
Citation: Lu, K. Completeness of

Bethe Ansatz for Gaudin Models

with Symmetry and Diagonal

Twists. Symmetry 2023, 15, 9. https://

doi.org/10.3390/sym15010009

Academic Editors: Sheng Zhang and

Bo Xu

Received: 16 November 2022

Revised: 9 December 2022

Accepted: 16 December 2022

Published: 21 December 2022

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Completeness of Bethe Ansatz for Gaudin Models with gl(1|1)
Symmetry and Diagonal Twists
Kang Lu

Department of Mathematics, University of Virginia, 141 Cabell Dr, Charlottesville, VA 22903, USA;
kang.lu@virginia.edu

Abstract: We studied the Gaudin models with gl(1|1) symmetry that are twisted by a diagonal matrix
and defined on tensor products of polynomial evaluation gl(1|1)[t]-modules. Namely, we gave an
explicit description of the algebra of Hamiltonians (Gaudin Hamiltonians) acting on tensor products
of polynomial evaluation gl(1|1)[t]-modules and showed that a bijection exists between common
eigenvectors (up to proportionality) of the algebra of Hamiltonians and monic divisors of an explicit
polynomial written in terms of the highest weights and evaluation parameters. In particular, our
result implies that each common eigenspace of the algebra of Hamiltonians has dimension one. We
also gave dimensions of the generalized eigenspaces.
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1. Introduction

In the last half of a century, Gaudin models for simple Lie algebras have been inten-
sively studied by many mathematicians and physicists using various methods, producing
numerous spectacular results. For example, the simplicity of the spectrum of Gaudin
algebra (Bethe algebra) was used to solve two long-standing conjectures: the transversality
conjecture of the intersection of Schubert varieties and the Shapiro–Shapiro conjecture
in real algebraic geometry; see [1]. Another example is that the monodromy of the joint
eigenvectors of Gaudin algebra was proved to be given by the internal cactus group action
on g-crystals, where g is the corresponding finite-dimensional simple Lie algebra; see [2].

In recent years, the Gaudin models for Lie superalgebras have steadily gained attention
within the mathematical community. For instance, the algebraic Bethe ansatz for Gaudin
models of osp(1|2) symmetry was carried out in [3]. Higher Gaudin Hamiltonians for
Gaudin models of gl(m|n) symmetry were constructed in [4] via studying the MacMahon
Master Theorem related to Manin matrices. The completeness of Bethe ansatz for Gaudin
models of gl(m|n) symmetry that are defined on tensor products of vector representations
was proved for the case of generic evaluation parameters in [5]. The relation between
SPL2-superopers and the Bethe ansatz equations of osp(1|2) Gaudin model was discussed
in [6]. The reproduction procedure for Bethe ansatz equations of gl(m|n) Gaudin models
was introduced in [7]. Moreover, it was shown in [7] that the reproduction procedure gives
rise to a variety that is isomorphic to the superflag variety. The duality between the quasi-
periodic Gaudin model associated with Lie superalgebra gl(m|n) and the quasi-periodic
Gaudin model associated with Lie algebra gl(k) was established in [8]. The reproduction
procedure for Bethe ansatz equations of Gaudin models associated with orthosymplectic Lie
superalgebras was introduced in [9]. In particular, this research developed the missing part
of the reproduction procedure when the corresponding Lie algebras are of type D. Finally,
in a previous work [10], we gave a complete answer of the periodic (twistless) Gaudin
models of gl(1|1) symmetry when the underlying Hilbert space is an arbitrary irreducible
tensor product of evaluation polynomial modules. In this paper, we obtained the analogues
for quasi-periodic gl(1|1) Gaudin models; namely, we proved the completeness of Bethe
ansatz for gl(1|1) Gaudin models with diagonal twists.
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The results of this paper are quite similar to those of [10,11], with suitable modifica-
tions, following the strategy of [1,12]. Surprisingly, to the best of our knowledge, most of
the previous work on Gaudin models for Lie superalgebras was carried out in the periodic
case, except, e.g., [8]. Therefore, we also need to establish the results on the algebraic
Bethe ansatz for gl(1|1) Gaudin models in the quasi-periodic case; see Section 2.4. In
particular, we showed that the Bethe ansatz is complete for generic evaluation parameters;
see Theorem 2. Using the completeness of the Bethe ansatz for generic parameters, we
were able to describe the image of the algebra of Hamiltonians (Bethe algebra) explicitly
and show that the quasi-periodic gl(1|1) Gaudin models are perfectly integrable, cf. [13].
Consequently, we obtained the completeness of the Bethe ansatz for quasi-periodic gl(1|1)
Gaudin models with pairwise distinct evaluation parameters.

Note that the perfect integrability for the quasi-periodic gl(m|n) Gaudin models de-
fined on tensor products of symmetric powers of the vector representations was established
in [8] [Corollary 5.3] by studying the duality between gl(m|n) and gl(k) Gaudin models
and using the known results from [12]. In particular, it gives rise to the perfect integrability
for the quasi-periodic gl(1|1) Gaudin models defined on tensor products of polynomial
modules. However, an explicit description of the image of Bethe algebra and the complete
spectrum of Bethe algebra were not discussed in [8].

The paper is organized as follows. In Section 2, we fix notations and discuss basic facts
of the algebraic Bethe ansatz for quasi-periodic gl(1|1) Gaudin models. Then, we recall
the space VS and Weyl modules and their properties in Section 3. Section 4 contains the
main theorems, where we also discuss the higher Gaudin transfer matrices and the rela-
tions between higher Gaudin transfer matrices and the first two Gaudin transfer matrices.
Section 5 is dedicated to the proofs of main theorems.

2. Preliminaries
2.1. Lie Superalgebra gl(1|1) and Its Representations

A vector superspace V = V0̄ ⊕V1̄ is a Z2-graded vector space. Elements of V0̄ are called
even; elements of V1̄ are called odd. We write |v| ∈ {0̄, 1̄} for the parity of a homogeneous
element v ∈ V. Set (−1)0̄ = 1 and (−1)1̄ = −1.

Consider the vector superspace C1|1, where dim(C1|1
0̄ ) = 1 and dim(C1|1

1̄ ) = 1. We
chose a homogeneous basis v1, v2 of C1|1 such that |v1| = 0̄ and |v2| = 1̄. For brevity, we
shall write their parities as |vi| = |i|. Denote by Eij ∈ End(C1|1) the linear operator of
parity |i|+ |j| such that Eijvr = δjrvi for i, j, r = 1, 2.

The Lie superalgebra gl(1|1) is spanned by elements eij, i, j = 1, 2, with parities
eij = |i|+ |j|, and the supercommutator relations are given by

[eij, ers] = δjreis − (−1)(|i|+|j|)(|r|+|s|)δiserj.

Let h be the commutative Lie subalgebra of gl(1|1) spanned by e11, e22. Denote the
universal enveloping algebras of gl1|1 and h by U(gl1|1) and U(h), respectively.

We call a pair λ = (λ1, λ2) of complex numbers a gl(1|1)-weight . Set |λ| = λ1 + λ2.
A gl(1|1)-weight λ is non-degenerate if λ1 + λ2 6= 0.

Let M be a gl(1|1)-module. A non-zero vector v ∈ M is called singular if e12v = 0.
Denote the subspace of all singular vectors of M by (M)sing. A non-zero vector v ∈ M is
called of weight λ = (λ1, λ2) if e11v = λ1v and e22v = λ2v. Denote by (M)λ the subspace of
M spanned by vectors of weight λ.

Let Λ = (λ(1), . . . , λ(k)) be a sequence of gl(1|1)-weights. Set |Λ| = ∑k
s=1 |λ(s)|.

