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Abstract: This paper proposes a novel robust model predictive control (RMPC) scheme for con-
strained linear discrete-time systems with bounded disturbance. Firstly, the adjustable error tube
set, which is affected by local error and error variety rate, is introduced to overcome uncertainties
and disturbances. Secondly, the auxiliary control rate associated with the cost function is designed to
minimize the discrepancy between the actual system and the nominal system. Finally, a constrained
deep neural network (DNN) architecture with symmetry properties is developed to address the opti-
mal control problem (OCP) within the constrained system while conducting a thorough convergence
analysis. These innovations enable more flexible adjustments of state and control tube cross-sections
and significantly improve optimization speed compared to the homothetic tube MPC. Moreover,
the effectiveness and practicability of the proposed optimal control strategy are illustrated by two
numerical simulations. In practical terms, for 2-D systems, this approach achieves a remarkable
726.23-fold improvement in optimization speed, and for 4-D problems, it demonstrates an even more
impressive 7218.07-fold enhancement.

Keywords: symmetry; constrained system; robust model predictive control; deep neural network;
bounded disturbance

1. Introduction

Over the past few years, RMPC was enjoying enormous acceptance in practical appli-
cations, including trajectory tracking, industrial process control, and energy systems [1–3].
The successful implementation of RMPC in the various branches is on account of its promi-
nent advantages. In particular, RMPC provides an integrated solution for controlling
systems with model uncertainty, additive disturbance, and constraints. Theoretically, the
feature attracted remarkable attention for analyzing and synthesizing different forms of
RMPC. As a result, several RMPC algorithms were investigated in the literature [4–7], and
so on.

Recently, the application requirements for considering practical constraints and the
realization environment prompted increasing attention of RMPC towards new orientations.
For instance, the increasing demand for algorithms underscores the need to integrate opti-
mization performance and control robustness, propelling the development of tube-based
MPC (TMPC) [8–10]. The deployment of tubes draws forth a set of strictly set theoretic
strategies for RMPC synthesis, which consider a computationally efficient treatment of
uncertainties and their interaction with the system dynamics and constraints. In [11,12],
a class of linear systems with bounded disturbance and convex constraint separated the
nominal system from the actual system by adopting a separation control strategy. What is
noteworthy is that the conservatism of the proposal employing this construction in [13,14]
was caused by deploying the fixed tube cross-section shape sets. To mitigate this conser-
vatism, the homothetic tube model predictive control (HTMPC) strategy proposed in [15,16]
explored the impact of disturbances by constructing locally accurate reachable sets centered
around nominal system trajectories. In light of these developments, the concept of HTMPC
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emerged as an enhanced and more adaptable framework for RMPC synthesis. Among the
array of control schemes considered, HTMPC stands out as an improved and more versatile
option. What sets it apart is its capacity to parameterize the cross-sections of the state tube
and control tube in terms of associated centers and scaling sequences. This study aims to
further investigate this concept by considering variations in state error and changes in the
value of the cost function during error adjustment in designing the tube size controller and
auxiliary control law, which distinguishes it from previous literature [15] that incorporates
scaling vector optimization into OCP, thereby increasing computational complexity and
aiming to optimize scaling vectors to a specific value. However, it is essential to note
that an inherent drawback of the HTMPC approach lies in its computational complexity,
which grows significantly with an increasing number of constraints, as measured by the
proliferation of polytopic regions.

