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Abstract: We examined the (3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq (KP-B) equation,
which arises not only in fluid dynamics, superfluids, physics, and plasma physics but also in the
construction of connections between the hydrodynamic and optical model fields. Moreover, unlike the
Kadomtsev–Petviashvili equation (KPE), the KP-B equation allows the modeling of waves traveling
in both directions and does not require the zero-mass assumption, which is necessary for many
scientific applications. Considering these properties enables researchers to obtain more precise results
in many physics and engineering applications, especially in research on the dynamics of water waves.
We used the modified extended tanh function method (METFM) and Kudryashov’s method, which
are easily applicable, do not require further mathematical manipulations, and give effective results to
investigate the physical properties of the KP-B equation and its soliton solutions. As the output of
the work, we obtained some new singular soliton solutions to the governed equation and simulated
them with 3D and 2D graphs for the reader to understand clearly. These results and graphs describe
the single and singular soliton properties of the (3+1)-dimensional KP-B equation that have not been
studied and presented in the literature before, and the methods can also help in obtaining the solution
to the evolution equations and understanding wave propagation in water wave dynamics.

Keywords: Kadomtsev–Petviashvili–Boussinesq equation; Kudryashov method; modified extended
tanh function; soliton solution

1. Introduction

In recent years, many researchers have been interested in the physical properties
of nonlinear waves. Among them, analytical solutions of nonlinear evolution equations
(NLEEs), a class of nonlinear waves, are of great importance for understanding and ex-
plaining real-life problems. As important as they are, analytical solutions to these problems
are often an equally troublesome process. Due to the developments in computers and
software, there have also been many developments in symbolic computing such as Wolfram
Mathematica, Maple, Matlab, and other symbolic programs. In this way, it can be said that
the calculations and accuracy are at a very good level. Moreover, the analytical solutions of
NLEEs play very important role in exposing the mechanisms in various fields, namely non-
linear optics, optical fibers, communication, data transfer, heat conduction, physics, plasma
physics, chemical kinematics, quantum mechanics, mathematical biology, genetics, geo-
chemistry, dynamic, fluid mechanics, oceanography, neural networks, wave propagation,
control theory, and so on, see [1–8]. In our literature review, in recent years, many re-
searchers and academics have proposed and developed a number of strategies, techniques,
and methods to understand and analytically solve the NL phenomenon. These methods can
be listed as follows: the modified tan(ϕ/2)-expansion [9], variational principles [10], the ex-
tended rational sin–cos and sinh–cosh methods, He’s variational approach and the Painleve
technique [11], the residual power series [12], Lie symmetry analysis [13], the modified
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subequation extended method [14], improved F-expansion [15], the new compound Riccati
equations rational expansion method and Fan’s subequation method [16], the Kudryashov
method [17–19], the generalized Kudryashov method [20], the extended Kudryashov tech-
nique [21], the Jacobi elliptic function [22–24], the Bernoulli subequation function [25,26],
the first integral method [27], the projective Riccati F-expansion [28], the Sinh Gordon Ex-
pansion (ShGEM) [29], the Sinh Gordon extended Expansion (ShGEEM) [30], the modified
extended tanh function (METFM) [31], the F-expansion [32], the Improved Hirota Bilinear
method [33], the Backlund transformation [34], Stable Optical Solitons for the Higher-
Order Non-Kerr NLSE via the Modified Simple Equation Method [35], the modified simple
equation method [36], the ansatz technique [37], the rational exponential function [38],
the (G′/G)-expansion method [39], the modified trial equation method [40], Riccati equa-
tion mapping [41], the Lie group approach [42], and some recent approaches, which are
the modified (g′), the modified (g′/g2), and the generalized simple (w/g)-expansion
methods [43], an addendum to Kudryashov’s method [44], the Cole–Hopf transformation,
which offers many different solutions as well as being an effective method [45], and newly
introduced to the literature, the direct mapping method [46].

