Next Article in Journal
Transit f(Q,T) Gravity Model: Observational Constraints with Specific Hubble Parameter
Next Article in Special Issue
Exploring Fuzzy Triple Controlled Metric Spaces: Applications in Integral Equations
Previous Article in Journal
Radiomics and Its Feature Selection: A Review
Previous Article in Special Issue
Development of Fixed Point Results for αΓ-F-Fuzzy Contraction Mappings with Applications
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Fixed-Point Theorems on Fuzzy Bipolar b-Metric Spaces

1
Department of Mathematics, Panimalar Engineering College, Chennai 600123, Tamilnadu, India
2
Department of Mathematics, Faculty of Science, Ege University, Izmir 35100, Turkey
3
Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
4
School of Computer, Data and Mathematical Sciences, Western Sydney University, Sydney 2150, Australia
*
Author to whom correspondence should be addressed.
Symmetry 2023, 15(10), 1831; https://doi.org/10.3390/sym15101831
Submission received: 7 September 2023 / Revised: 22 September 2023 / Accepted: 23 September 2023 / Published: 27 September 2023
(This article belongs to the Special Issue Elementary Fixed Point Theory and Common Fixed Points II)

Abstract

:
In this manuscript, we establish some fixed-point theorems without continuity by using the triangular property on a fuzzy bipolar b -metric space as a generalized version and expansion of the well-known results. We also provide some examples and applications of the integral equation to the solution for our main results.

1. Introduction and Preliminaries

In 1960, the concept of continuous triangular norm was initiated by Schweizer and Sklar [1]. After that, Zadeh [2] initiated the theory of fuzzy sets in 1965. This concept of fuzziness was described by Kramosil and Michalek [3] in 1975 using the fuzzy metric space with the help of the continuous t-norm. Moreover, they were interested the notion of fuzziness to improve the well-known fixed-point results by Grabeic [4] in the sense of such spaces. After that, Gregori and Sapena [5] extended the fuzzy Banach contraction map to the fuzzy metric space. In 1994, the fuzzy metric space definition was modified by George and Veeramani [6]. Moreover, Shamas, Rehman, Aydi, Mahmood, and Ameer [7] described more results on the fixed-point results. Mutlu and Gurdal [8] introduced the concept of generalized metric space as a bipolar metric space. Bartwal, Dimri, and Prasad [9] proposed a fuzzy bipolar metric space and proved fixed-point results. Additional articles which relate to the concept can be seen in [10,11,12,13,14]. In this paper, we demonstrate some fixed-point results on a fuzzy bipolar b -metric space.
Now, we recall some basics
Definition 1
([9]). Let X ˜ and Y ˜ be two nonempty sets. A quadruple ( X ˜ , Y ˜ , Ϝ ϱ , ) is called a fuzzy bipolar metric space (FB-space), where ∗ and Ϝ ϱ are a continuous -norm and fuzzy set on X ˜ × Y ˜ × ( 0 , ) , respectively, such that for all , η , δ > 0 :
(FB1) 
Ϝ ϱ ( , x ^ , ) > 0 for all ( , x ^ ) X ˜ × Y ˜ ;
(FB2) 
Ϝ ϱ ( , x ^ , ) = 1 iff = x ^ for X ˜ and x ^ Y ˜ ;
