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Abstract: Degradation modeling requires to consider the complexity of both the internal structure of
highly reliable products and the environmental conditions, to define appropriate models to obtain
estimations about the reliability and quality. These conditions reflect different sources of variability
that need to be considered in the aims of obtaining accurate estimations. Although several models
have been proposed in the literature, few of them consider several simultaneous sources of variability.
In this paper, we propose a model based on the gamma process that considers three sources of
variability, specifically in the threshold, the initial level of degradation, and in the scale parameter of
the gamma process. The model considers a convolution operation of the threshold and the initial
level to then be characterized via numerical integration with the gamma process with random scale.
The obtained results showed that the model can be used to model the degradation of products with
these sources of variability, which means that it can used for case studies where both the initial level
and threshold are inherently random and the randomness in the scale parameter can be proved.
The performance is illustrated with a comprehensive simulation study and with the application in a
case study.

Keywords: gamma process; random effects; degradation process; convolution; reliability

1. Introduction

The gamma process has been considered as an important approach to deal with the
stochastic modeling of degradation processes. The reason of this is because this process
has important characteristics that allows to describe a broad variety of phenomenons, in
which the degradation processes are included [1]. The asymmetrical form of the distribu-
tion allows to describe increasing degradation process, but as the shape parameter of the
distribution is greater it tends to be symmetrical, which allows to extend the applicability
of the model. Several applications in diverse scientific areas can be found in the literature,
in which the main objective is to obtain estimations about the reliability and quality of
products and systems. For example, Park and Kim [2] considered the gamma process to
model the degradation process of photovoltaic modules with the objective of estimating
the lifetime of the devices. Yuan et al. [3] defined a modeling scheme based on the gamma
process and a Bayesian approach to determine a maintenance program for the corrosion
in the primary cooling piping system of a nuclear plant. Iervolino et al. [4] modeled the
degradation process of the simple single degree of freedom elastic-perfectly-plastic struc-
tures due to earthquakes with the objective of defining a life-cycle structural assessment.
Qiu and Cui [5] defined optimal abort policies for unmanned aerial vehicles based on the
gamma process. Sun et al. [6] modeled the sealing performance of gas steering engine rub-
ber O-rings based on a gamma process, and an accelerated degradation test was performed
based on different temperatures. The gamma process has also been used to model different
characteristics of light-emitting diodes (LEDs). For example, Park and Kim [7] considered
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the light flux and chromaticity of LED lamps as characteristics to be modeled, and they
estimated the median life of the device under test and defined a warranty life based on the
2.5% percentile. Furthermore, Ibrahim et al. [8] modeled the luminous flux degradation
of phosphor-converted white LEDs considering a temperature accelerated degradation
test to estimate their lifetime. Meanwhile, Fan et al. [9] considered a moisture accelerated
degradation test to study the degradation process of the silicon encapsulant of a LED
packaging, with the objective of estimate the reliability of the devices. On the other hand,
Lin et al. [10] considered the gamma process to model the voltage-discharge curves of the
cycle aging of rechargeable batteries, the authors considered a two phase gamma process
with a change-point to estimate the remaining useful life of the devices. Hu et al. [11] also
estimated the remaining useful for a fatigue crack length dataset of an A2017-T4 aluminum
alloy. Mo et al. [12] used the gamma process to model the strength degradation process
of the shaft end of wind turbines by considering the stress–strength model; the reliability
was assessed with the first-passage time distribution of the process. Zhang et al. [13] pro-
posed a Bayesian approach to estimate the reliability of a multi-component system under a
stress-strength model by considering a Marshall–Olkin Weibull model. M’Sabah et al. [14]
used the gamma process to determine an effective maintenance plan based on the degra-
dation process of a motor pump bearing. Finally, a general application was proposed by
Zhang et al. [15], in which they defined a reliability demonstration plan based on optimal
accelerated degradation tests.

