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2 Department of Mathematics, Ordu University, 52000 Ordu, Turkey
3 Department of Economics, Management and Territory, University of Foggia, 71121 Foggia, Italy
* Correspondence: sumeyyegur@gumushane.edu.tr

Abstract: In this paper, we calculate the Gaussian curvatures of the dual spherical indicatrix curves
formed on unit dual sphere by the Blaschke vectors and dual instantaneous Pfaff vectors of dual
parallel equidistant ruled surfaces (DPERS) and we give the relationships between these curvatures.
In addition to—in cases where the base curves of these DPERS are closed—computing the dual
integral invariants of the indicatrix curves. Additionally, we show the relationships between them.
Finally, we provide an example for each of these indicatrix curves.
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1. Introduction

The main sources for curves and surfaces in Euclidean space are [1–5]. The concept
of ruled surfaces, formed by the movement of a line on a curve, has an important place
in differential geometry. There are many studies on ruled surfaces in Euclidean and
non-Euclidean spaces [6–10]. The concept of parallel equidistant ruled surfaces was first
introduced by Valeontis [11]. The resources [12–19] can be examined for studies on these
surfaces. Although dual numbers are a set of numbers defined by William Kingdon Clifford
(1845–1879) [20], their first applications in geometry began with Eduard Study [21]. Dual
numbers can be seen as similar to complex numbers, but they are important in terms of
kinematics, especially in unit dual sphere applications. E. Study revealed that there is
a strong relationship between a dual point on a unit dual sphere and an oriented line
in the space of lines, and thus this concept gained meaning. Since kinematically correct
beams are a family of axes of rotation, it is possible to examine the ruled surface of a
motion over the unit dual sphere. A dual spherical curve on a dual sphere corresponds
exactly to a ruled surface in the space of lines. Basic concepts in this field can be accessed
from the resources [22–25]. Furthermore, some studies on dual curves or surfaces include
Refs. [26–30]. In addition to geometry, studies on dual numbers and vectors are carried
out in fields such as mechanical engineering, robot kinematics, physics and astronomy.
The concept of motors was introduced by Clifford, but he did not examine the modeling
of points, lines and planes in terms of motors. The sentence of motors is isomorphic to
the sentence of dual quaternions. However, due to the geometric meaning of vectors as
rotating planes, screws can be easily formulated using motors from a purely geometrical
point of view. As a result, algebraic modeling of points, lines, and planes with motor
algebra is easier with dual quaternions. The use of dual matrices and dual quaternions
in robotics has increased in recent years [31–35]. The concept of dual numbers is studied
by geometers in Euclidean spaces as well as in non-Euclidean spaces such as Lorentz–
Minkowski spaces [36–40].

In Ref. [41], we defined parallel equidistant ruled surfaces (DPERS) and compared
some of their geometric properties. In addition, we have shown that one of these surfaces
is symmetrical to the other. In this paper, we calculate the Gaussian curvatures of the ruled
surfaces corresponding in space of lines to the dual spherical indicatrix curves formed on a
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unit dual sphere by the Blaschke vectors and dual instantaneous Pfaff vectors of DPERS
and we give the relationships between these curvatures. Additionally, in cases where the
base curves of these DPERS are closed, we compute the dual integral invariants of the
indicatrix curves. We also show the relationships between them. Finally, we provide an
example for each of these indicatrix curves. It is possible to combine the results of this
study with the concepts of submanifold theory or studies in other spaces and obtain new
results [42–47].

2. Preliminaries

The set D−Modul =
{→

M |
→
M =

→
m + ε

→
m∗,

→
m,
→
m∗ ∈ R3, ε = (0, 1)

}
is called dual vec-

tor space and the elements of this set are called dual vectors, where
→
m and

→
m∗ are the real

and dual components of the vector
→
M, respectively. The operations of addition, multiplica-

tion by scalars, inner product, norm and vector product on this set are explained in [23,41].

The set K = {
→
M =

→
m + ε

→
m∗ | ‖

→
M‖ = (1, 0),

→
m,
→
m∗ ∈ E3} is called a unit dual unit sphere

and the elements of this set are called dual unit vectors [23]. The dual angle Ω = ω + εω∗

between the unit dual vectors
→
M =

→
m + ε

→
m∗ and

→
M =

→
m + ε

→
m∗ can be calculated with any

of the following two equalities:〈→
M,
→
M
〉

= cosΩ = cosω− εω∗sinω,

→
M ∧

→
M = sinΩ

→
N = (sinω + εω∗cosω)

→
N,

where
→
N =

→
n + ε

→
n∗ is the unit dual vector,

→
n is the distance vector between

→
M and

→
M,

→
n∗ =

→
m ∧→n . Additionally, ω is the real angle between the real vectors

→
m and

→
m and ω∗ is

the shortest distance between the vectors
→
m and

→
m, [22,23].

Theorem 1 (E. Study Mapping [21]). A directed line in the space of lines corresponds exactly to
a dual point on the dual unit sphere.

The dual spherical curve
→
M(s) =

→
m(s) + ε

→
m∗(s) drawn by the unit dual vector

→
M is

expressed in the space of lines by the ruled surface, see Figure 1,

Figure 1. The dual spherical expression of the ruled surface −→ϕ (s, v).

−→ϕ (s, v) = −→m (s) ∧
−→
m∗(s) + v−→m (s),

−→
m∗(s) = −→α (s) ∧−→m (s), (1)
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where −→α (s) is the base curve of the ruled surface and s is the arc lenght parameter of the

curve [22,23]. That is, a dual spherical curve
→
M(s) can be viewed as a ruled surface. The

orthonormal system {−→A1(s) =
−→
M(s),

−→
A2(s) =

−→
M′(s)∥∥∥−→M′(s)∥∥∥ ,

−→
A3(s) =

−→
A1(s) ∧

−→
A2(s)} of the

ruled surface
→
M(s) are called Blaschke frame and also the values

℘(s) = ρ(s) + ερ∗(s) =
∥∥∥−→M′(s)∥∥∥,

<(s) = η(s) + εη∗(s) =

(−→
M(s),

−→
M′(s),

−→
M′′(s)

)
℘2(s)

(2)

are called Blaschke invariants, where ρ(s), η(s) are the reel components and ρ∗(s), η∗(s)
are dual components of these invariants [22]. Besides ρ(s) and η(s) are the curvature and
the torsion of the curve −→α (s).

The Blaschke derivative formulas are as follows:

−→
A′1(s) = ℘(s)

−→
A2(s),

−→
A′2(s) = −℘(s)

−→
A1(s) +<(s)

−→
A3(s),

−→
A′3(s) = −<(s)

−→
A2(s).