(FB3) 
Ϝ ϱ ( , x ^ , ) = Ϝ ϱ ( x ^ , , ) for all , x ^ X ˜ Y ˜ ;
(FB4) 
Ϝ ϱ ( 1 , x ^ 2 , + η + δ ) Ϝ ϱ ( 1 , x ^ 1 , ) Ϝ ϱ ( 2 , x ^ 1 , η ) Ϝ ϱ ( 2 , x ^ 2 , δ ) for all 1 , 2 X ˜ and x ^ 1 , x ^ 2 Y ˜ ;
(FB5) 
Ϝ ϱ ( , x ^ , . ) : [ 0 , ) [ 0 , 1 ] is left continuous;
(FB6) 
Ϝ ϱ ( , x ^ , . ) is nondecreasing X ˜ and x ^ Y ˜ .
Definition 2.
Let X ˜ and Y ˜ be two nonempty sets and s 1 be a given real number. A five tuple ( X ˜ , Y ˜ , Ϝ ϱ , s , ) is called a fuzzy bipolar b -metric space (FBBMS), where ∗, Ϝ ϱ is a continuous -norm and fuzzy set on X ˜ × Y ˜ × ( 0 , ) , respectively, such that for all , η , δ > 0 :
(FBB1) 
Ϝ ϱ ( , x ^ , ) > 0 for all ( , x ^ ) X ˜ × Y ˜ ;
(FBB2) 
Ϝ ϱ ( , x ^ , ) = 1 iff = x ^ for X ˜ and x ^ Y ˜ ;
(FBB3) 
Ϝ ϱ ( , x ^ , ) = Ϝ ϱ ( x ^ , , ) for all , x ^ X ˜ Y ˜ ;
(FBB4) 
Ϝ ϱ ( 1 , x ^ 2 , s ( + η + δ ) ) Ϝ ϱ ( 1 , x ^ 1 , ) Ϝ ϱ ( 2 , x ^ 1 , η ) Ϝ ϱ ( 2 , x ^ 2 , δ ) for all 1 , 2 X ˜ and x ^ 1 , x ^ 2 Y ˜ ;
(FBB5) 
Ϝ ϱ ( , x ^ , . ) : [ 0 , ) [ 0 , 1 ] is left continuous;
(FBB6) 
Ϝ ϱ ( , x ^ , . ) is nondecreasing for all X ˜ and x ^ Y ˜ .
Definition 3.
Let ( X ˜ , Y ˜ , Ϝ ϱ , s , ) be a fuzzy bipolar b -metric space.
(A1) 
A point X ˜ Y ˜ is called a left, right and central point if X ˜ , Y ˜ , and both hold. Similarly, a sequence { α } , { x ^ α } on a set X ˜ , Y ˜ are said to be a left and right sequence, respectively.
(A2) 
A sequence { α } is convergent to a point ♭ if and only if { α } is a left sequence, ♭ is a right point, and lim α Ϝ ϱ ( α , , ) = 1 for > 0 , or { α } is a right sequence, ♭ is a left point, and lim α Ϝ ϱ ( , α , ) = 1 for > 0 .
(A3) 
A bisequence ( { α } , { x ^ α } ) is a sequence on the set X ˜ × Y ˜ . If the sequences { α } and { x ^ α } are convergent, then the bisequence ( { α } , { x ^ α } ) is said to be convergent. ( { α } , { x ^ α } ) is a Cauchy bisequence if lim α , m Ϝ ϱ ( α , x ^ m , ) = 1 for > 0 .
(A4) 
A fuzzy bipolar b -metric space is called complete if every Cauchy bisequence is convergent.
Lemma 1.
Let ( X ˜ , Y ˜ , Ϝ ϱ , s , ) be a fuzzy bipolar b -metric space. If u X ˜ Y ˜ is a limit of a sequence, then it is a unique limit of the sequence.
Definition 4.
Let ( X ˜ , Y ˜ , Ϝ ϱ , s , ) be a fuzzy bipolar b -metric space. The fuzzy bipolar b -metric space Ϝ ϱ is b -triangular(BT) if
1 Ϝ ϱ ( 1 , x ^ 2 , ) 1 s 1 Ϝ ϱ ( 1 , x ^ 1 , ) 1 + s 1 Ϝ ϱ ( 2 , x ^ 1 , ) 1 + s 1 Ϝ ϱ ( 2 , x ^ 2 , ) 1
Lemma 2.
A fuzzy bipolar b -metric space Ϝ ϱ is b -triangular.
Proof. 
Define Ϝ ϱ : X ˜ × Y ˜ × ( 0 , ) [ 0 , 1 ] given by
Ϝ ϱ = + | x ^ | 2
for all > 0 , X ˜ and x ^ Y ˜ .
Now,
1 Ϝ ϱ ( 1 , x ^ 2 , ) 1 = | 1 x ^ 2 | 2 = | 1 x ^ 1 + x ^ 1 2 + 2 x ^ 2 | 2 3 | 1 x ^ 1 | 2 + 3 | 2 x ^ 1 | 2 + 3 | 2 x ^ 2 | 2 = 3 1 Ϝ ϱ ( 1 , x ^ 1 , ) 1 + 3 1 Ϝ ϱ ( 2 , x ^ 1 , ) 1 + 3 1 Ϝ ϱ ( 2 , x ^ 2 , ) 1 ,
which implies that
1 Ϝ ϱ ( 1 , x ^ 2 , ) 1 3 1 Ϝ ϱ ( 1 , x ^ 1 , ) 1 + 3 1 Ϝ ϱ ( 2 , x ^ 1 , ) 1 + 3 1 Ϝ ϱ ( 2 , x ^ 2 , ) 1 , for > 0 .
Hence, the fuzzy bipolar b -metric Ϝ ϱ is b -triangular. □
In this manuscript, we prove fixed-point results on FBBMS with some applications.