These previously discussed applications have different characteristics that imply to
consider variations in the structure the gamma process model. One important aspect is that
there may be a unit-to-unit variability among the devices under test [16], which may be due
to the differences in material composition and environmental conditions. This variability
needs to be incorporated in the modeling such that it is possible to obtain accurate reliability
estimations. Specifically, this unit-to-unit variability can be incorporated by considering
random effects, which consists in determining that one of the parameters of the stochastic
process is a random variable that can be estimated for every unit under test. For the gamma
process, there are several published works in the literature that consider random effects
under different scenarios. Normally, the random effects are incorporated by defining that
the scale parameter is a random variable; for example, Wang et al. [17] studied the gamma
process with random scale to determine generalized confidence intervals for the shape
parameter of the process. Meanwhile, Liu et al. [18] proposed an interval degradation
model approach for the random scale gamma process. Wang et al. [19] also considered a
random scale in the gamma process to model a degradation process under an accelerated
degradation test. They proposed a Bayesian estimation approach to obtain the parameters
of the model. Liu et al. [20] considered a Bayesian model averaging approach to combine
this model with the inverse Gaussian process. Wang et al. [21] considered the same random
effects gamma process model combined with isotonic regression to estimate the remaining
useful of bearings and also to determine an optimal maintenance time for the device
under test. On the other hand, Guida and Penta [22] modeled a fatigue crack growth
data by also considering the Paris law. Giorgio et al. [23] proposed a transformed gamma
process that considers two functions as the age function and the state function to model
non-independent degradation measurements that are observed over disjoint time intervals.
They also considered the scale parameter to introduce unit-to-unit variability. Rodríguez-
Picón et al. [24] studied different scenarios to introduce random effects in the gamma
process, these scenarios considered that any of the parameters of the gamma process can be
considered as random.

Another aspect can be found when several characteristics of a device may be of interest
and can be simultaneously observed, which denotes the need to consider a multivariate
modeling. The gamma process with random scale, can be considered to model the marginal
distributions by considering copula functions [25,26]. Furthermore, the gamma process
with random scale has been considered to determine the optimal design of degradation
tests. Duan and Wang [27] and Tsai et al. [28] developed optimal degradation tests consider-
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ing design variables as sample size, measurement frequency, and number of measurements
to minimize the asymptotic variance of the estimated reliability and the 100p-th percentile.
On the other hand, as the gamma process with random scale has a complex form, alterna-
tive approaches for the estimation of parameters has been proposed in the literature. In
addition to the maximum likelihood estimation (MLE) and Bayesian approach, Ye et al. [29]
proposed a semi-parametric estimation approach based on the expectation-maximization
(EM) algorithm, while Wang et al. [19] proposed a semi-parametric pseudo-likelihood
approach based on the pool adjacent violators algorithm to estimate the parameters of the
gamma process with random scale. Other approaches can be considered to model the effect
of dynamic operating environmental conditions in a system. For example, Luo et al. [30]
presented an approach that considers to model the effects as the cumulative hazard function
of the exponential dispersion process and also considered lifetime ordering constraints.

All of the previously discussed works present different schemes for the application of
the gamma process with random scale. However, this model only considers one source
of variability in the scale parameter. In reality, a product may have multiple sources of
variability that affects its performance, such as specific characteristics of the product and
environmental conditions. Rodríguez-Picón et al. [31], presented a gamma process with
two sources of variation, specifically by considering that both the threshold and the initial
level of degradation are random variables. The modeling approach considered to obtain
the subtraction of both random variables based on a deconvolution operation. As this
operation results in a complex form, it was considered to obtain an approximation by
considering the fast Fourier algorithm. Then the approximation was fitted to different
distributions to then characterize the first-passage time distribution of the process via
numerical integration. In this paper, we improve several aspects of this proposed approach
and extend the consideration of an additional source of variation. In the first instance, the
proposed model in this paper also considers that the threshold level and the initial level
of degradation are random variables. In addition to these two sources of variability, we
consider the scale parameter of the gamma process as a source of variation. This is an
important consideration, as unit-to-unit variability may be expected to be present in the
degradation process of most products, as has been discussed in the previously published
works. Furthermore, an important improvement of the proposed approach relies on that
the subtraction of the random threshold and the random initial level are obtained based on
a convolution operation instead of a deconvolution. This consideration allows to directly
obtain the subtraction of these random variables to then be incorporated into the gamma
process model with random scale, instead of using an approximation that then is used to
be fitted to other distributions.

The three sources of variation are illustrated in Figure 1, where five trajectories from a
gamma process were simulated. Specifically, it can be noted in Figure 1a that both the initial
level of degradation and the threshold are different for every trajectory, which accounts
for two sources of variation. For some devices, the initial level of degradation is random
because the characteristic of interest may have been subjected to a degradation process
before a degradation test is performed, which indicates that the initial level if degradation
at t = 0 is not 0; furthermore, each device will not have the same level of degradation. On
the other hand, a random threshold can be considered when there is uncertainty about
the degradation level that defines a failure of the device, considering that, in degradation
modeling, it is usual to deal with soft failures instead of hard failures, which makes difficult
the definition of a constant level to determine a soft failure. The third source can be noted
as the variation of the trajectories’ drifts and the variation within trajectories is large, which
denotes the need to consider the scale parameter of the gamma process as a random effect.
It should be noted that the variability in the scale parameter can be tested via a significance
test based on likelihood ratios [18,29]. Furthermore, in Figure 1b, it can be noted that the
trajectories have a constant initial level as 0, and a constant threshold. Furthermore, it
can be noted that the variation between trajectories and within trajectories is small, which
denotes the need to consider a simple gamma process.