Denote by Lλ the irreducible gl(1|1)-module generated by an even singular vector
vλ of weight λ. Then, Lλ is two-dimensional if λ is non-degenerate and one-dimensional
otherwise. Clearly, C1|1 ∼= Lω1 , where ω1 = (1, 0), if we identify the action of eij on C1|1

with the operator Eij.
A gl(1|1)-module M is called a polynomial module if M is a submodule of (C1|1)⊗n for

some n ∈ Z>0. We say that λ is a polynomial weight if Lλ is a polynomial module. Weight
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λ = (λ1, λ2) is a polynomial weight if and only if λ1, λ2 ∈ Z>0 and either λ1 > 0 or
λ1 = λ2 = 0. We also write L(λ1,λ2)

for Lλ.
For non-degenerate polynomial weights λ = (λ1, λ2) and µ = (µ1, µ2), we have

L(λ1,λ2)
⊗ L(µ1,µ2)

= L(λ1+µ1,λ2+µ2)
⊕ L(λ1+µ1−1,λ2+µ2+1).

2.2. Current Superalgebra gl(1|1)[t]
Denote by gl(1|1)[t] the Lie superalgebra gl(1|1)⊗C[t] of gl1|1-valued polynomials

with the point-wise supercommutator. Call gl(1|1)[t] the current superalgebra of gl(1|1). We
identify gl(1|1) with the subalgebra gl(1|1)⊗ 1 of constant polynomials in gl(1|1)[t].

We write eij[r] for eij ⊗ tr, r ∈ Z>0. A basis of gl(1|1)[t] is given by eij[r], i, j = 1, 2 and
r ∈ Z>0. They satisfy the supercommutator relations

[eij[r], ekl [s]] = δjkeil [r + s]− (−1)(|i|+|j|)(|k|+|l|)δilekj[r + s].

In particular, one has

(e12[r])2 = (e21[r])2 = 0, e21[r]e21[s] = −e21[s]e21[r] (1)

in the universal enveloping superalgebra U(gl(1|1)[t]). The universal enveloping superal-
gebra U(gl(1|1)[t]) is a Hopf superalgebra with the coproduct given by

∆(X) = X⊗ 1 + 1⊗ X, for X ∈ gl(1|1)[t].

Let eij(x) = ∑∞
r=0 eij[r]x−r−1, where x is a formal variable. Then, we have

(u− v)[eij(u), ers(v)] = −[eij, ers](u) + [eij, ers](v). (2)

In particular,
[eij(x), ers(x)] = −∂x[eij, ers](x). (3)

For each a ∈ C, there exists an automorphism of U(gl(1|1)[t]), ρa : eij(x)→ eij(x− a).
Given a gl(1|1)[t]-module M, denote by M(a) the pull-back of M through the automor-
phism ρa.

For each a ∈ C, we have the evaluation map

eva : U(gl(1|1)[t])→ U(gl(1|1)), eij(x) 7→ eij/(x− a).

For a gl(1|1)-module L, denote by L(a) the gl(1|1)[t]-module obtained by pulling back
L through the evaluation map eva. We call L(a) an evaluation module at a.

Given any series ζ(x) ∈ x−1C[x−1], we have the one-dimensional gl(1|1)[t]-module
generated by an even vector v satisfying eij(x)v = δij(−1)|j|ζ(x)v. We denote this module
by Cζ .

If b1, . . . , bn are pairwise distinct complex numbers and L1, . . . , Ln are finite-dimensional
irreducible gl(1|1)-modules, then the gl(1|1)[t]-module

⊗n
s=1 Ls(bs) is irreducible.

There is a natural Z>0-gradation on U(gl(1|1)[t]) such that deg(eij[r]) = r which
induces the filtration F0U(gl(1|1)[t]) ⊂ F1U(gl(1|1)[t]) ⊂ · · · ⊂ U(gl(1|1)[t]), where
FsU(gl(1|1)[t]) is the subspace of U(gl(1|1)[t]) spanned by all elements of degree 6 s.

Let M be a Z>0-graded space with finite-dimensional homogeneous components. Let
Mj ⊂ M be the homogeneous component of degree j. We call the formal power series in
variable q,

ch(M) =
∞

∑
j=0

dim(Mj) qj, (4)

the graded character of M.
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2.3. Gaudin Hamiltonians

In this section, we discuss the inhomogeneous Gaudin Hamiltonians. Throughout the
paper, we shall fix two complex numbers q = (q1, q2). Moreover, we assume that q1 6= q2;
see the end of this section.

Let b = (b1, . . . , bk) be a sequence of distinct complex numbers and Λ = (λ(1), . . . , λ(k))
a sequence of polynomial gl(1|1)-weights, where λ(s) = (αs, βs).

Set n = |Λ| = ∑k
s=1(αs + βs) and LΛ =

⊗k
s=1 Lλ(s) . The quadratic Gaudin Hamiltonians

are the linear mapsHr ∈ End(LΛ) given by

Hr := q1e(r)11 + q2e(r)22 +
k

∑
s=1,s 6=r

e(r)11 e(s)11 − e(r)12 e(s)21 + e(r)21 e(s)12 − e(r)22 e(s)22
br − bs

, 1 6 r 6 k. (5)

where e(r)ab = 1⊗(r−1) ⊗ eab ⊗ 1⊗(k−r).

Lemma 1. The Gaudin HamiltoniansHr

1. Are mutually commuting: [Hr,Hs] = 0 for all r, s;
2. Commute with the action of h: [Hr, X] = 0 for all r and X ∈ h.

Proof. This follows immediately from [5] [Proposition 3.1] for non-twisted (i.e.,
q1 = q2 = 0) Gaudin Hamiltonians.

Instead of working on Gaudin HamiltoniansHs, we work on the generating function
of Gaudin Hamiltonians,

H (x) :=
∞

∑
r=1

Hrx−r = q1e11(x) + q2e22(x) +
1
2

2

∑
a,b=1

eab(x)eba(x)(−1)|b|. (6)

The operator H (x) acts on the tensor product of the evaluation gl(1|1)[t]-modules

LΛ(b) :=
k⊗

s=1

Lλ(s)(bs).

Note that LΛ(b) and LΛ are isomorphic as gl(1|1)-modules via the identity map; then,
we have

H (x) =
1
2

k

∑
s=1

αs(αs − 1)− βs(βs + 1)
(x− bs)2 Id +

k

∑
s=1

1
x− bs

Hs, (7)

as operators in End(LΛ) = End(LΛ(b)). We callH(x) the Gaudin transfer matrix.
We are interested in finding the eigenvalues and eigenvectors of the Gaudin transfer

matrix in LΛ(b). To be more precise, we call

ξ(x) =
∞

∑
r=1

ξrx−r, ξr ∈ C, (8)

an eigenvalue of H (x) if there exists a non-zero vector v ∈ LΛ(b) such that Hrv = ξrv for all
r ∈ Z>1. If ξ(x) is a rational function, we consider it as a power series in x−1 as in (8). The
vector v is called an eigenvector of H (x) corresponding to eigenvalue ξ(x). We also define
the eigenspace of H (x) in LΛ(b) corresponding to eigenvalue ξ(x) as

⋂∞
r=1 ker(Hr|LΛ(b) − ξr).

It is sufficient to consider LΛ with βs = 0 for all s. Indeed, if LΛ(b) is an arbitrary
tensor product and

ξ(x) =
k

∑
s=1

βs

x− bs
,
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then
LΛ(b)⊗Cξ

∼= L
Λ̃
(b), λ̃(s) = (αs + βs, 0).

Identify LΛ(b)⊗Cξ with LΛ(b) as vector spaces. Then, H (x) acting on LΛ(b)⊗Cξ

coincides with H (x) + ζ(x)(e11(x) + e22(x)) + (q1 − q2)ξ(x) acting on LΛ(b). Note that
the coefficients of e11(x) + e22(x) are central in U(gl(1|1)[t]) and hence e11(x) + e22(x) acts
on LΛ(b) by the scalar series

k

∑
s=1

αs + βs

x− bs
;

therefore, the problem of the diagonalization of the Gaudin transfer matrix in LΛ(b) is
reduced to diagonalization of the Gaudin transfer matrix in L

Λ̃
(b).