2. Main Result

Now, we prove our first result:
Theorem 1.
Let ( X ˜ , Y ˜ , Ϝ ϱ , s , ) be a complete FBBMS with constant s 1 and the mapping R ˇ : X ˜ Y ˜ X ˜ Y ˜ such that
(B1) 
R ˇ ( X ˜ ) X ˜ and R ˇ ( Y ˜ ) Y ˜ ;
(B2) 
1 Ϝ ϱ ( R ˇ ( ) , R ˇ ( x ^ ) , ) 1 j 1 Ϝ ϱ ( , x ^ , ) 1 , for all > 0 , j ( 0 , 1 s ) with s j < 1 ;
(B3) 
Ϝ ϱ is BT.
Then, R ˇ has a UFP (unique fixed point).
Proof. 
Fix 0 X ˜ and x ^ 0 Y ˜ and assume that R ˇ ( α ) = α + 1 and R ˇ ( x ^ α ) = x ^ α + 1 for all α N { 0 } . Then,
1 Ϝ ϱ ( α , x ^ α , ) 1 = 1 Ϝ ϱ ( R ˇ ( α 1 ) , R ˇ ( x ^ α 1 ) , ) 1 j 1 Ϝ ϱ ( α 1 , x ^ α 1 , ) 1 = j 1 Ϝ ϱ ( R ˇ α 1 , R ˇ x ^ α 1 , ) 1 j α 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 .
Letting α , we derive
lim α Ϝ ϱ ( α , x ^ α , ) = 1 , for > 0 .
1 Ϝ ϱ ( α + 1 , x ^ α , ) 1 = 1 Ϝ ϱ ( R ˇ ( α ) , R ˇ ( x ^ α 1 ) , ) 1 j 1 Ϝ ϱ ( α , x ^ α 1 , ) 1 = j 1 Ϝ ϱ ( R ˇ α 1 , R ˇ x ^ α 2 , ) 1 j α 1 Ϝ ϱ ( 1 , x ^ 0 , ) 1 .
Letting α , we derive
lim α Ϝ ϱ ( α + 1 , x ^ α , ) = 1 , for > 0 .
Let α < m , for α , m N . Then, since Ϝ ϱ is BT, we obtain
1 Ϝ ϱ ( α , x ^ m , ) 1 s 1 Ϝ ϱ ( α , x ^ α , ) 1 + s 1 Ϝ ϱ ( α + 1 , x ^ α , ) 1 + s 1 Ϝ ϱ ( α + 1 , x ^ m , ) 1 s 1 Ϝ ϱ ( α , x ^ α , ) 1 + s 1 Ϝ ϱ ( α + 1 , x ^ α , ) 1 + + s m 1 Ϝ ϱ ( m 1 , x ^ m 1 , ) 1 + s m 1 Ϝ ϱ ( m , x ^ m 1 , ) 1 + s m 1 Ϝ ϱ ( m , x ^ m , ) 1 s j α 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s j α 1 Ϝ ϱ ( 1 , x ^ 0 , ) 1 + + s m j m 1 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s m j m 1 Ϝ ϱ ( 1 , x ^ 0 , ) 1 + s m j m 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 s j α ( 1 + s j + s 2 j 2 + + s m 1 j m α ) 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s j α ( 1 + s j + s 2 j 2 + + s m 1 j m α ) 1 Ϝ ϱ ( 1 , x ^ 0 , ) 1 s j α 1 s j 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s j α 1 s j 1 Ϝ ϱ ( 1 , x ^ 0 , ) 1 .
Since s j < 1 and α , m , we obtain
lim α , m Ϝ ϱ ( α , x ^ m , ) = 1 , for > 0 .
Thus, ( { α } , { x ^ α } ) is a Cauchy bisequence. Since ( X ˜ , Y ˜ , Ϝ ϱ , s , ) is a complete, it follows that the bisequence ( { α } , { x ^ α } ) is convergent. We know that the bisequence ( { α } , { x ^ α } ) is a biconvergent sequence. Then, { α } u and { x ^ α } u for all u X ˜ Y ˜ . By Lemma 1, both sequences { α } and { x ^ α } have a unique limit. Since Ϝ ϱ is BT, we prove that
1 Ϝ ϱ ( R ˇ ( u ) , u α , ) 1 s 1 Ϝ ϱ ( R ˇ ( u ) , R ˇ ( x ^ α ) , ) 1 + s 1 Ϝ ϱ ( R ˇ ( α ) , R ˇ ( x ^ α ) , ) 1 + s 1 Ϝ ϱ ( R ˇ ( α ) , u α , ) 1 s j 1 Ϝ ϱ ( u , x ^ α , ) 1 + s j 1 Ϝ ϱ ( α , x ^ α , ) 1 + s j 1 Ϝ ϱ ( α , u α 1 , ) 1 .
Letting α , we obtain
Ϝ ϱ ( R ˇ ( u ) , u , ) = 1 .
Therefore, R ˇ ( u ) = u . Let v X ˜ Y ˜ be another fixed point of R ˇ . Then,
1 Ϝ ϱ ( u , v , ) 1 = 1 Ϝ ϱ ( R ˇ ( u ) , R ˇ ( v ) , ) 1 j 1 Ϝ ϱ ( u , v , ) 1 .
Since j ( 0 , 1 s ) ,
Ϝ ϱ ( u , v , ) = 1 .
Hence, u = v . □
Example 1.
Consider X ˜ = [ 0 , 1 ] and Y ˜ = { 0 } N { 1 } equipped with a continuous -norm. Define Ϝ ϱ = + | x ^ | 2 , > 0 , X ˜ , and x ^ Y ˜ . Clearly, ( X ˜ , Y ˜ , Ϝ ϱ , s , ) is a complete FBBMS. Define R ˇ : X ˜ Y ˜ X ˜ Y ˜ given by
R ˇ ( u ) = u + 4 5 , if u [ 0 , 1 ] , 0 , if u N { 1 } ,
u X ˜ Y ˜ . Then,
1 Ϝ ϱ ( R ˇ , R ˇ x ^ , ) 1 = | R ˇ R ˇ x ^ | 2 = | x ^ | 2 25 | x ^ | 2 2 = 1 2 1 Ϝ ϱ ( , x ^ , ) 1 .
Hence, all the axioms of Theorem 1 are fulfilled with j = 1 2 ( 0 , 1 ) . Therefore, R ˇ has a UFP , i.e., = 1 .
Theorem 2.
Let ( X ˜ , Y ˜ , Ϝ ϱ , s , ) be a complete FBBMS with constant s 1 and the mapping R ˇ : X ˜ Y ˜ X ˜ Y ˜ such that
(C1) 
R ˇ ( X ˜ ) Y ˜ and R ˇ ( Y ˜ ) X ˜ ;