Symmetry 2023, 15, 162 4 of 16

The proposed modeling approach is illustrated in this manuscript through a simulation
study and with the implementation in a case study. In all of the studied scenarios, we also
fitted the gamma process without sources of variability, with one source of variability and
the gamma process with two sources of variability.

Figure 1. Degradation trajectories with different sources of variation. (a) With three sources of
variation. (b) With no sources of variation.

The rest of the paper is organized as follows. In Section 2, the simple gamma process
with no random effects is discussed. In Section 3, the proposed gamma process with three
sources is presented. In Section 4, the method for the implementation of the proposed model
is presented, the modeling approach is discussed, and the codes for the implementation
of the proposed model are provided. In Section 5, a simulation study is presented, where
different scenarios are provided and studied according to the gamma process with different
sources of variation. In Section 6, the implementation of the proposed model is provided,
and other gamma processes with different sources of variation are also considered in the
aims of comparison. Finally, in Section 7 the concluding remarks are provided.

2. The Simple Gamma Process

The gamma process is a monotone stochastic process that has independent and non-
negative increments. These characteristics make the gamma process an appropriate model
to deal with degradation processes. The model is defined under the consideration that
a degradation measurement for a specimen under test at time t is determined as Z(t)
with t > 0. If a gamma process is considered to describe a degradation process, then the
next properties are presented: the increments Z(t + ∆t)− Z(t) = ∆Z(t) follow a gamma
distribution as f = (v(t + ∆t)− v(t), u), with ∆Z(t) having independent increments for
Z(tk)− Z(tk−1).

It is well known that v(t) represents a shape parameter with t ≥ 0, and u represents
the scale parameter. Based on this parameters, the mean can be obtained as v(t)× u, while
the variance as v(t)× u2.

When dealing with the modeling of degradation processes, one aspect of interest is
related to the determination of the distribution of failure times, which is needed to estimate
the reliability of the device under test. In degradation modeling, the failure times are
known as first-passage times, as they are defined once a degradation trajectory reaches
a critical level of degradation. This critical level is also known as the threshold (ω) of
the process, which is normally defined as a constant. The first-passage time cumulative
distribution function (CDF) of the gamma process is obtained by considering ζ = ω− z0,
where z0 represents a constant initial level of degradation, then the CDF of tζ is obtained as,
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F
(
tζ

)
=
∫ ∞

ζ
fZ(t)(z|v, u) =

∫ ∞

ζ

zv(t)−1

uv(t)Γ(v(t))
exp
{
− z

u

}
dz,

=
1

Γ(v(t))

∫ ∞

ζ/u
yv(t)−1exp{−y}dy.

This simplification results by considering the variable y = z/u and the incomplete
gamma function Γ(a, b) =

∫ ∞
b ξa−1e−ξdξ. Thus, by letting that a = v(t) and b = ζ/u, then

the first-passage time CDF of the simple gamma process results as,

F
(
tζ

)
=

Γ
(
vtζ , ζ/u

)
Γ
(
vtζ

) . (1)

This CDF can be characterized by using specialized software. For example, in the
R software, the function gammainc from the expint package [32] can be used. The code is
given as gammainc(v*t,ζ/u)/gamma(v*t), by considering that the parameters (v, u) have been
estimated, and that ω and z0 are known constant values.

3. The Gamma Process with Three Sources of Variability

One source of variability in the gamma process is normally defined by considering
that u is a random parameter that follows a certain PDF. Specifically, if it is considered that
ui follows a gamma distribution f (au, bu), where au and bu are the shape parameter and
the scale parameter, respectively, then, the PDF of Z(t) is obtained as,

fZ(t)(z|v, au, bu) =
∫ ∞

0
f (z|v, ui) f (au, bu)du. (2)

According to Lawless and Crowder [16], as Z(t) is increasing in t and auZ(t)/(buv(t))
follows an F-distribution with CDF defined as F2vt,2au . Then, the first-passage time CDF of
the gamma process with random scale is defined as,

Fu
(
tζ

)
= 1− F2vt,2au

(
auζ

buvt

)
. (3)

