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Abstract: In many practical applications, such as the studies of financial and biomedical data, the
response variable usually is positive, and the commonly used criteria are based on absolute errors,
which is not desirable. Rather, the relative errors are more of concern. We consider statistical inference
for a partially linear multiplicative regression model when covariates in the linear part are measured
with error. The simulation–extrapolation (SIMEX) estimators of parameters of interest are proposed
based on the least product relative error criterion and B-spline approximation, where two kinds
of relative errors are both introduced and the symmetry emerges in the loss function. Extensive
simulation studies are conducted and the results show that the proposed method can effectively
eliminate the bias caused by the measurement errors. Under some mild conditions, the asymptotic
normality of the proposed estimator is established. Finally, a real example is analyzed to illustrate the
practical use of our proposed method.

Keywords: partially linear multiplicative regression model; measurement error; least product relative
error; simulation–extrapolation; B-spline

1. Introduction

In many applications, such as studies on financial and biomedical data, the response
variable is usually positive. For modeling the relationship between the positive response
and a set of explanatory variables, the natural idea is to first take an appropriate trans-
formation for the response, e.g., the logarithmic transformation, and then, some common
regression models, such as linear regression or quantile regression, which can be employed
based on the transformed data. As argued by [1], the least-squares or least absolute devi-
ation criteria are both based on absolute errors, which is not desirable in many practical
applications. Rather, the relative errors are more of concern.

In the early literature, many authors contributed fruitfully to this issue; see [2–4],
where the relative error is defined as the ratio of the error relative to the target value. Since
the work of [1], where both the ratios of the error relative to both the target value and
the predictor are introduced in the loss function, called the least absolute relative error
(LARE) criterion, more attention has been focused on the multiplicative regression (MR)
model, and various extensions have been investigated. For example, Ref. [5] considered the
estimation problem of the nonparametric MR model; see also [6,7] and references therein.
In particular, some semi-parametric MR models have been studied. When estimating the
nonparametric function g(z) in these models, such as the partially linear MR model ([8–10]),
single-index MR model ([11–13]), varying-coefficient MR model ([14]), and others ([15]),
almost all researchers use the local linear smoothing technique and approximate it in a
neighborhood of z for obtaining its estimation, where a good choice of the bandwidths
is quietly critical and its value is possibly sensitive to the performance of the resulting
estimation and inference. Additionally, due to the fact that the value of the function at
every observation of z is estimated separately, the optimal selection of bandwidth for all
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observations may be not the same. Thus, the computation is cumbersome and the numerical
problem becomes untractable when the sample size is large. As a result, researchers have
had to compromise and assume that the bandwidths used for estimating the nonparametric
function are the same.

When solving nonparametric regression, spline-based methods, such as regression
splines, smoothing splines, and penalized splines, are popular and applied extensively
in many fields. Recently, Ref. [16] proposed multiplicative additive models based on the
least product relative error criterion (LPRE), where the B-spline basis functions are used
to estimate the nonparametric functions. Simulation studies have demonstrated that their
approach performs well. It is worth noting that the loss function based on LPRE is smooth
enough and differentiable with respect to the regression parameter, in contrast to that
based on LARE. Moreover, LPRE inherits the symmetry between the two kinds of relative
errors presented in LARE. Using this symmetry makes the computation and derivation of
asymptotic properties easier.

A common feature in the above-mentioned literature is that these studies presume
that all variables in the model are precisely observed. However, in many applications, some
covariates cannot be measured exactly due to various limitations; see [17] for such examples
in econometric, biology, nutrition, and toxicology studies. Extensive studies have been
conducted, such as quantile and other traditional robust statistical inference procedures
in the measurement error setup. Only recently have we witnessed an interest in applying
multiplicative regression when the covariates are contaminated with measurement errors.
Ref. [18] developed a simulation–extrapolation (SIMEX) estimation method for unknown
parameters based on the LPRE criterion for the linear and varying coefficient multiplicative
models, respectively, with the covariates being measured with additive error, where the
measurement error is assumed to follow a normal distribution, and under certain conditions,
the large sample properties of the given estimates are proved.