(C2) 
1 Ϝ ϱ ( R ˇ ( ) , R ˇ ( x ^ ) , ) 1 j 1 Ϝ ϱ ( , x ^ , ) 1 , for all > 0 , j ( 0 , 1 s ) with s 2 j 2 < 1 ;
(C3) 
Ϝ ϱ is BT.
Then, R ˇ has a UFP .
Proof. 
Fix 0 X ˜ and consider R ˇ ( α ) = x ^ α and R ˇ ( x ^ α ) = α + 1 , α N { 0 } . Then,
1 Ϝ ϱ ( α , x ^ α , ) 1 = 1 Ϝ ϱ ( R ˇ ( x ^ α 1 ) , R ˇ ( α ) , ) 1 j 1 Ϝ ϱ ( α , x ^ α 1 , ) 1 = j 1 Ϝ ϱ ( R ˇ x ^ α 1 , R ˇ α 1 , ) 1 j 2 α 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 .
Letting α , we derive
lim α Ϝ ϱ ( α , x ^ α , ) = 1 , for > 0 .
1 Ϝ ϱ ( α + 1 , x ^ α , ) 1 = 1 Ϝ ϱ ( R ˇ ( x ^ α ) , R ˇ ( α ) , ) 1 j 1 Ϝ ϱ ( α , x ^ α 1 , ) 1 = j 1 Ϝ ϱ ( R ˇ x ^ α 1 , R ˇ α 1 , ) 1 j 2 α + 1 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 .
Letting α , we derive
lim α Ϝ ϱ ( α + 1 , x ^ α , ) = 1 , for > 0 .
Let α < m , for α , m N . Then, since Ϝ ϱ is BT, we obtain
1 Ϝ ϱ ( α , x ^ m , ) 1 s 1 Ϝ ϱ ( α , x ^ α , ) 1 + s 1 Ϝ ϱ ( α + 1 , x ^ α , ) 1 + s 1 Ϝ ϱ ( α + 1 , x ^ m , ) 1 s 1 Ϝ ϱ ( α , x ^ α , ) 1 + s 1 Ϝ ϱ ( α + 1 , x ^ α , ) 1 + + s m 1 Ϝ ϱ ( m 1 , x ^ m 1 , ) 1 + s m 1 Ϝ ϱ ( m , x ^ m 1 , ) 1 + s m 1 Ϝ ϱ ( m , x ^ m , ) 1 s j 2 α 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s j 2 α + 1 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + + s m j 2 m 2 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s m j 2 m 1 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s m j 2 m 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 s j 2 α ( 1 + s 2 j 2 + + s m 1 j 2 m 2 α ) 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s j 2 α + 1 ( 1 + s 2 j 2 + + s m 1 j 2 m 2 α 2 ) 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 s j 2 α 1 s 2 j 2 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s j 2 α + 1 1 s 2 j 2 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 .
Since s 2 j 2 < 1 , letting α , m , we obtain
lim α , m Ϝ ϱ ( α , x ^ m , ) = 1 , for > 0 .
Thus, ( { α } , { x ^ α } ) is a Cauchy bisequence. Since ( X ˜ , Y ˜ , Ϝ ϱ , s , ) is a complete, it follows that the bisequence ( { α } , { x ^ α } ) is convergent. We know that the bisequence ( { α } , { x ^ α } ) is a biconvergent sequence. Then, { α } u and { x ^ α } u for all u X ˜ Y ˜ . By Lemma 1, both sequences { α } and { x ^ α } have a unique limit.
Now, we show that u X ˜ Y ˜ is a fixed point of R ˇ . Since Ϝ ϱ is BT, we prove that
1 Ϝ ϱ ( R ˇ ( u ) , u α , ) 1 s 1 Ϝ ϱ ( R ˇ ( u ) , R ˇ ( x ^ α ) , ) 1 + s 1 Ϝ ϱ ( R ˇ ( α ) , R ˇ ( x ^ α ) , ) 1 + s 1 Ϝ ϱ ( R ˇ ( α ) , u α , ) 1 s j 1 Ϝ ϱ ( u , x ^ α , ) 1 + s j 1 Ϝ ϱ ( α , x ^ α , ) 1 + s j 1 Ϝ ϱ ( α , u α 1 , ) 1 .
Letting α , we obtain
Ϝ ϱ ( R ˇ ( u ) , u , ) = 1 .
Therefore, R ˇ ( u ) = u . Let v X ˜ Y ˜ be another fixed point of R ˇ . Then,
1 Ϝ ϱ ( u , v , ) 1 = 1 Ϝ ϱ ( R ˇ ( u ) , R ˇ ( v ) , ) 1 j 1 Ϝ ϱ ( u , v , ) 1 .
Since j ( 0 , 1 s ) ,
Ϝ ϱ ( u , v , ) = 1 .
Hence, u = v . □
Example 2.
Let X ˜ = { 0 , 1 , 2 , 7 } and Y ˜ = { 0 , 1 4 , 1 2 , 5 6 , 3 } be equipped with a continuous ⊺-norm. Define Ϝ ϱ = + | x ^ | 2 , > 0 , X ˜ , and x ^ Y ˜ . Clearly, ( X ˜ , Y ˜ , Ϝ ϱ , s , ) is a complete FBBMS. Define R ˇ : X ˜ Y ˜ X ˜ Y ˜ given by
R ˇ ( u ) = u + 5 6 , if u { 0 , 1 , 2 , 7 } , 0 , if u { 1 4 , 1 2 , 3 } .
Then,
1 Ϝ ϱ ( R ˇ , R ˇ x ^ , ) 1 = | R ˇ R ˇ x ^ | 2 = | x ^ | 2 36 | x ^ | 2 2 = 1 2 1 Ϝ ϱ ( , x ^ , ) 1 .
Hence, all the axioms of Theorem 2 are fulfilled with j = 1 2 ( 0 , 1 ) . Therefore, R ˇ has a UFP , i.e., = 1 .
Theorem 3.
Let R ˇ : ( X ˜ , Y ˜ , Ϝ ϱ , s , ) ( X ˜ , Y ˜ , Ϝ ϱ , s , ) , where ( X ˜ , Y ˜ , Ϝ ϱ , s , ) is a complete FBBMS with s 1 , and let h ( 0 , 1 2 ) such that