Two additional sources of variability may be defined by considering that the threshold
is a random variable as ωi and the initial level of degradation is also a random variable as
z0

i . Specifically, considering that the threshold level may be different for every specimen
under test, then it is denoted that ωi may be described by a PDF as f (ωi|aω, bω). On
the other hand, the initial level of degradation may also be different among the devices
under test, then it is denoted that z0

i is described by a PDF as f
(
z0

i |az0 , bz0
)
. It should be

noted that these two variables are related to ζi as ζi = ωi − z0
i . Then the PDF of f (ζi) is not

directly observed. We propose a convolution operation to obtain this PDF. The convolution
determines an operation for the addition or subtraction of random variables in the area of
probability distributions, which is the case for the operation of interest. As ζi = ωi − z0

i ,
then the PDF f (ζi) can be obtained as,

f (ζi) =
∫

f (ω) · f (ω− ζ)dω. (4)

By considering the PDF obtained from the integral in (4), it can be used in (3) to
determine the first-passage time CDF of the gamma process with three sources of variability.
Specifically, the CDF is denoted as,

FG3
(
tζ

)
=
∫ ∞

0

[
1− F2vt,2au

(
auζi
buvt

)
× f (ζi)

]
dζ. (5)

This CDF can be characterized by first obtaining the PDF of ζi via the convolution
operation in (4), then the integral in (5) can be solved numerically by using the R software.
The description of the steps for the estimation of FG3

(
tζ

)
are described in the next section.



Symmetry 2023, 15, 162 6 of 16

4. The Proposed Method

The proposed method consists in three main steps:

1. Fitting the degradation data to the gamma process with random scale;
2. Obtaining the PDF f (ζi) via convolution as defined in (4);
3. Characterizing the CDF FG3

(
tζ

)
.

Next, we discuss the implementation of these steps next.

1. For the first step, consider that a degradation test has been conducted and that mea-
surements about a performance characteristic of interest

(
Zi
(
tj
))

have been observed
at times tj for i = 1, 2, . . . , n devices under test, and j = 1, 2, . . . , m measurements.
Then, the degradation increments ∆Zi

(
tj
)
= Zi

(
tj
)
− Zi

(
tj−1

)
follow a gamma dis-

tribution as f∆Zi(tj)
(
∆zij|v∆tj, ui

)
, where ui is considered to be a random parameter

described by a gamma distribution as f (ui|au, bu). The PDF of ∆Zi
(
tj
)

with random
ui is obtained by solving the integral in (2), which has a closed form as,

f∆Zi(tj)
(
∆zij|v, au, bu

)
=

∆z
v(∆tj)−1
ij bau

u Γ
(
v
(
∆tj
)
+ au

)
Γ
(
v
(
∆tj
))

Γ(au)
(
∆zij + bu

)v(∆tj)+au
. (6)

The estimation of the parameters θ1 = (v, au, bu) from (6), can be performed by
considering the MLE method. For this, the log-likelihood function is defined as,

l1(θ1) =
n

∑
i=1

m

∑
j=1

ln
(

f∆Zi(tj)
(
∆zij|v, au, bu

))
. (7)

Thus, θ̂1 is obtained by maximizing l1(θ1) with respect (v, au, bu). This process can be
implemented in the R software by considering the optim routine.
It can be noted, that for the characterization of the first-passage time CDF in (5),
the estimated parameters

(
v̂, âu, b̂u

)
are required. Furthermore, the PDF f (ζi) is

also needed.
2. For the second step, the convolution operation in (4) is performed by considering that

both ωi and z0
i are random variables that are described by different PDFs. For this,

consider that both characteristics are measured for every device under test. Thus, if n
measurements from the devices under test for ωi and z0

i , i = 1, 2, . . . , n are observed,
then several PDFs can be considered to fit the datasets in the aims of finding the best
fitting distributions f (ωi|aω, bω) and f

(
z0

i |az0 , bz0
)
. These distributions are considered

to perform the convolution operation in in (4) to obtain f (ζi).
Fortunately, the integral in (4) can be solved by using the R software by considering
the next code,

f .O <− function ( o ) d" densityname " ( o , aω , bω )
f . Z <− function ( z ) d" densityname " ( z , az0 , bz0 )
# c o n v o l u t i o n i n t e g r a l
f . X <− function ( x ) i n t e g r a t e ( function ( o , x ) f . Z( o−x ) * f .O( o ) , − Inf , Inf , x ) $ value

Note that the functions in f.O and f.Z can be defined by any distribution. The
d"densityname" should be completed as dnorm, dlnorm, dweibull, dgamma if the normal,
lognormal, Weibull, or gamma distributions are considered. If other distributions
are of interest, the corresponding name should be completed according to the R
environment. In f.X, the integral is performed according to (4).