Again, by the fact that the coefficients of e11(x) + e22(x) are central, if q1 = q2, then
the diagonalization problem of H(x) is the same as the one for the homogeneous case
q1 = q2 = 0, which was discussed in [10]. Thus, for the rest of the paper, we shall assume
that q1 6= q2.

Since Lλ is one-dimensional if λ is degenerate, similarly, it suffices to consider the case
that all participant gl(1|1)-weights are non-degenerate. Hence, we shall always assume
throughout the paper that λ(s) are non-degenerate for all 1 6 s 6 k.

2.4. Bethe Ansatz

The main method to find eigenvalues and eigenvectors of the Gaudin transfer matrix
in LΛ is the algebraic Bethe ansatz. We give the results for the algebraic Bethe ansatz of
quasi-periodic gl(1|1) Gaudin models in this section following e.g., [5] [Section VI].

Fix a non-negative integer l. Let t = (t1, . . . , tl) be a sequence of complex numbers.
Define the polynomial yt = ∏l

i=1(x− ti). We say that polynomial yt represents t.
Set

ζΛ,b(x) := q1 − q2 +
k

∑
s=1

αs + βs

x− bs
. (9)

A sequence of complex numbers t is called a solution to the Bethe ansatz equation
associated to Λ, b, l if

yt(x) divides the polynomial ϕΛ,b(x) := ζΛ,b(x)
k

∏
s=1

(x− bs). (10)

We do not distinguish solutions that differ by a permutation of coordinates (that is
represented by the same polynomial).

Let vs be the highest weight vector of Lλ(s) , and set |0〉 = v1 ⊗ · · · ⊗ vk. We call |0〉 the
vacuum vector.

Define the off-shell Bethe vector Bl(t) ∈ (LΛ)(n−l,l) by

Bl(t) = e21(t1) · · · e21(tl) |0〉. (11)

Since e21(x)e21(u) = −e21(u)e21(x), the order of ti is not important. Moreover, the
off-shell Bethe vector is zero if ti = tj for some 1 6 i 6= j 6 l.

If t is a solution of the Bethe ansatz Equation (10), we call Bl(t) an on-shell Bethe vector.
Let t be a solution of the Bethe ansatz equation associated to Λ, b, l.

Theorem 1. If the on-shell Bethe vector Bl(t) is non-zero, then Bl(t) is an eigenvector of the
Gaudin transfer matrix H (x) with the corresponding eigenvalue

Eyt ,Λ,b(x) =
1
2

ζ ′Λ,b(x)− ζΛ,b(x)
y′t(x)
yt(x)

+
k

∑
r,s=1

αrαs − βrβs

2(x− br)(x− bs)
+

k

∑
s=1

q1αs + q2βs

x− bs
. (12)

where ζΛ,b(x) is given by (9).
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Proof. By (2) and the fact that coefficients of e11(x) + e22(x) are central in U(gl(1|1)[t]),
we have

[H(x), e21(t)] = −
1

u− t
(
ζΛ,b(x)e21(t)− ζΛ,b(t)e21(x)

)
,

as operators on LΛ(b). Note that if t is a coordinate of a solution of the Bethe ansatz
equation, then ζΛ,b(t) = 0. Therefore, we have

[H(x), e21(ti)] = −
1

u− t
ζΛ,b(x)e21(ti)

for 1 6 i 6 l. Hence, we conclude that

H(x)Bl(t) = −ζΛ,b(x)
l

∑
j=1

1
x− tj

Bl(t) + e21(t1) · · · e21(tl)H(x)|0〉.

The theorem now follows from the straightforward computation of the eigenvalue of
H(x) corresponding to the vector |0〉.

Consider another Gaudin transfer matrix

T (x) =
1
2
(
ė11(x) + ė22(x)

)
+

1
2
(
e11(x) + e22(x)

)2
+ q1

(
e11(x) + e22(x)

)
−H (x), (13)

where ėii(x) = ∂x(eii(x)), i = 1, 2. Then, the eigenvalue of T (x) acting on the on-shell
Bethe vector Bl(t) is

Eyt ,Λ,b(x) = ζΛ,b(x)
y′t(x)
yt(x)

+
k

∑
r,s=1

αrβs + αsβr + 2βrβs

2(x− br)(x− bs)
+

k

∑
s=1

(q1 − q2)βs

x− bs

= ζΛ,b(x)
(y′t(x)

yt(x)
+

k

∑
s=1

βs

x− bs

)
.

(14)

It is important to know if the on-shell Bethe vectors are non-zero.

Proposition 1. Suppose that the polynomial ϕΛ,b(x) only has simple roots; then, the on-shell
Bethe vector Bl(t) is nonzero.

Proof. Since ϕΛ,b(x) only has simple roots, we have ti 6= tj for i 6= j. Note that bs are
distinct and αs + βs > 0 (since the weights are nondegenerate by our assumption); then,
we have bs 6= ti. Hence, ζΛ,b(ti) = 0. Moreover, we have

0 6= ϕ′Λ,b(ti) = ζ ′Λ,b(ti)
k

∏
s=1

(ti − bs) + ζΛ,b(ti)
( k

∏
s=1

(x− bs))
)′∣∣∣

x=ti
= ζ ′Λ,b(ti)

k

∏
s=1

(ti − bs).

Therefore, ζ ′Λ,b(ti) 6= 0.
By (2) and the fact that coefficients of e11(x) + e22(x) are central in U(gl(1|1)[t]), we have

[e12(t), e21(t̃)] = −
1

t− t̃
(
ζΛ,b(t)− ζΛ,b(t̃)

)
as operators on LΛ(b). Therefore, we have [e12(t), e21(t̃)] = 0 if t and t̃ are distinct coordi-
nates of t while [e12(t), e21(t)] = −ζ ′Λ,b(t). One finds that

e12(tl) · · · e12(t1)e21(t1) · · · e21(tl)|0〉 = (−1)l
l

∏
i=1

ζ ′Λ,b(ti)|0〉 6= 0,

completing the proof.
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The conjecture of the completeness of the Bethe ansatz for Gaudin models associated
with gl(1|1) was formulated as follows, cf. [7] [Conjecture 8.3].

Conjecture 1. Suppose all weights λ(s), 1 6 s 6 k are polynomial gl(1|1)-weights. Then,
the Gaudin transfer matrix H (x) has a simple spectrum in LΛ(b). There exists a bijective
correspondence between the monic divisors y of the polynomial ϕΛ,b and the eigenvectors v of the
Gaudin transfer matrices (up to multiplication by a non-zero constant). Moreover, this bijection is
such that H (x)v = Ey,Λ,b(x)v, where Ey,Λ,b(x) is given by (12).

By simple spectrum, we mean that if v1, v2 are eigenvectors of H (x) and v1 6= cv2,
c ∈ C×, then the eigenvalues of H (x) on v1 and v2 are different.

The conjecture follows from Theorem 4 proved in Section 5.3.
The conjecture is clear for the case when ϕΛ,b only has simple roots. Note that

dim LΛ(b) = 2k. If the polynomial ϕΛ,b has no multiple roots, then ϕΛ,b has the desired
number of distinct monic divisors. Therefore, we have the desired number of on-shell
Bethe vectors, which are also nonzero by Proposition 1. By Theorem 1, it implies that we
do have an eigenbasis of the Gaudin transfer matrix consisting of on-shell Bethe vectors
in LΛ(b) with different eigenvalues. Thus, the algebraic Bethe ansatz works well for
this situation.

