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Abstract

:

In this study, we propose the concept of left extension of a hyperideal by generalizing the concept of k-hyperideals in ordered semihyperrings with symmetrical hyper-operation ⊕. By using the notion of extension of a k-hyperideal, we prove some results in ordered semihyperrings. The results of this paper can be viewed as a generalization for k-ideals of semirings.
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1. Introduction


The notion of ordered semihypergroup was pioneered by Heidari and Davvaz [1] in 2011. In Ref. [2], Shi et al. attempted to study factorizable ordered hypergroupoids. In Ref. [3], Davvaz et al. initiated the study of pseudoorders in ordered semihypergroups. Gu and Tang in Ref. [4] and Tang et al. in Ref. [5] constructed the ordered semihypergroup from an ordered semihypergroup by using ordered regular relations.



The concept of hyperstructure was introduced by Marty [6] in 1934. In 1990, Vougiouklis [7] defined the notion of semihyperrings and discussed some of its properties. The theory of hyperideals in LA-hyperrings was studied by Rehman et al. in Ref. [8]. Many notions of algebraic geometry were extended to hyperrings in Ref. [9].



Some recent studies on ordered semihyperrings are on left k-bi-quasi hyperideals and right pure (bi-quasi-)hyperideals done by Rao et al. in Ref. [10] and Shao et al. in Ref. [11]. A study on w-pseudo-orders in ordered (semi)hyperrings was done in Ref. [12]. In Ref. [13], Kou et al. discussed the relationship between ordered semihyperrings by using homomorphisms and homo-derivations. Moreover, the connection between the ordered semihyperrings is explained by Omidi and Davvaz in Ref. [14].



In Ref. [15], Hedayati investigated some results in semihyperrings using k-hyperideals. In 2007, Ameri and Hedayati [16] introduced the notion of k-hyperideals in ordered semihyperrings. In this paper, we first define the left extension of a left hyperideal in an ordered semihyperring. The concept of extension of a k-ideal on a semiring R was introduced and studied by Chaudhari et al. in Refs. [17,18]. In the results of Chaudhari et al. [18], we replace the condition of extension of a k-ideal in semirings by extension of a k-hyperideal in ordered semihyperrings. By using the notion of extension of a k-hyperideal instead of k-hyperideal, we prove some results in ordered semihyperrings. Left extension of hyperideals are discovered to be a generalization of k-hyperideals. Let   Q , W   be hyperideals of an ordered semihyperring   ( R , ⊕ , ⊙ , ≤ )   such that   Q ⊆ W  . Then





    W Q  ¯  =  { r ∈ R ∣ r ⊕ P ⊆ W ,  ∃ P ⊆ Q , 0 ∈ P }   








is the smallest left extension of Q containing W. Moreover, we proved that     W Q  ¯  = W   if and only if W is a left extension of Q. Some conclusions on extension of a k-hyperideal are gathered in the last section of the study.




2. Preliminaries


A mapping   ⊙ : R × R →  P *   ( R )    is called a hyperoperation on R. If   ∅ ≠ L ,  L ′  ⊆ R   and   x ∈ R  , then





    L ⊙  L ′  =  ⋃      l ∈ L    l ′  ∈  L ′        l ⊙  l ′   ,  x ⊙ L = { x } ⊙ L  and   L ′  ⊙ x =  L ′  ⊙  { x }   .   











  ( R , ⊙ )   is called a semihypergroup if for every   l ,  l ′  , x   in R,





   l ⊙  (  l ′  ⊙ x )  =  ( l ⊙  l ′  )  ⊙ x .   











Definition 1. 

[7] A semihyperring is a triple   ( R , ⊕ , ⊙ )   such that for each   x , y , z ∈ R  ,




	(1) 

	
  ( R , ⊕ )   is a commutative semihypergroup;




	(2) 

	
  ( R , ⊙ )   is a semihypergroup;




	(3) 

	
  x ⊙ ( y ⊕ z ) = x ⊙ y ⊕ x ⊙ z   and   ( x ⊕ y ) ⊙ z = x ⊙ z ⊕ y ⊙ z  ;




	(4) 

	
There exists an element   0 ∈ R   such that   x ⊕ 0 = 0 ⊕ x = { x }   and   x ⊙ 0 = 0 ⊙ x = { 0 }   for all x in R.