Furthermore, the issue of computational complexity is generally associated with dy-
namic programming in the presence of constraints and uncertainties, which inspires the
development of parameterized RMPC [17–19]. The parameterized optimization problem is
commonly approximated using neural network (NN) or DNN to enhance computational
efficiency [20,21]. Certain studies even turned to symmetric neural networks (SNNs) due
to their unique properties [22]. SNNs, characterized by symmetric weight initialization
and activation functions, demonstrated their ability to accelerate convergence and improve
the robustness of neural network-based approaches [23]. Some studies adopted an offline
approach to generate nominal systems [24,25]. While effective in reducing online com-
putation time, this method leans toward a more conservative control strategy in highly
uncertain scenarios, necessitating a trade-off with control performance. Additionally, other
studies considered system uncertainty by establishing a linear variable parameter system
model [26,27]. This approach facilitates adaptive learning to address system changes and
uncertainties, making it better suited for handling variations in the variable parameter
system. However, applying this technique in complex, large-scale systems demands sub-
stantial computational resources for the training and inference of DNN, potentially leading
to real-time control delays. As the field of online learning technology continues to ma-
ture, its integration with RMPC holds promise for enhancing the real-time capabilities
and scalability of the control scheme. Notably, previous studies employed reinforcement
learning techniques to solve linear quadratic regulator and MPC problems, providing
convergence proofs for associated issues [28,29]. Advanced deep reinforcement learning
algorithms further demonstrated their potential within an RMPC framework, emphasizing
the iterative interaction between optimal control actions and performance indices [30,31].
These instances underscore the capacity of online learning techniques to address quadratic
programming problems. Therefore, the integration of online learning techniques, including
deep neural networks (DNNs) with a symmetric architecture, holds immense potential
in enhancing the real-time capabilities and scalability of robust model predictive control
(RMPC). Our proposed approach, which leverages the computational power of GPUs
for real-time acquisition of time-varying nominal system information, not only ensures
real-time control performance, but also optimizes efficiency.

Building upon the above research, it is not difficult to find that a promising approach
involves incorporating tubes with increased degrees of freedom into the optimization
process while employing function approximation and online learning techniques within
the framework of RMPC to enhance computational efficiency. The main contributions of
the paper are three-fold:

1. A fuzzy-based tube size controller is investigated to adjust the local error tube-scaling
vector. Specifically, the controller is designed by considering the state error between
the nominal and the actual systems; the error and error variety rate bounds are then
established, and the fuzzy IF-THEN rules are derived. The tightened sets on state error
are developed to satisfy the system constraints in the case of external disturbances
and model uncertainties.
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2. An auxiliary control law pertaining to the scaling vector of the error tube holds greater
significance. The auxiliary control law effectively mitigates interference impact on the
system by considering variations in the system’s cost function.

3. A theoretically rigorous and technically achievable framework for RMPC with online
parameter estimation, based on a constrained DNN with symmetry properties to
improve computing performance, was developed: the OPC is defined based on
the parameters of online learning; the DNN structure is expanded using Dykstra’s
projection algorithm to ensure the feasibility of the successor state and control input;
a time-varying nominal system is generated based on the aforementioned content to
fulfill the requirements of system robustness.

The remainder of this paper is organized as follows: Preliminaries and problem for-
mulation is considered in Section 2. In Section 3, a novel RMPC scheme is developed based
on the fuzzy-based tube size controller and constrained DNN algorithm. Section 4 pro-
vides two numerical examples to illustrate the feasibility and effectiveness of the proposed
control scheme. In Section 5, some conclusions are drawn.

2. Preliminaries and Problem Formulation
2.1. Nomenclatures

The set of non-negative reals is denoted by R; `N is a sequence of non-negative integers
`N , {0, 1, 2, . . . , N}. For a set A and a real matrix M of compatible dimensions, the image
of A under M is denoted by MA = {Ma : a ∈ A}. Given two subsets C and B of Rn

and x ∈ Rn, the Minkowski set addition is defined by C⊕ B , {c + b|c ∈ C, b ∈ B} and
Minkowski set subtraction is defined by C	 B , {c|c⊕ B ⊆ C}. {x} ⊕ C is substituted for
x⊕ C. For M > 0 and x ∈ Rn, define ‖x‖2

M = xT Mx. The distance of a point x∈Rn from a
point z ⊂ Rn is denoted by d(x, z) = |x− z|. Conv{·} denotes the convex hall of elements
in {·}. For an unknown vector v, the notations v∗ represent its optimal value.