The SIMEX estimation procedure was first developed by [19] to reduce the estimation
bias in the presence of additive measurement errors. Since then, the SIMEX method has
gained more attention in the literature, and it has become a standard tool for analyzing
complex regression models. A significant feature of SIMEX is that one can rely on standard
inferential procedures to estimate the unknown parameters. Since its conception, more
researchers have extended the SIMEX method to various applications. Ref. [20] considered
statistical inference for additive partial linear models when the linear covariate is measured
with error using attenuation-to-correction and SIMEX methods. Ref. [21] proposed graph-
ical proportional hazards measurement error models and developed SIMEX procedures
for the parameter of interest with complex structured covariates. To the best of our knowl-
edge, there are seldom studies on the partially linear multiplicative regression model with
measurement error. To fill this gap, we will address this problem in detail in this paper.

This paper is organized as follows. In Section 2, we first introduce in detail the
simulation–extrapolation method for the partially linear multiplicative regression model
with measurement errors. Combining the B-spline approximation and the LPRE criterion,
a new estimation method is proposed, and some remarks about the selection of number and
location of knots and the asymptotic properties of the proposed estimator are presented.
Some simulation studies are carried out to assess the performance of our method under a
finite-sample situation in Section 3. A real example is analyzed to illustrate the practical
usage of our proposed method in Section 4. Finally, some discussions in Section 5 conclude
the paper.

2. Methodology

In this section, we propose the simulation–extrapolation estimation for regression
parameters and the nonparametric function in the partially linear multiplicative regression
model, where the covariates in the parametric part are measured with additive mea-
surement errors. Computation details are presented, and some asymptotic results are
also established.
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2.1. Notations and Model

Let Y denote the positive response variable, which satisfies the following partially
linear multiplicative regression model

Y = exp(X>β + g(Z))ε, (1)

where X is the p-dimensional vector of covariates associated with the regression parameter
vector β, Z is a continuous univariate variable, ε is the positive error and independent of
(X, Z), and g(.) is an unknown smooth link function.

Due to some practical limitations, the covariate X cannot be observed precisely. Instead,
its surrogate, W, through the additive covariate measurement error structure

W = X + U, (2)

is available, where U is the measurement error with mean zero and the covariance matrix Σu
and independent of (X, Z) and ε. Assume that Σu is known; otherwise, it can be estimated
through the replication experiments technique, as argued in much of the literature such
as [17]. When some components of X are error-free, the corresponding terms in Σu are set to
be zero. In particular, when Σu is a zero matrix, i.e., U is zero, there is no measurement error.

We combine Models (1) and (2) and refer to it as the partially linear multiplicative
regression measurement error (PLMR-ME) model. Let (Yi, Xi, Zi, Wi) i = 1, ..., n be inde-
pendent and identical replicates of (Y, X, Z, W).

2.2. SIMEX Estimation of PLMR-ME Model

In general, the SIMEX method consists of a simulation step, an estimation step, and an
extrapolation step. Before the detailed introduction of our method, we must specify two
kinds of parameters; one is the simulation times, denoted by n0, and the other is the levels
of added error, denoted by λ ∈ Λ = {λ1, ..., λM}. Oftentimes, equally spaced values with
λ1 = 0 and λM = 2 are adopted, M ranges from 10 to 20, and B is a given integer lying
in [50,200].

In our method, we use the SIMEX algorithm, B-spline approximation, and the LPRE
criterion to estimate β and g(.). First, we approximate g(.) using a B-spline function, i.e.,
g(z) ≈ ∑Kn

j=1 αjBj(z), where Bj(.) is the B-spline basis function of order d with kn internal
knots, and Kn = d + kn. Then, Model (1), as in [22,23], can be rewritten as the spline model

Y = exp(X>β + B>α)ε,

where B = B(Z) = (B1(Z), ..., BKn(Z))>, α = (α1, ..., αKn)
> is the corresponding vector of

the spline coefficients. In this way, the estimation problem of unknown function g(.) is
transformed into the estimation of α. Next, we employ the LPRE criterion to estimate β
and α. Explicitly speaking, the proposed SIMEX algorithm proceeds as follows.

(1) Simulation step.

For each λ ∈ Λ, generate B independent random samples of size n from N(0, Σu). That is
to say, for the j-th sample, generate a sequence of pseudo-predictors

Wib(λ) = Wi +
√

λVib, i = 1, ..., n, b = 1, ..., n0,

where Vib ∼ N(0, Σu). Note that the covariance matrix of Wib(λ) given Xi is

Var(Wib(λ)|Xi) = λΣu + Var(Wi|Xi) = (1 + λ)Σu.