(3)

See [41] for the real and dual Equations (2) and (3). The dual pitch length, the dual

pitch angle and the drall (parameter of distribution) of the closed ruled surface
→
M(s) are,

respectively [22], 

LM(s) = 〈
→
d∗(s),

→
m(s)〉+ 〈

→
d (s),

→
m∗(s)〉,

∧M(s) = −〈
→
D(s),

→
M(s)〉,

PM(s) =

〈−→
dm(s),

−−→
dm∗(s)

〉
〈−→

dm(s),
−→
dm(s)

〉 ,

(4)

where
→
D(s) =

−→
A1(s)

∮
<(s)ds +

−→
A3(s)

∮
℘(s)ds is the dual Steiner rotation vector and


−→
d (s) = −→a1 (s)

∮
η(s)ds +−→a3 (s)

∮
ρ(s)ds,

−→
d∗ (s) =

−→
a∗1 (s)

∮
η(s)ds +−→a1 (s)

∮
η∗(s)ds +

−→
a∗3 (s)

∮
ρ(s)ds +−→a3 (s)

∮
ρ∗(s)ds.

(5)

The Gaussian curvature of the ruled surface
→
M(s) is depicted by

K(s) = −
〈

S
(−→

E2(s)
)

,
−→
E1(s)

〉2
, S

(−→
M(s)

)
=
−−−→
DM N(s), (6)

where S is the shape operator,
−→
N (s) is the normal vector and

{−→
E1(s),

−→
E2(s)

}
is the base

vectors [14]. If a ruled surface is isomorphic to the plane (the surface is developable), the
drall (or Gaussian curvature) of this surface is zero everywhere.

The definition and properties of dual parallel equidistant ruled surfaces (DPERS) are
also explained in [41]. In this section, the relations that will be used in the continuation
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of the study will be given. Let {−→A1(s),
−→
A2(s),

−→
A3(s)} and {−→B1(s),

−→
B2(s),

−→
B3(s)} be the

Blaschke frames of the base curves of DPERS,
−→
Ψ (s, v) = −→a1 (s) ∧

−→
a∗1 (s) + v−→a1 (s),

−→
a∗1 (s) =

−→α (s) ∧−→a1 (s),

−→
Ψ (s, v) =

−→
b1 (s) ∧

−→
b∗1 (s) + v

−→
b1 (s),

−→
b∗1 (s) =

−→
β (s) ∧

−→
b1 (s),

respectively, where β(s) is the base curve of the ruled surface
−→
Ψ and s is the arc length

parameter of the curve. There are the following relations between these vectors:

−→
B1(s) =

−→
b1 (s) + ε

−→
b∗1 (s) =

−→a1 (s) + ε(
−→
a∗1 (s) + r(s)−→a2 (s)− z(s)−→a3 (s)),

−→
B2(s) =

−→
b2 (s) + ε

−→
b∗2 (s) =

−→a2 (s) + ε(
−→
a∗2 (s)− r(s)−→a1 (s) + φ∗(s)−→a3 (s)),

−→
B3(s) =

−→
b3 (s) + ε

−→
b∗3 (s) =

−→a3 (s) + ε(
−→
a∗3 (s) + z(s)−→a1 (s)− φ∗(s)−→a2 (s)),

(7)

where −→ai (s) and
−→
bi (s) are the real and dual components of the vectors

−→
Ai(s) and

−→
Bi (s),

[41]. Additionally, φ∗(s), z(s), r(s) are the perpendicular projection distances on the unit
vectors −→u1(s),

−→u2(s),
−→u3(s) of the vector

−→
β (s)−−→α (s), respectively [11]. The relationships

between the Blaschke invariants ℘(s) = ρ(s) + ερ∗(s), <(s) = η(s) + εη∗(s) and ℘(s) =
ρ(s) + ερ∗(s), <(s) = η(s) + εη∗(s) of DPERS are

ρ(s) =
ρ(s)

1− z(s)ρ(s)
, ρ∗(s) = ρ∗(s) = 0,

η(s) =
η(s)

1− z(s)p(s)
, η∗(s) = η∗(s) = 1,

(8)

respectively [41]. The arc length between the points corresponding to the striction curves
of DPERS is [41]

φ∗(s) =
r(s)η(s)− z′(s)

ρ(s)
. (9)

The relationship between arc-length parameters of the base curves of DPERS is [41]

ds
ds

= 1− z(s)ρ(s). (10)

The relationship between the striction curves
−→
Υ (s) and

−→
Υ (s) of DPERS are

−→
Υ (s) =

−→
Υ (s) +

(
r(s)η(s)− z′(s)

ρ(s)

)
−→a1 (s) + z(s)−→a2 (s) + r(s)−→a3 (s). (11)

The relationships between the real and dual components of the dual instantaneous

Pfaff vectors
−→
C (s) = −→c (s) + ε

−→
c∗ (s) and

−→
C (s) =

−→
c (s) + ε

−→
c∗ (s) of DPERS are [41]

−→
c∗ (s) = sin ω

−→
a∗1 (s) + cos ω

−→
a∗3 (s),

−→
c∗ (s) =

−→
c∗ (s) + z(s) cos ω−→a1 (s) + (r(s) sin ω− φ∗(s) cos ω)−→a2 (s)

− z(s) sin ω−→a3 (s).

(12)
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The real and dual components of the dual Steiner vectors
−→
D (s) =

−→
d (s) + ε

−→
d∗ (s) and

−→
D (s) =

−→
d (s) + ε

−→
d
∗
(s) of DPERS are [41]

−→
d (s) =

−→
d (s) = −→a1 (s)

∮
η(s)ds +−→a3 (s)

∮
ρ(s)ds,

−→
d∗ (s) =

−→
a∗1 (s)

∮
η(s)ds +−→a1 (s)

∮
ds +

−→
a∗3 (s)

∮
ρ(s)ds,

−→
d
∗
(s) =

−→
d∗ (s) +

(
−
∮

z(s)ρ(s)ds + z(s)
∮

ρ(s)ds
)
−→a1 (s)

+

(
r(s)

∮
η(s)ds− φ∗(s)

∮
ρ(s)ds

)
−→a2 (s)− z(s)−→a3

∮
η(s)ds.

(13)

The relationships between the real and dual components of the dual angles Ω =

ω + εω∗ and Ω = ω + εω∗ between the vectors
−→
A3(s),

−→
W (s) and

−→
B3(s),

−→
W (s) of DPERS are

cos ω = cos ω =
ρ(s)√

ρ2(s) + η2(s)
, sin ω = sin ω =

η(s)√
ρ2(s) + η2(s)

, (14)

respectively [41].

3. The Integral Invariants of DPERS

In this section, we will compute the integral invariants of the closed ruled surfaces
corresponding in the space of lines to the dual indicatrix curves formed by the dual tangent,
dual principal normal, dual binormal and intantaneous Pfaff vectors of the base curves of
DPERS. While the next operations are performed, for shortness, the Equation (11) will be
written as follows:

−→
Υ (s) =

−→
Υ (s) +

−→
R (s), (15)

where
−→
R (s) =

(
r(s)η(s)− z′(s)

ρ(s)

)
−→a1 (s) + z(s)−→a2 (s) + r(s)−→a3 (s).

