Generalized Finsler Geometry and the Anisotropic Tearing of Skin
Abstract
:1. Introduction
1.1. Background
1.2. Prior Work
1.3. Purpose and Scope
- The demonstration of the utility of the generalized Finsler geometric theory for describing anisotropic elasticity and anisotropic structural rearrangements in soft biological tissue;
- The consolidation and refinement of the theory for the equilibrium (i.e., quasi-static) case.
1.3.1. Soft Tissue and Skin Mechanics
1.3.2. Overview of the Current Work
2. Generalized Finsler Space
2.1. Reference Configuration
2.1.1. Coordinate Transformations
2.1.2. Length, Area, and Volume
2.1.3. Covariant Derivatives
2.1.4. A Divergence Theorem
2.1.5. Finsler and Pseudo-Finsler Spaces
2.2. Spatial Configuration
2.2.1. Coordinate Transformations
2.2.2. Length, Area, and Volume
2.2.3. Covariant Derivatives
2.2.4. A Divergence Theorem
3. Finsler-Geometric Continuum Mechanics
3.1. Motion and Deformation
3.2. Particular Assumptions
3.2.1. Director Fields
3.2.2. Connections and Metrics
3.3. Energy and Equilibrium
3.3.1. Variational Principle
3.3.2. General Energy Density
3.3.3. Euler–Lagrange Equations
3.3.4. Spatial Invariance and Material Symmetry
4. One-Dimensional Base Manifold
4.1. Geometry and Kinematics
4.2. Governing Equations
4.2.1. Energy Density
4.2.2. Linear Momentum
4.2.3. Micro-Momentum
4.3. General Solutions
4.3.1. Homogeneous Fields
4.3.2. Stress-Free States
4.4. Constitutive Model
4.4.1. Metrics
4.4.2. Nonlinear Elasticity
4.5. Specific Solutions
4.5.1. Homogeneous Fields
4.5.2. Stress-Free States
5. Two-Dimensional Base Manifold
5.1. Geometry and Kinematics
5.2. Governing Equations
5.2.1. Energy Density
5.2.2. Linear Momentum
5.2.3. Micro-Momentum
5.3. General Solutions
5.3.1. Homogeneous Fields
5.3.2. Stress-Free States
5.4. Constitutive Model
5.4.1. Metrics
5.4.2. Nonlinear Elasticity
5.5. Specific Solutions
5.5.1. Uniaxial Extension
5.5.2. Biaxial Extension
5.5.3. Stress-Free States
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Variational Derivatives
Appendix A.1. Deformation Gradient and Director Gradient
Appendix A.2. Volume Form
Appendix B. Toward Residual Stress and Growth
Appendix B.1. Macroscopic Momentum
Appendix B.2. Micro-Momentum and Growth
References
- Finsler, P. Uber Kurven und Flachen in Allgemeiner Raumen. Ph.D. Thesis, University of Göttingen, Gottingen, Germany, 1918. [Google Scholar]
- Rund, H. The Differential Geometry of Finsler Spaces; Springer: Berlin, Germany, 1959. [Google Scholar]
- Bao, D.; Chern, S.S.; Shen, Z. An Introduction to Riemann-Finsler Geometry; Springer: New York, NY, USA, 2000. [Google Scholar]
- Eringen, A. Tensor Analysis. In Continuum Physics; Eringen, A., Ed.; Academic Press: New York, NY, USA, 1971; Volume I, pp. 1–155. [Google Scholar]
- Bejancu, A. Finsler Geometry and Applications; Ellis Horwood: New York, NY, USA, 1990. [Google Scholar]
- Miron, R. Metrical Finsler structures and metrical Finsler connections. J. Math. Kyoto Univ. 1983, 23, 219–224. [Google Scholar] [CrossRef]
- Watanabe, S.; Ikeda, S.; Ikeda, F. On a metrical Finsler connection of a generalized Finsler metric gij=e2σ(x,y)γij(x). Tensor New Ser. 1983, 39, 97–102. [Google Scholar]
- Matsumoto, M. Foundations of Finsler Geometry and Special Finsler Spaces; Kaiseisha Press: Shigaken, Japan, 1986. [Google Scholar]
