 11   T  S M    which greatly affects the performance. Similarly, another paper Qi and Chen [38] relied on AKE with ECC to apply key exchange with two factors authentication. However, AKE is not compatible with WSN-based health networks. The authors of this paper indicated that the sensor computation cost is 136.35 ms, while in our protocol the sensor computation cost is 0.004272 ms. After evaluating the computation costs, we note that the proposed key exchange protocol offers the best performance out of the existing protocols.



	
Communication cost Another important aspect of evaluating key exchange protocols is the calculation of communication costs. In our user and sensor session key distribution phase (Figure 8), each entity has a communication cost, for example,   U D   needs   P u  K U    = 384 bits,   R  N  U i     = 64 bits and   U I D   = 32 bits, where the cost of   P 1   = 384 bits,   P 2   = 64 and   P 3   = 384 bits. Thus, the communication cost of   U D   becomes 832 bits, which is similar to the costs of   B S   = 832 bits and S = 832 bits. As a result, the total cost of communication in our protocol is 2496 bits. By comparing our protocol with the communication costs in Table 4, we notice that our protocol outperforms the protocols in [30,31] in terms of data size. Although the protocol in [38] performs three handshakes and a data size of 2368 bits, compared to our protocol that performs four handshakes and a data size of 2496 bits; this does not reflect the overall performance of the protocol [38], as our protocol (which uses 1  T  q h   ) outperforms the protocol in Qi and Chen [38] (which uses 6  T h  ) in computation cost. In addition, their protocol contains a clear security breach when it reduces the number of handshakes from 4 to 3, as there are no parameters checked (third handshake) in   B S   between S and   U D  . Thus, our protocol balances security and performance to outperform existing protocols in terms of communication cost.








6. Limitations of Proposed Protocol


The design of a key exchange protocol, no matter how precise the design, may contain some limitations and open issues. Therefore, we present some of the limitations that may be encountered in implementing our protocol. For example, if the network is large (a huge number of users and sensors) there can be use of identical parts of the same session key for different users. Moreover, it is possible (in some cases) that the proposal establishes a session key for a specific user without establishing a session key for the sensors and vice versa if there is a hardware failure of the network components or because the proposal has not been tested against various attacks and threats. Furthermore, any failure that affects the   B S   device can be the cause of the network downtime, especially since the key exchange phase is highly dependent on the verification procedures in   B S  .




7. Conclusions and Future Work


Providing a trusted key exchange protocol gives users (patients and providers) confidence that their information and data are secure. However, providing a security methodology for exchanging keys without caring about protocol performance would leave a big loophole in the security protocol. This protocol will not be acceptable to health institutions and individuals due to its inapplicability in those health institutions. Therefore, we proposed a key exchange (ECDH-QUARK) protocol that balances security and performance. We tested our protocol against a range of malicious attacks targeting key exchange. The results of the analyses indicate that our protocol is able to efficiently fend off these threats. Furthermore, our protocol provided a balanced performance in terms of computation and communication costs when compared with the existing search results. Among the expected future works of this study are:




	
Test the proposed protocol on actual health applications such as surgeries that require high speed and security to exchange keys in joining and leaving the network. Especially when the surgeon is not present in the surgical procedure, but rather supervises it online.



	
This proposal deals with the exchange of keys and the distribution of session keys securely between network entities, we intend to develop this proposal in the use of these keys to accomplish the processes of encryption and signing of patient data and information.



	
Test our proposal on wearable and implantable health sensors in the human body to assess energy consumption and calculate the computational cost and complexity.
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Abbreviations


The following abbreviations are used in this manuscript:



	 A ,   B S  ,   S i  ,   U  D i   
	Adversary, base station, sensor, user device



	  P u  K U  ,  P u  K S  ,  P u  K B   
	Public keys of users, sensors, and   B S  



	  P r  K U  ,  P r  K S  ,  P r  K B   
	Private keys of users, sensors, and   B S  



	  S  K  S B   ,  S  K  U B    
	Session keys between sensors and   B S  , users and   B S  



	  S  K  t m p    
	Temporary session key



	  U I D ,  S I D  
	Identifiers of users and sensors



	  L o c  
	Sensors locations



	  P W  ,   B M  
	Users’ passwords and biometrics



	  U N  
	User name



	  R  N  U i   ,  R  N  S i   ,  R  N  B i    
	Random numbers for sensors, users and   B S  



	  q h ( . )   or   h ( . )  
	One-way QUARK hash function



	  ∥ ,  ⊕  
	Concatenation and exclusive or operations
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Figure 1. ECDH protocol. 
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Figure 2. Using ECDH protocol in hospital WSN. 
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Figure 3. QUARK permutation function. 
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Figure 4. Power and energy consumption in QUARK, SPONGENT and PHOTON. 
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Figure 5. Proposed network model. 
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Figure 6. User and sensor registration phase. 
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Figure 7. User and sensor key update phase. 
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Figure 8. User and sensor session key distribution phase. 






Figure 8. User and sensor session key distribution phase.