2.2. Problem Formulation

Consider a discrete-time linear system with bounded disturbance (actual system) in
the form of

xk+1 = Axk + Buk + wk, k ∈ `N , (1)

where N is the horizon length. xk ∈ Rn and uk ∈ Rm are the state vector and the control
input of the actual system subject to bounded disturbance wk. wk ∈ Rn is taking values
in the set W ∈ Rn. The xk+1 denotes the successor state of the actual system. The system
variables are selected such that the following constraints are satisfied:

xk ∈ X ⊆ Rn, uk ∈ U ⊆ Rm, wk ∈W ⊆ Rn, k ∈ `N , (2)

where X and U are compact and convex, which contains the origin as an interior point. The
compact set W contains the origin.

Let the nominal (reference) system without any disturbance corresponding to (1) be
defined by

zk+1 = Azk + Bvk, k ∈ `N , (3)

where zk ∈ Rn and vk ∈ Rm are the state and control input of the nominal system without
accounting for any uncertainty, respectively. zk+1 denotes the desired value of the successor
state in the system (1).

The state error is represented as

ek = xk − zk, k ∈ `N . (4)

Assumption 1.

• The matrix pair (A, B) ∈ Rn×n ×Rn×m is known and stabilizable;
• The state xk can be measured at each sample time;
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• The current disturbance wk ∈W and future disturbances wk+i ∈W, i = 1, 2, · · · , N− 1 are
not known and can take arbitrary values.

In this paper, the fixed shape set of the error tube is expressed as E. For any non-empty
set E ⊆ Rn, the error tube is a sequence of sets EN = {Ek}, where Ek is given by

Ek = αkE, k ∈ `Nwithαk ∈ R, (5)

where αk is the scaling vector. Meanwhile, for each relevant k ∈ `N , the state tube XN
and control tube UN−1 corresponding to HTMPC [18] are indirectly determined by the
following form

XN = {zk(ek−1)} ⊕ EN , k ∈ `N (6)

UN−1 = {vk(ek)} ⊕ KEN , k ∈ `N (7)

where {zk(ek−1)} and {vk(ek)} are the sequence of state tube and control tube centers deter-
mined by state error e. K ∈ Rm×n is the disturbance rejection gain [32]. The corresponding
control policy is a sequence of control laws ΠN−1 = {πk(ek, Ek, Uk)} with

∀ek ∈ αkE, πk(ek, Ek, Uk) = vk(e) + Kek, k ∈ `N−1. (8)

Refer to Equations (5)–(8), clearly, given set E, the error tube EN , state tube XN , control
tube UN−1, and control policy ΠN−1 are determined by the sequences of {ek ∈ Rn} and
{vk ∈ Rm}. Consequently, introduce a decision variable ϕN = (e0, . . . , eN , v0, . . . , vN−1) ∈
RN(n+m+1).

Subsequently, the OCP PN(e) is defined by

V0
N(e) = inf

ϕN
{VN(ϕN) : ϕN ∈ ΦN(e)}, (9)

d0
N(e) = arginf

ϕN
{VN(ϕN) : ϕN ∈ ΦN(e)}, (10)

where the cost function VN(·) is defined by

VN(ϕN) = min
N−1

∑
k=0

`(ek, vk) + Vf (eN), (11)

with
`(ek, vk) = ‖e‖2

Qe
+ ‖v‖2

Qv
, k ∈ `N (12)

and
Vf (eN) = ‖e‖2

P, (13)

here, `(ek, vk) is the stage cost, which is employed to achieve the desired performance of the
control. The terminal cost represented by Vf (eN) ensures stability and recursive feasibility.
Qe ∈ Rn×n, Qv ∈ Rm×m, and P ∈ Rn×n are known positive definite symmetric matrices.
For any xk ∈ X ⊆ Rn, the set of permissible decision variables ϕN corresponds to the value
of the set-valued map ΦN(e) as ΦN(e) := {ϕN : (14) holds f or all k ∈ `N−1}, where

e0 ∈ E, (14)