The (3 + 1)-dimensional KP-B equation that we examined in our study is given as [4,47–49]:

Bxxxy + 3
(

BxBy
)

x +
(

Bx + By
)

t + Btt − Bzz = 0. (1)

In (1), B(x, y, z, t) is a real valued potential function, which describes the height of the
wave. Here, x, y, and z are independent spatial variables, and t is the temporal variable.
Equation (1) is an extended form of the integrable KPE. If the term Btt is omitted, (1)
degenerates to following (3+1)-dimensional generalized KPE [50],

Bxxxy + 3
(

BxBy
)

x +
(

Bx + By
)

t − Bzz = 0, (2)

and another type of the (3+1)-dimensional generalized KPE [51],

Bxxxy + 3
(

BxBy
)

x +
(

Bx + By + Bz
)

t − Bzz = 0. (3)

In addition, both the KPEs in (2) and (3) are not only related to fluid dynamics, super-
fluids, physics, and plasma physics, but there are also connections between hydrodynamic
and optical models [52]. KPE is widely used in many fields, such as Bose–Einstein con-
densation [53], nonlinear optics, water wave dynamics, ferromagnetics, physics, plasma
physics, and surface oceanic waves, for example, investigations of nonlinear ion acous-
tic waves in magnetized dusty plasma [54], acoustic waves studies in an elastic circular
rod [55], nonlinear wave propagation in a fluid and elastic tube covering turbulence, small
bubbles [56,57], the traveling of tsunami waves in the inhomogeneous zone on the bottom
of the ocean [58,59], and so on. Moreover, by using the KPE it is possible to investigate quasi
one dimensional shallow water waves, if the effects of the viscosity and surface tension
are very small or negligible [60]. Therefore, although it is thought that Equation (1) can be
obtained as a result of adding the term Btt to Equation (2), in a sense, it is also possible to
evaluate it as a combination of Equation (2) and the following generalized Boussinesq ((4))
or generalized KP-B equation-like equation in (5) [61–63],

Bxxxy + 3
(

BxBy
)

x + Btt − Bzz = 0, (4)

Bxxxy + 3
(

BxBy
)

x +
(

Bx + By
)

t + Btt − Bzz = 0. (5)

To be clear, if we consider (4), the presented model in (1) not only allows for the
modeling of waves traveling in both directions (both left and right going waves), but (1)
also does not require the zero mass assumption that is required during many applica-
tions of the KPE, and it allows more precise results to be obtained in many physics and
engineering applications.
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With the aim of establishing many physical models, researchers have studied the
KP-B equation and have obtained many results about the soliton behavior of the KP-
B equation, for example, by using Lie symmetry reductions and direct integration by
invoking the (G′/G) expansion method [42], one and two soliton solutions and multi-
soliton solutions [4,47–63], by giving only one type of exponential solution. Multiple-
order rogue waves for the generalized (2+1)-dimensional KPE were studied in [64,65],
the nonautonomous and mixed lump–stripe soliton solutions of a variable-coefficient KPE
were studied in [66], the solitary, shock, and and singular wave solutions of the (3+1)-
dimensional KPE and the generalized Boussinesq equations were investigated using the
solitary wave method in [67], and the (3+1)-dimensional generalized nonlinear evolution
equation of shallow water waves was investigated in [68]; in addition (3+1)-dimensional
KPE and its integrability, multiple-solitons, breathers, and lump waves were presented
in [69], multi-order rogue wave solutions of the generalized (3+1)-dimensional KPE through
its bilinear form and symbolic computation were given in, and localized nonlinear waves on
spatiotemporally controllable backgrounds of a KP-B model in water waves were studied
in [70].

Our motivation is that there has not been any previous study for both the (3+1)-
KP-B equation and the different soliton types of the singular solutions of this equation.
In addition, singular soliton solutions play an important role in the multi-soliton solutions
of the KP-B equation.

Therefore, our main purpose in this article is to search for and obtain single-wave and
singular solutions of the KP-B equation that will help researchers working in the field.

2. Mathematical Analysis and Obtaining a Nonlinear Ordinary Differential Form

Let we remember (1) and take into account the following transformation:

B = B(x, y, z, t) = B(ζ), ζ = x + αy + βz−ω t, (6)

in which α, β, and ω are real values. Considering Equations (6) and (1) together, the result
is the following equation:

(
ω2 −ω(α + 1)− β2

)dB(ζ)
dζ

+ 3α

(
dB(ζ)

dζ

)2
+ α

d3B(ζ)
dζ3 = 0. (7)

Accepting dB(ζ)
dζ = Γ(ζ), we derive the nonlinear ordinary differential form of (1).

(
ω2 −ω(α + 1)− β2

)
Γ(ζ) + 3α(Γ(ζ))2 + α

d2Γ(ζ)
dζ2 = 0. (8)

In (8), using the balance rule between the terms Γ′′(ζ) and Γ2(ζ), we reach m = 2, and
that m is called the balancing constant.

