Remarks on Approximate Solutions to Difference Equations in Various Spaces
Abstract
:1. Introduction
- (i)
- and .
- (ii)
- and .
2. Auxiliary Results
- is unique if and only if the following condition is satisfied:
3. Auxiliary Information
3.1. 2-Normed Spaces
- if and only if vectors and are linearly dependent;
- ;
- ;
- .
- (A)
- ;
- (B)
- .
3.2. b-Metrics
- (a)
- if and only if ;
- (b)
- ;
- (c)
- sequence is convergent to an element if (then, we say that u is a limit of the sequence and denote it by ; such limit must be unique);
- sequence is Cauchy if
- is said to be complete if all Cauchy sequences in M are convergent to some elements of M.
- (a1)
- if and only if ;
- (b1)
- ;
- (c1)
- .
- (c1’)
- for every .
4. Extensions of Theorem 1
- (i)
- If and , then
- (ii)
- If W is complete, and , then there exists exactly one withMoreover,
- (iii)
- If W is complete and , then there is exactly one with
5. Stability in 2-Normed Spaces
- (i)
- (ii)
- If the 2-norm in W is complete, and , then there exists exactly one such thatMoreover, if , then (with respect to the 2-norm in W)
- (iii)
- If the 2-norm in W is complete and , then there exists exactly one such that
6. Stability in b-Metric Spaces
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hyers, D.H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Pólya, G.; Szegö, G. Aufgaben und Lehrsätze aus der Analysis I; Verlag von Julius Springer: Berlin/Heidelberg, Germany, 1925. [Google Scholar]
- Bourgin, D.G. Approximately isometric and multiplicative transformations on continuous function rings. Duke Math. J. 1949, 16, 385–397. [Google Scholar] [CrossRef]
- Bourgin, D.G. Classes of transformations and bordering transformations. Bull. Amer. Math. Soc. 1951, 57, 223–237. [Google Scholar] [CrossRef]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Rätz, J. On approximately additive mappings. In General Inequalities 2; Beckenbach, E.F., Ed.; Birkhäuser: Basel, Switzerland, 1980; pp. 233–251. [Google Scholar]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäuser: Boston, MA, USA, 1998. [Google Scholar]
- Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Moszner, Z. Stability has many names. Aequationes Math. 2016, 90, 983–999. [Google Scholar] [CrossRef]
- Brzdęk, J.; Eghbali, N. On approximate solutions of some delayed fractional differential equations. Appl. Math. Lett. 2016, 54, 31–35. [Google Scholar] [CrossRef]
- Brzdęk, J.; Popa, D.; Xu, B. Remarks on stability of the linear recurrence of higher order. Appl. Math. Lett. 2010, 23, 1459–1463. [Google Scholar] [CrossRef]
- Cǎdariu, L.; Radu, V. Fixed point methods for the generalized stability of functional equations in a single variable. Fixed Point Theory Appl. 2008, 2008, 749392. [Google Scholar] [CrossRef]
- Chudziak, J. Stability problem for the Goła̧b-Schinzel type functional equations. J. Math. Anal. Appl. 2008, 339, 454–460. [Google Scholar] [CrossRef]
- Gajda, Z. On stability of additive mappings. Int. J. Math. Math. Sci. 1991, 14, 431–434. [Google Scholar] [CrossRef]
- Li, Y.; Shen, Y. Hyers-Ulam stability of linear differential equations of second order. Appl. Math. Lett. 2010, 23, 306–309. [Google Scholar] [CrossRef]
- Moszner, Z. On the stability of functional equations. Aequationes Math. 2009, 77, 33–88. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Rassias, T.M. On a modified Hyers-Ulam sequence. J. Math. Anal. Appl. 1991, 158, 106–113. [Google Scholar] [CrossRef]
- Hayes, W.; Jackson, K.R. A survey of shadowing methods for numerical solutions of ordinary differential equations. Appl. Numer. Math. 2005, 53, 299–321. [Google Scholar] [CrossRef]
- Brzdęk, J.; Fechner, W.; Moslehian, M.S.; Sikorska, J. Recent developments of the conditional stability of the homomorphism equation. Banach J. Math. Anal. 2015, 9, 278–326. [Google Scholar] [CrossRef]
- Brzdęk, J.; El-hady, E.-S. On Ulam stability of functional equations in 2-normed spaces—A survey II. Symmetry 2022, 14, 1365. [Google Scholar]