- Bejancu, A.; Farran, H. Geometry of Pseudo-Finsler Submanifolds; Kluwer: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Minguzzi, E. The connections of pseudo-Finsler spaces. Int. J. Geom. Methods Mod. Phys. 2014, 11, 1460025. [Google Scholar] [CrossRef]
- Antonelli, P.; Ingarden, R.; Matsumoto, M. The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology; Kluwer: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Vacaru, S.; Stavrinos, P.; Gaburov, E.; Gonţa, D. Clifford and Riemann-Finsler Structures in Geometric Mechanics and Gravity; Geometry Balkan Press: Bucharest, Romania, 2005. [Google Scholar]
- Brandt, H. Differential geometry of spacetime tangent bundle. Int. J. Theor. Phys. 1992, 31, 575–580. [Google Scholar] [CrossRef]
- Voicu, N. New Considerations on Einstein Equations in Pseudo-Finsler Spaces. In Mathematics and Astronomy A Joint Long Journey: Proceedings of the International Conference, Madrid, Spain, 23–27 November 2009; AIP Publishing: Long Island, NY, USA, 2009; Volume 1283, pp. 249–257. [Google Scholar]
- Balan, V.; Bogoslovsky, G.; Kokarev, S.; Pavlov, D.; Siparov, S.; Voicu, N. Geometrical models of the locally anisotropic space-time. arXiv 2011, arXiv:1111.4346. [Google Scholar] [CrossRef]
- Ma, T.; Matveev, V.; Pavlyukevich, I. Geodesic random walks, diffusion processes and Brownian motion on Finsler manifolds. J. Geom. Anal. 2021, 31, 12446–12484. [Google Scholar] [CrossRef]
- Hohmann, M.; Pfeifer, C.; Voicu, N. Mathematical foundations for field theories on Finsler spacetimes. J. Math. Phys. 2022, 63, 032503. [Google Scholar] [CrossRef]
- Popov, N.; Matveev, I. Six-Dimensional Manifold with Symmetric Signature in a Unified Theory of Gravity and Electromagnetism. Symmetry 2022, 14, 1163. [Google Scholar] [CrossRef]
- Abbondandolo, A.; Benedetti, G.; Polterovich, L. Lorentz-Finsler metrics on symplectic and contact transformation groups. arXiv 2022, arXiv:2210.02387. [Google Scholar]
- Truesdell, C.; Toupin, R. The Classical Field Theories. In Handbuch der Physik; Flugge, S., Ed.; Springer: Berlin, Germany, 1960; Volume III/1, pp. 226–793. [Google Scholar]
- Kro¨ner, E. Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Arch. Ration. Mech. Anal. 1960, 4, 273–334. [Google Scholar] [CrossRef]
- Marsden, J.; Hughes, T. Mathematical Foundations of Elasticity; Prentice-Hall: Englewood Cliffs, NJ, USA, 1983. [Google Scholar]
- Toupin, R.; Rivlin, R. Dimensional changes in crystals caused by dislocations. J. Math. Phys. 1960, 1, 8–15. [Google Scholar] [CrossRef]
- Yavari, A.; Goriely, A. Riemann-Cartan geometry of nonlinear dislocation mechanics. Arch. Ration. Mech. Anal. 2012, 205, 59–118. [Google Scholar] [CrossRef]
- Clayton, J. Defects in nonlinear elastic crystals: Differential geometry, finite kinematics, and second-order analytical solutions. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 2015, 95, 476–510. [Google Scholar] [CrossRef]
- Stojanovitch, R. On the stress relation in non-linear thermoelasticity. Int. J. Non-Linear Mech. 1969, 4, 217–233. [Google Scholar] [CrossRef]
- Ozakin, A.; Yavari, A. A geometric theory of thermal stresses. J. Math. Phys. 2010, 51. [Google Scholar] [CrossRef]