3.1. The Relationships between the Integral Invariants of the Closed Ruled Surfaces Formed by the
Dual Tangent Vectors of DPERS

Let
−→
A1(s) =

−→a1 (s) + ε
−→
a∗1 (s) and

−→
B1(s) =

−→
b1 (s) + ε

−→
b∗1 (s) be the dual tangent vectors of

the base curves of DPERS
−→
Ψ (s, v) and

−→
Ψ (s, v), respectively. The parametric Equations of

the ruled surfaces corresponding in the space of lines to the dual indicatrix curves formed
by these vectors on the unit dual sphere are written as follows (Figure 2):

−−→
ΨA1(s, v) = −→a1 (s) ∧

−→
a∗1 (s) + v−→a1 (s),

−→
a∗1 (s) =

−→α (s) ∧−→a1 (s),

−→
ΨB1(s, v) =

−→
b1 (s) ∧

−→
b∗1 (s) + v

−→
b1 (s),

−→
b∗1 (s) =

−→
β (s) ∧

−→
b1 (s).

(16)
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Figure 2. The dual spherical expressions of ruled surfaces formed by dual tangent vectors of DPERS.

Theorem 2. There are the following relationships between the dual pitch lengths, the dual pitch
angles and the dralls of the closed ruled surfaces formed by the dual tangent vectors

−→
A1(s) and

−→
B1(s) of DPERS, respectively:

LB1(s) = LA1(s) + A1(s), A1(s) =
∮

(−→
R
) ds−

∮
(−→

Υ
) z(s)ρ(s)ds,

ΛB1(s) = ΛA1(s) + A2(s), A2(s) = −
∮

(−→
R
) η(s)ds + ε−

∮
(−→

Υ
) z(s)ρ(s)ds,

PB1(s) = PA1(s) = 0.

Proof. From the Equations (4), (8) and (13), the pitch lengths of the ruled surfaces formed
by
−→
A1(s) and

−→
B1(s) are found as

LA1(s) =
∮

(−→
Υ
) ds, LB1(s) =

∮
(−→

Υ
) ds ,

respectively. By using the Equations (10) and (15), the Equation LB1(s) is stated as follows
more clearly:

LB1(s) =
∮

(−→
Υ
) ds +

∮
(−→

R
) ds−

∮
(−→

Υ
) z(s)ρ(s)ds. (17)

Additionally, from the Equations (4), (8) and (13), the dual pitch angles of the ruled
surfaces formed by

−→
A1(s) and

−→
B1(s) are obtained as

ΛA1(s) = −
∮

(−→
Υ
) η(s)ds− ε

∮
(−→

Υ
) ds,

ΛB1(s) = −
∮

(−→
Υ
) η(s)ds− ε

∮
(−→

Υ
) ds.
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By using the Equations (10) and (15), if the Equation ΛB1(s) is stated more clearly,

ΛB1(s) = −
∮

(−→
Υ
) η(s)ds− ε

∮
(−→

Υ
) ds−

∮
(−→

R
) η(s)ds− ε

∮
(−→

R
) ds− ε +

∮
(−→

Υ
) z(s)ρ(s)ds (18)

is attained. Moreover, from the Equations (3) and (4), the dralls of the ruled surfaces
formed by

−→
A1(s) and

−→
B1(s) are obtained as

PB1(s) = PA1(s) = 0. (19)

Thus, from the Equations (17)–(19), the proof is completed.

Corollary 1. The closed ruled surfaces formed by the dual tangent vectors
−→
A1(s) and

−→
B1(s) of

DPERS are always isomorphic to the plane.

3.2. The Relationships between the Integral Invariants of the Closed Ruled Surfaces Formed by the
Dual Principal Normal Vectors of DPERS

Let
−→
A2(s) =

−→a2 (s) + ε
−→
a∗2 (s) and

−→
B2(s) =

−→
b2 (s) + ε

−→
b∗2 (s) be the dual principal normal

vectors of the base curves of DPERS
−→
Ψ (s, v) and

−→
Ψ (s, v), respectively. The parametric

Equations of the ruled surfaces corresponding in the space of lines to the dual indicatrix
curves formed by these vectors on the unit dual sphere are written as follows:

−−→
ΨA2(s, v) = −→a2 (s) ∧

−→
a∗2 (s) + v−→a2 (s),

−→
a∗2 (s) =

−→α (s) ∧−→a2 (s),

−→
ΨB2(s, v) =

−→
b2 (s) ∧

−→
b∗2 (s) + v

−→
b2 (s),

−→
b∗2 (s) =

−→
β (s) ∧

−→
b2 (s).

(20)

Theorem 3. There are the following relationships between the dual pitch lengths, the dual pitch
angles and the dralls of the closed ruled surfaces formed by the dual principal normal vectors

−→
A2(s)

and
−→
B2(s) of DPERS, respectively:

LB2(s) = LA2(s) = 0,

ΛB2(s) = ΛA2(s) = 0,

PB2(s) = (1− z(s)ρ(s))PA2(s).

Proof. From the Equations (4) and (13), the pitch lengths of the ruled surfaces formed by
−→
A2(s) and

−→
B2(s) are found as

LB2(s) = LA2(s) = 0. (21)

Additionally, from the Equations (4) and (13), the dual pitch angles of the ruled
surfaces formed by

−→
A2(s) and

−→
B2(s) are obtained as

ΛB2(s) = ΛA2(s) = 0. (22)

Moreover, from the Equations (3), (4), (8) and (10), the dralls of the ruled surfaces
formed by

−→
A2(s) and

−→
B2(s) are found as

PA2(s) =
η(s)

ρ2(s) + η2(s)
,

PB2(s) =
η(s)− z(s)ρ(s)η(s)

ρ2(s) + η2(s)
.

(23)
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Thus, from the Equations (21), (22) and (23), the proof is completed.

Corollary 2. The closed ruled surfaces formed by the dual principal normal vectors
−→
A2(s) and

−→
B2(s) of DPERS are isomorphic to the plane if and only if η(s) = 0.

3.3. The Relationships between the Integral Invariants of the Closed Ruled Surfaces Formed by the
Dual Binormal Vectors of DPERS

Let
−→
A3(s) =

−→a3 (s) + ε
−→
a∗3 (s) and

−→
B3(s) =

−→
b3 (s) + ε

−→
b∗3 (s) be the dual binormal vectors

of the base curves DPERS
−→
Ψ (s, v) and

−→
Ψ (s, v), respectively. The parametric Equations of

the ruled surfaces corresponding in the space of lines to the dual indicatrix curves formed
by these vectors on the unit dual sphere are written as follows:

−−→
ΨA3(s, v) = −→a3 (s) ∧

−→
a∗3 (s) + v−→a3 (s),

−→
a∗3 (s) =

−→α (s) ∧−→a3 (s),

−→
ΨB3(s, v) =

−→
b3 (s) ∧

−→
b∗3 (s) + v

−→
b3 (s),

−→
b∗3 (s) =

−→
β (s) ∧

−→
b3 (s).

(24)

Theorem 4. There are the following relationships between the dual pitch lengths, the dual pitch
angle and the dralls of the closed ruled surfaces formed by the dual binormal vectors

−→
A3(s) and

−→
B3(s) of DPERS, respectively:

LB3(s) = LA3(s) = 0,

ΛB3(s) = ΛA3(s) + A3(s), A3(s) = −
∮

(−→
R
) ρ(s)ds,

PB3(s) = (1− z(s)ρ(s))PA3(s).