3. For the third step, numerical integration implemented in R is considered to character-

ize the first-passage time CDF. Note from (5) that the estimated parameters
(

v̂, âu, b̂u

)
obtained according to step 1 are required. Furthermore, as f (ζi) has been obtained
via the convolution operation described in step 2. Thus, the characterization of the
CDF can be obtained by solving the corresponding integral. The code developed in R
is presented next,
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integrand<− function ( x , t ) {
f1 <− 1−pf ( ( ( âu × x ) / ( b̂u × v̂t ) ) , ( 2× v̂t ) , ( 2× âu ) )
f2 <− f . X( x ) ;

return ( f1 * f2 )
}
t =seq ( 0 . 0 0 0 0 0 1 , 2 , 0 . 0 1 )

cdf=sapply ( seq ( 0 . 0 0 0 0 0 1 , 2 , 0 . 0 1 ) ,
function ( t ) i n t e g r a t e ( integrand , lower =0 , upper=Inf , t = t ) $ value )

From this code, note that the integrand denotes the multiplication of (3) and f (ζi).
Specifically, in f 1, the CDF from (3) is presented, the estimated parameters via (7) are
required. While, in f 2 the PDF f (ζi) obtained via convolution is presented, and x
represents ζi.
The CDF FG3

(
tζ

)
is then obtained in cdf, where the integral is defined for the previously

presented integrand. The sapply function is considered to obtain the corresponding
probabilities for a given sequence of tζ . Please note that, from FG3

(
tζ

)
, the reliability

function can be defined as, RG3
(
tζ

)
= 1 − FG3

(
tζ

)
, and the mean time to failure

(MTTF) can be obtained as,

MTTF =
∫ ∞

0
RG3

(
tζ

)
dtζ . (8)

5. Simulation Study

In this section, we present a simulation study to illustrate the previously proposed
method. For this, we consider a gamma process with random effects to describe a degra-
dation process, then different distributions for ωi and z0 are considered to illustrate the
convolution operation. Finally, the first-passage time CDF is obtained via numerical inte-
gration in R.

First, taking into account that the first step of the proposed method consider to estimate
the parameters of the gamma process with random scale, then we define that the parameters
from (6) are estimated as v̂ = 20, âu = 15, and b̂u = 5. Then we consider that the threshold
ωi and the initial level of degradation z0 are described by different distributions. Specifically,
five scenarios are proposed where different combinations of PDFs are considered for both
ωi and z0. These scenarios are presented in Table 1, where the corresponding values of
the parameters are also provided. In the case of the normal distribution a represents the
mean and b represents the standard deviation; for the lognormal distribution, a and b
represent the location and shape parameter, respectively. For the Weibull distribution, a
and b represent the shape and the scale parameter, while for the gamma distribution, a and
b represent the shape and scale.

Table 1. Considered distributions for ω and z0 for the convolution.

Scenario ωi z0
i

1 Lognormal Normal
fL(ωi|aω = 0.7, bω = 0.05) fN

(
z0

i |az0 = 0.5, bz0 = 0.09
)

2 Weibull Weibull
fW(ωi|aω = 20, bω = 2.3) fW

(
z0

i |az0 = 5.6, bz0 = 0.44
)

3 Gamma Weibull
fG(ωi|aω = 396.6, bω = 0.0056) fW

(
z0

i |az0 = 5.5, bz0 = 0.5
)

4 Normal Gamma
fN(ωi|aω = 2.2, bω = 0.12) fG

(
z0

i |az0 = 23, bz0 = 0.05
)

5 Lognormal Gamma
fL(ωi|aω = 0.7, bω = 0.05) fG

(
z0

i |az0 = 23, bz0 = 0.05
)
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From these scenarios, it is of interest to obtain the distribution of ζi = ωi − z0
i as f (ζi).

For this, we considered the convolution operation described in (4) which is solved in the R
software by considering the code provided in step 2 of Section 4. For example, for the first
scenario in Table 1, the code results as,

f .O <− function ( o ) dlnorm ( o , aω = 0.7 , bω = 0.05 )
f . Z <− function ( z ) dnorm ( z , az0 = 0.5 , bz0 = 0.09 )
# c o n v o l u t i o n i n t e g r a l
f . X <− function ( x ) i n t e g r a t e ( function ( o , x ) f . Z( o−x ) * f .O( o ) , − Inf , Inf , x ) $ value

Based on this, all the scenarios in Table 1 were considered to obtain the corresponding
distributions f (ζi). In Figure 2, the obtained results from the convolution operation are
illustrated. It can be noted that for all scenarios, the determined distributions for ωi
and z0

i are presented in the dotted and dashed black lines, respectively. Furthermore,
the corresponding distributions obtained via convolution for f (ζi) are presented in the
continuous blue lines.