- Takamizawa, K. Stress-Free Configuration of a Thick-Walled Cylindrical Model of the Artery: An Application of Riemann Geometry to the Biomechanics of Soft Tissues. J. Appl. Mech. 1991, 58, 840–842. [Google Scholar] [CrossRef]
- Rodriguez, E.; Hoger, A.; McCulloch, A. Stress-dependent finite growth in soft elastic tissues. J. Biomech. 1994, 27, 455–467. [Google Scholar] [CrossRef]
- Yavari, A. A geometric theory of growth mechanics. J. Nonlinear Sci. 2010, 20, 781–830. [Google Scholar] [CrossRef]
- Schouten, J. Ricci Calculus; Springer: Berlin, Germany, 1954. [Google Scholar]
- Clayton, J. On anholonomic deformation, geometry, and differentiation. Math. Mech. Solids 2012, 17, 702–735. [Google Scholar] [CrossRef]
- Clayton, J. Nonlinear Mechanics of Crystals; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Steinmann, P. Geometrical Foundations of Continuum Mechanics; Springer: Berlin, Germany, 2015. [Google Scholar]
- Hushmandi, A.; Rezaii, M. On the curvature of warped product Finsler spaces and the Laplacian of the Sasaki-Finsler metrics. J. Geom. Phys. 2012, 62, 2077–2098. [Google Scholar] [CrossRef]
- Watanabe, S.; Ikeda, F. On metrical Finsler connections of a metrical Finsler structure. Tensor New Ser. 1982, 39, 37–41. [Google Scholar]
- Rund, H. A divergence theorem for Finsler metrics. Monatshefte Math. 1975, 79, 233–252. [Google Scholar] [CrossRef]
- Toupin, R. Theories of elasticity with couple stress. Arch. Ration. Mech. Anal. 1964, 17, 85–112. [Google Scholar] [CrossRef]
- Mindlin, R. Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 1964, 16, 51–78. [Google Scholar] [CrossRef]
- Eringen, A. Mechanics of micromorphic continua. In Mechanics of Generalized Continua; Kro¨ner, E., Ed.; Springer: Berlin, Germany, 1968; pp. 18–35. [Google Scholar]
- Regueiro, R. On finite strain micromorphic elastoplasticity. Int. J. Solids Struct. 2010, 47, 786–800. [Google Scholar] [CrossRef]
- Eremeyev, V.; Lebedev, L.; Altenbach, H. Foundations of Micropolar Mechanics; Springer: Heidelberg, Germany, 2013. [Google Scholar]
- Eremeyev, V.; Konopińska-Zmyslowska, V. On dynamic extension of a local material symmetry group for micropolar media. Symmetry 2020, 12, 1632. [Google Scholar] [CrossRef]
- Amari, S. A theory of deformations and stresses of ferromagnetic substances by Finsler geometry. In RAAG Memoirs; Kondo, K., Ed.; Gakujutsu Bunken Fukyu-Kai: Tokyo, Japan, 1962; Volume 3, pp. 257–278. [Google Scholar]
- Ikeda, S. A physico-geometrical consideration on the theory of directors in the continuum mechanics of oriented media. Tensor New Ser. 1973, 27, 361–368. [Google Scholar]
- Ikeda, S. On the conservation laws in the theory of fields in Finsler spaces. J. Math. Phys. 1981, 22, 1211–1214. [Google Scholar] [CrossRef]
- Ikeda, S. On the theory of fields in Finsler spaces. J. Math. Phys. 1981, 22, 1215–1218. [Google Scholar] [CrossRef]
- Ikeda, S. On the covariant differential of spin direction in the Finslerian deformation theory of ferromagnetic substances. J. Math. Phys. 1981, 22, 2831–2834. [Google Scholar] [CrossRef]
- Saczuk, J. On the role of the Finsler geometry in the theory of elasto-plasticity. Rep. Math. Phys. 1997, 39, 1–17. [Google Scholar] [CrossRef]
- Stumpf, H.; Saczuk, J. A generalized model of oriented continuum with defects. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 2000, 80, 147–169. [Google Scholar] [CrossRef]