Theorem 2. Suppose that all weights λ(s), 1 6 s 6 k are polynomial gl(1|1)-weights. If the
polynomial ϕΛ,b has no multiple roots, then the Gaudin transfer matrix H (x) is diagonalizable
and the Bethe ansatz is complete. In particular, for any given Λ and generic b, the Gaudin transfer
matrix H (x) is diagonalizable and the Bethe ansatz is complete.

3. Space VS and Weyl Modules

In this section, we discuss the super-analog of VS in [1] [Section 2.5], cf. [11] [Section 3].
The symmetric group Sn acts naturally on C[z1, . . . , zn] by permuting variables. De-

note by σi(z) the i-th elementary symmetric polynomial in z1, . . . , zn. The algebra of
symmetric polynomials C[z1, . . . , zn]S is freely generated by σ1(z), . . . , σn(z).

Fix ` ∈ {0, 1, . . . , n}. We have a subgroup S` ×Sn−` ⊂ Sn. Then, S` permutes the
first ` variables, whereas Sn−` permutes the last n− ` variables. Denote by

C[z1, . . . , zn]
S`×Sn−`

the subalgebra of C[z1, . . . , zn] consisting of S` ×Sn−`-invariant polynomials. It is known
that C[z1, . . . , zn]S`×Sn−` is a free C[z1, . . . , zn]S-module of rank (n

`).

3.1. Definition of VS

Let V = (C1|1)⊗n be the tensor power of the vector representation of gl(1|1). The
gl(1|1)-module V has weight decomposition

V =
n⊕

`=0

(V)(n−`,`).

Let V be the space of polynomials in variables z = (z1, z2, . . . , zn) with coefficients in V,

V = V ⊗C[z1, z2, . . . , zn].

The space V is identified with the subspace V ⊗ 1 of constant polynomials in V . The
space V has a natural grading induced from the grading on C[z1, . . . , zn] with deg(zi) = 1.
Namely, the degree of an element v⊗ p in V is given by the degree of the polynomial p,
deg(v⊗ p) = deg p. Clearly, the space End(V) has a gradation structure induced from
that on V .
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Let P(i,j) be the graded flip operator that acts on the i-th and j-th factors of V. Let s1,
s2, . . . , sn−1 be the simple permutations of the symmetric group Sn. Define the Sn-action
on V by the rule:

si : f (z1, . . . , zn) 7→ P(i,i+1) f (z1, . . . , zi+1, zi, . . . , zn),

for f (z1, . . . , zn) ∈ V . Note that the Sn-action respects the gradation on V . Denote the
subspace of all vectors in V invariant with respect to the Sn-action by VS.

Clearly, the gl(1|1)-action on V commutes with the Sn-action on V and preserves
the grading. Therefore, VS is a graded gl(1|1)-module. Hence, we have the weight
decomposition for both VS and (VS)sing:

VS =
n⊕

`=0

(VS)(n−`,`), (VS)sing =
n⊕

`=0

(VS)
sing
(n−`,`).

Note that (VS)(n−`,`) and (VS)
sing
(n−`,`) are also graded C[z1, . . . , zn]S-modules.

The space V is a gl(1|1)[t]-module where eij[r] acts by

eij[r](p(z1, . . . , zn)w1 ⊗ · · · ⊗ wn)

= p(z1, . . . , zn)
n

∑
s=1

(−1)(|w1|+···+|ws−1|)(|i|+|j|)zr
s w1 ⊗ · · · ⊗ eijws ⊗ · · · ⊗ wn,

(15)

for p(z1, . . . , zn) ∈ C[z1, . . . , zn] and ws ∈ C1|1.

Lemma 2. The gl(1|1)[t]-action on V commutes with the Sn-action on V . Both V and VS are
graded gl(1|1)[t]-modules.

3.2. Properties of VS and (VS)sing

In this section, we recall properties of VS and (VS)sing from [11] [Section 3].

Lemma 3. The space (VS)(n−`,`) is a free C[z1, . . . , zn]S-module of rank (n
`). In particular, the

space VS is a free C[z1, . . . , zn]S-module of rank 2n.

Set v+ = v⊗n
1 = v1 ⊗ · · · ⊗ v1.

Lemma 4. The gl(1|1)[t]-module VS is a cyclic module generated by v+.

Lemma 5. The set

{e21[r1]e21[r2] · · · e21[r`]v+ | 0 6 r1 < r2 < · · · < r` 6 n− 1} (16)

is a free generating set of (VS)(n−`,`) over C[z1, . . . , zn]S.

Lemma 6. The space (VS)
sing
(n−`,`) is a free C[z1, . . . , zn]S-module of rank (n−1

` ) with a free gener-
ating set given by

{e12[0]e21[0]e21[r1] · · · e21[r`]v+, 1 6 r1 < r2 < · · · < r` 6 n− 1}. (17)

In particular, the space (VS)sing is a free C[z1, . . . , zn]S-module of rank 2n−1.

Set (q)r = ∏r
i=1(1− qi).
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Proposition 2. We have

ch
(
(VS)(n−`,`)

)
=

q`(`−1)/2

(q)`(q)n−`
, ch

(
(VS)

sing
(n−`,`)

)
=

q`(`+1)/2

(q)`(q)n−1−`(1− qn)
.

Given a = (a1, . . . , an) ∈ Cn, let Ia be the ideal of C[z1, . . . , zn]S generated by
σi(z)− a, i = 1, . . . , n. Then, for any a, by Lemmas 2 and 3, the quotient space VS/IaVS

is a gl(1|1)[t]-module of dimension 2n over C. Denote by v̄+ the image of v+ under
this quotient.

3.3. Weyl Modules

In this section, we recall a special family of Weyl modules for gl(1|1)[t] and their
properties from [10] [Section 3.3].

Let η(x) be a monic polynomial of degree m with complex coefficients, where m ∈ Z>0,

η(x) =
m

∑
i=0

γixi, γm = 1.

Denote by Wη the gl(1|1)[t]-module generated by an even vector w subject to
the relations:

e11(x)w = η′(x)/η(x)w, e22(x)w = e12(x)w = 0, (18)
m

∑
i=0

γie21[i]w = 0. (19)

It is convenient to write (19) as (e21 ⊗ η(t))w = 0.
Clearly, we have dim Wη 6 2m by the PBW theorem and (1), (19). The module Wη is

the universal gl(1|1)[t]-module satisfying (18), (19), which we call a Weyl module.
If η(x) = (x− b)m, we write Wη as Wm(b).

Lemma 7. Let a = (0, . . . , 0) ∈ Cn. Then, VS/IaVS is isomorphic to Wn(0) as
gl(1|1)[t]-modules.

In particular, we have dim Wm(b) = 2m.

Lemma 8. Let η(x) = ∏k
s=1(x− bs)ns , where bs 6= br for 1 6 s 6= r 6 k. Then, Wη is isomorphic

to
⊗k

s=1 Wns(bs) as gl(1|1)[t]-modules.

Given sequences n = (n1, . . . , nk) of non-negative integers and b = (b1, . . . , bs) of
distinct complex numbers, by Lemma 8, we call

⊗k
s=1 Wns(bs) the Weyl module associated

with n and b.

Given a = (a1, . . . , an) ∈ Cn, define k ∈ Z>0, bs ∈ C and ns ∈ Z>0 for 1 6 s 6 k by

xn +
n

∑
i=1

(−1)iaixn−i =
k

∏
s=1

(x− bs)
ns , (20)

where b1, . . . , bk are distinct. Note that n = ∑k
s=1 ns.

Lemma 9. The gl(1|1)[t]-module VS/IaVS is isomorphic to
⊗k

s=1 Wns(bs).

We also need the following statements.
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Lemma 10. Let b ∈ C. We have the following properties for Wm(b).