Thus, when λ = −1, it follows that Var(Wij(λ)|Xi) = 0. Combining the fact that
E(Wib(λ)|Xi) = Xi, the conditional mean square error of Wib(λ), defined as E[(Wib(λ)−
Xi)

2|Xi], converges to zero as λ→ −1.

(2) Estimation step.
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For a fixed λ, based on the b-th random sample (Yi, Wib(λ), Zi) i = 1, ..., n, one can
obtain the estimator of (β, α), denoted by (β̂b(λ), α̂b(λ)), which is the minimizer of the
objective function

Lnb(β, α; λ) =
n

∑
i=1

{∣∣∣∣∣Yi − exp(W>ib (λ)β + B>i α)

Yi

∣∣∣∣∣×
∣∣∣∣∣Yi − exp(W>ib (λ)β + B>i α)

exp(W>ib (λ)β + B>i α)

∣∣∣∣∣
}

=
n

∑
i=1

[
Yi exp(−W>ib (λ)β− B>i α) + Y−1

i exp(W>ib (λ)β + B>i α)− 2
]
,

where Bi = B(Zi). Then, define the final estimates of (β, α) using the average of (β̂b(λ), α̂b(λ))
over b = 1, ..., n0, defined by β̂(λ) = ∑n0

b=1 β̂b(λ)/n0 and α̂(λ) = ∑n0
b=1 α̂b(λ)/n0, where

λ ∈ Λ. Furthermore, the corresponding estimator of g(z)is ĝ(z; λ) = B>α̂(λ).

(3) Extrapolation step.

Consider two extrapolation models: linear and quadratic. Without loss of generality, denote
the extrapolation function by Ψ(λ, Γ), where Γ is the regression parameter vector. At this time,
the linear extrapolation function is Ψ(λ, Γ) = γ0 + γ1λ, and the quadratic one is Ψ(λ, Γ) =
γ0 + γ1λ + γ1λ2. For the two sequences {(λ, β̂(λ)), λ ∈ Λ} and {(λ, ĝ(z; λ)), λ ∈ Λ}, we
fit a regression model to each of the two sequences from

β̂(λ) = Ψ1(λ, Γ1) + ε1, ĝ(z; λ) = Ψ2(λ, Γ2) + ε2

respectively, where ε1 and ε2 are random errors. Using the least-squares method, one can
obtain the estimates of Γ1 and Γ2 and denote them as Γ̂1 and Γ̂2, respectively. Then, the
SIMEX estimator of β is defined as the predicted value

β̂SIMEX = Ψ1(−1, Γ̂1).

Meanwhile, the naive estimator of β reduces to Ψ1(0, Γ̂1). As for β above, the nonparametric
term g(.) can be estimated in the same way. Denote the SIMEX estimator of g(z) by
ĝSIMEX(z) = Ψ2(−1, Γ̂2).

2.3. Asymptotic Results

To derive the asymptotic normality of the SIMEX estimator β̂SIMEX , some regularity
conditions are necessary to be introduced as follows.

(A1) E[(ε− ε−1)|X, Z] = 0.
(A2) E(XX>) is a positive definite matrix.
(A3) There exists δ > 0 such that E[(ε+ ε−1) exp(δ||X||)] < ∞, E[(ε+ ε−1)2 exp(δ||X||)] <

∞, and E[(ε + ε−1)2(xjxkxl)
2 exp(δ||X||)] < ∞, j, k, l = 1, ..., p.

(A4) g(.) ∈ H = {g ∈ Cr[a, b] :‖ g(j) ‖∞≤ M0, j = 1, ..., r, |g(r)(z1)− g(r)(z2)| ≤ M1|z1 −
z2|}, where M0 and M1 are some positive constants and ‖ · ‖∞ is the superior norm.
0 ≤ r ≤ d.

Conditions (A1)–(A3) are common requirements in the penalized spline theory. (A4)
is the regularization condition used in the study of MR. (A5) is an identification condition
for the LPRE estimation, which is similar to the zero-mean condition in the classical linear
mean regression.