3. Quick View of the Methods and Implementation of the KP-B Equation
3.1. Modified Extended tanh Function Method

In order to achieve the solution of (8), we propose the solution in the following
truncated series:

Γ(ζ) = A0 +
m

∑
i=1

Aiκ
i(ζ) +

m

∑
i=1

Bi

κi(ζ)
, (9)

where A0, ..., Am, B1, ..., Bm are real constants (Am and Bm should not be zero, simultane-
ously), m is a positive integer balancing constant, which was calculated as m = 2; so, (9)
takes the following form:

Γ(ζ) = A0 + A1κ(ζ) + A2κ2(ζ) + B1κ−1(ζ) + B2κ−2(ζ), (10)
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where κ(ζ) fulfills the following equation:

dκ(ζ)

dζ
− w + [κ(ζ)]2 = 0, (11)

in which w is a real constant, and Equation (11) produces the following solutions:

κ(ζ) =


−
√
−w tan(

√
−w(ζ + ζ0)); w < 0,√

−w cot(
√
−w(ζ + ζ0)); w < 0,

1/(ζ + ζ0); w = 0,√
w tanh(

√
w(ζ + ζ0)); w > 0,√

w coth(
√

w(ζ + ζ0)); w > 0,

(12)

where w and ζ0 are real free parameters. Substitution of (10) and (11) into (8) results in the
polynomial in powers of κ(ζ). Applying algebraic polynomial operations to the coefficients
of κ(ζ) will produce the following algebraic equation system:

κ−4(ζ) : 3α B2
(
2w2 + B2

)
= 0,

κ−3(ζ) : 2α B1
(
w2 + 3 B2

)
= 0,

κ−2(ζ) :
(
(−8w−ω + 6 A0)α− β2 + ω2 −ω

)
B2 + 3α B1

2 = 0,
κ−1(ζ) :

(
(−2w−ω + 6 A0)α− β2 + ω2 −ω

)
B1 + 6α A1B2 = 0,

κ0(ζ) :
(
3 A0

2 − A0ω +
(
2w2 + 6 B2

)
A2 + 6 A1B1 + 2 B2

)
α− A0

(
β2 −ω2 + ω

)
= 0,

κ1(ζ) :
(
(−2w−ω + 6 A0)α− β2 + ω2 −ω

)
A1 + 6α B1 A2 = 0,

κ2(ζ) :
(
(−8w−ω + 6 A0)α− β2 + ω2 −ω

)
A2 + 3α A1

2 = 0,
κ3(ζ) : 2α A1(3 A2 + 1) = 0,
κ4(ζ) : 3α A2(A2 + 2) = 0.

(13)

In (13) A0, A1, A2, B1, B2, ω, α, β, and w are unknowns to be calculated. The solution of this
system yields the possible solution sets as follows:

CSet1 =

{
w =

ω2 + (−α− 1)ω− β2

4α
, A0 =

ω2 + (−α− 1)ω− β2

6α
, A1 = 0, A2 = −2,

B1 = 0, B2 = 0
}

,

CSet2 =

{
w = −

√
2

2

√
−B2, ω =

α

2
+

1
2
+

1
2

√
8α
√

2
√
−B2 + α2 + 4β2 + 2α + 1,

A0 = −
√

2
√
−B2, A1 = 0, A2 = 0, B1 = 0, B2 = B2

}
,

CSet3 =

{
ω =

α + 1
2

+
1
2

√
α2 + (16w + 2)α + 4 β2 + 1, A0 =

2w
3

, A1 = 0, A2 = −2,

B1 = 0, B2 = 0
}

,

CSet4 =

{
w =

ω2 + (−α− 1)ω− β2

4α
, A0 =

ω2 + (−α− 1)ω− β2

6α
, A1 = 0, A2 = 0,

B1 = 0, B2 = −
(
αω + β2 −ω2 + ω

)2

8α2

}
,
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CSet5 =

{
w =

√
2

2

√
−B2, ω =

α + 1
2
− 1

2

√
32α
√

2
√
−B2 + α2 + 4β2 + 2α + 1,

A0 = −2
√

2
3

√
−B2, A1 = 0, A2 = −2, B1 = 0, B2 = B2

}
,

CSet6 =

{
ω =

α + 1
2

+
1
2

√
α2 + (64w + 2)α + 4 β2 + 1, A0 = −4w

3
, A1 = 0, A2 = −2,

B1 = 0, B2 = −2w2
}

.