(H1) 
R ˇ ( X ˜ ) Y ˜ and R ˇ ( Y ˜ ) X ˜ ;
(H2) 
1 Ϝ ϱ ( R ˇ x ^ , R ˇ , ) 1 h 1 Ϝ ϱ ( , x ^ , ) 1 + γ 1 Ϝ ϱ ( , R ˇ , ) 1 + ı 1 Ϝ ϱ ( R ˇ x ^ , x ^ , ) 1
hold for all X ˜ and x ^ Y ˜ , where h , γ , ı 0 such that h + γ + ı < 1 and s h + ı 1 γ h + γ 1 ı < 1 ;
(H3) 
Ϝ ϱ is BT.
Then, R ˇ has a UFP .
Proof. 
Let 0 X ˜ , and for each α 0 , we define x ^ α = R ˇ α and α + 1 = R ˇ x ^ α . Then,
1 Ϝ ϱ ( α , x ^ α , ) 1 = 1 Ϝ ϱ ( R ˇ x ^ α 1 , R ˇ α , ) 1 h 1 Ϝ ϱ ( α , x ^ α 1 , ) 1 + γ 1 Ϝ ϱ ( α , R ˇ α , ) 1 + ı 1 Ϝ ϱ ( R ˇ x ^ α 1 , x ^ α 1 , ) 1 = h 1 Ϝ ϱ ( α , x ^ α 1 , ) 1 + γ 1 Ϝ ϱ ( α , x ^ α , ) 1 + ı 1 Ϝ ϱ ( α , x ^ α 1 , ) 1
for all integers α 1 . Then,
1 Ϝ ϱ ( α , x ^ α , ) 1 h + ı 1 γ 1 Ϝ ϱ ( α , x ^ α 1 , ) 1 ,
and
1 Ϝ ϱ ( α , x ^ α 1 , ) 1 = 1 Ϝ ϱ ( R ˇ x ^ α 1 , R ˇ α 1 , ) 1 h 1 Ϝ ϱ ( α 1 , x ^ α 1 , ) 1 + γ 1 Ϝ ϱ ( α 1 , R ˇ α 1 , ) 1 + ı 1 Ϝ ϱ ( R ˇ x ^ α 1 , x ^ α 1 , ) 1 = h 1 Ϝ ϱ ( α 1 , x ^ α 1 , ) 1 + γ 1 Ϝ ϱ ( α 1 , x ^ α 1 , ) 1 + ı 1 Ϝ ϱ ( α , x ^ α 1 , ) 1 ,
so
1 Ϝ ϱ ( α , x ^ α 1 , ) 1 h + γ 1 ı 1 Ϝ ϱ ( α 1 , x ^ α 1 , ) 1 .
Consequently,
1 Ϝ ϱ ( α , x ^ α , ) 1 j α 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 , 1 Ϝ ϱ ( α + 1 , x ^ α , ) 1 j α h + γ 1 ı 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 ,
for all α 0 , where j : = h + ı 1 γ h + γ 1 ı . For each m > α ,
1 Ϝ ϱ ( α , x ^ m , ) 1 s ( 1 Ϝ ϱ ( α , x ^ α , ) 1 + 1 Ϝ ϱ ( α + 1 , x ^ α , ) 1 + 1 Ϝ ϱ ( α + 1 , x ^ m , ) 1 ) s j α + s j α h + γ 1 ı 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s 1 Ϝ ϱ ( α + 1 , x ^ m , ) 1 ( s j α + s j α h + γ 1 ı + + s m j m 1 h + γ 1 ı + s m j m ) 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 = ( s j α + + s m j m ) 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s j α h + γ 1 ı + + s m j m 1 h + γ 1 ı 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 s j α 1 s j 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s j α 1 s j h + γ 1 ı 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 .
Since s j < 1 and α , m , we obtain
lim α , m Ϝ ϱ ( α , x ^ m , ) = 1 , for > 0 .
Consequently, for each m < α
1 Ϝ ϱ ( α , x ^ m , ) 1 s ( 1 Ϝ ϱ ( m + 1 , x ^ m , ) 1 + 1 Ϝ ϱ ( m + 1 , x ^ m + 1 ) 1 + 1 Ϝ ϱ ( α , x ^ m + 1 ) 1 ) ( s j m h + γ 1 ı + s j m + 1 ) 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s 1 Ϝ ϱ ( α , x ^ m + 1 , ) 1 ( s j m h + γ 1 ı + s j m + 1 + + s α j α 1 h + γ 1 ı + s α j α ) 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 s j m h + γ 1 ı + + s α j α 1 h + γ 1 ı 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + ( s j m + 1 + + s α j α ) 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 s j m 1 s j 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 h + γ 1 ı + s j m + 1 1 s j 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 .
Since s j < 1 and α , m , we obtain
lim α , m Ϝ ϱ ( α , x ^ m , ) = 1 , for > 0 .
Therefore, ( { α } , { x ^ m } ) is a Cauchy bisequence. Since ( X ˜ , Y ˜ , Ϝ ϱ , s , ) is complete, { α } ϖ , { x ^ m } ϖ , where ϖ X ˜ Y ˜ . Moreover,
{ R ˇ α } = { x ^ α } ϖ .
On the other hand,
1 Ϝ ϱ ( R ˇ ϖ , R ˇ α , ) 1 h 1 Ϝ ϱ ( α , ϖ , ) 1 + γ 1 Ϝ ϱ ( α , R ˇ α , ) 1 + ı 1 Ϝ ϱ ( R ˇ ϖ , ϖ , ) 1 ,
which in turn implies that 1 Ϝ ϱ ( R ˇ ϖ , ϖ , ) 1 1 1 ( γ + ı ) 1 Ϝ ϱ ( R ˇ ϖ , ϖ , ) 1 . Hence, R ˇ ϖ = ϖ . Let ϱ be another fixed point of R ˇ . Then,
1 Ϝ ϱ ( ϖ , ϱ , ) 1 = 1 Ϝ ϱ ( R ˇ ϖ , R ˇ ϱ , ) 1 h 1 Ϝ ϱ ( ϱ , ϖ , ) 1 + γ 1 Ϝ ϱ ( ϖ , R ˇ ϖ , ) 1 + ı 1 Ϝ ϱ ( R ˇ ϱ , ϱ , ) 1 = h 1 Ϝ ϱ ( ϖ , ϱ , ) 1 .
Consequently ϖ = ϱ . □
Next, we present a result which uses a Kannan type contraction [15].