Before presenting our result, some notations need to be introduced in advance. Let
β̂(Λ) = (β̂(λ1)

>, ..., β̂(λM)>) and Γ = (Γ>11, ..., Γ>1p)
>, where Γ>1j is the true parameter vector

estimated in the extrapolation step for the j-th component of β̂(λ). Define G(λk, Γ) =
(Ψ(λk, Γ11), ..., Ψ(λk, Γ1p)) and G(Λ, Γ) = (G(λ1, Γ), ..., G(λM, Γ)). Let Γ̂ be the minimizer
of Res(Γ)Res(Γ)>, where Res(Γ) = β̂(Λ)− G(Λ, Γ). According to the least-squares theory,
Γ̂ satisfies s(Γ)Res(Γ) = 0, where s(Γ) = ∂Res(Γ)/∂(Γ>). Denote D(Γ) = s(Γ)s(Γ)> and
G(λ, Γ) = ∂G(λ, Γ)/∂(Γ).
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Theorem 1. Assume that the extrapolation function is theoretically exact. Under the conditions
(A1)–(A4), it follows that as n→ ∞, we have

√
n(β̂SIMEX − β)→d N(0,G(−1, Γ)Σ(Γ)G(−1, Γ)>),

Proof. Assume that β(λ) is the true value based on the model Yi = exp(Wib(λ)
>β +

g(Zi))ε̃i. Using the similar method in Theorem 2 in [16], we have
√

n(β̂b(λ)− β(λ)) = −
√

n[K(β(λ), λ)]−1 Jn(β(λ), λ) + oP(1),

where

K(β(λ), λ) = E
{
[Y exp(−W(λ)>β(λ)− g(Z)) + Y−1 exp(W(λ)>β(λ) + g(Z))]W(λ)Wib(λ)

>
}

,

Jn(β(λ), λ) =
1
n

{
n

∑
i=1

[Yi exp(−Wib(λ)
>β(λ)− g(Zi)) + Y−1

i exp(Wib(λ)
>β(λ) + g(Zi))]Wib(λ)

}
,

and W(λ) = X +
√

λV. Because β̂(λ) = ∑n0
b=1 β̂b(λ)/n0, it follows that

√
n(β̂(λ)− β(λ)) = −[K(β(λ), λ)]−1n−1/2 JnB(β(λ), λ) + oP(1),

where JnB(β(λ), λ) = 1
n0

∑n0
b=1 ηib(β(λ), λ) = 1

n0
∑n0

b=1[Yi exp(−Wib(λ)
>β(λ) − g(Zi)) +

Y−1
i exp(Wib(λ)

>β(λ) + g(Zi))]Wib(λ). Define Σ(λ) = Cov(n−1/2 JnB(β(λ), λ)). Some al-
gebraic calculations show that

Σ(λ) =
1
n0

Var(ηi1(β(λ), λ)) +
n02− n0

n2
0

Cov(ηi1(β(λ), λ), ηi2(β(λ), λ)).

Then, according to the central limit theorem, it holds that
√

n(β̂(λ)− β(λ))→d N(0, [K(β(λ), λ)]−1Σ(λ)[K(β(λ), λ)]).

Write Σ(Λ) = diag(Σ(λ1), ..., Σ(λM)). In the following, using the standard derivation of
the SIMEX method and the definition of Γ̂, we have

√
n(Γ̂− Γ)→d N(0, Σ(Γ)),

where Σ(Γ) = D(Γ)−1s(Γ)Σ(Λ)s(Γ)>D(Γ)−1. Finally, using the Delta method and not-
ing the facts β̂SIMEX = β̂(−1) = Ψ1(−1, Γ̂) and β = Ψ(−1, Γ), the desirable result is
established.

3. Simulation Studies

Numerical studies were conducted to evaluate the finite sample performance of
our proposed SIMEX estimators under various situations. To fairly compare the SIMEX
estimator with the naive estimator that ignores measurement errors and the true estimator
based on the data without measurement errors, we set the degree of spline basis to be q = 2
and the number of internal knots to kn = round(n1/3) + 1; these are located on equally
spaced quantiles for all methods. All results below are based on 500 replicates, where
M = 11, λ1 = 0, λ2 = 0.2, ..., λM = 2, n0 = 50, and the sample size n = 50, 100, and 200,
respectively. All simulations were implemented using the software R.