Definition 2. 

[10] Take a semihyperring   ( R , ⊕ , ⊙ )   and a partial order relation ≤. Then   ( R , ⊕ , ⊙ , ≤ )   is called an ordered semihyperring if for any   q ,  q ′  , x ∈ R  ,




	(1) 

	
  q ≤  q ′  ⇒ q ⊕ x ⪯  q ′  ⊕ x  ;




	(2) 

	


   q ≤  q ′  ⇒      q ⊙ x ⪯  q ′  ⊙ x ,          x ⊙ q ⪯ x ⊙  q ′  .        

















For every   ∅ ≠ L ,  L ′  ⊆ R  ,   L ⪯  L ′    is defined by   ∀ l ∈ L , ∃  l ′  ∈  L ′    such that   l ≤  l ′   . Clearly,   L ⊆  L ′    implies   L ⪯  L ′   , but the converse is not valid in general. In this definition, two types of relation are defined, one is between elements of R, which is denoted by ≤, and second one between subsets of R, which is ⪯.





Example 1. 

Let  N  be the set of natural numbers and    N 0  = N ∪  { 0 }   . Consider the semiring   (  N 0  , + , · )   where + and · are usual addition and multiplication. Define





   l ⊕  l ′  =  { l ,  l ′  }   and  l ⊙  l ′  =  { l  l ′  , c l  l ′  }  ,  where  c ∈  N 0  .   








If ≤ is the natural ordering on   N 0  , then   (  N 0  , ⊕ , ⊙ , ≤ )   is an ordered semihyperring.





Definition 3. 

We will say that   ∅ ≠ K ⊆ R   is a left (resp. right) hyperideal of R if




	(1) 

	
for all   a , b ∈ K  ,   a ⊕ b ⊆ K  ;




	(2) 

	
  R ⊙ K ⊆ K   (resp.   K ⊙ R ⊆ K  );




	(3) 

	
  ( K ] ⊆ K  .











The set   ( K ]   is given by





   ( K ] : = { r ∈ R  |  r ≤ x   for  some   x ∈ K } .   











Definition 4. 

We will say that a left hyperideal   ∅ ≠ W ⊆ R   is a left k-hyperideal of R, if





   ∀ w ∈ W , ∀ q ∈ R , ( w ⊕ q ) ∩ W ≠ ∅ ⇒ q ∈ W .   













Remark 1. 

Clearly, every left k-hyperideal of R is a left hyperideal of R. The converse is not true, in general, that is, a left hyperideal may not be a left k-hyperideal of R (see Example 2).






3. Main Results


Now, we study the extension of a k-hyperideal in an ordered semihyperring.



Definition 5. 

Assume that   K , L   are left hyperideals of an ordered semihyperring   ( R , ⊕ , ⊙ , ≤ )   and   L ⊆ K  . Then K is said to be a left extension of L if


   ∀ l ∈ L , ∀ q ∈ R , l ⊕ q ⊆ K ⇒ q ∈ K ,   








or


   ∀ l ∈ L , ∀ q ∈ R , ( l ⊕ q ) ∩ K ≠ ∅ ⇒ q ∈ K .   













Remark 2. 

Every k-hyperideal K of   ( R , ⊕ , ⊙ , ≤ )   with   K ⊇ L   is a left extension of L, where L is a hyperideal of R.





Example 2. 

Let   R = { 0 , p , q }   and define the symmetrical hyper-operations ⊕ and ⊙ as follows:


    ⊕   0   p   q     0    { 0 }     { p }     { q }      p    { p }     { 0 , p }     { 0 , p , q }      q    { q }     { 0 , p , q }     { 0 , p }          










    ⊙   0   p   q     0    { 0 }     { 0 }     { 0 }      p    { 0 }     { 0 }     { 0 }      q    { 0 }     { 0 }     { 0 , p }          










     ≤ : = { ( 0 , 0 ) , ( p , p ) , ( q , q ) , ( 0 , p ) , ( 0 , q ) , ( p , q ) } .     








Then,   ( R , ⊕ , ⊙ , ≤ )   is an ordered semihyperring. Clearly,   L = { 0 , p }   is a hyperideal of R, but it is not a k-hyperideal. Indeed:





   R = ( p ⊕ q ) ∩ L ≠ ∅  and  p ∈ L  but  q ∉ L .   