Proof. From the Equations (4) and (13), the pitch lengths of the ruled surfaces formed by
−→
A3(s) and

−→
B3(s) are found as

LB3(s) = LA3(s) = 0. (25)

Additionally, from the Equations (4), (8) and (13), the dual pitch angles of the ruled
surfaces formed by

−→
A3(s) and

−→
B3(s) are obtained as

ΛA3(s) = −
∮

(−→
Υ
) ρ(s)ds, ΛB3(s) = −

∮
(−→

Υ
) ρ(s)ds .

By using the Equations (10) and (15), if the Equation ΛB3(s) is stated more clearly,

ΛB3(s) = −
∮

(−→
Υ
) ρ(s)ds−

∮
(−→

R
) ρ(s)ds (26)

is attained. Moreover, from the Equations (3), (4), (8) and (10), the dralls of the ruled
surfaces formed by

−→
A3(s) and

−→
B3(s) are obtained as

PA3(s) =
1

η(s)
, PB3(s) =

1− z(s)ρ(s)
η(s)

. (27)

Thus, from the Equations (25)–(27), the proof is completed.

Corollary 3. The closed ruled surfaces formed by the dual binormal vectors
−→
A3(s) and

−→
B3(s) of

DPERS are never isomorphic to the plane.
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3.4. The Relationships between the Integral Invariants of the Closed Ruled Surfaces Formed by the
Dual Instantaneous Pfaff Vectors of DPERS

The parametric Equations of the ruled surfaces corresponding in the space of lines to

the dual indicatrix curves formed by the unit dual vectors
−→
C (s) and

−→
C (s) in the direction

of the dual instantaneous Pfaff vectors of DPERS on the dual unit sphere are written as
follows: 

−→
ΨC(s, v) = −→c (s) ∧

−→
c∗ (s) + v−→c (s),

−→
c∗ (s) = −→α (s) ∧−→c (s),

−→
ΨC(s, v) =

−→
c (s) ∧

−→
c∗ (s) + v

−→
c (s),

−→
c∗ (s) =

−→
β (s) ∧−→c (s).

(28)

Theorem 5. There are the following relationships between the dual pitch lengths, the dual pitch
angles and the dralls of the closed ruled surfaces formed by the dual instantaneous Pfaff vectors
−→
C (s) and

−→
C (s) of DPERS, respectively:



LC(s) = LC(s) + A4(s), A4(s) = sin ω
∮

(−→
R
) ds− sin ω

∮
(−→

Υ
) z(s)ρ(s)ds,

ΛC(s) = ΛC(s) + A5(s), A5(s) = − cos ω
∮

(−→
R
) ρ(s)ds− sin ω

∮
(−→

R
) <(s)ds

+ ε sin ω
∮

(−→
Υ
) z(s)ρ(s)ds,

PC(s) = PC(s) = 0.

Proof. From the Equations (4), (12) and (13), the pitch lengths of the ruled surfaces formed

by the vectors
−→
C (s) and

−→
C (s) are obtained as

LC(s) = sin ω
∮

(−→
Υ
) ds = sin ωLA1(s),

LC(s) = sin ω
∮

(−→
Υ
) ds = sin ωLB1(s) ,

respectively. By using the Equations (10), (14) and (15), the Equation LC(s) is stated as
follows more clearly,

LC(s) = sin ω
∮

(−→
Υ
) ds + sin ω

∮
(−→

R
) ds− sin ω

∮
(−→

Υ
) z(s)ρ(s)ds. (29)

On the other hand, from the Equations (4), (12) and (13), the dual pitch angles of the

ruled surfaces formed by
−→
C (s) and

−→
C (s) are obtained as follows:

ΛC(s) = − cos ω
∮

(−→
Υ
) ρ(s)ds− sin ω

∮
(−→

Υ
) (η(s) + ε)ds,
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ΛC(s) = − cos ω
∮

(−→
Υ
) ρ(s)ds− sin ω

∮
(−→

Υ
) (η(s) + ε)ds.

By using the Equations (8), (10), (14) and (15), if the Equation ΛC(s) is stated
more clearly,

ΛC(s) = − cos ω
∮

(−→
Υ
) ρ(s)ds− sin ω

∮
(−→

Υ
) <(s)ds− cos ω

∮
(−→

R
) ρ(s)ds

− sin ω
∮

(−→
R
) <(s)ds + ε sin ω

∮
(−→

Υ
) z(s)ρ(s)ds

(30)

is attained. Moreover, if the vectors −→c (s),
−→
c∗ (s),

−→
c (s),

−→
c∗ (s) in the Equation (12) are

differentiated, we get



−→
dc(s) =

−→
dc(s) = ω′(s) cos ω−→a1 (s)−ω′(s) sin ω−→a3 (s),

−→
dc∗(s) = ω′(s) cos ω

−→
a∗1 (s)− cos ω−→a2 (s)−ω′(s) sin ω

−→
a∗3 (s),

−→
dc∗(s) =

−→
dc∗(s)

+ [z′(s) cos ω− z(s)ω′(s) sin ω− r(s)ρ(s) sin ω + φ∗(s)ρ(s) cos ω]−→a1 (s)

+ [z(s)ρ(s) cos ω + r′(s) sin ω + r(s)ω′(s) cos ω

+ z(s)η(s) sin ω + φ∗(s)ω′(s) sin ω]−→a2 (s)

+ [r(s)η(s) sin ω− z′(s) sin ω− z(s)ω′(s) cos ω− φ∗(s)η(s) cos ω]−→a3 (s).

(31)

The vectors of the Equation (31) are substituted in Equation (4); we have

〈−→
dc(s),

−→
dc∗(s)

〉
= −ω′2(s) cos ω sin ω

(
〈−→a1 (s),

−→
a∗3 (s)〉+ 〈

−→a3 (s),
−→
a∗1 (s)〉

)
= 0,

〈−→
dc(s),

−→
dc∗(s)

〉
= ω′(s)(z′(s) + (ρ(s) cos ω + η(s) sin ω)(φ∗(s) cos ω− r(s) sin ω)).

And so, from the Equation (9), we get

〈−→
dc(s),

−→
dc∗(s)

〉
= ω′(s)z′(s)

(
1− ρ(s) cos ω + η(s) sin ω√

ρ2(s) + η2(s)

)
= 0.

Thus, the dralls of the ruled surfaces formed by the vectors
−→
C (s) and

−→
C (s) are obtained as

follows:

PC(s) = PC(s) = 0, (32)

respectively. Thus, from the Equations (29), (30) and (32), the proof is completed.

Corollary 4. The closed ruled surfaces formed by the dual instantaneous Pfaff vectors
−→
C (s) and

−→
C (s) of DPERS are always isomorphic to the plane.
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4. The Gaussian Curvatures of DPERS

In this section, we will compute the Gaussian curvatures of the ruled surfaces corre-
sponding in the space of lines to the dual indicatrix curves formed by the dual tangent,
dual principal normal, dual binormal and dual instantaneous Pfaff vectors of the base
curves of DPERS.