Theorem 4.
Let R ˇ : ( X ˜ , Y ˜ , Ϝ ϱ , s , ) ( X ˜ , Y ˜ , Ϝ ϱ , s , ) , where ( X ˜ , Y ˜ , Ϝ ϱ , s , ) is a complete FBBMS with s 1 , and let h ( 0 , 1 2 ) such that the inequality
1 Ϝ ϱ ( R ˇ x ^ , R ˇ , ) 1 h 1 Ϝ ϱ ( , R ˇ , ) 1 + 1 Ϝ ϱ ( R ˇ x ^ , x ^ , ) 1
holds for all X ˜ and x ^ Y ˜ with s j 2 < 1 . Then, the function R ˇ : X ˜ Y ˜ X ˜ Y ˜ has a UFP .
Proof. 
Let 0 X ˜ , and for each α 0 , we define x ^ α = R ˇ α and α + 1 = R ˇ x ^ α . Then,
1 Ϝ ϱ ( α , x ^ α , ) 1 = 1 Ϝ ϱ ( R ˇ x ^ α 1 , R ˇ α , ) 1 h 1 Ϝ ϱ ( α , R ˇ α , ) 1 + 1 Ϝ ϱ ( R ˇ x ^ α 1 , x ^ α 1 , ) 1 = h 1 Ϝ ϱ ( α , x ^ α , ) 1 + 1 Ϝ ϱ ( α , x ^ α 1 , ) 1
for all integers α 1 . Then,
1 Ϝ ϱ ( α , x ^ α , ) 1 h 1 h 1 Ϝ ϱ ( α , x ^ α 1 , ) 1 ,
and
1 Ϝ ϱ ( α , x ^ α 1 , ) 1 = 1 Ϝ ϱ ( R ˇ x ^ α 1 , R ˇ α 1 , ) 1 h 1 Ϝ ϱ ( α 1 , R ˇ α 1 , ) 1 + 1 Ϝ ϱ ( R ˇ x ^ α 1 , x ^ α 1 , ) 1 = h 1 Ϝ ϱ ( α 1 , x ^ α 1 , ) 1 + 1 Ϝ ϱ ( α , x ^ α 1 , ) 1 ,
so
1 Ϝ ϱ ( α , x ^ α 1 , ) 1 h 1 h 1 Ϝ ϱ ( α 1 , x ^ α 1 , ) 1 .
If we take j : = h 1 h , then we have j ( 0 , 1 ) since h ( 0 , 1 2 ) . Now,
1 Ϝ ϱ ( α , x ^ α , ) 1 j 2 α 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 , 1 Ϝ ϱ ( α , x ^ α 1 , ) 1 j 2 α 1 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 .
For each m > α ,
1 Ϝ ϱ ( α , x ^ m , ) 1 s ( 1 Ϝ ϱ ( α , x ^ α , ) 1 + 1 Ϝ ϱ ( α + 1 , x ^ α , ) 1 + 1 Ϝ ϱ ( α + 1 , x ^ m , ) 1 ) ( s j 2 α + s j 2 α + 1 ) 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s 1 Ϝ ϱ ( α + 1 , x ^ m , ) 1 ( s j 2 α + s j 2 α + 1 + + s m j 2 m 1 + s m j 2 m ) 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 = ( s j 2 α + + s m j 2 m ) 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + ( s j 2 α + 1 + + s m j 2 m 1 ) 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 s j 2 α 1 s j 2 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s j 2 α + 1 1 s j 2 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 .
Since s j 2 < 1 and α , m , we obtain
lim α , m Ϝ ϱ ( α , x ^ m , ) = 1 , for > 0 .
Consequently, for each m < α
1 Ϝ ϱ ( α , x ^ m , ) 1 s ( 1 Ϝ ϱ ( m + 1 , x ^ m , ) 1 + 1 Ϝ ϱ ( m + 1 , x ^ m + 1 ) 1 + 1 Ϝ ϱ ( α , x ^ m + 1 ) 1 ) ( s j 2 m + 1 + s j 2 m + 2 ) 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s 1 Ϝ ϱ ( α , x ^ m + 1 , ) 1 ( s j 2 m + 1 + s j 2 m + 2 + + s α j 2 α ) 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s α 1 Ϝ ϱ ( α , x ^ α , ) 1 ( s j 2 m + 1 + s j 2 m + 2 + + s α j 2 α + 1 ) 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 = ( s j 2 m + 1 + + s α j 2 α + 1 ) 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + ( s j 2 m + 2 + + s α j 2 α ) 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 s j 2 m + 1 1 s j 2 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 + s j 2 m + 2 1 s j 2 1 Ϝ ϱ ( 0 , x ^ 0 , ) 1 .
Since s j 2 < 1 , as α , m , we obtain
lim α , m Ϝ ϱ ( α , x ^ m , ) = 1 , for > 0 .
Therefore, ( { α } , { x ^ m } ) is a Cauchy bisequence. Since ( X ˜ , Y ˜ , Ϝ ϱ , s , ) is complete, { α } ϖ , { x ^ m } ϖ , where ϖ X ˜ Y ˜ . Hence,
{ R ˇ α } = { x ^ α } ϖ .
On the other hand,
1 Ϝ ϱ ( R ˇ ϖ , R ˇ α , ) 1 h 1 Ϝ ϱ ( α , R ˇ α , ) 1 + 1 Ϝ ϱ ( R ˇ ϖ , ϖ , ) 1 = h 1 Ϝ ϱ ( α , x ^ α , ) 1 + 1 Ϝ ϱ ( R ˇ ϖ , ϖ , ) 1 ;
which in turn implies that 1 Ϝ ϱ ( R ˇ ϖ , ϖ , ) 1 h 1 Ϝ ϱ ( R ˇ ϖ , ϖ , ) 1 . Hence, R ˇ ϖ = ϖ . Let ϱ be another fixed point of R ˇ . Then,
1 Ϝ ϱ ( ϖ , ϱ , ) 1 = 1 Ϝ ϱ ( R ˇ ϖ , R ˇ ϱ , ) 1 h ( 1 Ϝ ϱ ( ϖ , R ˇ ϖ , ) 1 + 1 Ϝ ϱ ( R ˇ ϱ , ϱ , ) 1 ) = h ( 1 Ϝ ϱ ( ϖ , ϖ , ) 1 + 1 Ϝ ϱ ( ϱ , ϱ , ) 1 ) = 0 .
Consequently, ϖ = ϱ . □