Now, generate (Yi, Xi, Zi, Wi) from the following model

Yi = exp(β1X1i + β2X2i + sin(
πZi

2
))εi, Wi = Xi + Ui, i = 1, ..., n,

where β1 = 1.5, β2 = −1, Xi = (X1i, X2i), Ui = (U1i, U2i), X1i ∼ N(0, 1), Z2i ∼
Binom(1, 0.5), and Zi ∼ Uni f (−2, 2) and is independent of the error εi ∼ exp(Uni f (−2, 2)).
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Further, we assume U2i = 0, which means that X2i is error-free. However, for U1i, three
measurement error distributions are considered, namely,

Case 1: U1i ∼ N(0, 0.09);
Case 2: U1i ∼ N(0, 0.36);
Case 3: U1i ∼ N(0, 0.81).

These represent the light-level, moderate-level, and heavy-level measurement error, re-
spectively. In the extrapolation step, consider both the linear and quadratic extrapolation
functions and, respectively, denote the corresponding method as SIMEX1 and SIMEX2.

For estimators of (β1, β2), we record their empirical bias (BIAS), sample standard
deviation (SD), and mean square error (MSE). For the nonparametric part, we use the
averaged integrated absolute bias (IABIAS) and mean integrated square error (MISE),
where for one estimator ĝj (j = 1, ..., 401), obtained from the j-th sample,

IABIAS =
1

500

500

∑
j=1

[
1

ngrid

ngrid

∑
k=1
|ĝj(uk)− g(uk)|

]
,

MISE =
1

500

500

∑
j=1

[
1

ngrid

ngrid

∑
k=1

[ĝj(uk)− g(uk)]
2

]
,

at the fixed grid points {uk} equally spaced in [-2,2] and ngrid = 401. The values in
parentheses below them are the associated sample standard deviation.

Tables 1–3 report the simulation results of different estimators of regression parameter
and nonparametric function under cases 1–3 with different sample sizes. For β1, we can
see that when the measurement error is small as in Table 1, all methods behave similarly
and the proposed SIMEX method gains no obvious advantage over the naive method. Not
surprisingly, as the measurement error becomes moderate as seen in Table 2, the naive
estimates are substantially biased and have a larger mean square error (MSE), while the
SIMEX estimates, especially when the quadratic function is applied, are unbiased and have
a smaller MSE. When the measurement error is large, as seen in Table 3, all methods except
the true one are slightly biased, but the performance of the SIMEX methods is still relatively
better than that of the naive method. For β2 and g(.), the corresponding covariates X2i and
Zi are error-free, and it seems that under the same measurement error level and sample
size, both the naive and SIMEX estimates have similar performance in terms of the sample
standard deviation (SD) and MSE for β2, integrated absolute bias (IABIAS), and mean
integrated square error (MISE) for g(.).

On the other hand, for each method and given case, the SD and MSE of estimates of
(β1, β2) and the IABIAS and MISE of estimates of g(.) decrease as the sample size increases.
Although the MSE of SIMEX2 is smaller that that of SIMEX1 for β1, their SD is reversed.
Figure 1 is the Q-Q plots of the estimates of (β1, β2) in case 2 with a sample size n = 100. It
can be seen that all points are close to the line, which indicates that the resulting SIMEX
estimator is asymptotically normal. This finding is in accordance with the theoretical result
in Theorem 1. Figures 2 and 3 display the boxplots of estimators of β1 = 1.5 and β2 = −1 in
cases 2 and 3 with a sample size n = 100, respectively, which reveal the similar conclusions
obtained above. Figure 4 presents the average estimated curves, which are very close to
the true one. Similar plots are obtained in other cases and omitted due to the limitation
of space.
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Table 1. Results for case 1 with different sample sizes (×10−2).