4.1. The Relationship between the Gaussian Curvatures of the Ruled Surfaces Formed by the Dual
Tangent Vectors of DPERS

Theorem 6. There is the following relationship between the Gaussian curvatures of the ruled
surfaces formed by the dual tangent vectors

−→
A1(s) and

−→
B1(s) of DPERS:

KB1(s) = KA1(s) = 0.

Proof. If the ruled surface
−−→
ΨA1(s, v) in the Equation (16) is derived according to the

parameters s and v,


(−−→

ΨA1

)
v
= −→a1 (s),(−−→

ΨA1

)
s
= −ρ(s)

〈−→a2 (s),
−→α (s)

〉−→a1 (s) + ρ(s)
(
v−

〈−→a1 (s),
−→α (s)

〉)−→a2 (s)
(33)

are obtained. If the vectors
(−−→

ΨA1

)
v

and
(−−→

ΨA1

)
s

in Equation (33) are performed the inner
product operation, 〈(−−→

ΨA1

)
v
,
(−−→

ΨA1

)
s

〉
= −ρ(s)

〈−→a2 (s),
−→α (s)

〉
is found. Since this inner product is non zero, the system

{(−−→
ΨA1

)
v
,
(−−→

ΨA1

)
s

}
is not an

orthogonal system. So now, let us perform the Gram Schmitd ’s method on these vectors.
Firstly, the following vectors are obtained:

−−−−→(
XA1

)
1(s) =

(−−→
ΨA1

)
v

,
−−−−→(
XA1

)
2(s) =

(−−→
ΨA1

)
s

,

−−−−→(
YA1

)
1(s) =

−→a1 (s) ,
−−−−→(
YA1

)
2(s) = ρ(s)

(
v−

〈−→a1 (s),
−→α (s)

〉)−→a2 (s). (34)

Thus, if the vectors
−−−−→(
YA1

)
1(s) and

−−−−→(
YA1

)
2(s) in Equation (34) are rendered orthonormal,

−−−−→(
EA1

)
1(s) =

−→a1 (s),
−−−−→(
EA1

)
2(s) =

−→a2 (s) (35)

are attained. Then, if the vectors
−−−−→(
EA1

)
1(s) and

−−−−→(
EA1

)
2(s) in Equation (35) are performed

the vectoral product operation, the normal vector
−−→
NA1(s) of the ruled surface

−−→
ΨA1(s, v) is

found as follows:

−−→
NA1(s) =

−→a3 (s). (36)

Let SA1(s) and KA1(s) be the shape operator and the Gaussian curvature of the ruled
surface

−−→
ΨA1(s, v), respectively. From the Equation (6),

KA1(s) = −
(〈

SA1

(−−−−→(
EA1

)
2(s)

)
,
−−−−→(
EA1

)
1(s)

〉)2
(37)

is written. Here, from Equations (6) and (36),

SA1

(−−−−→(
EA1

)
2(s)

)
= − η(s)

ρ(s)
(
v−

〈−→a1 (s),
−→α (s)

〉)−→a2 (s). (38)
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If the Equations (35) and (38) are substituted in the Equation (37), the Gaussian
curvature of the ruled surface

−−→
ΨA1(s, v) is obtained as follows:

KA1(s) = 0. (39)

Likewise, the Gaussian curvature of the ruled surface
−→
ΨB1(s, v) is found as follows:

KB1(s) = 0. (40)

Thus, from the Equations (39) and (40), the proof is completed.

Corollary 5. The ruled surfaces formed by the dual tangent vectors
−→
A1(s) and

−→
B1(s) of DPERS

are always isomorphic to the plane.

4.2. The Relationship Between the Gaussian Curvatures of the Ruled Surfaces Formed by the Dual
Principal Normal Vectors of DPERS

Theorem 7. There is the following relationship between the Gaussian curvatures of the ruled
surfaces formed by the dual principal normal vectors

−→
A2(s) and

−→
B2(s) of DPERS:

1− z(s)ρ(s)√
−KB2(s)

=
1√

−KA2(s)
+ z2(s)η(s)− 2m(s)z(s)η(s),

here m(s) = v−
〈−→a2 (s),

−→α (s)
〉

and η(s) 6= 0.

Proof. If the ruled surface
−−→
ΨA2(s, v) in the Equation (20) is derived according to the

parameters s and v,



(−−→
ΨA2

)
v
= −→a2 (s),

(−−→
ΨA2

)
s
= (1−m(s)ρ(s))−→a1 (s) +

(
ρ(s)

〈−→a1 (s),
−→α (s)

〉
− η(s)

〈−→a3 (s),
−→α (s)

〉)−→a2 (s)

+ m(s)η(s)−→a3 (s)

(41)

are obtained, here m(s) = v −
〈−→a2 (s),

−→α (s)
〉
. If the vectors

(−−→
ΨA2

)
v

and
(−−→

ΨA2

)
s

in the

Equation (41) are performed, the inner product operation,〈(−−→
ΨA2

)
v
,
(−−→

ΨA2

)
s

〉
= ρ(s)

〈−→a1 (s),
−→α (s)

〉
− η(s)

〈−→a3 (s),
−→α (s)

〉
is found. Since this inner product is non zero, the system

{(−−→
ΨA2

)
v
,
(−−→

ΨA2

)
s

}
is not an

orthogonal system. So now, let us perform the Gram Schmitd ’s method on these vectors.
Firstly, the following vectors are obtained:

−−−−→(
XA2

)
1(s) =

(−−→
ΨA2

)
v

,
−−−−→(
XA2

)
2(s) =

(−−→
ΨA2

)
s
,

−−−−→(
YA2

)
1(s) =

−→a2 (s),
−−−−→(
YA2

)
2(s) = (1−m(s)ρ(s))−→a1 (s) + m(s)η(s)−→a3 (s). (42)

Thus, if the vectors
−−−−→(
YA2

)
1(s) and

−−−−→(
YA2

)
2(s) in Equation (42) are rendered orthonormal,

−−−−→(
EA2

)
1(s) =

−→a2 (s),

−−−−→(
EA2

)
2(s) =

(1−m(s)ρ(s))−→a1 (s) + m(s)η(s)−→a3 (s)√
(1−m(s)ρ(s))2 + m2(s)η2(s)

(43)
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are attained. Then, if the vectors
−−−−→(
EA2

)
1(s) and

−−−−→(
EA2

)
2(s) in Equation (43) are performed,

the vectoral product operation, the normal vector
−−→
NA2(s) of the ruled surface

−−→
ΨA2(s, v), is

found as follows:

−−→
NA2(s) =

m(s)η(s)−→a1 (s)− (1−m(s)ρ(s))−→a3 (s)√
(1−m(s)ρ(s))2 + m2(s)η2(s)

. (44)

Let SA2(s) and KA2(s) be the shape operator and the Gaussian curvature of the ruled
surface

−−→
ΨA2(s, v), respectively. From the Equation (6),

KA2(s) = −
(〈

SA2

(−−−−→(
EA2

)
2(s)