(A + BK)e⊕W ⊆ αk+1E, (15)

∀ek ∈ αkE, (16)

{υ(ek)} ∈ U	 αkKE, (17)
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{z(ek−1)} ∈ X	 αkE, (18)

Axk + Buk ⊕W ⊆ z(ek)⊕ αk+1E, (19)

EN ∈ E f , (20)

where E f ⊆ Rn+1 is the terminal constraint set [33] for PN(e).
Similar to the tube MPC principle [8], if zk satisfies X	 αk+1E and vk satisfies U	 KE,

then the imposed constraints on the actual system state x ∈ X and control input u ∈ U are
also met. In this work, the determination of zk is related to ek−1, while the determination of
vk is concerned with ek; thus, it is imperative to satisfy both conditions {z(ek−1)} ∈ X	 αkE
and {υ(ek)} ∈ U	 αkKE. Furthermore, at step N, if EN fulfills terminal constraint EN ∈ E f
(the Equation (21) provides the formulation and limitation of E f ), it guarantees that the
system state complies with requirement xN ∈ X.

Constraints (15) and (19) represent the set dynamics of the error tube and the homoth-
etic state tube, respectively, which contribute to dynamic relaxation in [8]. In addition, the
terminal constraint set E f satisfies the following constraint:

(A + BK)E f ⊂ E f . (21)

The performance evaluation of the terminal control necessitates the definition of a 0-step
homothetic tube controllability set X0 [15], which must satisfy the following constraints:

X0 = ProjRn{(x, z, α) : z ∈ X	 αE|Kz ∈ U	 αE}. (22)

where ProjRn(Z)denotes a set z ⊂ Rn+m projected ontoRn as ProjRn(Z) = {x ∈ Rn : ∃y ∈ Rmsuch
that(x, y) ∈ Z}.

2.3. Controller Synthesis

The objectives of this paper is to design an optimal control policy uk based on any
given initial state error e0, which not only renders the local state xk asymptotically tracking
the reference state zk, namely ek asymptotically approaching zero, but also minimizes the
OCP. The problem of solving the conventional control policy uk of (1) is converted into
finding the nominal optimal control input vk(e) and designing an appropriate disturbance
rejection gain K while ensuring that the constraints related to αk are satisfied.

The controller synthesis for the proposed RMPC scheme is specified as

uk = υ(ek) + Kek, k ∈ `N (23)

where uk is the control action obtained from the presented method. The ancillary control
law is denoted as Kek, which keeps the local state xk within the error tube centered around
the trajectory of zk. υ(ek) is the output obtained by online learning with state errors as input.

Consider the error system obtained by integrating the Equations (1), (3), and (4) as

ek+1 = Aek + B(uk − vk) + wk, k ∈ `N (24)

where ek+1 is the successor state error. The system (24) is rewritten to be

ek+1 = (A + BK)ek + wk, k ∈ `N . (25)

3. DNN-Based RMPC with a Fuzzy-Based Tube Size Controller

This section presents the design of the novel RMPC scheme, which incorporates up-
dates to scaling and policy iteration for nominal control. The innovative RMPC framework
consists of a fuzzy-based tube size controller and a constrained DNN-based nominal RMPC
component. The former calculates the error tube-scaling vector by considering both state
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error and error variety rate, while the latter determines a sequence of constraints associated
with scaling to ensure optimal control policy generation. Concurrently, the DNN-based
nominal RMPC offers a time-varying nominal system that exhibits enhanced computational
efficiency. Moreover, by incorporating variations in the cost function value into the auxiliary
control law design, it effectively mitigates the adverse effects of interference on the system.

3.1. Error Tube and Constraint Satisfaction

This work discusses that the fuzzy control is used to estimate (predict) the correspond-
ing error tube-scaling vector αk, allowing for computational feasibility of the OCP PN(e).
More importantly, an auxiliary control law Kek pertaining to the scaling vector of the error
tube holds greater significance. The auxiliary control law effectively mitigates interference
impact on the system by considering variations in the system’s cost function.