Selecting any solution set and solution function given in (12) for ζ0 = 0, then substituting
them together into (10) by considering B(ζ) =

∫
Γ(ζ)dζ and (6), the solutions of (1) are

achieved as in (14)–(18).

Case-1: for κ(ζ) = −W2 tan(W2ζ):

B1(x, y, z, t) =A0ζ − A1

2
ln
(

1 +
(

tan
(√
−wζ

))2
)
− A2w tan

(√
−wζ

) 1√
−w

+ A2w arctan
(

tan
(√
−wζ

)) 1√
−w

+
B1

w
ln
(

tan
(√
−wζ

))
(14)

− B1

2w
ln
(

1 +
(

tan
(√
−wζ

))2
)
+

B2

w
1√
−w

(
tan
(√
−wζ

))−1

+
B2

w
√
−w

arctan
(

tan
(√
−wζ

))
,

or κ(ζ) = W2 cot(W2ζ):

B2(x, y, z, t) =A0ζ − A1

2
ln
((

cot
(√
−wζ

))2
+ 1
)
+

B1

w
ln
(

cot
(√
−wζ

))
− B1

2w
ln
((

cot
(√
−wζ

))2
+ 1
)
+ A2w cot

(√
−wζ

) 1√
−w

(15)

− A2wπ

2
√
−w

+
A2w√
−w

arccot
(

cot
(√
−wζ

))
− B2π

2w
√
−w

+
B2

w
√
−w

arccot
(

cot
(√
−wζ

))
− B2

w
√
−w

(
cot
(√
−wζ

))−1
.

Case-2: κ(ζ) = W1 tanh(W1ζ):

B3(x, y, z, t) =A0ζ − A1
2

ln(tanh ψ− 1)− A1
2

ln(tanh ψ + 1)

− A2
√

w tanh ψ− A2
2
√

w ln(tanh ψ− 1) +
A2
2
√

w ln(tanh ψ + 1)

+
B1
w

ln(tanh ψ)− B1
2w

ln(tanh ψ− 1)− B1
2w

ln(tanh ψ + 1) (16)

− B2
2

ln(tanh ψ− 1)w−
3
2 − B2w−

3
2 (tanh ψ)−1 +

B2
2

ln(tanh ψ + 1)w−
3
2 ,
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or κ(ζ) = W1 coth(W1ζ):

B4(x, y, z, t) =A0ζ − A1

2
ln(coth ψ− 1)

− A1

2
ln(cothψ + 1)− A2

√
wcothψ− A2

2
√

w ln(cothψ− 1)

+
A2

2
√

w ln(cothψ + 1)− B1

2w
ln(cothψ− 1) +

B1

w
ln(cothψ) (17)

− B1

2w
ln(cothψ + 1)− B2

2
ln(cothψ− 1)w−

3
2

+
B2

2
ln(cothψ + 1)w−

3
2 − B2w−

3
2 (cothψ)−1,

where ψ = W1ζ, W1 =
√

ω, and W2 =
√
−ω.

Case-3: κ(ζ) = 1/ζ:

B5(x, y, z, t) = A0ζ + A1 ln ζ − A2

ζ
+

B1(ζ)
2

2
+

B2(ζ)
3

3
. (18)

In (14)–(18), ζ = x + αy + βz−ωt.

3.2. Kudryashov Method

In order to derive the solution of (8), we suggest the solution in the following form:

Γ(ζ) =
m

∑
i=0

aiκ
i(ζ), (19)

where am 6= 0, and in (19), a0, ..., am are real constants, and m is also a balancing constant.
From the previous section, remembering that m = 2, (19) turns into the following form:

Γ(ζ) = a0 + a1κ(ζ) + a2κ2(ζ), (20)

where κ(ζ) satisfies the following equation [71]:

dκ(ζ)

dζ
− δκ(ζ)(κ(ζ)− 1) = 0, (21)

where δ is a nonzero real free parameter, and (21) gives the following solution:

κ(ζ) =
1

1∓ ηe−δζ
, (22)

in which η is a nonzero arbitrary real constant to be found later. Unlike its general usage,
we take the expression in (22) as follows.