- Lee, Y.-H. On the stability of the monomial functional equation. Bull. Korean Math. Soc. 2008, 45, 397–403. [Google Scholar] [CrossRef]
- Brzdęk, J. Note on stability of the Cauchy equation—An answer to a problem of Th.M. Rassias. Carpathian J. Math. 2014, 30, 47–54. [Google Scholar] [CrossRef]
- Rassias, J.M. On approximation of approximately linear mappings by linear mappings. J. Funct. Anal. 1982, 46, 126–130. [Google Scholar] [CrossRef]
- Rassias, J.M. On a new approximation of approximately linear mappings by linear mappings. Discuss. Math. 1985, 7, 193–196. [Google Scholar]
- El-hady, E.-S.; Brzdęk, J. Banach limit and Ulam stability of nonhomogeneous Cauchy equation. Mathematics 2022, 10, 1695. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Olko, J. Hyperstability of general linear functional equation. Aequationes Math. 2016, 90, 527–540. [Google Scholar] [CrossRef]
- Benzarouala, C.; Oubbi, L. Ulam-stability of a generalized linear functional equation, a fixed point approach. Aequationes Math. 2020, 94, 989–1000. [Google Scholar] [CrossRef]
- Phochai, T.; Saejung, S. The hyperstability of general linear equation via that of Cauchy equation. Aequationes Math. 2019, 93, 781–789. [Google Scholar] [CrossRef]
- Phochai, T.; Saejung, S. Hyperstability of generalised linear functional equations in several variables. Bull. Aust. Math. Soc. 2020, 102, 293–302. [Google Scholar] [CrossRef]
- Zhang, D. On hyperstability of generalised linear functional equations in several variables. Bull. Austral. Math. Soc. 2015, 92, 259–267. [Google Scholar] [CrossRef]
- Zhang, D. On Hyers-Ulam stability of generalized linear functional equation and its induced Hyers-Ulam programming problem. Aequationes Math. 2016, 90, 559–568. [Google Scholar] [CrossRef]
- Piszczek, M. Remark on hyperstability of the general linear equation. Aequationes Math. 2014, 88, 163–168. [Google Scholar] [CrossRef]
- Piszczek, M.; Szczawińska, J. Stability of the Drygas functional equation on restricted domain. Res. Math. 2015, 68, 11–24. [Google Scholar] [CrossRef]
- El-hady, E.-S. On stability of the functional equation of p-Wright affine functions in (2,α)-Banach spaces. J. Egypt. Math. Soc. 2019, 27, 1–9. [Google Scholar] [CrossRef]
- Wongkum, K.; Chaipunya, P.; Kumam, P. The generalized Ulam-Hyers-Rassias stability of quadratic mappings in modular spaces without D2-conditions. J. Funct. Spaces 2015, 2015, 461719. [Google Scholar]
- Bota, M.; Micula, S. Ulam-Hyers stability via fixed point results for special contractions in b-metric spaces. Symmetry 2022, 14, 2461. [Google Scholar] [CrossRef]
- Brzdęk, J.; Popa, D.; Xu, B. Selections of set-valued maps satisfying a linear inclusion in a single variable. Nonlinear Anal. 2011, 74, 324–330. [Google Scholar] [CrossRef]
- Cho, Y.C.; Rassias, T.M.; Saadati, R. Stability of Functional Equations in Random Normed Spaces; Springer: New York, NY, USA, 2013. [Google Scholar]
- El-Fassi, I.-I.; Elqorachi, E.; Khodaei, H. A Fixed point approach to stability of kth radical functional equation in non-Archimedean (n,β)-Banach spaces. Bull. Iran. Math. Soc. 2021, 47, 487–504. [Google Scholar] [CrossRef]
- Chung, S.C.; Park, W.G. Hyers-Ulam stability of functional equations in 2-Banach spaces. Int. J. Math. Anal. 2012, 6, 951–961. [Google Scholar]
- Ciepliński, K.; Xu, T.Z. Approximate multi-Jensen and multi-quadratic mappings in 2-Banach spaces. Carpathian J. Math. 2013, 29, 159–166. [Google Scholar] [CrossRef]
- El-Fassi, I.-I. Approximate solution of radical quartic functional equation related to additive mapping in 2-Banach spaces. J. Math. Anal. Appl. 2017, 455, 2001–2013. [Google Scholar] [CrossRef]
- El-hady, E.-S. On stability of the functional equation of p-Wright affine functions in 2-Banach spaces. In Ulam Type Stability; Springer: Cham, Switzerland, 2019; pp. 131–141. [Google Scholar]
- Gao, J. On the stability of the linear mapping in 2-normed spaces. Nonlinear Funct. Anal. Appl. 2009, 14, 801–807. [Google Scholar]