3. Applications

3.1. Application I

Consider the integral equation as follows.
Theorem 5.
Let us consider the integral equation
( j ) = ϱ ( ȷ ) + E 1 E 2 Ω ( ȷ , x ^ , ( x ^ ) ) d x ^ , ȷ E 1 E 2 ,
where E 1 E 2 is a Lebesgue measurable set. Suppose
(T1) 
Ω : ( E 1 2 E 2 2 ) × [ 0 , ) [ 0 , ) and b L ( E 1 ) L ( E 2 ) ;
(T2) 
There is a continuous function θ : E 1 2 E 2 2 [ 0 , ) and j ( 0 , 1 ) satisfying
| Ω ( ȷ , x ^ , ( x ^ ) ) Ω ( ȷ , x ^ , x ^ ( x ^ ) ) | j θ ( ȷ , x ^ ) ( | ( ȷ ) x ^ ( ȷ ) | ) ,
for ȷ , x ^ E 1 2 E 2 2 ;
(T3) 
E 1 E 2 θ ( ȷ , x ^ ) d x ^ 1 .
Then, the integral equation has a unique solution in L ( E 1 ) L ( E 2 ) .
Proof. 
Consider X ˜ = L ( E 1 ) and Y ˜ = L ( E 2 ) two normed linear spaces, where E 1 , E 2 are Lebesgue measurable sets and m ( E 1 E 2 ) < .
  • Let Ϝ ϱ : X ˜ × Y ˜ × ( 0 , ) [ 0 , 1 ] given by
    Ϝ ϱ ( , x ^ , ) = + | x ^ | 2 .
    for all X ˜ , x ^ Y ˜ . Then, ( X ˜ , Y ˜ , Ϝ ϱ , s , ) is a complete FBBMS.
  • Define R ˇ : L ( E 1 ) L ( E 2 ) L ( E 1 ) L ( E 2 ) given by
    R ˇ ( ( ȷ ) ) = ϱ ( ȷ ) + E 1 E 2 Ω ( ȷ , x ^ , ( x ^ ) ) d x ^ , ȷ E 1 E 2 .
Now,
1 Ϝ ϱ ( R ˇ ( ȷ ) , R ˇ x ^ ( ȷ ) , ) 1 = | R ˇ ( ȷ ) R ˇ x ^ ( ȷ ) | 2 = | ϱ ( ȷ ) + E 1 E 2 Ω ( ȷ , x ^ , ( x ^ ) ) d x ^ ϱ ( ȷ ) + E 1 E 2 Ω ( ȷ , x ^ , ( x ^ ) ) d x ^ | 2 = | E 1 E 2 ( Ω ( ȷ , x ^ , ( x ^ ) ) Ω ( ȷ , x ^ , ( x ^ ) ) ) d x ^ | 2 E 1 E 2 j θ ( ȷ , x ^ ) ( | ( ȷ ) x ^ ( ȷ ) | 2 ) d x ^ j | ( ȷ ) x ^ ( ȷ ) | 2 = j 1 Ϝ ϱ ( ( ȷ ) , x ^ ( ȷ ) , ) 1 .
Hence, all the axioms of Theorem 1 are fulfilled and consequently, Equation (1) has a unique solution. □

3.2. Application II

We recall many important definitions from fractional calculus theory [16,17]. For a function C [ 0 , 1 ] , the order δ > 0 of Riemann–Liouville fractional derivative is
1 Γ ( ϑ δ ) d ϑ d ȷ ϑ 0 ȷ ( e ) d e ( ȷ e ) δ ϑ + 1 = D δ ( ȷ ) .
From (2), the right-hand side is pointwise defined on [ 0 , 1 ] , where [ δ ] and Γ are the integer part of the number δ and the Euler gamma function.
Consider the following FDE (fractional differential equation)
e D ( ȷ ) + ( ȷ , ( ȷ ) ) = 0 , 1 ȷ 0 , 2 > 1 ; ( 0 ) = ( 1 ) = 0 ,
where : [ 0 , 1 ] × R R is a continuous function and e D represents the Caputo fractional derivative of order ♭, and it is defined by
e D = 1 Γ ( ϑ ) 0 ζ ϑ ( e ) d e ( ȷ e ) ϑ + 1
Let X ˜ = ( C [ 0 , 1 ] , [ 0 , ) ) = { g : [ 0 , 1 ] [ 0 , ) : g be a continuous function } and Y ˜ = ( C [ 0 , 1 ] , ( , 0 ] ) = { g : [ 0 , 1 ] ( , 0 ] : g be a continuous function } . Consider Ϝ ϱ : X ˜ × Y ˜ × ( 0 , ) R + given by
Ϝ ϱ ( , , ) = + sup ȷ [ 0 , 1 ] | ( ȷ ) x ^ ( ȷ ) | 2 .
for all ( , x ^ ) X ˜ × Y ˜ . Then, ( X ˜ , Y ˜ , Ϝ ϱ , s , ) is a complete FBBMS.
Theorem 6.
Let us consider the nonlinear FDE (3). Suppose that the following conditions are satisfied:
(i) 
We can find j ( 0 , 1 ) and ( , x ^ ) X ˜ × Y ˜ such that
| ( ȷ , ) ( ȷ , x ^ ) | j | ( ȷ ) x ^ ( ȷ ) | ;
(ii) 
sup ȷ [ 0 , 1 ] 0 1 | G ( ȷ , e ) | d R ˇ 1 .
Then, Equation (3) has a unique solution in X ˜ Y ˜ .
Proof. 
The given Equation (3) is equivalent to the succeeding integral equation
( ȷ ) = 0 1 G ( ȷ , e ) ( R ˇ , ( e ) ) d e ,
where
G ( ȷ , e ) = [ ȷ ( 1 e ) ] 1 ( ȷ e ) 1 Γ ( ) , 0 e ȷ 1 , [ ȷ ( 1 e ) ] 1 Γ ( ) , 0 ȷ e 1 .
Define R ˇ : X ˜ Y ˜ X ˜ Y ˜ defined by
R ˇ ( ȷ ) = 0 1 G ( ȷ , e ) ( R ˇ , ( e ) ) d e .
Now,
| R ˇ ( ȷ ) R ˇ x ^ ( ȷ ) | 2 = | 0 1 G ( ȷ , e ) ( R ˇ , ( e ) ) d e o 1 G ( ȷ , e ) ( R ˇ , x ^ ( e ) ) d e | 2 0 1 | G ( ȷ , e ) | 2 d e · 0 1 | ( R ˇ , ( e ) ) ( R ˇ , x ^ ( e ) ) | 2 d e j | ( ȷ ) x ^ ( ȷ ) | 2 .
Taking the supremum on both sides, we obtain
Ϝ ϱ ( R ˇ , R ˇ x ^ ) j Ϝ ϱ ( , x ^ ) .
Consequently,
1 Ϝ ϱ ( R ˇ ( ȷ ) , R ˇ x ^ ( ȷ ) , ) 1 = sup ȷ [ 0 , 1 ] | R ˇ ( ȷ ) R ˇ x ^ ( ȷ ) | 2 j sup ȷ [ 0 , 1 ] | ( ȷ ) x ^ ( ȷ ) | 2 = j 1 Ϝ ϱ ( ( ȷ ) , x ^ ( ȷ ) , ) 1 .
Therefore, all the axioms of Theorem 1 are fulfilled and consequently, the fractional differential Equation (3) has a unique solution. □