β1 β2 g(.)
n Method BIAS SD MSE BIAS SD MSE IABIAS MISE

50

True −0.71 17.53 3.07 −2.02 31.73 10.09 39.71
(28.80)

12.63
(21.81)

Naive −1.87 17.69 3.15 −1.96 32.14 10.35 40.15
(29.46)

12.87
(21.97)

SIMEX1 −0.68 17.82 3.17 −2.00 32.15 10.35 40.14
(29.43)

12.84
(21.77)

SIMEX2 −0.68 17.87 3.19 −1.93 32.15 10.35 40.17
(29.51)

12.94
(22.07)

100

True −0.51 11.17 1.24 −0.77 21.80 4.74 26.80
(12.31) 7.36 (6.67)

Naive −1.71 11.27 1.29 −0.66 21.95 4.81 27.07
(12.50) 7.34 (6.72)

SIMEX1 −0.55 11.36 1.29 −0.67 21.97 4.82 27.05
(12.48) 7.32 (6.70)

SIMEX2 −0.53 11.37 1.29 −0.71 21.91 4.79 27.15
(12.56) 7.32 (6.73)

200

True −0.01 7.06 0.49 0.38 15.01 2.25 18.44
(5.72) 4.47 (2.69)

Naive −1.22 7.11 0.51 0.42 15.29 2.33 18.68
(5.87) 4.55 (2.79)

SIMEX1 −0.06 7.15 0.51 0.42 15.30 2.33 18.67
(5.87) 4.55 (2.79)

SIMEX2 −0.03 7.20 0.52 0.41 15.33 2.34 18.71
(5.89)

4.55
(2.791)

Table 2. Results for case 2 with different sample sizes (×10−2).

β1 β2 g(.)
n Method BIAS SD MSE BIAS SD MSE IABIAS MISE

50

True −1.37 17.07 2.92 0.43 34.57 11.93 39.42
(29.02)

12.59
(23.99)

Naive −18.44 17.50 6.46 0.56 38.76 15.00 44.81
(37.48)

14.15
(34.49)

SIMEX1 −6.97 19.12 4.13 0.68 38.63 14.90 45.14
(38.02)

14.32
(35.95)

SIMEX2 −2.72 20.13 4.11 1.04 38.91 15.12 45.87
(39.14)

14.76
(38.13)

100

True −0.65 10.39 1.08 0.33 22.84 5.20 26.40
(11.89) 7.24 (6.37)

Naive −17.34 11.22 4.26 0.58 26.67 7.10 30.60
(16.05) 8.23 (8.98)

SIMEX1 −5.86 12.23 1.83 0.67 26.95 7.25 30.83
(16.28) 8.33 (9.10)

SIMEX2 −1.27 13.06 1.71 0.54 27.13 7.34 31.28
(16.73) 8.33 (9.06)

200

True −0.22 7.02 0.49 −0.43 14.58 2.10 18.64
(5.86) 4.79 (2.85)

Naive −17.39 7.55 3.59 −0.23 16.46 2.71 21.57
(7.79) 5.38 (3.72)

SIMEX1 −5.86 8.27 1.02 −0.15 16.58 2.74 21.73
(7.90) 5.39 (3.76)

SIMEX2 −1.28 8.99 0.82 −0.46 16.80 2.82 22.13
(8.17) 5.50 (3.90)
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Table 3. Results for case 3 with different sample sizes (×10−2).

β1 β2 g(.)
n Method BIAS SD MSE BIAS SD MSE IABIAS MISE

50

True −1.37 17.07 2.92 0.43 34.57 11.93 39.42
(29.02)

12.59
(23.99)

Naive −59.52 18.00 38.65 0.13 49.02 23.98 55.64
(57.13)

17.20
(50.82)

SIMEX1 −43.99 21.21 23.83 0.29 49.61 24.56 56.79
(59.36)

17.55
(56.63)

SIMEX2 −23.50 27.37 12.99 1.18 51.52 26.51 60.71
(67.76)

19.19
(71.43)

100

True −0.65 10.39 1.08 0.33 22.84 5.20 26.40
(11.89) 7.24 (6.37)

Naive −59.08 12.08 36.3 6 0.79 33.22 11.01 39.29
(26.38)

10.77
(15.19)

SIMEX1 −43.37 14.20 20.82 1.03 34.19 11.67 40.13
(27.60)
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(15.94)

SIMEX2 −23.01 17.99 8.52 1.34 36.43 13.26 43.08
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True −0.22 7.01 0.49 −0.43 14.48 2.09 18.64
(5.85) 4.78 (2.84)

Naive −59.53 8.43 36.15 −0.29 21.40 4.57 28.50
(13.44) 7.10 (6.41)

SIMEX1 −44.01 9.86 20.33 −0.00 21.77 4.72 29.15
(14.07) 7.16 (6.67)