Considering that f (ζi) has been obtained for the five scenarios and that it was defined
that v̂ = 20, âu = 15, and b̂u = 5. Then the first-passage CDF for the gamma process with
three sources of variability can be obtained by solving the integral in (5). For this, we
considered the code presented in step 3 of Section 4. In Figure 3, the obtained first-passage
time CDFs via numerical integration are presented. Note that the red line in all scenarios
represent the first-passage time CDF for the gamma process with three sources of variability.

For comparison purposes, we considered three additional models that have different
sources of variability. Specifically, for the second model we considered the first-passage
time CDF of the simple gamma process with no variability source, which in all the scenarios
from Figure 3 is represented by the dotted blue line (u, z0, ω : Constant) and can be obtained
from (1), for this model it was considered that u = 0.333, ω = 2, and z0 = 0. The third
model is the gamma process with one source of variability, i.e., random scale, which in all
the scenarios from Figure 3 is represented by the dash dotted gray line (z0, ω : Constant, u :
Random) and that can be obtained from (3) considering that ω = 2 and z0 = 0. Finally,
the fourth model considers two sources of variability, specifically in the threshold ωi and
the initial level of degradation z0

i , but considers that the scale u of the gamma process is
constant with u = 0.33, similar to the model proposed by Rodríguez-Picón et al. [31]. The
CDF of this model can be obtained by considering the first-passage time CDF of the simple
gamma process and taking into account that ζi = ωi − z0

i is random and can be obtained
via the convolution operation presented in (4). Then, the CDF can be obtained as,

FG2
(
tζ

)
=
∫ ∞

0

[
Γ
(
vtζi , ζi/u

)
Γ
(
vtζ

) × f (ζi)

]
dζ. (9)

This CDF can be characterized by considering the code presented in step 3 of Section 4,
by defining f 1 as the CDF of the simple gamma process. In Figure 3, this CDF is presented
for all the scenarios in the dashed black line (z0, ω : Random, u : Constant). Furthermore,
in Figure 4, the estimated reliabilities are presented for the five scenarios and the four
considered gamma process models with different sources of variability.

From these figures, the effect of the different sources of variability can be noted.
Specifically, note that the reliability functions are different for every model in each scenario.
An important aspect results by considering the first and fifth scenario from Figure 4a,e,
in these scenarios the difference between the reliabilities obtained from the models when
ω and z0 are random (reliabilities in the red continuous line and the black dashed line)
is large in comparison with the other two models (dotted blue line and dash dotted gray
line). It can be noted that the gamma process with three sources of variability

(
ωi, z0

i , ui
)

tends to overlap with the gamma process with two sources of variability
(
ωi, z0

i
)
, indeed

there is certain variation in the behavior of the reliabilities, which is due to the effect of
the random scale. On the other hand, it can be noted that these two reliabilities differ
from the reliabilities from the simple gamma process with no source of variability and
the gamma process with random scale (ui), but these two reliabilities tend to overlap
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with certain differences due to the random scale. The difference between these two pairs
of models is due to the effect of the randomness in the threshold and the initial level of
degradation. Specifically, note that for the models with constant threshold and initial level
it was considered that ω = 2 and z0 = 0 which results in ζ = 2− 0 = 2, then note in
Figure 2a,e that, for the first and fifth scenarios, the distribution of ζi, when ωi and z0

i are
random, tends to be biased to the left with an approximate mean of 1.5. Furthermore,
a value of 2 has a low probability of being obtained according to these distributions.
Likewise, it can be noted that for scenarios 2, 3, and 4 in Figure 4b–d the difference among
the reliabilities from the models that consider randomness in

(
ωi, z0

i
)

and the models that
do not consider randomness in these two aspects is small. This is because, as can be
noted from Figure 2b–d, the mean of the distribution of ζi tends to be more close to 2 in
comparison to the distributions in Figure 2a,e.
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Figure 2. Illustration for the considered distributions for ωi and z0

i and the convoluted distribution for
f (ζ). (a) Illustration of the obtained distribution via convolution for scenario 1. (b) Illustration of the
obtained distribution via convolution for scenario 2. (c) Illustration of the obtained distribution via
convolution for scenario 3. (d) Illustration of the obtained distribution via convolution for scenario 4.
(e) Illustration of the obtained distribution via convolution for scenario 5.
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Figure 3. Comparison of estimated CDFs for the five scenarios considering the four gamma process
models with different sources of variability. (a) Estimated CDFs for the first scenario. (b) Estimated
CDFs for the second scenario. (c) Estimated CDFs for the third scenario. (d) Estimated CDFs for the
fourth scenario. (e) Estimated CDFs for the fifth scenario.
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Figure 4. Comparison of estimated reliabilities for the five scenarios considering the four gamma
process models with different sources of variability. (a) Estimated reliabilities for the first scenario.
(b) Estimated reliabilities for the second scenario. (c) Estimated reliabilities for the third scenario.
(d) Estimated reliabilities for the fourth scenario. (e) Estimated reliabilities for the fifth scenario.