4. Conclusions

In this manuscript, we proved fixed-point results without continuity and by using the BT property on FBBMS with some applications. In 2017, Mehmood, Ali, Ionescu, and Kamran [18] introduced the extended fuzzy b -metric space and proved some fixed-point theorems. We give an open problem to introduce the extended fuzzy bipolar b -metric space and prove some fixed-point theorems.

Author Contributions

Conceptualization, B.R., O.E. and N.M.; methodology, B.R., A.A. and N.M.; formal analysis, B.R., O.E. and A.A.; investigation, B.R., O.E., A.A. and N.M.; writing—original draft preparation, B.R., O.E., A.A. and N.M.; writing—review and editing, B.R., O.E., A.A. and N.M.; supervision, O.E. and N.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

The authors A. ALoqaily and N.Mlaiki would like to thank Prince Sultan University for paying the APC and for the support through the TAS research lab.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Schweizer, B.; Sklar, A. Statistical metric spaces. Pac. J. Math. 1960, 10, 313–334. [Google Scholar] [CrossRef]
  2. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
  3. Kramosil, I.; Michalek, J. Fuzzy metric and statistical metric spaces. Kybernetica 1975, 11, 326–334. [Google Scholar]
  4. Grabiec, M. Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 1988, 27, 385–389. [Google Scholar] [CrossRef]
  5. Gregori, V.; Sapena, A. On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 2002, 125, 245–252. [Google Scholar] [CrossRef]
  6. George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef]
  7. Shamas, I.; Rehman, S.U.; Aydi, H.; Mahmood, T.; Ameer, E. Unique fixed-point results in fuzzy metric spaces with an application to fredholm integral equations. J. Funct. Spaces 2021, 2021, 4429173. [Google Scholar] [CrossRef]
  8. Mutlu, A.; Gurdal, U. Bipolar metric spaces and some fixed point theorems. J. Nonlinear Sci. Appl. 2016, 9, 5362–5373. [Google Scholar] [CrossRef]
  9. Bartwal, A.; Dimri, R.C.; Prasad, G. Some fixed point theorems in fuzzy bipolar metric spaces. J. Nonlinear Sci. Appl. 2020, 13, 196–204. [Google Scholar] [CrossRef]
  10. Gunaseelan, M.; Joseph, G.A.; Mitrović, Z.D.; Bota, M.-F. Solving an integral equation via fuzzy triple controlled bipolar metric spaces. Mathematics 2021, 9, 3181. [Google Scholar] [CrossRef]
  11. Gunaseelan, M.; Joseph, G.A.; Haq, A.U.; Jarad, F.; Baloch, I.A. Solving an integral equation by using fixed point approach in fuzzy bipolar metric spaces. J. Funct. Spaces 2021, 2021, 9129992. [Google Scholar] [CrossRef]
  12. Gunaseelan, M.; Joseph, G.A.; Haq, A.U.; Baloch, I.A.; Park, C. On solution of Fredholm integral equations via fuzzy b-metric spaces using triangular property. AIMS Math. 2022, 7, 11102–11118. [Google Scholar] [CrossRef]
  13. Gunaseelan, M.; Joseph, G.A.; Kausar, N.; Munir, M.; Khan, S.; Ozbilge, E. Solving an integral equation via intuitionistic fuzzy bipolar metric spaces. Decis. Mak. Appl. Manag. Eng. 2023, 6, 536–556. [Google Scholar] [CrossRef]
  14. Gunaseelan, M.; Joseph, G.A.; Kumar, S.; Ege, O.; De la Sen, M. Fixed-point theorems for nonlinear contraction in fuzzy-controlled bipolar metric spaces. Axioms 2023, 12, 396. [Google Scholar] [CrossRef]
  15. Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
  16. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; p. 204. [Google Scholar]
  17. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integral and Derivative; Gordon and Breach: London, UK, 1993. [Google Scholar]
  18. Mehmood, F.; Ali, R.; Ionescu, C.; Kamran, T. Extended fuzzy b-metric spaces. J. Math. Anal. 2017, 8, 124–131. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ramalingam, B.; Ege, O.; Aloqaily, A.; Mlaiki, N. Fixed-Point Theorems on Fuzzy Bipolar b-Metric Spaces. Symmetry 2023, 15, 1831. https://doi.org/10.3390/sym15101831

AMA Style

Ramalingam B, Ege O, Aloqaily A, Mlaiki N. Fixed-Point Theorems on Fuzzy Bipolar b-Metric Spaces. Symmetry. 2023; 15(10):1831. https://doi.org/10.3390/sym15101831

Chicago/Turabian Style

Ramalingam, Balaji, Ozgur Ege, Ahmad Aloqaily, and Nabil Mlaiki. 2023. "Fixed-Point Theorems on Fuzzy Bipolar b-Metric Spaces" Symmetry 15, no. 10: 1831. https://doi.org/10.3390/sym15101831

APA Style

Ramalingam, B., Ege, O., Aloqaily, A., & Mlaiki, N. (2023). Fixed-Point Theorems on Fuzzy Bipolar b-Metric Spaces. Symmetry, 15(10), 1831. https://doi.org/10.3390/sym15101831

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop