Improved Whale Optimization Algorithm for Solving Microgrid Operations Planning Problems
Abstract
:1. Introduction
2. A Microgrid Optimizing Model
2.1. Objective Function
2.2. Distributed Energy Resources Model
2.3. Constraints
3. Optimization Methods
3.1. Whale Optimization Algorithm
3.2. IWOA
Algorithm 1 Pseudo-code of IWOA |
|
3.3. Testing Function Results
4. Analysis of Calculation Cases
4.1. Relevant Arithmetic Data
4.2. Analysis of Optimization Results of Grid-Connected Operation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Symbols
t | Index representing time |
T | Time period |
The cost of microgrid interaction with the large grid | |
The maintenance costs of BAT, WT, PV | |
The maintenance costs of DE, FC | |
The converted costs of various pollutants generated by DE | |
The converted costs of various pollutants generated by FC | |
The power of microgrid interaction with the large grid | |
Power generation of WT, PV, DE, FC at time t | |
Index representing current iterations of the algorithm | |
Index representing maximum number of algorithm iterations |
References
- Wang, K.; Yu, J.; Yu, Y.; Qian, Y.; Zeng, D.; Guo, S.; Xiang, Y.; Wu, J. A survey on energy internet: Architecture, approach, and emerging technologies. IEEE Syst. J. 2017, 12, 2403–2416. [Google Scholar] [CrossRef]
- Ismael, S.M.; Aleem, S.H.A.; Abdelaziz, A.Y.; Zobaa, A.F. State-of-the-art of hosting capacity in modern power systems with distributed generation. Renew. Energy 2019, 130, 1002–1020. [Google Scholar] [CrossRef]
- Adinolfi, G.; Cigolotti, V.; Graditi, G.; Ferruzzi, G. Grid integration of distributed energy resources: Technologies, potentials contributions and future prospects. In Proceedings of the 2013 International Conference on Clean Electrical Power (ICCEP), IEEE, Alghero, Italy, 11–13 June 2013; pp. 509–515. [Google Scholar] [CrossRef]
- Ghasemi, A.; Enayatzare, M. Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response. Renew. Energy 2018, 123, 460–474. [Google Scholar] [CrossRef]
- Zia, M.F.; Elbouchikhi, E.; Benbouzid, M. Microgrids energy management systems: A critical review on methods, solutions, and prospects. Appl. Energy 2018, 222, 1033–1055. [Google Scholar] [CrossRef]
- Mengelkamp, E.; Gärttner, J.; Rock, K.; Kessler, S.; Orsini, L.; Weinhardt, C. Designing microgrid energy markets: A case study: The Brooklyn Microgrid. Appl. Energy 2018, 210, 870–880. [Google Scholar] [CrossRef]
- Samad, T.; Annaswamy, A.M. Controls for smart grids: Architectures and applications. Proc. IEEE 2017, 105, 2244–2261. [Google Scholar] [CrossRef]
- Strunz, K.; Abbasi, E.; Huu, D.N. DC microgrid for wind and solar power integration. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 115–126. [Google Scholar] [CrossRef]
- Kaur, A.; Kaushal, J.; Basak, P. A review on microgrid central controller. Renew. Sustain. Energy Rev. 2016, 55, 338–345. [Google Scholar] [CrossRef]
- Ngo, T.G.; Nguyen, T.T.T.; Nguyen, T.X.H.; Nguyen, T.D.; Do, V.C. A solution to power load distribution based on enhancing swarm optimization. In Proceedings of the International Conference on Engineering Research and Applications (ICERA), Springer, Thai Nguyen, Vietnam, 1–2 December 2020; pp. 53–63. [Google Scholar] [CrossRef]
- Liu, H.; Liu, W. The analysis of effects of clean energy power generation. In Proceedings of the Applied Energy Symposium and Forum; Low-Carbon Cities and Urban Energy Systems (CUE), Shanghai, China, 5–7 June 2018; pp. 947–952. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ngo, T.G.; Dao, T.K.; Nguyen, T.T.T. Microgrid operations planning based on improving the flying sparrow search algorithm. Symmetry 2022, 14, 168. [Google Scholar] [CrossRef]
- Baziar, A.; Kavousi-Fard, A. Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices. Renew. Energy 2013, 59, 158–166. [Google Scholar] [CrossRef]
- Wang, M.J.; Pan, J.S.; Dao, T.k.; Ngo, T.G. A load economic dispatch based on ion motion optimization algorithm. In Advances in Intelligent Information Hiding and Multimedia Signal Processing; Springer: Singapore, 2020; pp. 115–125. [Google Scholar] [CrossRef]
- Pan, J.S.; Liu, N.; Chu, S.C. A hybrid differential evolution algorithm and its application in unmanned combat aerial vehicle path planning. IEEE Access 2020, 8, 17691–17712. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Metaheuristic algorithms: A comprehensive review. In Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications; Arun, K.S., Michael, S., Zhiyong, Z., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 185–231. [Google Scholar] [CrossRef]
- Bahmani-Firouzi, B.; Azizipanah-Abarghooee, R. Optimal sizing of battery energy storage for micro-grid operation management using a new improved bat algorithm. Int. J. Electr. Power Energy Syst. 2014, 56, 42–54. [Google Scholar] [CrossRef]
- Mahmoud, M.M.; Khalid Ratib, M.; Aly, M.M.; Abdel-Rahim, A.M.M. Wind-driven permanent magnet synchronous generators connected to a power grid: Existing perspective and future aspects. Wind. Eng. 2022, 46, 189–199. [Google Scholar] [CrossRef]