1. As a gl(1|1)-module, Wm(b) is isomorphic to (C1|1)⊗m.
2. A gl(1|1)[t]-module M is an irreducible subquotient of Wm(b) if and only if M has the form

Lλ(b), where λ is a polynomial weight such that |λ| = m.

Corollary 1. A gl(1|1)[t]-module M is an irreducible subquotient of
⊗k

s=1 Wns(bs) if and only if
M has the form

⊗k
s=1 Lλ(s)(bs), where λ(s) is a polynomial weight such that |λ(s)| = ns for each

1 6 s 6 k.

4. Main Theorems
4.1. The Algebra Ol

Let Ωl be the n-dimensional affine space with coordinates f1, . . . , fl , g1, . . . , gn−l .
Introduce two polynomials

f (x) = xl +
l

∑
i=1

fixl−i, g(x) = xn−l +
n−l

∑
i=1

gixn−l−i. (21)

Denote by Ol the algebra of regular functions on Ωl , namely

Ol = C[ f1, . . . , fl , g1, . . . , gn−l−1, gn−l ].

Define the degree function by

deg fi = i, deg gj = j,

for all i = 1, . . . , l and j = 1, . . . , n− l. The algebra Ol is graded with the graded character
given by

ch(Ol) =
1

(q)l(q)n−l
. (22)

Let F0Ol ⊂ F1Ol ⊂ · · · ⊂ Ol be the increasing filtration corresponding to this
grading, where FsOl consists of elements of a degree of at most s.

Let Σ1, . . . , Σn be the elements of Ol such that

(q1 − q2) f (x)g(x) = (q1 − q2)xn +
n

∑
i=1

(−1)i((q1 − q2)Σi − (n + 1− i)Σi−1
)
xn−i, (23)

where Σ0 = 1. The homomorphism

πl : C[z1, . . . , zn]
S → Ol , σi(z) 7→ Σi, i = 1, . . . , n, (24)

is injective and induces a C[z1, . . . , zn]S-module structure on Ol .
Express f ′(x)g(x) as follows:

(q1 − q2) f ′(x)g(x) = (q1 − q2)lxn−1 +
n−1

∑
i=1

Gixn−1−i, (25)

where Gi ∈ Ol .

Lemma 11. The elements Gi and Σj, i = 1, . . . , n− 1, j = 1, . . . , n generate the algebra Ol .

Lemma 12. We have Gi ∈ FiOl \Fi−1Ol and Σj ∈ FjOl \Fj−1Ol , i = 1, . . . , n − 1,
j = 1, . . . , n.
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4.2. Bethe Algebra

We call the unital subalgebra of U(gl(1|1)[t]) generated by the coefficients of

e11(x) + e22(x), H (x) = q1e11(x) + q2e22(x) +
1
2

2

∑
i,j=1

eij(x)eji(x)(−1)|j|

the Bethe algebra. We denote the Bethe algebra by B. Note that the coefficients of e11(x) +
e22(x) generate the center of U(gl(1|1)[t]).

Lemma 13 ([4]). The Bethe algebra B is commutative. The Bethe algebra B commutes with the
subalgebra U(h) ⊂ U(gl(1|1)[t]).

Being a subalgebra of U(gl(1|1)[t]), the Bethe algebra B acts on any gl(1|1)[t]-module
M. Since B commutes with U(h), the Bethe algebra preserves the subspace (M)λ for any
weight λ. If K ⊂ M is a B-invariant subspace, then we call the image of B in End(K) the
Bethe algebra associated with K.

Let a = (a1, . . . , an) ∈ Cn. Define k ∈ Z>0, a sequence of positive integers n =
(n1, . . . , nk) and a sequence of distinct complex numbers b = (b1, . . . , bk) by (20). Let
Λ = (λ(1), . . . , λ(k)) be a sequence of polynomial gl(1|1)-weights such that |λ(s)| = ns.

We study the action of the Bethe algebra B on the following B-modules:

Ml = (VS)(n−l,l), Ml,a =
( k⊗

s=1

Wns(bs)
)
(n−l,l), Ml,Λ,b =

( k⊗
s=1

Lλ(s)(bs)
)
(n−l,l).

Denote the Bethe algebras associated with Ml , Ml,a, Ml,Λ,b by Bl , Bl,a, Bl,Λ,b, re-
spectively. For any element X ∈ B, we denote by X(z), X(a), X(Λ, b) the respective
linear operators.

Since, by Lemma 4, the gl(1|1)[t]-module VS is generated by v⊗n
1 = v1 ⊗ · · · ⊗ v1, the

series e11(x) + e22(x) acts on VS by multiplication by the series

n

∑
i=1

1
x− zi

=
n

∑
i=1

∞

∑
j=0

zj
i x
−j−1.

Therefore, there exist unique central elements C1, . . . , Cn of U(gl(1|1)[t]) of minimal
degrees such that each Ci acts on VS by multiplication by σi(z).

Define Bi ∈ B by

(
xn +

n

∑
i=1

(−1)iCixn−i
)
T (x) = xn

∞

∑
i=1

Bix−i, (26)

where T (x) is defined in (13).

Lemma 14. We have Bi(z) = 0 for i > n and B1(z) = (q1 − q2)l.

Proof. Let V(c) =
⊗n

i=1 C1|1(ci), where ci ∈ C. Note that Bi(z) is a polynomial in z with
values in End((V)(n−l,l)). For any sequence of complex numbers c = (c1, . . . , cn), we
can evaluate Bi(z) at z = c to an operator on (V(c))(n−l,l). By Theorem 2, the Gaudin
transfer matrix H (x) is diagonalizable and the Bethe ansatz is complete for (V(c))(n−l,l)

when c ∈ Cn is generic. Hence, by (14) and (26),
(
xn + ∑n

i=1(−1)iCixn−i)T (x) acts on
(V(c))(n−l,l) as a polynomial in x for generic c. In particular, it implies that Bi, i > n acts
on (V(c))(n−l,l) by zero for generic c. Therefore, Bi(z), i > n is identically zero.

By the same reasoning, one shows that B1(z) = (q1− q2)l. Alternatively, it also follows
from B1 = (q1 − q2)e22.
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Lemma 15. The elements Bi(z) and Cj(z), for 1 < i 6 n and 1 6 j 6 n, generate the algebra Bl .

Proof. It follows from the definition of B, (26) and Lemma 14.

One can restrict the filtration on U(gl(1|1)[t]) to the Bethe algebra, F0B ⊂ F1B ⊂
· · · ⊂ B.

Lemma 16. We have Bi ∈ Fi−1B/Fi−2B and Cj ∈ FjB/Fj−1B for 1 < i 6 n and
1 6 j 6 n.

4.3. Main Theorems

Recall from Proposition 2 that there exists a unique vector (up to proportionality) of
degree l(l − 1)/2 inMl explicitly given by

ul := e21[0]e21[1] · · · e21[l − 1]v+;

see Lemma 5.
Any commutative algebra A is a module over itself induced by left multiplication.

We call it the regular representation of A. The dual space A∗ is naturally an A-module,
which is called the coregular representation. A bilinear form (·|·) : A⊗A → C is called
invariant if (ab|c) = (a|bc) for all a, b, c ∈ A. A finite-dimensional commutative algebra
A admitting an invariant non-degenerate symmetric bilinear form (·|·) : A⊗A → C is
called a Frobenius algebra. The regular and coregular representations of a Frobenius algebra
are isomorphic.

Let M be an A-module and E : A → C a character; then, the A-eigenspace associated to
E in M is defined by

⋂
a∈A ker(a|M − E(a)). The generalized A-eigenspace associated to E in

M is defined by
⋂

a∈A
(⋃∞

m=1 ker(a|M − E(a))m).
Theorem 3. The action of the Bethe algebra Bl onMl has the following properties.