- Stumpf, H.; Saczuk, J. On nonlocal gradient model of inelastic heterogeneous media. J. Theor. Appl. Mech. 2002, 40, 205–234. [Google Scholar]
- Saczuk, J. Finslerian Foundations of Solid Mechanics; Polskiej Akademii Nauk: Gdansk, Poland, 1996. [Google Scholar]
- Yajima, T.; Nagahama, H. Connection structures of topological singularity in micromechanics from a viewpoint of generalized Finsler space. Ann. Phys. 2020, 532, 2000306. [Google Scholar] [CrossRef]
- Clayton, J. Finsler differential geometry in continuum mechanics: Fundamental concepts, history, and renewed application to ferromagnetic solids. Math. Mech. Solids 2022, 27, 910–949. [Google Scholar] [CrossRef]
- Clayton, J. Finsler geometry of nonlinear elastic solids with internal structure. J. Geom. Phys. 2017, 112, 118–146. [Google Scholar] [CrossRef]
- Clayton, J. Finsler-Geometric Continuum Mechanics; Technical Report ARL-TR-7694; DEVCOM Army Research Laboratory: Aberdeen Proving Ground, Aberdeen, MD, USA, 2016. [Google Scholar]
- Clayton, J. Generalized pseudo-Finsler geometry applied to the nonlinear mechanics of torsion of crystalline solids. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850113. [Google Scholar] [CrossRef]
- Clayton, J. Finsler-geometric continuum dynamics and shock compression. Int. J. Fract. 2017, 208, 53–78. [Google Scholar] [CrossRef]
- Clayton, J.; Knap, J. Continuum modeling of twinning, amorphization, and fracture: Theory and numerical simulations. Contin. Mech. Thermodyn. 2018, 30, 421–455. [Google Scholar] [CrossRef]
- Maugin, G.; Eringen, A. Deformable magnetically saturated media. I. Field equations. J. Math. Phys. 1972, 13, 143–155. [Google Scholar] [CrossRef]
- Maugin, G.; Eringen, A. Deformable magnetically saturated media. II. Constitutive theory. J. Math. Phys. 1972, 13, 1334–1347. [Google Scholar] [CrossRef]
- Clayton, J. Generalized Finsler geometric continuum physics with applications in fracture and phase transformations. Zeitschrift fur Angewandte Mathematik und Physik (ZAMP) 2017, 68, 9. [Google Scholar] [CrossRef]
- Mitsuhashi, K.; Ghosh, S.; Koibuchi, H. Mathematical modeling and simulations for large-strain J-shaped diagrams of soft biological materials. Polymers 2018, 10, 715. [Google Scholar] [CrossRef] [PubMed]
- Takano, Y.; Koibuchi, H. J-shaped stress-strain diagram of collagen fibers: Frame tension of triangulated surfaces with fixed boundaries. Phys. Rev. E 2017, 95, 042411. [Google Scholar] [CrossRef] [PubMed]
- Koibuchi, H.; Sekino, H. Monte Carlo studies of a Finsler geometric surface model. Phys. A 2014, 393, 37–50. [Google Scholar] [CrossRef]
- Koibuchi, H.; Shobukhov, A. Internal phase transition induced by external forces in Finsler geometric model for membranes. Int. J. Mod. Phys. C 2016, 27, 1650042. [Google Scholar] [CrossRef]
- Koibuchi, H.; Bernard, C.; Chenal, J.M.; Diguet, G.; Sebald, G.; Cavaille, J.Y.; Takagi, T.; Chazeau, L. Monte Carlo study of rubber elasticity on the basis of Finsler geometry modeling. Symmetry 2019, 11, 1124. [Google Scholar] [CrossRef]
- Fung, Y.C. Biomechanics: Mechanical Properties of Living Tissues, 2nd ed.; Springer: New York, NY, USA, 1993. [Google Scholar]
- Cowin, S.; Doty, S. Tissue Mechanics; Springer: New York, NY, USA, 2007. [Google Scholar]