)
,
−−−−→(
EA2

)
1(s)

〉)2
(45)

is written. From Equations (6) and (44),

SA2

(−−−−→(
EA2

)
2(s)

)
=

d
ds

(
m(s)η(s)

b(s)

)
1

b(s)
−→a1 (s) +

η(s)
b2(s)

−→a2 (s)

− d
ds

(
1−m(s)ρ(s)

b(s)

)
1

b(s)
−→a3 (s), (46)

where b(s) =
∥∥∥−−−−→(

YA2

)
2(s)

∥∥∥ =
√
(1−m(s)ρ(s))2 + m2(s)η2(s). If the Equations (43) and

(46) are substituted in the Equation (45), the Gaussian curvature of the ruled surface
−−→
ΨA2(s, v) is obtained as follows:

KA2(s) = −
(

η(s)[
1− ρ(s)(v−

〈−→a2 (s),
−→α (s)

〉
)
]2

+
[
η(s)(v−

〈−→a2 (s),
−→α (s)

〉
)
]2
)2

. (47)

Likewise, the Gaussian curvature of the ruled surface
−→
ΨB2(s, v) is found as follows:

KB2 (s) = −

 η(s)[
1− ρ(s)

(
v−

〈−→
b2 (s),

−→
β (s)

〉)]2
+
[
η(s)

(
v−

〈−→
b2 (s),

−→
β (s)

〉)]2


2

, (48)

where
−→
β (s) = −→α (s) + φ∗(s)−→a1 (s) + z(s)−→a2 (s) + r(s)−→a3 (s) [41]. If we take v = v and the

Equations (10) and (8) are substituted in Equation (48), we obtain

KB2(s) = −

 η(s)− z(s)ρ(s)η(s)(
(1−m(s)ρ(s))2 + m2(s)η2(s) + z2(s)η2(s)− 2m(s)z(s)η2(s)

)
2

. (49)

Since η(s) 6= 0, from the Equations (47) and (49), we can write

1√
−KB2(s)

=
1

(1− z(s)ρ(s))
√
−KA2(s)

+ z2(s)η(s)− 2m(s)z(s)η(s)
1− z(s)ρ(s)

. (50)

Thus, the proof is completed.

Corollary 6. The ruled surfaces formed by the dual principal normal vectors
−→
A2(s) and

−→
B2(s) of

DPERS are isomorphic to the plane if and only if η(s) = 0.
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4.3. The Relationship between the Gaussian Curvatures of the Ruled Surfaces Formed by the Dual
Binormal Vectors of DPERS

Theorem 8. There is the following relationship between the dual Gaussian curvatures of the ruled
surfaces formed by the dual unit binormal vectors

−→
A3(s) and

−→
B3(s) of DPERS:

1− z(s)ρ(s)√
−KB3(s)

=
1√

−KA3(s)
+

[2n(s)r(s) + r2(s)]η2(s)− 2z(s)ρ(s) + z2(s)ρ2(s)
η(s)

,

where n(s) =
〈−→a3 (s),

−→α (s)
〉
− v and η(s) 6= 0.

Proof. If the ruled surface
−−→
ΨA3(s, v) in the Equation (24) is derived according to the

parameters s and v,
(−−→

ΨA3

)
v
= −→a3 (s),(−−→

ΨA3

)
s
= −→a1 (s) + η(s)n(s)−→a2 (s) + η(s)

〈−→a2 (s),
−→α (s)

〉−→a3 (s)
(51)

are obtained. If the vectors
(−−→

ΨA3

)
v

and
(−−→

ΨA3

)
s

in the Equation (51) are performed, the
inner product operation,〈(−−→

ΨA3

)
v
,
(−−→

ΨA3

)
s

〉
= η(s)

〈−→a2 (s),
−→α (s)

〉
is obtained. Since this inner product is non zero, the system

{(−−→
ΨA3

)
v
,
(−−→

ΨA3

)
s

}
is not an

orthogonal system. So now, let us perform the Gram Schmitd ’s method on these vectors.
Firstly, the following vectors are obtained:

−−−−→(
XA3

)
1(s) =

(−−→
ΨA3

)
v
,

−−−−→(
XA3

)
2(s) =

(−−→
ΨA3

)
s
,

−−−−→(
YA3

)
1(s) =

−→a3 (s),
−−−−→(
YA3

)
2(s) =

−→a1 (s) + η(s)n(s)−→a2 (s). (52)

Thus, if the vectors
−−−−→(
YA3

)
1(s) and

−−−−→(
YA3

)
2(s) in the Equation (52) are rendered orthonormal,

−−−−→(
EA3

)
1(s) =

−→a3 (s),

−−−−→(
EA3

)
2(s) =

−→a1 (s) + η(s)n(s)−→a2 (s)√
1 + η2(s)n2(s)

(53)

are attained. Then, if the vectors
−−−−→(
EA3

)
1(s) and

−−−−→(
EA3

)
2(s) in the Equation (53) are per-

formed, the vectorial product operation, the normal vector
−−→
NA3(s) of the ruled surface

−−→
ΨA3(s, v), is found as follows:

−−→
NA3(s) =

−η(s)n(s)−→a1 (s) +
−→a2 (s)√

1 + η2(s)n2(s)
. (54)

Let SA3(s) and KA3(s) be the shape operator and the Gaussian curvature of the ruled
surface

−−→
ΨA3(s, v), respectively. From the Equation (6),

KA3(s) = −
(〈

SA3

(−−−−→(
EA3

)
2(s)

)
,
−−−−→(
EA3

)
1(s)

〉)2
(55)
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is written. From Equations (6) and (54), we get

SA3

(−−−−→(
EA3

)
2(s)

)
= −

[
d
ds

(
η(s)n(s)

e(s)

)
+

ρ(s)
e(s)

]
1

e(s)
−→a1 (s)

+

[
d
ds

(
1

e(s)

)
−

ρ(s)η(s)(
〈−→a3 (s),

−→α (s)
〉
− v)

e(s)

]
1

e(s)
−→a2 (s)

+
η(s)
e2(s)

−→a3 (s),

(56)

where e(s) =
∥∥∥−−−−→(

YA3

)
2(s)

∥∥∥ =
√

1 + η2(s)(
〈−→a3 (s),

−→α (s)
〉
− v)2. If the Equations (53) and

(56) are substituted in the Equation (55), the Gauss curvature of the ruled surface
−−→
ΨA3(s, v)

is obtained as follows:

KA3(s) = −
(

η(s)
1 + η2(s)(

〈−→a3 (s),
−→α (s)

〉
− v)2

)2

. (57)

Likewise, the Gaussian curvature of the ruled surface
−→
ΨB3(s, v) is found as follows:

KB3(s) = −

 η(s)

1 + η2(s)
(〈−→

b3 (s),
−→
β (s)

〉
− v
)2


2

. (58)

If we take v = v and the Equations (7) and (8) are substituted in the Equation (58),

KB3 (s) = −
(

η(s)− z(s)ρ(s)η(s)

1 + η2(s)n2(s) + (2r(s)n(s) + r2(s))η2(s)− 2z(s)ρ(s) + z2(s)ρ2(s)

)2

(59)

is obtained. Since η(s) 6= 0, from the Equations (57) and (59), we can write

1√
−KB3 (s)

=
1

(1− z(s)ρ(s))
√
−KA3 (s)

+
[2n(s)r(s) + r2(s)]η2(s)− 2z(s)ρ(s) + z2(s)ρ2(s)

η(s)− z(s)ρ(s)η(s)
.