1. The map ηl : Gi 7→ Bi+1(z), Σj 7→ Cj(z), i = 1, . . . , n− 1, j = 1, . . . , n extends uniquely
to an isomorphism ηl : Ol → Bl of filtered algebras. Moreover, the isomorphism ηl is an
isomorphism of C[z1, . . . , zn]S-modules.

2. The map ρl : Ol 7→ Ml , F 7→ ηl(F)ul is an isomorphism of filtered vector spaces identifying
the Bl-moduleMl with the regular representation of Ol .

Theorem 3 is proved in Section 5.

Let a = (a1, . . . , an) ∈ Cn. Define k ∈ Z>0, a sequence of positive integers n =
(n1, . . . , nk) and a sequence of distinct complex numbers b = (b1, . . . , bk) by (20). Let Λ =
(λ(1), . . . , λ(k)) be a sequence of non-degenerate polynomial weights such that |λ(s)| = ns
for each 1 6 s 6 k.

Theorem 4. The action of the Bethe algebra Bl,Λ,b onMl,Λ,b has the following properties.

1. The Bethe algebra Bl,Λ,b is isomorphic to

C[w1, . . . , wk]
Sl×Sk−l /〈σi(w)− εi〉i=1,...,k,

where εi is given by

ϕΛ,b(x) :=
k

∏
s=1

(x− bs)
(

q1 − q2 +
k

∑
s=1

ns

x− bs

)
= (q1 − q2)

(
xk +

k

∑
i=1

(−1)iεixk−i
)

and σi(w) are elementary symmetric functions in w1, . . . , wk.
2. The Bethe algebra Bl,Λ,b is a Frobenius algebra. Moreover, the Bl,Λ,b-module Ml,Λ,b is

isomorphic to the regular representation of Bl,Λ,b.
3. The Bethe algebra Bl,Λ,b is a maximal commutative subalgebra inMl,Λ,b of dimension (k

l).
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4. Every B-eigenspace inMl,Λ,b has dimension one.
5. The B-eigenspaces inMl,Λ,b bijectively correspond to the monic degree l divisors y(x) of the

polynomial ϕΛ,b(x). Moreover, the eigenvalue of H (x) corresponding to the monic divisor y
is described by Ey,Λ,b(x); see (12).

6. Every generalized B-eigenspace inMl,Λ,b is a cyclic B-module.
7. The dimension of the generalized B-eigenspace associated to Ey,Λ,b(x) is

∏
a∈C

(
Multa(ϕΛ,b)

Multa(y)

)
,

where Multa(p) is the multiplicity of a as a root of the polynomial p.

Theorem 4 is proved in Section 5.
Note that its results are quite parallel to that of XXX spin chains; see [11] [Theorem 4.11].

4.4. Higher Gaudin Transfer Matrices

To define higher Gaudin transfer matrices, we first recall basics about pseudo-differential
operators. Let A be a differential superalgebra with an even derivation ∂ : A → A . For
r ∈ Z>0, denote the r-th derivative of a ∈ A by a[r]. Define the superalgebra of pseudo-differential
operators A ((∂−1)) as follows. Elements of A ((∂−1)) are Laurent series in ∂−1 with coefficients
in A , and the product is given by

∂∂−1 = ∂−1∂ = 1, ∂ra =
∞

∑
s=0

(
r
s

)
a[s]∂

r−s, r ∈ Z, a ∈ A ,

where (
r
s

)
=

r(r− 1) · · · (r− s + 1)
s!

.

Let

A
m|n

x = U(gl(1|1)[t])((x−1)) =
{ s

∑
r=−∞

grxr, r ∈ Z, gr ∈ U(gl(1|1)[t])
}

.

Consider the operator in End(C1|1)⊗A
m|n

x ((∂−1
x )),

Z(x, ∂x) :=
2

∑
a,b=1

Eab ⊗
(

δab(∂x − qa)− eab(x)(−1)|a|
)

,

which is a Manin matrix; see [4] [Lemma 3.1] and [8] [Lemma 4.2]. Define the Berezinian—
see [14]—of Z(x, ∂x) by

Ber
(
Z(x, ∂x)

)
=
(
∂x − q1 − e11(x)

)(
∂x − q2 + e22(x) + e21(x)

(
∂x − q1 − e11(x)

)−1e12(x)
)−1

.
(27)

Denote the Berezinian by D(x, ∂x) and expand it as an element in A
m|n

x ((∂−1
x )),

D(x, ∂x) =
∞

∑
r=0

(−1)rGr(x)∂−r
x . (28)

We call the series Gr(x) ∈ A
m|n

x , r ∈ Z>0 the higher Gaudin transfer matrices. In
particular, we call G1(x) and G2(x) the first and second Gaudin transfer matrices, respectively.
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Example 1. We have G0(x) = 1,

G1(x) = q1 − q2 + e11(x) + e22(x),

G2(x) =
(
q1 − q2 + e11(x) + e22(x)

)
(−q2 + e22(x))− e21(x)e12(x).

Remark 1. In principle, the Bethe algebra should be the unital subalgebra of U(gl(1|1)[t])
generated by coefficients Gr(x), r ∈ Z>0, cf. [15]. However, it turns out that the first two
transfer matrices already give (almost) complete information about the Bethe algebra; see the
discussion below.

Now, we describe the eigenvalues of higher Gaudin transfer matrices acting on the
on-shell Bethe vector.

Let Λ = (λ(1), . . . , λ(k)) be a sequence of gl(1|1)-weights and b = (b1, . . . , bk) a
sequence of distinct complex numbers, where λ(s) = (αs, βs). Let t = (t1, . . . , tl), where
0 6 l < k. Suppose that yt divides the polynomial ϕΛ,b (namely t satisfies the Bethe ansatz
equation); see (10).

Theorem 5 ([16] [Theorem 5.2]). If ti 6= tj for 1 6 i < j 6 l, then

D(x, ∂x)Bl(t) = Bl(t)
(

∂x − q1 −
k

∑
s=1

αs

x− bs
+

y′t
yt

)(
∂x − q2 +

k

∑
s=1

βs

x− bs
+

y′t
yt

)−1
. (29)

The theorem is a differential analog of [11] [Theorem 6.4]. Note that the pseudo-
differential operator in the right-hand side of (29), denoted by Dy,Λ,b, was
introduced [7] [Section 5.3]. This theorem is generalized to the gl(m|n) case
in [16] [Theorem 5.2] where, on the right-hand side, the pseudo-differential operator
describing the eigenvalues of higher Gaudin transfer matrices should be replaced by the
pseudo-differential operator in [7] [Equation (6.5)]. This generalization is a classical limit
of [17] [Conjecture 5.15] and [16] [Corollary 3.6] that connects the rational difference opera-
tor introduced in [18] [Equation (5.6)] with the eigenvalues of higher transfer matrices on
the on-shell Bethe vector for XXX spin chains associated with gl(m|n). The method used in
the proof of [16] [Theorem 5.2] is motivated by [19,20] via the nested algebraic Bethe ansatz
introduced in [21].

Remark 2. As shown in [7] [Lemma 5.7], the odd reflection of Dy,Λ,b, cf. [7] [Equation (3.1)],
which comes from the study of the fermionic reproduction procedure of the Bethe ansatz equation, is
compatible with the odd reflection of Lie superalgebras. The difference analog of this fact was used
in [22] to investigate the relations between the odd reflections of the super Yangian of type A and the
fermionic reproduction procedure of the Bethe ansatz equation for XXX spin chains.

We conclude this section by discussing the connections between Gi(x), i > 3 and G1(x),
G2(x).

Let

µ(x) = q1 +
k

∑
s=1

αs

x− bs
− y′t

yt
, ν(x) = −q2 +

k

∑
s=1

βs

x− bs
+

y′t
yt

.