Assumption 2.

• The error tube cross-section shape set E ⊂ Rn (i.e., outer invariant approximation of the
minimal robust positively invariant set [34]) is compact, convex, and contains the origin such
that {(A + BK)e : e ∈ E} ⊕W ⊆ αk+1E, k ∈ `N−1;

• The state tube cross-section shape set Z is given by Z = Conv{Z(e) : e ∈ E};
• The control tube cross-section shape set V is given by V = Conv{v(e) : e ∈ E}.

If E satisfies Assumption 2, then for any established αk ∈ R, it holds that ek ∈ αkE.
Further, the nominal state and control input are restrained indirectly as Z(e) ∈ Z and
v(e) ∈ V. It is clear that if ∀ek ∈ αkE, v(e) ∈ V, then the satisfaction of original constraints
u ∈ U for ∀w ∈W is guaranteed by using the control scheme uk(e) = υ(ek) + Kek.

Next, the fuzzy-based tube size controller is employed to estimate the error tube
scaling, which generates the scaling vector by considering the local error and the error
variety rate. The components of the fuzzy controller [35] include some fuzzy IF-THEN
rules and a fuzzy inference engine. The fuzzy inference engine utilizes the IF-THEN rules
to map from input error e ∈ Rn and error variety rate ec ∈ Rn to an output variable α ∈ R.
The lower and upper bound values of e and ec are represented as ±e0 and ±e′0, respectively.
Furthermore, divide the two-dimensional graph comprising e and ec into nine distinct
regions, as depicted in Figure 1. Upper and lower limits for both e and ec define these
regions. Each region, denoted as Gi, corresponds to a specific IF-THEN rule. The fuzzy
controller accurately determines the region within the graph where a given pair of values
for e and ec are located, based on the provided input. Subsequently, it employs IF-THEN
rules to calculate the appropriate scaling variables. Taking G3+ as an illustrative example,
in this particular scenario, when e ≥ e0 and e ≥ e0, it indicates a relatively high positive
deviation of the system’s state error with a gradual increase. In such circumstances, the
controller generates a diminished value for α as an output, ensuring that the system’s state
error exhibits a tightening trend.

To be specific, fuzzy IF-THEN rules are written as

1. (G1). IF e ≤ −e0 and ec ≥ e0
′ or e ≥ e0 and ec ≤ −e0

′ THEN α takes on a smaller value;
2. (G2). IF |e| ≤ e0 and ec ≥ e0

′ or |e| ≤ e0 and ec ≤ −e0
′ THEN takes on a slightly

larger value;
3. (G3). IF e ≤ −e0 and ec ≤

∣∣e′0∣∣ or e ≥ e0 and ec ≤
∣∣e′0∣∣ THEN α takes a value as small

as possible.
4. (G4). IF |ec| ≤ e′0 and e ≥ e0 or |ec| ≤ e′0 and e ≤ −e0 THEN α takes on a larger value;
5. (G5). IF |e| < e0 and |ec| < e0

′ THEN α takes a value as large as possible.
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Figure 1. A two-dimensional depiction of the control maneuver. Different regions in the graph
represent the following: G1− corresponds to the region where e ≤ −e0 and ec ≥ e0

′; G1+ depicts the
area with e ≥ e0 and ec ≤ −e0

′; G2+ characterizes the area where |e| ≤ e0 and ec ≥ e′0; G2− highlights
the territory where |e| ≤ e0 and ec ≤ −e0

′; G3+ showcases the domain where e ≥ e0 and ec ≤
∣∣e′0∣∣;

G3− marks the domain where e ≤ −e0 and ec ≤
∣∣e′0∣∣; G4+ exemplifies the region where |ec| ≤ e′0 and

e ≥ e0; G4− describes the space where |ec| ≤ e′0 and e ≤ −e0; G5 specifies the domain where |e| < e0

and |ec| < e0
′.