Obviously, L is a k-extension of    L ′  =  { 0 }   ,





Example 3. 

Consider the ordered semihyperring   ( R , ⊕ , ⊙ , ≤ )   with the symmetrical hyper-operation ⊕ and hyper-operation ⊙:


    ⊕   0   p   q   r     0    { 0 }     { p }     { q }     { r }      p    { p }     { p }     { p }     { p }      q    { q }     { p }     { 0 , q }     { 0 , q , r }      r    { r }     { p }     { 0 , q , r }     { 0 , r }          










    ⊙   0   p   q   r     0    { 0 }     { 0 }     { 0 }     { 0 }      p    { 0 }     { p }     { 0 , q }     { 0 }      q    { 0 }     { 0 }     { 0 }     { 0 }      r    { 0 }     { 0 , r }     { 0 }     { 0 }          










    ≤    : = { ( 0 , 0 ) , ( 0 , p ) , ( 0 , q ) , ( 0 , r ) , ( p , p ) , ( q , p ) , ( q , q ) , ( r , p ) , ( r , r ) } .     











Clearly,   K = { 0 , q , r }   is a left extension of   L = { 0 , q }  . In addition, L is a left extension of   { 0 }  , but it is not a k-hyperideal of R. Indeed:





   ( r ⊕ q ) ∩ L ≠ ∅  and  q ∈ L  but  r ∉ L .   













Example 4. 

Let   R = { 0 , p , q , r }   be a set with the symmetrical hyper-addition ⊕ and the multiplication ⊙ defined as follows:


    ⊕   0   p   q   r     0    { 0 }     { p }     { q }     { r }      p    { p }     { p , q }     { q }     { r }      q    { q }     { q }     { 0 , q }     { r }      r    { r }     { r }     { r }     { 0 , r }          










    ⊙   0   p   q   r     0    { 0 }     { 0 }     { 0 }     { 0 }      p    { 0 }     { p }     { p }     { p }      q    { 0 }     { q }     { q }     { q }      r    { 0 }     { r }     { r }     { r }          










     ≤ : = { ( x , x )  |  x ∈ R } .     








Then,   ( R , ⊕ , ⊙ , ≤ )   is an ordered semihyperring. Clearly,   K = { 0 , r }   is a right hyperideal of R, but it is not a right k-hyperideal of R. Indeed:





   r ⊕ p = r ∈ K  and  r ∈ K  but  p ∉ K .   








Let   L = { 0 }  . Then, K is a right k-extension of L, but it is not a right k-hyperideal of R.





Remark 3. 

In the following, we consider the following condition:





   ∀ l ∈ L , ∀ q ∈ R , l ⊕ q ⊆ K ⇒ q ∈ K .   













Definition 6. 

Assume that   Q , W   are hyperideals of an ordered semihyperring   ( R , ⊕ , ⊙ , ≤ )   such that   Q ⊆ W  . Then, we denote





    Q ¯  =  { r ∈ R ∣ r ⊕ P ⊆ Q ,  ∃ P ⊆ Q , 0 ∈ P } ,    













     W Q  ¯  =  { r ∈ R ∣ r ⊕ P ⊆ W ,  ∃ P ⊆ Q , 0 ∈ P } .    








   W Q  ¯   will be called the k-closure of W with respect to Q.





Remark 4. 

We have




	(1) 

	
  Q ⊆  Q ¯  ⊆   W Q  ¯  ⊆  W ¯   ;




	(2) 

	
    W W  ¯  =  W ¯   .











Lemma 1. 

Assume that   Q , W , Y   are hyperideals of an ordered semihyperring   ( R , ⊕ , ⊙ , ≤ )   such that   Q ⊆ W ⊆ Y  . Then,     Y Q  ¯  ⊆   Y W  ¯   .





Proof. 

Let W be a hyperideal of R such that   Q ⊆ W ⊆ Y   and   x ∈   Y Q  ¯   . Then, there exists   P ⊆ Q ⊆ W   such that   x ⊕ P ⊆ Y  . So,   x ∈   Y W  ¯   . Therefore,     Y Q  ¯  ⊆   Y W  ¯   . □





Proposition 1. 

   W Q  ¯   is the smallest left extension of Q containing W.





Proof. 

Clearly,    W Q  ¯   is a hyperideal of R.



Indeed: Let    q 1  ,  q 2  ∈   W Q  ¯   . By definition of    W Q  ¯  , there exist    P 1  ,  P 2  ⊆ Q   such that    q 1  ⊕  P 1  ⊆ W   and    q 2  ⊕  P 2  ⊆ W  . Now,





   (  q 1  ⊕  q 2  )  ⊕  (  P 1  ⊕  P 2  )  =  q 1  ⊕  P 1  ⊕  q 2  ⊕  P 2  ⊆ W ⊕ W ⊆ W .  








It means that    q 1  ⊕  q 2  ⊆   W Q  ¯   .



Now, let   u ∈   W Q  ¯    and   x ∈ R  . Then, there exists   P ⊆ Q   such that   u ⊕ P ⊆ W  . So,





  x ⊙ u ⊕ x ⊙ P = x ⊙ ( u ⊕ P ) ⊆ R ⊙ W ⊆ W .  








Since   x ⊙ P ⊆ Q  , we get   x ⊙ u ⊆   W Q  ¯   . Similarly,   u ⊙ x ⊆   W Q  ¯   .



Now, let   u ∈   W Q  ¯    and   ( v , u ) ∈ ≤  , where   v ∈ R  . By assumption, there exists   P ⊆ Q   such that   u ⊕ P ⊆ W  . Since R is an ordered semihyperring, we get   v ⊕ p ⪯ u ⊕ p   for any   p ∈ P  . So, for any   x ∈ v ⊕ p  ,   x ≤ y   for some   y ∈ u ⊕ p ⊆ u ⊕ P ⊆ W  . Since   ( W ] ⊆ W  , we obtain   x ∈ W  . So,   v ⊕ p ⊆ W   for each   p ∈ P  . Thus   v ⊕ P ⊆ W   and hence   v ∈   W Q  ¯   . Therefore,    W Q  ¯   is a hyperideal of R.



Now, we prove that    W Q  ¯   is a extension of Q. Let   q ∈ Q   and   q ⊕ r ⊆   W Q  ¯   , where   r ∈ R  . By assumption,   u ∈   W Q  ¯    for all   u ∈ q ⊕ r  . Hence, for any   u ∈ q ⊕ r  , there exists    P u  ⊆ Q   such that   u ⊕  P u  ⊆ W  . Thus,





  q ⊕ r ⊕  ⋃     u ∈ q ⊕ r       P u  ⊆  ⋃     u ∈ q ⊕ r       ( u ⊕  P u  )  ⊕  ⋃     u ∈ q ⊕ r       P u  ⊆ W .  








Since   q ⊕   ⋃  u ∈ q ⊕ r     P u  ⊆ Q  , it follows that   r ∈   W Q  ¯   . Therefore,    W Q  ¯   is a left extension of Q.



Clearly,   W ⊆   W Q  ¯   . Now, let Y be a left extension of Q containing W and   q ∈   W Q  ¯   . Then, there exist   P ⊆ Q   such that   q ⊕ P ⊆ W ⊆ Y  . Since Y is a left extension of Q, we get   q ∈ Y  . Hence,     W Q  ¯  ⊆ Y  . □





Theorem 1. 

Assume that   Q , W   are hyperideals of an ordered semihyperring   ( R , ⊕ , ⊙ , ≤ )   such that   Q ⊆ W  . Then, W is a left extension of Q if and only if     W Q  ¯  = W  .





Proof. 

Necessity: Let W be a left extension of Q. By Proposition 1,    W Q  ¯   is the smallest left extension of Q and   W ⊆   W Q  ¯   . Since W is a left extension of Q, we get     W Q  ¯  ⊆ W  . So,   W ⊆   W Q  ¯  ⊆ W   and hence     W Q  ¯  = W  .



Sufficiency: If     W Q  ¯  = W  , then, since by Proposition 1,    W Q  ¯   is a left extension of Q, it follows that W is a left extension of Q. □





Corollary 1. 

Assume that   Q , W   are hyperideals of an ordered semihyperring   ( R , ⊕ , ⊙ , ≤ )   such that   Q ⊆ W  . Then,      (   W Q  ¯  )  Q  ¯  =   W Q  ¯   .





Proof. 

The proof obtains from Proposition 1 and Theorem 1. □





Theorem 2. 