6. Implementation in a Case Study

The case study presented by Rodríguez-Picón et al. [31] is considered to illustrate the
applicability of the proposed model, the authors discussed a degradation process based
on a fatigue crack propagation dataset. Specifically, the case study consisted in the crack
growth in a terminal of an electronic device, due to the characteristics of the specimen under
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test and the manufacturing process, the threshold (ωi) and the initial level of degradation(
z0

i
)

were random for every device. Thus, the modeling approach considered that these two
characteristics were described by PDFs. Specifically, from the available data of 80 terminals,
it was presented that the best fitting distribution for the threshold (ωi) was an inverse
Gaussian distribution and the parameters were estimated as

(
µ̂IG = 0.47915, λ̂ = 140.43

)
.

On the other hand, for the initial level of degradation
(
z0

i
)

the best fitting distribution was
a normal distribution with parameters estimated as (µ̂ = 0.09863, σ̂ = 0.009365179).

In this paper, a gamma process with variability in the threshold and the initial level is
also considered, with the additional consideration that the scale parameter is a random vari-
able. Thus, the proposed method described in Section 4 is considered to analyze the degra-
dation dataset. The first step consists in estimating the parameters of the gamma process
with random scale. By considering the PDF in (6), the fatigue crack dataset was fitted consid-
ering (7) and the MLE method, and the parameters were estimated as v̂ = 22.18, âu = 1566,
and b̂u = 27.69. Then, the distribution of ζi = ωi− z0

i has to be characterized. As previously
noted, compared with the proposed approach from Rodríguez-Picón et al. [31], in this pa-
per the subtraction is directly obtained via a convolution operation, instead of obtaining an
approximation that then is fitted to different PDFs, which adds uncertainty to the character-
ization of ζi. The distribution f (ζi) is obtained by considering the code in step 2 of Section 4
by defining the corresponding distributions as dinvgauss(o, µ̂IG = 0.47915, λ̂ = 140.43)
and dnorm(z, µ̂ = 0.09863, σ̂ = 0.009365179). In Figure 5, the distributions of z0, ω, and ζ
are presented. The PDF f (ζ) was obtained according to the convolution operation, and
denotes the effect of the subtraction ζ = ω− z0.

0.0 0.2 0.4 0.6 0.8

0
1
0

2
0

3
0

4
0

Variable

D
e
n
s
it
y

f(ζ)

f(z
0
)

f(ω)

Figure 5. Densities for the initial level of degradation, the threshold, and the convolution of both for
the case study.

The PDF f (ζ) along with the estimated parameters
(

v̂, âu, b̂u

)
are now used in the

integral presented in (5), which is solved with the code presented in step 3 of Section 4. In
Figure 6, the estimated reliability functions of the gamma process with different sources of
variability are presented. Specifically, the red function was obtained for the gamma process
with three sources, the dashed line represents the gamma process with two sources, the
gray dash dotted line represents the gamma process with one source, and the blue dotted
line represents the simple gamma process with no source of variability. The effect of the
sources of variability can be noted in the behavior differences of all models. Specifically,
the model without sources of variability tends to overestimate the reliability in comparison
with the rest of the models. On the other hand, from t = 0 to t = 1.2 approximately, the
estimated reliability for the proposed model with three sources of variability is lowered
compared with the rest of the models. Moreover, for t > 1.2 the reliability tends to be
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greater. This is due to the effect of the random scale parameter that is considered in the
proposed approach.
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Figure 6. Estimated reliabilities for the gamma process under different scenarios of variability for the
case study.

Furthermore, the respective MTTFs for all the models were obtained based on (8). For
the proposed model with three sources of variability, the MTTF resulted in 10.66; for the
model with two sources of variability, the MTTF resulted in 11.04; while for the model
with one source of variability and the simple gamma process, the MTTF was obtained as
10.92 and 11.56, respectively. The effect of the sources of variability can also be noted on
these estimations, as the MTTF for the model with three sources of variability is less than
all the models with less sources of variability, which confirm the observations from the
reliability functions.