By considering

sinh(x) =
ex − e−x

2
, cosh(x) =

ex + e−x

2
, ex = sinh(x) + cosh(x), η = 1, (23)

one can easily obtain the following two forms:

κ(ζ) =
1
2

[
1− tanh

(
δ

2
ζ

)]
, (24)

κ(ζ) =
1
2

[
1− coth

(
δ

2
ζ

)]
. (25)
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Substitution of (20) and (21) into (8) provides us a polynomial in powers of κ(ζ). Applying
polynomial operations based on κ(ζ), we obtain the following algebraic equation system:

κ0(ζ) : −a0αω + 3αa0
2 − a0β2 + a0ω2 − a0ω = 0,

κ1(ζ) : αδ2a1 − αωa1 + 6αa0a1 − β2a1 + ω2a1 −ωa1 = 0,

κ2(ζ) : −3αδ2a1 + 4αδ2a2 − αωa2 + 6αa0a2

+ 3αa1
2 − β2a2 + ω2a2 −ωa2 = 0, (26)

κ3(ζ) : 2αδ2a1 − 10αδ2a2 + 6αa1a2 = 0,

κ4(ζ) : 6αδ2a2 + 3αa2
2 = 0.

In (26) a0, a1, a2, α, β, ω, and δ are real values to be found. The solution of this system gives
us the following solution sets:

CSet7 =

{
δ =

1
2

√
−2 a2, α = −2 β2 − 2ω2 + 2ω

−a2 + 2ω
, a0 =

a2

6
, a1 = −a2, a2 = a2

}
,

CSet8 =
{

β = −
√

αδ2 − αω + ω2 −ω, a0 = 0, a1 = 2δ2, a2 = −2δ2
}

.

Selecting any solution set and then substituting it into (20) by considering B(ζ) =
∫

Γ(ζ)dζ
and (6), the solution of NLPDE (1) is found, as given in (27) and (28). We consider Equa-
tion (24):

B6,1(x, y, z, t) =a0ϑ +
a1ϑ

2
+

a1

2δ
ln
(

tanh
(

δϑ

2

)
− 1
)
+

a1

2δ
ln
(

tanh
(

ϑ

2

)
+ 1
)

− a2

2δ
tanh

(
δϑ

2

)
+

a2

δ
ln
(

tanh
(

δϑ

2

)
+ 1
)

, (27)

and we consider Equation (25):

B6,2(x, y, z, t) =a0ϑ +
a1ϑ

2
+

a1

2δ
ln
(

coth
(

δϑ

2

)
− 1
)
+

a1

2δ
ln
(

coth
(

ϑ

2

)
+ 1
)

− a2

2δ
coth

(
δϑ

2

)
+

a2

δ
ln
(

coth
(

δϑ

2

)
+ 1
)

, (28)

where ϑ = (αy + βz−ωt + x).

4. Results and Discussion

In this part, some of the graphical illustrations are presented for the soliton solution
functions given in (14), (15), (17), (27), and (28). The simulations of these solutions are
given in order, from Figures 1–8, according to the appropriate selection of parameters.
Although we obtained many solution sets from the solution of (13) and (26) according to
different parameter values, in order to not occupy unnecessary pages, only some selected
solution sets of Cset1,...,Cset8 are used for graphical representations.

Figures 1–8 generally show the graphical representations of the singular solutions of
the KP-B equation. Although the graphs generally express the singular wave representation,
there are still some differences between these representations. Figure 1 represents the
periodic singular solution graph. The values taken by the function are given in different
signs on the left and right where the singularity occurs. In Figure 2, there is a graph
of the periodic singular soliton solution. However, if we pay attention to this graph,
the wave takes a step-like appearance at the point where the singularity occurs, just before
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diverging to negative or positive infinity. In Figure 3, there is a graph of a periodic singular
solution. In this graph, the wave has a bending point on an axis that can be considered
a vertical symmetry point. Then, in a sense, the concavity diverges to different infinities
after its direction changes. Figure 4 is a graph that gives a different image among these
graphs. It represents a singular behavior, which can be called a smooth kink, albeit partially.
The graph of Figure 5 is yet another singular graph, and it gives an image of the soliton
here with inclined wings to the left and right. The singular soliton graphs in Figures 6 and 7
are representations of step-shaped physical formations. Although the soliton given with
the Figure 8 graph is similar to the graphical expression given in Figure 3, there is a vertical
distance between its left and right skirts. In other words, although the singular soliton
graphs represented by Figures 3 and 8 are categorically the same, they do not represent
exactly the same physical behavior. In this sense, in any soliton representation of the
problem modeling a physical event, even if the same type of soliton is formed, the physical
representations of such solitons can express different physical phenomena. All solution
functions obtained in the study have also been confirmed by careful examination to satisfy
(1), which is the nonlinear form of the main problem.