- Lanir, Y.; Fung, Y. Two-dimensional mechanical properties of rabbit skin—II. Experimental results. J. Biomech. 1974, 7, 171–182. [Google Scholar] [CrossRef]
- Annaidh, A.; Bruyère, K.; Destrade, M.; Gilchrist, M.; Maurini, C.; Otténio, M.; Saccomandi, G. Automated estimation of collagen fibre dispersion in the dermis and its contribution to the anisotropic behaviour of skin. Ann. Biomed. Eng. 2012, 40, 1666–1678. [Google Scholar] [CrossRef]
- Munoz, M.; Bea, J.; Rodríguez, J.; Ochoa, I.; Grasa, J.; del Palomar, A.; Zaragoza, P.; Osta, R.; Doblaré, M. An experimental study of the mouse skin behaviour: Damage and inelastic aspects. J. Biomech. 2008, 41, 93–99. [Google Scholar] [CrossRef]
- Tubon, J.D.T.; Moreno-Flores, O.; Sree, V.; Tepole, A. Anisotropic damage model for collagenous tissues and its application to model fracture and needle insertion mechanics. Biomech. Model. Mechanobiol. 2022, 21, 1857–1872. [Google Scholar]
- Yang, W.; Sherman, V.; Gludovatz, B.; Schaible, E.; Stewart, P.; Ritchie, R.; Meyers, M. On the tear resistance of skin. Nat. Commun. 2015, 6, 6649. [Google Scholar] [CrossRef] [PubMed]
- Joodaki, H.; Panzer, M. Skin mechanical properties and modeling: A review. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2018, 232, 323–343. [Google Scholar] [CrossRef] [PubMed]
- Oftadeh, R.; Connizzo, B.; Nia, H.; Ortiz, C.; Grodzinsky, A. Biological connective tissues exhibit viscoelastic and poroelastic behavior at different frequency regimes: Application to tendon and skin biophysics. Acta Biomater. 2018, 70, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Gasser, T. An irreversible constitutive model for fibrous soft biological tissue: A 3-D microfiber approach with demonstrative application to abdominal aortic aneurysms. Acta Biomater. 2011, 7, 2457–2466. [Google Scholar] [CrossRef] [PubMed]
- Rubin, M.; Bodner, S. A three-dimensional nonlinear model for dissipative response of soft tissue. Int. J. Solids Struct. 2002, 39, 5081–5099. [Google Scholar] [CrossRef]
- Lanir, Y. The rheological behavior of the skin: Experimental results and a structural model. Biorheology 1979, 16, 191–202. [Google Scholar] [CrossRef]
- Holzapfel, G.; Gasser, T.; Ogden, R. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 2000, 61, 1–48. [Google Scholar] [CrossRef]
- Balzani, D.; Neff, P.; Schröder, J.; Holzapfel, G. A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int. J. Solids Struct. 2006, 43, 6052–6070. [Google Scholar] [CrossRef]
- Holzapfel, G.; Ogden, R. Constitutive modelling of passive myocardium: A structurally based framework for material characterization. Philos. Trans. R. Soc. A 2009, 367, 3445–3475. [Google Scholar] [CrossRef]
- Nolan, D.; Gower, A.; Destrade, M.; Ogden, R.; McGarry, J. A robust anisotropic hyperelastic formulation for the modelling of soft tissue. J. Mech. Behav. Biomed. Mater. 2014, 39, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Hong, J.; Chen, W.; Weerasooriya, T. Mechanical response of pig skin under dynamic tensile loading. Int. J. Impact Eng. 2011, 38, 130–135. [Google Scholar] [CrossRef]
- Clayton, J.; Freed, A. A constitutive model for lung mechanics and injury applicable to static, dynamic, and shock loading. Mech. Soft Mater. 2020, 2, 3. [Google Scholar] [CrossRef]