Assume that   Q , W , Y   are hyperideals of an ordered semihyperring   ( R , ⊕ , ⊙ , ≤ )   such that   Q ⊆ W , Y  . Then,





      ( W ∩ Y )  Q  ¯  =   W Q  ¯  ∩   Y Q  ¯  .   













Proof. 

Let   a ∈    ( W ∩ Y )  Q  ¯   . Then, there exists   P ⊆ Q   such that





  a ⊕ P ⊆ W ∩ Y ⊆ W .  








So,   a ∈   W Q  ¯   . Therefore,      ( W ∩ Y )  Q  ¯  ⊆   W Q  ¯   . Similarly,





     ( W ∩ Y )  Q  ¯  ⊆   Y Q  ¯  .  








Hence,





     ( W ∩ Y )  Q  ¯  ⊆   W Q  ¯  ∩   Y Q  ¯  .  








Now, let   x ∈   W Q  ¯  ∩   Y Q  ¯   . Then, there exist   P ,  P ′  ⊆ Q   such that   x ⊕ P ⊆ W   and   x ⊕  P ′  ⊆ Y  . Since    P ′  ⊆ Q ⊆ W   and W is a hyperideal of R, we have





  x ⊕ P ⊕  P ′  ⊆ W ⊕ W ⊆ W .  








Similarly,   x ⊕ P ⊕  P ′  ⊆ Y  . So,   x ⊕ P ⊕  P ′  ⊆ W ∩ Y  . This implies that   x ∈    ( W ∩ Y )  Q  ¯   . Therefore,     W Q  ¯  ∩   Y Q  ¯  ⊆    ( W ∩ Y )  Q  ¯   . □





Theorem 3. 

Assume that   Q , W , Y   are hyperideals of an ordered semihyperring   ( R , ⊕ , ⊙ , ≤ )   such that   Q ⊆ W , Y  . If   W , Y   are left extensions of Q, then   W ∩ Y   is a left extension of Q.





Proof. 

By Theorem 2, we have





     ( W ∩ Y )  Q  ¯  =   W Q  ¯  ∩   Y Q  ¯  .  








Since   W , Y   are left extensions of Q, then by Theorem 1, we get





    W Q  ¯  ∩   Y Q  ¯  = W ∩ Y .  








Hence,





     ( W ∩ Y )  Q  ¯  = W ∩ Y .  








Now, by Theorem 1,   W ∩ Y   is a left extension of Q. □





Definition 7. 

Assume that   K , L   are left hyperideals of an ordered semihyperring   ( R , ⊕ , ⊙ , ≤ )   and   L ⊆ K  . Then K is said to be a left m-extension of L if





   ∀ l ∈ L , ∀ q ∈ R , l ⊙ q ⊆ K ⇒ q ∈ K .   













Theorem 4. 

Assume that   K , L   are hyperideals of an ordered semihyperring   ( R , ⊕ , ⊙ , ≤ )   and   L ⊆ K   such that   L ⊕ R ⊆ L  . If K is a m-extension of L, then K is an extension of L.





Proof. 

Let K be a m-extension of L. Consider   l ⊕ q ⊆ K  ,   l ∈ L   and   q ∈ R  . Since K is a hyperideal of R, we get





  ( l ⊕ q ) ⊙ q ⊆ K ⊙ R ⊆ K .  








So, for any   p ∈ l ⊕ q  ,   p ⊙ q ⊆ K  . Since K is a m-extension of L, we have   q ∈ K  . Thus, K is an extension of L. □






4. Conclusions


The concept of left extension of hyperideals in ordered semihyperrings is introduced in this study. Left extension of hyperideals are discovered to be a generalization of k-hyperideals. Let   Q , W   be hyperideals of an ordered semihyperring   ( R , ⊕ , ⊙ , ≤ )   such that   Q ⊆ W  . Then





    W Q  ¯  =  { r ∈ R ∣ r ⊕ P ⊆ W ,  ∃ P ⊆ Q , 0 ∈ P }   








is the smallest left extension of Q containing W. In addition, we proved that     W Q  ¯  = W   if and only if W is a left extension of Q. By using the concept of extension of a k-hyperideal, we discussed some results in ordered semihyperrings. Some further works can be done on left extension of a fuzzy hyperideal in ordered semihyperrings.
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