For convenience, let the universe of e be a~b and set the universe of ec as c~d. The
membership degree function is taken as the triangular function. Then, singleton fuzzifier
and average center defuzzifier [36] were used to calculate outputs α based on the feedback
values of e and ec in the form of

α =

5
∑

i=1
ηiµ(e, ec)

5
∑

i=1
µ(e, ec)

, (26)

where µ(·) is the membership degree of the five cases mentioned above. The ηi is an
adjustable weight parameter of α under a different context. Afterward, the successor value
of α is determined by

αk+1 = αk + τ, (27)

with
τ = max

λ
{λ|W ∈ λE}. (28)

Theorem 1. Given system (1) controlled with the control policy u ,
{

u0, u1, . . . , uN−1
}

, the state
error ek is restricted to the error tube αkE. To be specific, the design of the disturbance rejection rate
ensures that error lim

k→∞
ek → 0 for ∀w ∈W.

Lemma 1 ([37]).
s1

T Fs2 + s2
T Fs1 ≤ s1

T Fs1 + s2
T Fs2,

where s1, s2 are any vector. F ∈ Rm×n is a positive definite matrix.

Proof of Theorem 1. Consider the error system (25). The disturbance rejection gain
K guarantees that ek is constrained to be inside the set αkE, i.e., xk ∈ zk + αkE. Since
the nominal system (3) has robust stability, the nominal state zk should converge to the
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origin d(zk, 0)→ 0 . Then, the state error ek must converge to error tube αkE because of
xk ∈ z(ek−1) + αkE, namely d(ek, αkE)→ 0 . Finally, the state error ek is restricted to a
variable error tube αkE whose center is at the origin by implementing the ancillary control
law Kek.

Here, the disturbance rejection gain K is solved by the following equation

KT BT HIn + HInBK + 2‖BK‖2
HIn

+
(

3τ2+1
)
· HIn = −Q (29)

where H is determined by equation H = (VN(dN))
TVN(dN) and Q is a positive definite

matrix. In denotes the identity matrix with the same dimensions as the state vector xk. For
convenience, let us set HIn = PV .

Then, P is the solution to the following Lyaponuv equation

ε2‖A + BK‖2
P − P = −Qe − ‖K‖2

Qv
(30)

with

ε ∈
(

1,
1

Eigmax(A + BK)

)
(31)

where Eigmax(·) is the maximum value of the matrix eigenvalue.
The Lyapunov candidate function is represented as

VL = ek
T PVek, k ∈ `N . (32)

Consider the first difference equation as

∆VL = ek+1
T PVek+1 − ek

T PVek. (33)

By substituting Equation (25) into Equation (33), one obtains

∆VL = (BKek)
T PVek + (BKek)

T PV BKek + (BKek)
T PVwk + wk

T PVek + wk
T PV BKek

+wk
T PVwk + ek

T PV BKek + ek
T PVwk

. (34)

According to Lemma 1, then it follows that

∆VL ≤ (BKek)
T PVek + ek

T PVek + ek
T PV BKek + 2(BKek)

T PV BKek + 3wk
T PVwk. (35)

Or, equivalently

∆VL ≤ ek
T
(

KT BT PV + 2‖BK‖2
PV

)
ek + ek

T PVek + ek
T PV BKek + 3wk

T PVwk. (36)

According to Equation (28), the disturbance is bounded by τ as wk ≤ τek. We have

∆VL ≤ ek
T
(

KT BT PV + 2‖BK‖2
HPV

+ PV BK +
(

3τ2 + 1
)
· PV

)
ek. (37)

By substituting Equation (29) into Inequation (37), further obtain

∆VL ≤ ek
T(−Q)ek. (38)

It is clear that ∆VL ≤ 0, thus the function (32) is a decreasing function, then lim
t→∞

ek → 0 .