SIMEX2 −23.57 12.63 7.15 −0.42 23.53 5.52 31.55
(16.46) 7.86 (7.73)
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Figure 1. Q-Q plots of various estimators of β1 = 1.5 (left panel) and β2 = −1 (right panel) in case 2
with sample size n = 100.
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Figure 2. Boxplots of various estimators of β1 = 1.5 (left panel) and β2 = −1 (right panel) in case 2
with sample size n = 100.
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Figure 3. Boxplots of various estimators of β1 = 1.5 (left panel) and β2 = −1 (right panel) in case 3
with sample size n = 100.
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Figure 4. Average estimated curve of g(z) = sin(πz/2) in case 2 with sample size n = 100. The
segment line (gray) is the true curve. The solid line (black), the dotted line (red), the dot–dashed lines
(green and blue) correspond to the oracle estimator, naive estimator, SIMEX1 estimator, and SIMEX2
estimator, respectively.

4. Real Data Analysis

To illustrate the proposed procedure, an application regarding body fat data is pro-
vided. These data are available at http://lib.stat.cmu.edu/datasets/bodyfat (accessed on 1
January 2020) and have been analyzed by several authors in different contexts; see [8,10,24].
There are 252 observations and several variables, including the percentage of body fat
as the response variable Y, and 13 explanatory variables: age (X1), weight (X2), height
(X3), neck (X4), chest (X5), abdomen (X6), hip (X7), thigh (X8), knee (X9), ankle (X10),

http://lib.stat.cmu.edu/datasets/bodyfat
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biceps (X11), forearm (X12), and wrist (X13). As in [10], we deleted all possible outliers
and obtained a sample size of 248. Following [8], we selected chest (X5) as the nonlinear
effect U, and the other 12 covariates were treated as the linear component X in Model (1).
Motivated by the suggestion in [24], weight (X2) was presumed to be mismeasured, and
others were presumed to be error-free. Similar to [10], before the forthcoming computa-
tion, the nonparametric part U was transformed into [0,1] and the other covariates were
standardized.

Estimation results of the regression coefficients β using the naive method and SIMEX
methods with linear or quadratic extrapolation functions are shown in Tables 4 and 5,
associated with the results presented in [8] (local linear LARE estimator) and [10] (local
linear LPRE estimator), which are denoted by Naive, SIMEX1, SIMEX2, ZW, and CL,
respectively. To evaluate the impact of the measurement error level σ2 and the number
of interior knots kn, the variance in the measurement error and the number were set to
0.1 and 0.3, 3, and 6, respectively. This means that four cases were considered. In each
specific case, the estimates of regression coefficients were close to each other. However, the
estimates of the coefficient associated with weight (X2) varied greatly. In particular, for the
the coefficient of X2, the sign of the naive estimate was negative, but the SIMEX estimates
were both positive, although their absolute values were small. As the level of measurement
error increased, the changes in SIMEX estimates varied steadily.

Table 4. Estimation results for the body fat data when kn = 3.

σ2 = 0.1 σ2 = 0.3
Naive SIMEX1 SIMEX2 SIMEX1 SIMEX2 CL ZW

Age 0.0677 0.0722 0.0729 0.0724 0.0731 0.0702 0.1476
Weight −0.0719 0.0128 0.0138 0.0136 0.0141 −0.1346 −0.3945
Height −0.0028 −0.0094 −0.0072 −0.0093 −0.0074 0.0066 0.1050
Neck −0.0745 −0.0792 −0.0793 −0.0795 −0.0794 −0.0698 −0.066

Abdomen 0.5496 0.5352 0.5350 0.5333 0.5321 0.5432 0.8309
Hip −0.0809 −0.1026 −0.1020 −0.1037 −0.1024 −0.0996 −0.1936

Thigh 0.0881 0.0817 0.0787 0.0824 0.0792 0.1257 0.1665
Knee 0.0004 −0.0007 0.0016 −0.0002 0.0020 −0.0013 −0.0259
Ankle 0.0061 0.0013 0.0027 0.0012 0.0029 0.0153 0.0407
Biceps 0.0195 0.0185 0.0200 0.0182 0.0199 0.0292 0.1103

forearm 0.0297 0.0258 0.0249 0.0255 0.0249 0.0377 0.0723
Wrist −0.0944 −0.1011 −0.1047 −0.1014 −0.1047 −0.0838 −0.0860

Table 5. Estimation results for the body fat data when kn = 3.