For simplicity, we do not write the dependence of µ(x) and ν(x) on Λ, b, t explicitly.
Then, the eigenvalue of D(x, ∂x) acting on Bl(t) is given by

(∂x − µ(x))(∂x + ν(x))−1 = 1− (µ(x) + ν(x))(∂x + ν(x))−1. (30)

Hence, the eigenvalues of Gi(x) are essentially only determined by µ(x) + ν(x) and
ν(x). Comparing (28) and the expansion of (30), we have

G1(x)Bl(t) = (µ(x) + ν(x))Bl(t), G2(x)Bl(t) = (µ(x) + ν(x))ν(x)Bl(t); (31)
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see also (14). Therefore, the spectrum of all higher transfer matrices are simply determined
by that of the first two transfer matrices, which justifies our definition of
Bethe algebra.

Lemma 17. Let the complex parameters c1, . . . , cm and the positive integer m vary. Then, the
kernels of the representations

⊗m
i=1 C1|1(ci) of U(gl(1|1)[t]) have a zero intersection.

Proof. The proof is contained in the proof of [23] [Proposition 1.7].

Corollary 2. We have

D(x, ∂x) =
(

∂x − G1(x) +
G2(x)
G1(x)

)(
∂x +

G2(x)
G1(x)

)−1
. (32)

Proof. By Lemma 17, it suffices to check that the left-hand side and the right-hand side
of (32) act identically on a basis of

⊗m
i=1 C1|1(ci) for all m ∈ Z>0 and generic c = (c1, . . . , cm).

By Theorem 2, there is a basis of
⊗m

i=1 C1|1(ci) consisting of on-shell Bethe vectors for
generic c. Therefore, the statement follows from Theorem 5, (30) and (31).

5. Proof of Main Theorems

In this section, we prove the main theorems. For completeness, we provide all details,
even if they are parallel to those in [10] [Section 5].

5.1. The First Isomorphism

Proof of Theorem 3. We first show that the homomorphism defined by ηl is well-defined.
Consider the tensor product V(c) =

⊗n
i=1 C1|1(ci), where ci ∈ C, and the corre-

sponding Bethe ansatz equation associated to weight (n− l, l). Let t be a solution with
distinct coordinates and Bl(t) be the corresponding on-shell Bethe vector. Denote Ei,t the
eigenvalues of Bi acting on Bl(t); see Theorem 1 and Equation (14).

Define a character π : Ol → C by sending

f (x) 7→ yt(x), Σn 7→
n

∏
i=1

ci,

g(x) 7→ 1
(q1 − q2)yt(x)

n

∏
i=1

(x− ci)
(

q1 − q2 +
n

∑
i=1

1
x− ci

)
.

Then,
π(Σi) = σi(c), π(Gi) = Ei,t, (33)

by (23) and by (12), (14), (25), respectively.

Now, let P(Gi, Σj) be a polynomial in Gi, Σj such that P(Gi, Σj) is equal to zero in Ol .
It suffices to show that P(Bi(z), Cj(z)) is equal to zero in Bl .

Note that P(Bi(z), Cj(z)) is a polynomial in z1, . . . , zn with values in End((V)(n−l,l)).
For any sequence c of complex numbers, we can evaluate P(Bi(z), Cj(z)) at z = c to an
operator on (V(c))(n−l,l). By Theorem 2, the transfer matrix T (x) is diagonalizable and the
Bethe ansatz is complete for (V(c))(n−l,l) when c ∈ Cn is generic. Hence, by (33), the value
of P(Bi(z), Cj(z)) at z = c is also equal to zero for generic c. Therefore, P(Bi(z), Cj(z)) is
identically zero and the map ηl is well-defined.

Let us now show that the map ηl is injective. Let P(Gi, Σj) be a polynomial in Gi, Σj
such that P(Gi, Σj) is non-zero in Ol . Then, the value at a generic point of Ωl (e.g., the
non-vanishing points of P(Gi, Σj) such that f and g are relatively prime and have only
simple zeros) is not equal to zero. Moreover, at those points, the transfer matrix T (x) is
diagonalizable and the Bethe ansatz is complete again by Theorem 2. Therefore, again
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by (33), the polynomial P(Bi(z), Cj(z)) is a non-zero element in Bl . Thus, the map ηl
is injective.

The surjectivity of ηl follows from Lemma 15. Hence, ηl is an isomorphism of algebras.
The fact that ηl is an isomorphism of graded algebra respecting the gradation follows

from Lemmas 12 and 16. This completes the proof of part (i).
The kernel of ρl is an ideal of Ol . If we identify σi(z) with Σi, then the algebra Ol

contains the algebra C[z1, . . . , zn]S; see (24). The kernel of ρl intersects C[z1, . . . , zn]S triv-
ially. Therefore, the kernel of ρl is trivial as well. Hence, ρl is an injective map. Comparing
Equation (22) and Proposition 2, we have ch

(
Ml
)
= ql(l−1)/2ch(Ol). Thus, ρl is an isomor-

phism of graded vector spaces, which shifts the degree by l(l − 1)/2, completing the proof
of part (ii).

5.2. The Second Isomorphism

Let a = (a1, . . . , an) be a sequence of complex numbers. Define k ∈ Z>0, a sequence
of positive integers n = (n1, . . . , nk), and a sequence of distinct complex numbers b =
(b1, . . . , bk) by (20). Let IOl,a be the ideal ofOl generated by the elements Σi − ai, i = 1, . . . , n,
where Σ1, . . . , Σn−1 are defined in (23). Let Ol,a be the quotient algebra

Ol,a = Ol/IOl,a.

Let IBl,a be the ideal of Bl generated by Ci(z)− ai, i = 1, . . . , n. Consider the subspace

IMl,a = IBl,aMl = (IaVS)(n−l,l),

where Ia, as before, is the ideal of C[z1, . . . , zn]S generated by σi(z)− ai, i = 1, . . . , n.

Lemma 18. We have

ηl(IOl,a) = IBl,a, ρl(IOl,a) = IMl,a , Bl,a = Bl/IBl,a, Ml,a = (VS)
sing
(n−l,l)/IMl,a .

Proof. The lemma follows from Theorem 3 and Lemma 9.

By Lemma 18, the maps ηl and ρl induce the maps

ηl,a : Ol,a → Bl,a, ρl,a : Ol,a →Ml,a.

The map ηl,a is an isomorphism of algebras. Since Bl,a is finite-dimensional, by,
e.g., [1] [Lemma 3.9], Ol,a is a Frobenius algebra, and so is Bl,a. The map ρl,a is an
isomorphism of vector spaces. Moreover, it follows from Theorem 3 and Lemma 18
that ρl,a identifies the regular representation of Ol,a with the Bl,a-moduleMl,a.

The statement of this section implies, by, e.g., [13] [Lemma 1.3], the following. Set

ζn,b(x) = q1 − q2 +
k

∑
s=1

ns

x− bs
, ψn,b(x) := ζn,b(x)

k

∏
r=1

(x− br)
ns .

Theorem 6. Suppose that b = (b1, . . . , bk) is a sequence of distinct complex numbers. Then,
the Gaudin transfer matrix H (x) has a simple spectrum in (

⊗k
s=1 Wns(bs))sing. There exists a

bijective correspondence between the monic divisors y of the polynomial ψn,b and the eigenvectors
vy of the Gaudin transfer matrix H (x) (up to multiplication by a non-zero constant). Moreover,
this bijection is such that

H (x)vy =
(1

2
ζ ′n,b(x)− ζn,b(x)

y′(x)
y(x)

+
1
2

( k

∑
s=1

ns

x− bs

)( k

∑
s=1

ns

x− bs
+ 2q1

))
vy.
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Remark 3. Fix l ∈ Z>0 and set t = (t1, . . . , tl). Let yt represent t. Then, the Bethe ansatz
equation for (

⊗k
s=1 Wns(bs)) is

yt(x) divides the polynomial ψn,b(x).