Thus, the the proof is completed.

Corollary 7. The ruled surfaces formed by the dual binormal vectors
−→
A3(s) and

−→
B3(s) of DPERS

are isomorphic to the plane if and only if η(s) = 0.

4.4. The Relationship between the Gaussian Curvatures of the Ruled Surfaces Formed by the Dual
Instantaneous Pfaff Vectors of DPERS

Theorem 9. There is the following relationship between the dual Gaussian curvatures of the ruled

surfaces formed by the dual instantaneous Pfaff vectors
−→
C (s) and

−→
C (s) of DPERS:

KC(s) = KC(s) = 0.
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Proof. If the ruled surface
−→
ΨC(s, v) in the Equation (28) is derived according to the param-

eters s and v,

(−→
ΨC

)
v
= −→c (s) = sin ω−→a1 (s) + cos ω−→a3 (s),(−→

ΨC

)
s
=
[
vω′(s) cos ω + cos2 ω− 2ω′(s) cos ω sin ω

〈−→a1 (s),
−→α (s)

〉
−ω′(s)(cos2 ω− sin2 ω)

〈−→a3 (s),
−→α (s)

〉]−→a1 (s)

−
[
vω′(s) sin ω + cos ω sin ω− 2ω′(s) cos ω sin ω

〈−→a3 (s),
−→α (s)

〉
+ (ω′(s) cos2 ω− sin2 ω)

〈−→a1 (s),
−→α (s)

〉]−→a3 (s)

(60)

are obtained. If the vectors
(−→

ΨC

)
v

and
(−→

ΨC

)
s

in the Equation (60) are performed, the
inner product operation,〈(−→

ΨC

)
v
,
(−→

ΨC

)
s

〉
= ω′(s)

(
sin ω

〈−→
a∗1 (s),

−→a2 (s)
〉
+ cos

〈−→a2 (s),
−→
a∗3 (s)

〉)
,

is found. Since this inner product is non zero, the system
{(−→

ΨC

)
v
,
(−→

ΨC

)
s

}
is not an

orthogonal system. So now, let us perform the Gram Schmitd ’s method on these vectors.
Firstly, the following vectors are obtained:

−−−→
(XC)1(s) =

(−→
ΨC

)
v

,
−−−→
(XC)2(s) =

(−→
ΨC

)
s

,



−−−→
(YC)1(s) = sin ω−→a1 (s) + cos ω−→a3 (s),

−−−→
(YC)2(s) =

[
vω′(s) cos ω + cos2 ω−ω′(s) cos ω sin ω

〈−→a1 (s),
−→α (s)

〉
−ω′(s) cos2 ω

〈−→a3 (s),
−→α (s)

〉]−→a1 (s)

−
[
vω′(s) sin ω + cos ω sin ω−ω′(s) cos ω sin ω

〈−→a3 (s),
−→α (s)

〉
−ω′(s) sin2 ω

〈−→a1 (s),
−→α (s)

〉]−→a3 (s).

(61)

Thus, if the vectors
−−−→
(YC)1(s) and

−−−→
(YC)2(s) in the Equation (61) are rendered orthonormal,

−−−→
(EC)1(s) = sin ω−→a1 (s) + cos ω−→a3 (s),

−−−→
(EC)2(s) =

−−−→
(YC)2(s)∥∥∥−−−→(YC)2(s)

∥∥∥ (62)

are obtained. Here, after a series of long operations, we have∥∥∥−−−→(YC)2(s)
∥∥∥ =

∣∣∣∣(cos ω
〈−→a3 (s),

−→α (s)
〉
+ sin ω

〈−→a1 (s),
−→α (s)

〉
− v
)dω

ds
− cos ω

∣∣∣∣. (63)

Then, if the vectors
−−−→
(EC)1(s) and

−−−→
(EC)2(s) in the Equation (62) are performed, the

vectoral product operation, the normal vector
−→
NC(s) of the ruled surface

−→
ΨC(s, v), is found

as follows:

−→
NC(s) = ±−→a2 (s). (64)
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Let SC(s) and KC(s) be the shape operator and the Gaussian curvature of the ruled
surface

−→
ΨC(s, v), respectively. From the Equation (6),

KC(s) = −
(〈

SC

(−−−→
(EC)2(s)

)
,
−−−→
(EC)1(s)

〉)2
(65)

is written. Here, from the Equations (6) and (64),

SC

(−−−→
(EC)2(s)

)
=

∓ρ(s)−→a1 (s)± η(s)−→a3 (s)∣∣ω′(s)(cos ω
〈−→a3 (s),

−→α (s)
〉
+ sin ω

〈−→a1 (s),
−→α (s)

〉
− v
)
− cos ω

∣∣ . (66)

If the Equations (62) and (66) are substituted in the Equation (65), the Gaussian curvature
of the ruled surface

−→
ΨC(s, v) is obtained as follows:

KC(s) =
∓ρ(s) sin ω± η(s) cos ω∣∣ω′(s)(cos ω

〈−→a3 (s),
−→α (s)

〉
+ sin ω

〈−→a1 (s),
−→α (s)

〉
− v
)
− cos ω

∣∣ = 0. (67)

Likewise, the Gaussian curvature of the ruled surface
−→
ΨC(s, v) is found as follows:

KC(s) = 0. (68)

Thus, the proof is completed.

Corollary 8. The ruled surfaces formed by the dual instantaneous Pfaff vectors
−→
C (s) and

−→
C (s) of

DPERS are always isomorphic to the plane.

Example 1. Let
−→
Ψ (s, v) and

−→
Ψ (s, v) be DPERS: (v = v)

−→
Ψ (s, v) =

(
s− 2v
2
√

2
cos

s√
2
− sin

s√
2

, cos
s√
2
+

s− 2v
2
√

2
sin

s√
2

,
s + 2v
2
√

2

)
,

−→
Ψ (s, v) =

((
s− 2v
2
√

2
+

π

4

)
cos

s√
2
− sin

s√
2

, cos
s√
2
+

(
s− 2v
2
√

2
+

π

4

)
sin

s√
2

,

s + 2v
2
√

2
+

π

4

)
.

(i) The parametric expressions of the ruled surfaces corresponding in the space of lines to the
dual indicatrix curves formed on the unit dual sphere by the dual tangent vectors of these DPERS
are (Figure 3)

−→
Ψ (s, v) =

(
s− 2v
2
√

2
cos

s√
2
− sin

s√
2

, cos
s√
2
+

s− 2v
2
√

2
sin

s√
2

,
s + 2v
2
√

2

)
,

−→
Ψ (s, v) =

((
s− 2v
2
√

2
+

π

4

)
cos

s√
2
− sin

s√
2

, cos
s√
2
+

(
s− 2v
2
√

2
+

π

4

)
sin

s√
2

,

s + 2v
2
√

2
+

π

4

)
.
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Figure 3. The ruled surfaces
−−→
ΨA1 (s, v) and

−→
ΨB1 (s, v) formed by the dual tangent vectors

−→
A1 and

−→
B1 .