When the METFM and Kudryashov methods we used in the article are taken into
account, it is easily seen that these methods are easy to apply, effective, and give direct
results. However, it is important to emphasize the following: what is important here is
the researcher’s purpose and the method one chooses for this purpose. When evaluated
from this point of view, these two methods, which are widely used and effective, were
chosen in our study, especially as we wanted to work on single wave and singular solutions.
Therefore, it is also possible to obtain different types of solitons by using methods other
than those mentioned here. For example, in the article [43], there were various and different
soliton solutions obtained by using modified (g′), the modified (g′/g2), and the generalized
simple (w/g)-expansion methods. Similarly, it is obvious that Wang’s direct algebraic
method [46], which has just been introduced to the literature, is an effective method
based on an easily applicable auxiliary equation and can give different singular solutions.
In addition, it seems possible that this method could be applied to the equation in our study,
similar to the different types of solitons obtained from the problems using the Cole–Hopf
transformation [45]. It is possible to add other techniques, such as the Hirota bilinear
form [33,47], to examine multiwave solutions or soliton types such as breather, lump, and
rouge. In addition, it would be appropriate to emphasize two points. All of the solution
functions obtained in the study were determined to satisfy the main equation Equation (1).
In our study, both the solution functions we obtained and the graphic representations we
presented do not have any contradictions with the studies in this field and the generally
accepted concepts in this field.

Figure 1. 3D and 2D projections of B1(x, y, z, t) in (14), selecting the CSet1 and α = −0.5, β = 0.5, ω = 2,
and z = t = 1.
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Figure 2. 3D and 2D depictions of B1(x, y, z, t) in (14), selecting the CSet2 and B2 = −2, α = 0.5, β = 0.5,
and z = t = 1.

Figure 3. 3D and 2D silhouettes of B1(x, y, z, t) in (14), selecting the CSet3 and w = −0.1, α = 0.5, β =

0.75, and z = t = 1.

Figure 4. 3D and 2D views of B4(x, y, z, t) in (17), selecting the CSet4 and α = 0.5, β = 0.5, ω = 2,
and z = t = 1.
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Figure 5. 3D and 2D presentations of B4(x, y, z, t) in (17), selecting the CSet5 for the selected
parameters w = 0.1, α = 0.5, β = 0.75, and z = t = 1.

Figure 6. 3D and 2D plots of B6,1(x, y, z, t) in (27), selecting the CSet6 and α = 0.5, β = 0.75, ω = 2,
and z = t = 1.

Figure 7. 3D and 2D portraits of B6,2(x, y, z, t) in (28), selecting the CSet7 and a2 = 0.5, β = 0.5, ω = 2,
and z = t = 1.



Symmetry 2023, 15, 165 11 of 14

Figure 8. 3D and 2D portraits of B6,2(x, y, z, t) in (28), selecting the CSet8 and δ = 1, α = 0.5, ω = 2,
and z = t = 1.

5. Conclusions

In this study, we examined in detail the KP-B equation that widely appears in the
models of physical phenomena, such as fluid dynamics, superfluids, physics, plasma
physics, and hydrodynamic and optical models. Moreover, the KP-B equation provides
for the modeling of waves traveling in both directions and more accurate approximations
than the KPE. We applied two well-known analytical methods, the METFM function
and the Kudryashov method. For this purpose, we obtained the solution functions by
taking the Riccati equation as given in (11), while applying the modified extended tanh
expansion method and by taking the solution functions as hyperbolic given in (24) and
(25) instead of the exponential form in the application of the Kudryashov function method.
The scientific contributions of this study are to show that different singular solutions of the
multi-soliton solutions of the KP-B equation can be obtained with two easy-to-apply and
effective methods. We obtained and exhibited a plethora of solutions, such as anti-kink,
singular, periodic, and singular periodic. In this study, we covered some topics that can
be studied prospectively, such as detailed examinations of the step-shaped formations
observed in singular soliton solutions, examining the equations of different fractional forms
of this structure, and investigating the effects of the results obtained from single-wave
solutions on multiwave solutions and different soliton types. In addition to effective and
different methods, such as the Hirota and Cole–Hopf, we aim to obtain further different
solutions to the problem examined here, with new methods such as Wang’s direct algebraic
method. In addition, considering that the single-wave and singular solutions of the KP-B
equation have a significant effect on obtaining multi-soliton solutions, we believe that the
results obtained in the study will be useful for research in this field.
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