σ2 = 0.1 σ2 = 0.3
Naive SIMEX1 SIMEX2 SIMEX1 SIMEX2 CL ZW

Age 0.0786 0.0733 0.0716 0.0731 0.0723 0.0702 0.1476
Weight −0.2005 0.0110 0.0113 0.0113 0.0120 −0.1463 −0.3945
Height 0.0381 −0.0085 −0.0014 −0.0087 −0.0014 0.0066 0.1050
Neck −0.0861 −0.0858 −0.0962 −0.0854 −0.0956 −0.0698 −0.066

Abdomen 0.5309 0.5309 0.5330 0.5317 0.5285 0.5432 0.8309
Hip 0.0254 −0.1039 −0.1098 −0.1033 −0.1077 −0.0996 −0.1936

Thigh 0.1036 0.0873 0.0881 0.0867 0.0860 0.1257 0.1665
Knee −0.0346 −0.0010 0.0010 −0.0013 0.0024 −0.0013 −0.0259
Ankle 0.0168 −0.0019 −0.0108 −0.0019 −0.0106 0.0153 0.0407
Biceps 0.0193 0.0175 0.0129 0.0179 0.0127 0.0292 0.1103

Forearm 0.0161 0.0269 0.0373 0.0268 0.0374 0.0377 0.0723
Wrist −0.0827 −0.1012 −0.1013 −0.1009 −0.1040 −0.0838 −0.086

The estimated curves of g(.) are plotted in Figures 5 and 6. All curves had a similar
trend. In other words, g(U) firstly increased until around U = 0.4, and then it then
decreased. This phenomenon was also found in [10], but their figures behaved less clearly
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than ours. For a fixed number of knots, the level of measurement error had little effect
on the estimated curves. Instead, the difference between Figures 5 and 6 was relatively
large, which may have been caused by the overfitting when kn was 6 and underfiting when
kn was 3. It is worth noting that the SIMEX estimates were less sensitive than the naive
estimate in all cases.
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Figure 5. Estimated curves of g(U) when kn = 3. The left (right) panel corresponds to the case
with σ2 = 0.1 (σ2 = 0.3). The solid line (black), the dotted line (red), and the dashed lines (green)
correspond to the naive estimator, SIMEX1 estimator, and SIMEX2 estimator, respectively.
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Figure 6. Estimated curves of g(U) when kn = 6. The left (right) panel corresponds to the case
with σ2 = 0.1 (σ2 = 0.3). The solid line (black), the dotted line (red), and the dashed lines (green)
correspond to the naive estimator, SIMEX1 estimator, and SIMEX2 estimator, respectively.
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5. Conclusions

In this study, we used the simulation–extrapolation method to estimate the regression
parameters and the nonparametric function in the partially linear multiplicative regression
model in Models (1) and (2) based on the LPRE loss function and B-spline approximation,
where covariates in the linear part are measured with additive measurement errors, but
the nonparametric part is exactly observed. Under some regularity conditions, the SIMEX
estimates were asymptotically normal with a more complex covariance matrix structure
than naive estimates. Furthermore, extensive numerical studies show that our proposed
method performs better than naive estimators when the measurement error is moderate or
heavy, and it is comparable with the naive estimators when the measurement error is light.
As the covariate in the nonparametric component is error-free, the resulting estimates of
the nonparametric function are always well-fitted.

As indicated in Section 1, the approaches proposed in this paper may be adapted to the
other more general models, such as the partially linear additive model as in [20], or single-
index or varying-coefficient multiplicative regression models. Our future work will also
consider extensions of them in fields with covariate measurement errors in all covariates,
censored data, or longitudinal data analysis, which is meaningful for practitioners. As
indicated by one referee, the model in Models (1) and (2) assumed that the measurement
error only occurred in the linear part. In fact, the nonlinear part may be measured with
error. For the later case, our method can still be implemented as in [20], except some minor
modifications. However, the asymptotic theory becomes troublesome. Furthermore, as
in [16], how to identify which set of covariates lies in the linear part or the nonlinear part
is interesting. Additionally, when the dimension of covariates is high, how to effectively
select the true important variables deserves to be studied thoroughly. All these issues will
be investigated in the future.
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