- Holzapfel, G.; Simo, J. A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int. J. Solids Struct. 1996, 33, 3019–3034. [Google Scholar] [CrossRef]
- Annaidh, A.; Bruyère, K.; Destrade, M.; Gilchrist, M.; Otténio, M. Characterization of the anisotropic mechanical properties of excised human skin. J. Mech. Behav. Biomed. Mater. 2012, 5, 139–148. [Google Scholar] [CrossRef]
- Skalak, R.; Zargaryan, S.; Jain, R.; Netti, P.; Hoger, A. Compatibility and the genesis of residual stress by volumetric growth. J. Math. Biol. 1996, 34, 889–914. [Google Scholar] [CrossRef]
- Tong, P.; Fung, Y. The stress-strain relationship for the skin. J. Biomech. 1976, 9, 649–657. [Google Scholar] [CrossRef]
- Balzani, D.; Brinkhues, S.; Holzapfel, G. Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls. Comput. Methods Appl. Mech. Eng. 2012, 213, 139–151. [Google Scholar] [CrossRef]
- Gültekin, O.; Sommer, G.; Holzapfel, G. An orthotropic viscoelastic model for the passive myocardium: Continuum basis and numerical treatment. Comput. Methods Biomech. Biomed. Eng. 2016, 19, 1647–1664. [Google Scholar] [CrossRef]
- Gasser, T.; Ogden, R.; Holzapfel, G. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 2006, 3, 15–35. [Google Scholar] [CrossRef]
- Rodríguez, J.; Cacho, F.; Bea, J.; Doblaré, M. A stochastic-structurally based three dimensional finite-strain damage model for fibrous soft tissue. J. Mech. Phys. Solids 2006, 54, 864–886. [Google Scholar] [CrossRef]
- Simo, J. On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 1987, 60, 153–173. [Google Scholar] [CrossRef]
- Gültekin, O.; Hager, S.; Dal, H.; Holzapfel, G. Computational modeling of progressive damage and rupture in fibrous biological tissues: Application to aortic dissection. Biomech. Model. Mechanobiol. 2019, 18, 1607–1628. [Google Scholar] [CrossRef] [PubMed]
- Chittajallu, S.; Richhariya, A.; Tse, K.; Chinthapenta, V. A review on damage and rupture modelling for soft tissues. Bioengineering 2022, 9, 26. [Google Scholar] [CrossRef]
- Gurtin, M. Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Phys. D 1996, 92, 178–192. [Google Scholar] [CrossRef]
- Clayton, J. Differential Geometry and Kinematics of Continua; World Scientific: Singapore, 2014. [Google Scholar]
- Pereira, B.; Lucas, P.; Swee-Hin, T. Ranking the fracture toughness of thin mammalian soft tissues using the scissors cutting test. J. Biomech. 1997, 30, 91–94. [Google Scholar] [CrossRef]
- Li, W. Damage models for soft tissues: A survey. J. Med. Biol. Eng. 2016, 36, 285–307. [Google Scholar] [CrossRef]
- Clayton, J. Modeling lung tissue dynamics and injury under pressure and impact loading. Biomech. Model. Mechanobiol. 2020, 19, 2603–2626. [Google Scholar] [CrossRef]
- Deicke, A. Finsler spaces as non-holonomic subspaces of Riemannian spaces. J. Lond. Math. Soc. 1955, 30, 53–58. [Google Scholar] [CrossRef]
- Yano, K.; Davies, E. On the connection in Finsler space as an induced connection. Rend. Del Circ. Mat. Palermo 1954, 3, 409–417. [Google Scholar] [CrossRef]
- Yano, K.; Ishihara, S. Tangent and Cotangent Bundles: Differential Geometry; Marcel Dekker: New York, NY, USA, 1973. [Google Scholar]
- Ericksen, J. Tensor Fields. In Handbuch der Physik; Flugge, S., Ed.; Springer: Berlin, Germany, 1960; Volume III/1, pp. 794–858. [Google Scholar]