(ii) The parametric expressions of the ruled surfaces corresponding in the space of lines to the
dual indicatrix curves formed on the unit dual sphere by the dual principal normal vectors of these
DPERS are (Figure 4)

−−→
ΨA2(s, v) =

(
v sin

s√
2

,−v cos
s√
2

,
s√
2

)
,

−→
ΨB2(s, v) =

(
v sin

s√
2

,−v cos
s√
2

,
s√
2
+

π

2

)
.

Figure 4. The ruled surfaces
−−→
ΨA2 (s, v) and

−→
ΨB2 (s, v) formed by the dual principal normal vectors

−→
A2

and
−→
B2 .
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(iii) The parametric expressions of the ruled surfaces corresponding in the space of lines to the
dual indicatrix curves formed on the unit dual sphere by the dual binormal vectors of these DPERS
are (Figure 5)

−−→
ΨA3(s, v) =

(
− s− 2v

2
√

2
cos

s√
2
− sin

s√
2

, cos
s√
2
− s− 2v

2
√

2
sin

s√
2

,
s + 2v
2
√

2

)
,

−→
ΨB3(s, v) =

(
−
(

s− 2v
2
√

2
+

π

4

)
cos

s√
2
− sin

s√
2

, cos
s√
2
−
(

s− 2v
2
√

2
+

π

4

)
sin

s√
2

,

s + 2v
2
√

2
+

π

4

)
.

Figure 5. The ruled surfaces
−−→
ΨA3 (s, v) and

−→
ΨB3 (s, v) formed by the dual binormal vectors

−→
A3 and

−→
B3 .

(iv) The parametric expressions of the ruled surfaces corresponding in the space of lines to
the dual indicatrix curves formed on the unit dual sphere by the dual instantaneous Pfaff vectors of
these DPERS are (Figure 6)

−→
ΨC(s, v) =

−→
ΨC(s, v) =

(
− sin

s√
2

, cos
s√
2

, v
)

.

For the all graphs drawn in the above example, the parameter v is taken in the range
−5 : 1/2 : 5, and the parameter t is in the range −π : π/20 : π.

The dual spherical indicatrix curves corresponding on the unit dual sphere to these
ruled surfaces can be shown imaginatively as in Figure 7.
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Figure 6. The ruled surfaces
−→
ΨC(s, v) and

−→
ΨC(s, v) formed by the dual instantaneous Pfaff vectors

−→
C

and
−→
C .

Figure 7. The dual spherical indicatrix curves corresponding to the unit dual of the ruled surfaces
sphere formed by the tangent, principal normal, binormal and instantaneous Pfaff vectors of DPERS
(imaginary figure).

The ruled surfaces in the above example are not closed, but it is possible to find
examples of closed ruled surfaces.

5. Discussion and Conclusions

In this study, the integral invariants and Gaussian curvatures of the ruled surfaces
corresponding in the space of lines to the spherical indicator curves of the Blaschke vectors
and the dual instantaneous Pfaff vectors on the unit dual sphere of the parallel equidistant
ruled surfaces (DPERS), which were previously defined in [41] and some of their properties
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given, are investigated. As a result of this examination, considering the dralls (distribution
parameters), it is concluded that the closed ruled surfaces formed by dual tangent and dual
instantaneous Pfaff vectors of DPERS will always be isomorphic to plane (developable),
the closed ruled surfaces formed by dual principal normal vectors of DPERS will always
be isomorphic to plane under a certain condition (η(s) = 0), and the closed ruled surfaces
formed by dual binormal vectors of DPERS will never be isomorphic to plane. In addition,
when Gaussian curvatures are examined, it is concluded that the ruled surfaces formed
by dual tangent and instantaneous Pfaff vectors of DPERS will always be isomorphic to
plane, while the closed ruled surfaces obtained by dual principal normal and dual binormal
vectors will be isomorphic to plane under a certain condition (η(s) = 0). This study can be
combined with studies on submanifold theories, singularity theories, kinematics theories,
etc. or it can be studied in non-Euclidean spaces also.
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16. Li, Y.; Şenyurt, S.; Özduran, A.; Canlı, D. The Characterizations of Parallel q-Equidistant Ruled Surfaces. Symmetry 2022, 14, 1879.

[CrossRef]
17. As, E.; Senyurt, S. Some Characteristic Properties of Parallel z-Equidistant Ruled Surfaces. Hindawi Publ. Corp. Math. Probl. Eng.

2013, 2013, 587289.
18. Sarioglugil, A.; Senyurt, S.; Kuruoglu, N. On the Integral Invariants of the Closed Ruled Surfaces Generated by a Parallel

p-Equidistant Dual Centroit Curve in the Line Space. Hadron. J. 2011, 34, 34–47.

http://doi.org/10.1090/S0002-9904-1951-09440-9
http://dx.doi.org/10.1016/j.joems.2013.02.004
http://dx.doi.org/10.1016/S0167-8396(97)00032-0
http://dx.doi.org/10.1016/0094-114X(72)90039-0
http://dx.doi.org/10.12988/ams.2020.912175
http://dx.doi.org/10.3390/sym14091879


Symmetry 2023, 15, 206 22 of 22

19. Senyurt, S. Integral Invariants of Parallel P-Equidistant Ruled Surfaces Which Are Generated by Instantaneous Pfaff Vector. Ordu
Univ. Sci. Tech. J. 2012, 2, 13–22.

20. Clifford, W.K. Preliminary sketch of biquaternions. Proc. Lond. Math. Soc. 1873, 1, 381–395. [CrossRef]
21. Study, E. Geometrie der Dynamen; Verlag Teubner: Leipzig, Germany, 1903.
22. Blaschke, W. Differential Geometry Courses; Istanbul University Publications: Istanbul, Turkey, 1949; pp. 332–345.
23. Hacisalihoglu, H.H. The Motion Geometry and Quaternions Theory; Gazi University, Faculty of Science and Literature Publications:

Ankara, Turkey, 1983; pp. 3–55.
24. Hacisalihoglu, H.H. Acceleration Axes in Spatian Kinematics I. Commun. Fac. Sci. Univ. Ank. Ser. Math. Stat. 1971, 20, 1–15.
25. Muller, H.R. Kinematics Courses; Ankara University Press: Ankara, Turkey, 1963; pp. 240–251.
26. Bilici, M. On the Invariants of Ruled Surfaces Generated by the Dual Involute Frenet Trihedron. Commun. Fac. Sci. Univ. Ank. Ser.

A1 Math. Stat. 2017, 66, 62–70.
27. Oral, S.; Kazaz, M. Characterizations for Slant Ruled Surfaces in Dual Space. Iran. J. Sci. Technol. Trans. A Sci. 2017, 41, 191–197.

[CrossRef]
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