- Abbasi, B.Z.; Javaid, S.; Bibi, S.; Khan, M.; Malik, M.N.; Butt, A.A.; Javaid, N. Demand side management in smart grid by using flower pollination algorithm and genetic algorithm. In Proceedings of the 12th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Barcelona, Spain, 8–10 November 2017; pp. 424–436. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Y.; Guo, Y.; Wang, B.; Wang, H.; Liu, H. A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints. Appl. Energy 2016, 183, 791–804. [Google Scholar] [CrossRef]
- Rasheed, M.B.; Javaid, N.; Ahmad, A.; Awais, M.; Khan, Z.A.; Qasim, U.; Alrajeh, N. Priority and delay constrained demand side management in real-time price environment with renewable energy source. Int. J. Energy Res. 2016, 40, 2002–2021. [Google Scholar] [CrossRef]
- Sukumar, S.; Mokhlis, H.; Mekhilef, S.; Naidu, K.; Karimi, M. Mix-mode energy management strategy and battery sizing for economic operation of grid-tied microgrid. Energy 2017, 118, 1322–1333. [Google Scholar] [CrossRef] [Green Version]
- Askarzadeh, A. A memory-based genetic algorithm for optimization of power generation in a microgrid. IEEE Trans. Sustain. Energy 2018, 9, 1081–1089. [Google Scholar] [CrossRef]
- Gholami, K.; Dehnavi, E. A modified particle swarm optimization algorithm for scheduling renewable generation in a micro-grid under load uncertainty. Appl. Soft Comput. 2019, 78, 496–514. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Fatahi, A.; Zamani, H.; Mirjalili, S.; Oliva, D. Hybridizing of Whale and Moth-Flame Optimization Algorithms to Solve Diverse Scales of Optimal Power Flow Problem. Electronics 2022, 11, 831. [Google Scholar] [CrossRef]
- Lahon, R.; Gupta, C.P.; Fernandez, E. Priority-based scheduling of energy exchanges between cooperative microgrids in risk-averse environment. IEEE Syst. J. 2020, 14, 1098–1108. [Google Scholar] [CrossRef]
- Lahon, R.; Gupta, C.P. Risk-based coalition of cooperative microgrids in electricity market environment. IET Gener. Transm. Distrib. 2018, 12, 3230–3241. [Google Scholar] [CrossRef]
- Lahon, R.; Gupta, C.P.; Fernandez, E. Optimal power scheduling of cooperative microgrids in electricity market environment. IEEE Trans. Industr. Inform. 2019, 15, 4152–4163. [Google Scholar] [CrossRef]
- Trivedi, I.N.; Jangir, P.; Bhoye, M.; Jangir, N. An economic load dispatch and multiple environmental dispatch problem solution with microgrids using interior search algorithm. Neural Comput. Appl. 2018, 30, 2173–2189. [Google Scholar] [CrossRef]
- Motevasel, M.; Seifi, A.R. Expert energy management of a micro-grid considering wind energy uncertainty. Energy Convers. Manag. 2014, 83, 58–72. [Google Scholar] [CrossRef]
- Tahmasebi, M.; Pasupuleti, J.; Mohamadian, F.; Shakeri, M.; Guerrero, J.M.; Basir Khan, M.R.; Nazir, M.S.; Safari, A.; Bazmohammadi, N. Optimal operation of stand-alone microgrid considering emission issues and demand response program using whale optimization algorithm. Sustainability 2021, 13, 7710. [Google Scholar] [CrossRef]
- Khodaei, A. Provisional microgrids. IEEE Trans. Smart Grid 2015, 6, 1107–1115. [Google Scholar] [CrossRef]
- Khodaei, A. Provisional microgrid planning. IEEE Trans. Smart Grid 2017, 8, 1096–1104. [Google Scholar] [CrossRef]
- Aghajani, G.; Shayanfar, H.; Shayeghi, H. Demand side management in a smart micro-grid in the presence of renewable generation and demand response. Energy 2017, 126, 622–637. [Google Scholar] [CrossRef]
- Luo, L.; Abdulkareem, S.S.; Rezvani, A.; Miveh, M.R.; Samad, S.; Aljojo, N.; Pazhoohesh, M. Optimal scheduling of a renewable based microgrid considering photovoltaic system and battery energy storage under uncertainty. J. Energy Storage 2020, 28, 101306. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.S. Improved whale optimization algorithm based on nonlinear adaptive weight and golden sine operator. IEEE Access 2020, 8, 77013–77048. [Google Scholar] [CrossRef]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization; Technical Report; National University of Defense Technology: Changsha, China; Kyungpook National University: Daegu, Korea; Nanyang Technological University: Singapore, 2017. [Google Scholar]
- Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, IEEE, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Metwally Mahmoud, M. Improved current control loops in wind side converter with the support of wild horse optimizer for enhancing the dynamic performance of PMSG-based wind generation system. Int. J. Model. Simul. 2022. [Google Scholar] [CrossRef]
- Qais, M.H.; Hasanien, H.M.; Alghuwainem, S. Enhanced whale optimization algorithm for maximum power point tracking of variable-speed wind generators. Appl. Soft Comput. 2020, 86, 105937. [Google Scholar] [CrossRef]
- Seel, J.; Mills, A.; Millstein, D.; Gorman, W.; Jeong, S. Solar-to-Grid Public Data File for Utility-scale (UPV) and Distributed Photovoltaics (DPV) Generation, Capacity Credit, and Value. 2020. Available online: https://data.openei.org/submissions/2881 (accessed on 30 November 2022).