- Park, C.; Gordji, M.E.; Ghaemi, M.B.; Majani, H. Fixed points and approximately octic mappings in non-Archimedean 2-normed spaces. J. Inequal. Appl. 2012, 2012, 289. [Google Scholar] [CrossRef]
- Park, S.; Kim, C. The generalized Hyers-Ulam stability of additive functional inequalities in non-Archimedean 2-normed space. Korean J. Math. 2014, 22, 339–348. [Google Scholar]
- Park, W.G. Approximate additive mappings in 2-Banach spaces and related topics. J. Math. Anal. Appl. 2011, 376, 193–202. [Google Scholar] [CrossRef]
- Popa, D. Hyers-Ulam stability of the linear recurrence with constant coefficients. Adv. Differ. Equ. 2005, 2, 101–107. [Google Scholar] [CrossRef]
- Popa, D. Hyers-Ulam-Rassias stability of a linear recurrence. J. Math. Anal. Appl. 2005, 309, 591–597. [Google Scholar] [CrossRef]
- Brzdęk, J.; Wójcik, P. On approximate solutions of some difference equations. Bull. Austral. Math. Soc. 2017, 95, 476–481. [Google Scholar] [CrossRef]
- Freese, R.W.; Cho, Y.J. Geometry of Linear 2-Normed Spaces; Nova Science Publishers, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Gähler, S. 2-metrisch Räume und ihre topologische Struktur. Math. Nachr. 1963, 26, 115–148. [Google Scholar] [CrossRef]
- Gähler, S. Lineare 2-normierte Räumen. Math. Nachr. 1964, 28, 1–43. [Google Scholar] [CrossRef]
- Brzdęk, J.; Ciepliński, K. On a fixed point theorem in 2-Banach spaces and some of its applications. Acta Math. Sci. 2018, 38, 377–390. [Google Scholar] [CrossRef]
- Heinonen, J. Lectures on Analysis on Metric Spaces; Universitext; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Deza, M.M.; Deza, E. Encyclopedia of Distances; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Schroeder, V. Quasi-metric and metric spaces. Conform. Geom. Dyn. 2006, 10, 355–360. [Google Scholar] [CrossRef]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti. Sem. Math. Fis. Univ. Modena 1998, 46, 263–276. [Google Scholar]
- Paluszyński, M.; Stempak, K. On quasi-metric and metric spaces. Proc. Am. Math. Soc. 2009, 137, 4307–4312. [Google Scholar] [CrossRef]
- Boriceanu, M.; Bota, M.; Petruşel, A. Multivalued fractals in b-metric spaces. Cent. Eur. J. Math. 2010, 8, 367–377. [Google Scholar] [CrossRef]
- Maligranda, L. Tosio Aoki (1910–1989). In Proceedings of the International Symposium on Banach and Function Spaces II, Kitakyushu, Japan, 14–17 September 2006; Yokohama Publishers: Yokohama, Japan, 2008; pp. 1–23. [Google Scholar]
- Brzdęk, J. On Ulam stability with respect to 2-norm. Symmetry 2023, 15, 1664. [Google Scholar] [CrossRef]
- Brzdęk, J.; Ciepliński, K. A fixed point theorem in n-Banach spaces and Ulam stability. J. Math. Anal. Appl. 2019, 470, 632–646. [Google Scholar] [CrossRef]
- Chu, H.-Y.; Kim, A.; Park, J. On the Hyers-Ulam stabilities of functional equations on n–Banach spaces. Math. Nachr. 2016, 289, 1177–1188. [Google Scholar] [CrossRef]
- Ciepliński, K. On Ulam stability of a functional equation. Res. Math. 2020, 75, 1–11. [Google Scholar] [CrossRef]
- Misiak, A. n-Inner product spaces. Math. Nachr. 1989, 140, 299–319. [Google Scholar] [CrossRef]
- Schwaiger, J. On the existence of m-norms in vector spaces over valued fields. Aequationes Math. 2023. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzdęk, J. Remarks on Approximate Solutions to Difference Equations in Various Spaces. Symmetry 2023, 15, 1829. https://doi.org/10.3390/sym15101829
Brzdęk J. Remarks on Approximate Solutions to Difference Equations in Various Spaces. Symmetry. 2023; 15(10):1829. https://doi.org/10.3390/sym15101829
Chicago/Turabian StyleBrzdęk, Janusz. 2023. "Remarks on Approximate Solutions to Difference Equations in Various Spaces" Symmetry 15, no. 10: 1829. https://doi.org/10.3390/sym15101829
APA StyleBrzdęk, J. (2023). Remarks on Approximate Solutions to Difference Equations in Various Spaces. Symmetry, 15(10), 1829. https://doi.org/10.3390/sym15101829