[image: Symmetry 15 00152 g008]







[image: Symmetry 15 00152 g009 550] 





Figure 9. Proposed ECDH-QUARK results by SYTHER checker. 
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Table 1. Resistance of threats to both the proposed protocol and existing protocols.
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	TR
	Ametepe et al. [10]
	Kardi and Zagrouba [22]
	Lin [25]
	Rangwani et al. [26]
	Thabit et al. [27]
	Gope and Sikdar [28]
	Mehra et al. [29]
	Wu et al. [30]
	Wu et al. [31]
	Proposed





	KSKT
	
	
	
	
	
	
	
	
	
	√



	SVT
	
	
	
	√
	
	
	√
	√
	
	√



	SKSC
	
	
	√
	
	
	
	√
	
	
	√



	PFS
	
	
	
	√
	
	√
	√
	√
	√
	√



	RPDT
	
	
	
	√
	
	√
	
	
	
	√



	KRT
	√
	
	
	
	√
	
	
	
	
	√



	KSSTT
	
	
	
	
	
	√
	
	√
	√
	√



	UIT
	
	
	
	√
	
	√
	√
	√
	√
	√



	SIT
	
	
	
	√
	
	
	
	√
	
	√



	PDKT
	
	
	
	
	
	
	
	
	
	√



	U/SSKV
	
	
	√
	
	
	
	√
	
	
	√



	SKCT
	√
	
	
	√
	√
	√
	
	
	
	√



	OPGT
	
	
	
	√
	
	
	√
	√
	√
	√



	JT
	
	√
	
	
	
	
	
	
	
	√
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Table 2. Cryptography key exchange operations.
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	Notation
	Description
	Time Cost





	   T  q h    
	c-QUARK hash function
	0.002892 ms



	   T  K E    
	Key exchange (ECDH)
	0.000847 ms



	   T  S M    
	Scalar multiplication
	0.000533 ms



	   T S   
	Symmetric encryption
	-



	   T  f e    
	Fuzzy extractor
	-



	   T h   
	One-way hash function
	-
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Table 3. Comparison of computational costs between key exchange protocols.
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	Protocol
	   UD   
	   BS   
	S
	Total
	Exchange Type
	Hash
	Time Cost





	Baghbanijam and Sanaei [3]
	  3  T h    +   4  T  K E    

+   2  T S   
	  4  T h    +   3  T  K E    

+   2  T S   
	  3  T h    +   2  T  K E    
	  10  T h    +   7  T  K E    

+   4  T S   
	ECDH
	SH
	0.1453 s



	Phimphinith et al. [23]
	  4  T h    +   2  T  K E    

+   2  T  S M    
	  4  T h    +   1  T  K E    

+   1  T  S M    
	-
	  8  T h    +   3  T  K E    

+   3  T  S M    
	ECDH
	-
	-



	Rangwani et al. [26]
	  4  T h    +   2  T  K E    

+   2  T  S M    
	  7  T h    +   1  T  K E    

+   1  T  S M    
	  4  T h    +   1  T  K E    

+   1  T  S M    
	  15  T h    +   4  T  K E    

+   4  T  S M    
	ECDH
	SH
	8.9730 ms



	Gope and Sikdar [28]
	  6  T h    +   2  T S   
	  5  T h    +   2  T S   
	-
	  11  T h    +   4  T S   
	AES-CBC
	SH
	94.903 ms



	Wu et al. [30]
	  1  T  f e     +   11  T h    +

  1  T S   
	  14  T h    +   1  T S   
	  6  T h    +   1  T S   
	  1  T  f e     +   31  T h    +

  3  T S   
	-
	-
	-



	Wu et al. [31]
	  1  T  f e     +   8  T h    +

  1  T  K E     +   2  T  S M    
	  13  T h    +   2  T  K E    

+   4  T  S M    
	  5  T h    +   1  T  K E    

+   3  T  S M    
	  1  T  f e     +   26  T h    +

  4  T  K E     +   9  T  S M    
	ECDH
	SH
	110.50 s



	Qi and Chen [38]
	  7  T h    +   1  T  K E    

+   3  T  S M    
	  6  T h    +   1  T  K E    

+   1  T  S M    
	  3  T h    +   2  T  K E    

+   2  T  S M    
	  16  T h    +   4  T  K E    

+   6  T  S M    
	ECC + AKE
	SH
	421.25 ms



	Proposed
	  1  T  q h     +   1  T  K E    

+   1  T  S M    
	  1  T  q h     +   1  T  K E    

+   1  T  S M    
	  1  T  q h     +   1  T  K E    

+   1  T  S M    
	  3  T  q h     +   3  T  K E    

+   3  T  S M    
	ECDH
	LH
	0.012816 ms
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Table 4. Comparison of communication costs between key exchange protocols.
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	Protocol
	Handshake
	Bit per Data





	Wu et al. [30]
	4
	2944



	Wu et al. [31]
	4
	4448



	Qi and Chen [38]
	3
	2368



	Proposed
	4
	2496
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