- Chern, S.S. Local equivalence and Euclidean connections in Finsler spaces. Sci. Rep. Natl. Tsing Hua Univ. Ser. A 1948, 5, 95–121. [Google Scholar]
- Lubarda, V.; Hoger, A. On the mechanics of solids with a growing mass. Int. J. Solids Struct. 2002, 39, 4627–4664. [Google Scholar] [CrossRef]
- Capriz, G. Continua with the Microstructure; Springer: New York, NY, USA, 1989. [Google Scholar]
- Clayton, J.; Knap, J. A phase field model of deformation twinning: Nonlinear theory and numerical simulations. Phys. D Nonlinear Phenom. 2011, 240, 841–858. [Google Scholar] [CrossRef]
- Spencer, A. Theory of invariants. In Continuum Physics; Eringen, A., Ed.; Academic Press: New York, NY, USA, 1971; Volume I, pp. 239–353. [Google Scholar]
- de León, M.; Epstein, M.; Jiménez, V. Material Geometry: Groupoids in Continuum Mechanics; World Scientific: Singapore, 2021. [Google Scholar]
- Clayton, J. Dynamic plasticity and fracture in high density polycrystals: Constitutive modeling and numerical simulation. J. Mech. Phys. Solids 2005, 53, 261–301. [Google Scholar] [CrossRef]
- Sree, V.; Ardekani, A.; Vlachos, P.; Tepole, A. The biomechanics of autoinjector-skin interactions during dynamic needle insertion. J. Biomech. 2022, 134, 110995. [Google Scholar] [CrossRef] [PubMed]
- Clayton, J.; Knap, J. A geometrically nonlinear phase field theory of brittle fracture. Int. J. Fract. 2014, 189, 139–148. [Google Scholar] [CrossRef]
- Holzapfel, G.; Ogden, R. On planar biaxial tests for anisotropic nonlinearly elastic solids. A continuum mechanical framework. Math. Mech. Solids 2009, 14, 474–489. [Google Scholar] [CrossRef]
- Latorre, M.; Montáns, F. On the tension-compression switch of the Gasser-Ogden-Holzapfel model: Analysis and a new pre-integrated proposal. J. Mech. Behav. Biomed. Mater. 2016, 57, 175–189. [Google Scholar] [CrossRef]
Parameter | Units | Definition | Value (1D) | Value (2D) |
---|---|---|---|---|
l | mm | length scale | 0.04 | 0.04 |
k | ⋯ | metric scaling factor | 0.2 | 0.2 |
m | ⋯ | metric scaling factor | ⋯ | 0.3 |
r | ⋯ | metric scaling exponent | 2 | 2 |
N/mm | shear modulus (axial 1D) | 0.2 | 0.2 | |
N/mm | bulk modulus () | ⋯ | 1.2 | |
⋯ | nonlinear elastic constant | 2.8 | 2.8 | |
⋯ | nonlinear elastic constant | ⋯ | 6 | |
⋯ | nonlinear elastic constant | 0.055 | 0.055 | |
⋯ | nonlinear elastic constant | ⋯ | 0.17 | |
⋯ | degradation exponent | 2 | 2 | |
⋯ | degradation exponent | ⋯ | 2 | |
mJ/mm | isotropic surface energy | 0.47 | 0.47 | |
⋯ | anisotropic energy factor | ⋯ | 1 | |
⋯ | anisotropic energy factor | ⋯ | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clayton, J.D. Generalized Finsler Geometry and the Anisotropic Tearing of Skin. Symmetry 2023, 15, 1828. https://doi.org/10.3390/sym15101828
Clayton JD. Generalized Finsler Geometry and the Anisotropic Tearing of Skin. Symmetry. 2023; 15(10):1828. https://doi.org/10.3390/sym15101828
Chicago/Turabian StyleClayton, John D. 2023. "Generalized Finsler Geometry and the Anisotropic Tearing of Skin" Symmetry 15, no. 10: 1828. https://doi.org/10.3390/sym15101828
APA StyleClayton, J. D. (2023). Generalized Finsler Geometry and the Anisotropic Tearing of Skin. Symmetry, 15(10), 1828. https://doi.org/10.3390/sym15101828