Note that, in this case, yt may have multiple roots. If there are multiple roots in yt, then the
corresponding on-shell Bethe vector is zero. Therefore, an actual eigenvector should be obtained via
an appropriate derivative as pointed out in [7] [Section 8.2].

5.3. The Third Isomorphism

Recall from Section 2.3 that, without a loss of generality, we can assume that βs = 0,
1 6 s 6 k. In this case, αs = ns, 1 6 s 6 k.

Lemma 19. There exists a surjective gl(1|1)[t]-module homomorphism from
⊗k

s=1 Wns(bk) to⊗k
s=1 Lλ(s)(bk) that maps a vacuum vector to a vacuum vector.

Proof. It follows from Lemma 10 and our assumption that βs = 0 for all 1 6 s 6 k.

By Lemma 9, the surjective gl(1|1)[t]-module homomorphism

k⊗
s=1

Wns(bk)�
k⊗

s=1

Lλ(s)(bk)

induces a surjective gl(1|1)[t]-module homomorphism

VS �
k⊗

s=1

Lλ(s)(bk).

The second map then induces a projection of the Bethe algebras Bl � Bl,Λ,b. We describe
the kernel of this projection. We consider the corresponding ideal in the algebra Ol.

Suppose that l 6 k. Define the polynomial h(x) by

h(x) =
k

∏
s=1

(x− bs)
ns−1.

Divide the polynomial g(x) in (21) by h(x) and let

p(x) = xk−l + p1xk−l−1 + · · ·+ pk−l−1x + pk−l , (34)

r(x) = r1xn−k−1 + r2xn−k−2 + · · ·+ rn−k−1x + rn−k (35)

be the quotient and the remainder, respectively. Clearly, pi, rj ∈ Ol .
Denote by IOl,Λ,b the ideal of Ol generated by r1, . . . , rn−k and the coefficients of

polynomial

ϕΛ,b(x)− (q1 − q2)p(x) f (x) =
k

∏
s=1

(x− bs)
(

q1 − q2 +
k

∑
s=1

ns

x− bs

)
− (q1 − q2)p(x) f (x).

Let Ol,Λ,b be the quotient algebra

Ol,Λ,b = Ol/IOl,Λ,b.

Clearly, if Ol,Λ,b is finite-dimensional, then it is a Frobenius algebra.
Let IBl,Λ,b be the image of IOl,Λ,b under the isomorphism ηl .

Lemma 20. The ideal IBl,Λ,b is contained in the kernel of the projection Bl � Bl,Λ,b.
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Proof. We treat b = (b1, . . . , bk) as variables. Note that the elements of IBl,Λ,b act onMl,Λ,b
as polynomials in b with values in End((LΛ)(n−l,l)). Therefore it suffices to show it for
generic b. Let f(x) be the image of f (x) under ηl . The condition that IBl,Λ,b vanishes is
equivalent to the condition that ϕΛ,b(x) is divisible by f(x).

By Theorem 2, there exists an eigenbasis of the operator T (x) inMl,Λ,b for generic b.
Clearly, a solution of the Bethe ansatz equation associated to Λ, b, l is also a solution to the
Bethe ansatz equation forMl,a; see Theorem 6 and Remark 3. Moreover, the expressions
of corresponding on-shell Bethe vectors coincide (with different vacuum vectors). By
Lemma 19 and Theorems 1 and 6, ϕΛ,b(x) is divisible by f(x) for generic b since the
eigenvalue of f(x) corresponds to yt(x) in (12). Therefore, IBl,Λ,b vanishes for generic b, thus
completing the proof.

Therefore, we have the epimorphism

Ol,Λ,b
∼= Bl/IBl,Λ,b � Bl,Λ,b. (36)

We claim that the surjection in (36) is an isomorphism by checking dimOl,Λ,b =
dimBl,Λ,b.

Lemma 21. We have dimOl,Λ,b =

(
k
l

)
.

Proof. Note that C[p1, . . . , pk−l , r1, . . . , rn−k] ∼= C[g1, . . . , gn−l ], where pi and rj are defined
in (34) and (35). It is not hard to check that

Ol,Λ,b
∼= C[ f1, . . . , fl , p1, . . . , pk−l ]/ ĨOl,Λ,b, (37)

where ĨOl,Λ,b is the ideal of C[ f1, . . . , fl , p1, . . . , pk−l ] generated by the coefficients of the
polynomial ϕΛ,b(x)− (q1 − q2)p(x) f (x).

Introduce new variables w = (w1, . . . , wk) such that

f (x) =
l

∏
i=1

(x− wi), p(x) =
k−l

∏
i=1

(x− wl+i).

Let ε = (ε1, . . . , εk) be complex numbers such that

ϕΛ,b(x) =
k

∏
s=1

(x− bs)
(

q1 − q2 +
k

∑
s=1

ns

x− bs

)
= (q1 − q2)

(
xk +

k

∑
i=1

(−1)iεixk−i
)

.

Then,

C[ f1, . . . , fl , p1, . . . , pk−l ]/ ĨOl,Λ,b
∼= C[w1, . . . , wk−1]

Sl×Sk−l /〈σi(w)− εi〉i=1,...,k. (38)

The lemma now follows from the fact that C[w1, . . . , wk−1]
Sl×Sk−l is a free

C[w1, . . . , wk−1]
S-module of rank (k

l).

Note that we have the projection (VS)(n−l,l) �Ml,Λ,b. Since, by Theorem 3, the Bethe
algebra Bl acts on (VS)(n−l,l) cyclically, the Bethe algebra Bl,Λ,b acts onMl,Λ,b cyclically
as well. Therefore, we have

dimBl,Λ,b = dimMl,Λ,b =

(
k
l

)
. (39)

Proof of Theorem 4. Part (i) follows from Lemma 21 and (36)–(39). Clearly, we have that
Bl,Λ,b

∼= Ol,Λ,b is a Frobenius algebra. Moreover, the map ρl from Theorem 3 induces a map

ρl,Λ,b : Ol,Λ,b →Ml,Λ,b
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that identifies the regular representation ofOl,Λ,b with the Bl,Λ,b-moduleMl,Λ,b. Therefore,
part (ii) is proved.

Since Bl,Λ,b is a Frobenius algebra, the regular and coregular representations of the
algebra Bl,Λ,b are isomorphic to each other. Parts (iii)–(vi) follow from the general facts
about the coregular representations; see, e.g., [1] [Section 3.3] or [13] [Lemma 1.3].

Due to part (iv), it suffices to consider the algebraic multiplicity of every eigenvalue. It
is well known that roots of a polynomial continuously depend on its coefficients. Hence,
the eigenvalues of T (x) continuously depend on b. Part (vii) follows from the deformation
argument and Theorem 2.

6. Conclusions

In this paper, we investigated the gl(1|1) Gaudin models that are twisted by a diagonal
matrix G and defined on tensor products of polynomial evaluation gl(1|1)[t]-modules. Our
results generalize all of the results of [10] to the twisted case. Meanwhile, we gave an
explicit description of the algebra of Hamiltonians acting on tensor products of polynomial
evaluation gl(1|1)[t]-modules by generators and relations. Moreover, we showed that there
exists a bijection between common eigenvectors (up to proportionality) of the algebra of
Hamiltonians and monic divisors of an explicit polynomial written in terms of the highest
weights and evaluation parameters. In particular, our result implies that each common
eigenspace of the algebra of Hamiltonians has dimension one. We also gave dimensions
of the generalized eigenspaces. Our results give a confirmed answer to the completeness
of the Bethe ansatz in the case of gl(1|1) Gaudin models. We expect our results tp be an
essential step towards understanding the more general gl(m|n) Gaudin models.
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