- Thibedeau, J. July 2014 Green Machine Florida Canyon Hourly Data. 2014. Available online: https://gdr.openei.org/submissions/431 (accessed on 30 November 2022).
- Nguyen, T.T.; Dao, T.K.; Nguyen, T.D. An Optimal Microgrid Operations Planning Using Improved Archimedes Optimization Algorithm. IEEE Access 2022, 10, 67940–67957. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Wang, H.; Zhang, H.; Yang, W.; Cao, R. Research on bi-level optimized operation strategy of microgrid cluster based on IABC algorithm. IEEE Access 2021, 9, 15520–15529. [Google Scholar] [CrossRef]
Algorithms | WOA | AWOA | Levy-WOA | IWOA |
---|---|---|---|---|
Algorithms | GA | PSO | WHO | EWOA | IWOA |
---|---|---|---|---|---|
Types | Price/[$·(kWh)] | ||
---|---|---|---|
Peak Period | Normal Period | Through Period | |
Buy | 0.84 | 0.51 | 0.19 |
Sell | 0.42 | 0.26 | 0.09 |
Types | Minimum Power/(kW) | Maximum Power/(kW) | Maintenance Costs/($/kW) | Climb Rates/(kW/min) |
---|---|---|---|---|
WT | 0 | 40 | 0.036 | / |
PV | 0 | 50 | 0.012 | / |
FC | 5 | 60 | 0.107 | 2 |
DE | 6 | 80 | 0.205 | 3 |
BAT | −30 | 30 | 0.005 | / |
Grid | −60 | 60 | 0.001 | / |
Parameters | Value |
---|---|
Charge-discharge efficiency | 0.9 |
Self loss rate | 0.01 |
Maximum charge-discharge power/kW | 30 |
Maximum state of charge | 0.9 |
Minimum state of charge | 0.2 |
Initial state of charge | 0.6 |
Types of Pollutant | Converted Costs/($/kg) | Emission Factors/(kg/kWh) | |
---|---|---|---|
DE | FC | ||
CO | 0.0052 | 0.542 | 0.635 |
SO | 0.693 | 0 | 0 |
NO | 1.19 | 3.1 × 10 | 2.3 × 10 |
CO | 0.201 | 6.5 × 10 | 5.4 × 10 |
Types of Algorithm | Cost/$ | ||
---|---|---|---|
Worst Fitness | Average Fitness | Best Fitness | |
GA | 851.6949 | 822.3026 | 791.2397 |
PSO | 718.8405 | 703.6297 | 672.7780 |
WHO | 644.8292 | 608.6623 | 574.1178 |
WOA | 769.5022 | 691.2630 | 616.9936 |
EWOA | 751.5720 | 686.7476 | 635.6775 |
IWOA | 618.1832 | 580.8272 | 544.6443 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yang, S.; Li, D.; Zhang, S. Improved Whale Optimization Algorithm for Solving Microgrid Operations Planning Problems. Symmetry 2023, 15, 36. https://doi.org/10.3390/sym15010036
Liu Y, Yang S, Li D, Zhang S. Improved Whale Optimization Algorithm for Solving Microgrid Operations Planning Problems. Symmetry. 2023; 15(1):36. https://doi.org/10.3390/sym15010036
Chicago/Turabian StyleLiu, Yixing, Shaowen Yang, Dongjie Li, and Shouming Zhang. 2023. "Improved Whale Optimization Algorithm for Solving Microgrid Operations Planning Problems" Symmetry 15, no. 1: 36. https://doi.org/10.3390/sym15010036
APA StyleLiu, Y., Yang, S., Li, D., & Zhang, S. (2023). Improved Whale Optimization Algorithm for Solving Microgrid Operations Planning Problems. Symmetry, 15(1), 36. https://doi.org/10.3390/sym15010036