In this paper, the gamma process without sources of variability and the gamma
process with one source of variability are considered in the aims of illustrate the effect
on the reliability estimation by considering inappropriate models. Specifically, these two
models are inappropriate because they consider that both the initial level of degradation
and the threshold are constants. In the case study, both characteristics are not constant as
the initial crack length for every terminal is different, which denotes the need to consider it
as random. On the other hand, the threshold is defined as the length at which the crack
propagates to cause a total rupture of the terminal. This critical length is related to the
width of the terminal, as each terminal has variations of their widths’ length, then the
threshold must be considered as random. Thus, randomness in both the initial level and the
threshold are inherent characteristics that must be considered in the modeling. On the other
hand, the difference between the gamma process with two and three sources of variability
relies in defining the scale parameter as random. Then, a significance test can be carried
out to determine the need to define this third source of variability. The hypotheses are
H0 : u is constant against H1 : u is random. The significance test considers the log-likelihood
functions of the gamma process with random scale presented in (7) and the log-likelihood
function of the simple gamma process, which is defined as,

l0(θ0) =
n

∑
i=1

m

∑
j=1

ln
(

f∆Zi(tj)
(
∆zij|v, u

))
.

The statistical test is defined as LR = l1
(
θ̂1
)
/l0
(
θ̂0
)
, where θ̂1 =

(
v̂, âu, b̂u

)
and

θ̂0 = (v̂, û) are the MLE estimates. The rejection region is defined as 2ln(LR) > χα(k) [18],
where α is the significance level and k = 1. For the crack propagation data of the case study,
it was obtained that l1

(
θ̂1
)

= 10,257.29 and l0
(
θ̂0
)
= 229.0626. Thus, LR = 44.7794 with a

p− value = 0.0000, by considering a significance level of α = 0.05, then H0 is rejected and
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it is concluded that the third source of variability must be considered in the model. Based
on this, the model with three sources of variability is the most appropriate to describe the
degradation process of the crack propagation in the case study.

7. Conclusions

In this paper, a gamma process model with three sources of variation is proposed.
Specifically, it is considered that the initial level of degradation, the threshold, and the
scale parameter of the gamma process are random variables that affect the degradation
process. The modeling approach consists in considering the gamma model with random
scale and that the difference between the initial level and the threshold is obtained through
a convolution operation to obtain a distribution of the subtraction. Then, the first passage
time CDF of the model is obtained by integrating out the subtraction distribution from the
random scale gamma model. As this integral results in a complex form, it is numerically
solved with the R software. Furthermore, the convolution operation is also solved with the
R software. The codes for the solution of the integrals are provided in the manuscript to
solve any combination of PDFs that can be encountered in real life case studies. From the
simulation study, it was observed that, from the estimated reliabilities, the effect of random
initial level, the random threshold, and the random scale can be noted as the reliability
for the three sources of variation models tends to separate from the models that consider
that this characteristics are constant. If the initial level and the threshold are random,
but the mean of the distribution for the subtraction is close to the value of the difference
when both are constant, then the reliability functions tend to have a similar behavior with
slight differences. This can be noted in Figure 4b. On the other hand, the effect of the
randomness in the scale parameter can be noted in all models that considered this condition
in comparison with the models with constant scale. This can be clearly noted in Figure 4a.

From the case study, it was observed that there are clear differences in the estimated
reliability function from the proposed model with three sources of variation and the model
with two sources. As a result of the random scale parameter, the reliability tends to be
lower from t = 0 to t = 1.2 and greater for t > 1.2. The proposed approach can be
considered for case studies where the degradation process has several conditions that
affect the degradation process, which can be determined as random effects. The proposed
approach can be extended for future research considering more sources of variability;
for example, a modification of the structure of the gamma process can be considered
to make that both the scale and shape parameter of the model are random variables.
Furthermore, measurement errors may be considered in the modeling approach, as this
is an inherent source of variation that can be found in most of the degradation process.
These extensions present important challenges to develop a comprehensive approach; apart
from establishing further sources of variability, the significance of these sources should be
studied to determine how appropriate such sources can be in order to define a degradation
model. Furthermore, the inherent characteristics of the particular case study should drive
the consideration of a specific set of sources of variability. As in the case study in this
paper, the inherent characteristics of the device define the need to consider randomness
in the initial level and the threshold, while the variability in the scale parameter was
determined according to a significance test. On the other hand, the characteristics of the
experimental design that is considered to perform a degradation test may determine the
need to consider block effects as another source of variability. Specific efforts should be
made to test the proposition that there is independent variation in the parameters variation
of multiple sources.
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