�

This section shows that optimal cross-sections of the error tube are calculated online by
considering the adjustable tube-scaling parameters αk, which are affected by a combination
of error and error variety ratio. Theorem 1 shows that the successor estimation of the
actual system has a non-increasing estimation error at each time step. The design of the
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fuzzy-based tube size controller and the auxiliary control law considers both variations
in state error and changes in the value of cost function during error adjustment, unlike
previous literature [15] that incorporates optimization of scaling vector αk into OCP, thereby
increasing computational complexity and aiming to optimize scaling vectors to a specific
value. In addition, we discover that the appropriate selection of the acquisition form of
a nominal system can improve prediction accuracy. Nonetheless, the invariable nominal
system is considered during the prediction in [24,25]. In order to improve the control
performance, our main concern here is to define a parameter estimation scheme that
generates a time-varying nominal system based on the DNN algorithm and still enables a
computationally tractable RMPC algorithm, which is presented in the following.

3.2. Design of DNN-Based Nominal RMPC

This section focuses on designing the DNN-based nominal RMPC to construct a pa-
rameter estimation synthesis that provides a time-varying nominal system for the control
scheme. The cost function for the constrained system proposed in conventional RMPC is
reformulated as an online learning problem by introducing a series of reference control in-
puts vk = υθ(ek) parameterized by θ. The modified OCP Pθ

N(e), solved online, is defined by

Vθ
N(e) = inf

ϕN

N−1

∑
k=0

(
‖ek‖2

Qe
+ ‖υθ(ek)‖

2
Qv

)
+ ‖(eN)‖2

P, (39)

ϕθ
N(e) = arginf

ϕN

N−1

∑
k=0

(
‖ek‖2

Qe
+ ‖υθ(ek)‖

2
Qv

)
+ ‖(eN)‖2

P. (40)

s.t. ∀ek ∈ αkE, k ∈ `N−1, (41)

(A + BK)ek ⊕W ⊆ αk+1E, k ∈ `N−1, (42)

{
υθ(ek)

}
∈ U	 αkKE, k ∈ `N−1, (43)

{z(ek)} ∈ X	 αk+1E, k ∈ `N−1, (44)

Axk + Buk ⊕W ⊆ z(ek)⊕ αk+1E, k ∈ `N−1, (45)

EN ∈ E f . (46)

The parameters θ will update in the direction of the gradient ∇θVθ
N(e) of the cost

function by adopting the policy gradient method. In the architecture of constrained DNN-
based nominal RMPC, the state errors (ek, . . . , eN) are used as input to create the optimal
control policy υθ(ek) as the output of DNN.

This paper employs DNN characterized by inherent symmetry, which features symmet-
ric weights, facilitating efficient parameter sharing. Consequently, the network demands
fewer computational resources than conventional network structures, rendering them
advantageous in resource-constrained environments. Assuming the network has L hidden
layers, the layers 1 and L each consist of i neurons. The architecture of a deep neural
network is illustrated in Figure 2.
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Figure 2. Diagram illustrating the architectural structure of the deep neural network.

The superiority of the network architecture employed in this paper over a typical
neural network structure is demonstrated in Table 1.

Table 1. Performance comparison: symmetrical DNN vs. general DNN.

Network Structure Number of
Calculated Weights Iterations Precision

Symmetrical DNN 2i(L + 1) 436 98.03%
Typical DNN [m + n + (i + 1)L− i + 1]i 679 97.64%

From Table 1, it can be observed that in symmetric neural networks, the number of
weights to be calculated is reduced since each connection is computed only once and then
shared. Notably, despite having fewer parameters, deep neural networks with symmetric
structures achieve higher accuracy under the same computational resources. Regarding
convergence, symmetric neural networks require 35.79% fewer iterations than conventional
neural networks.

The output of the DNN-based nominal RMPC is formulated as

υθ(ek) = δ

(
m

∑
i=1

WLaL−1 + bL

)
, (47)

where the linear relationship coefficient matrix and bias vector between the hidden layer
and the output layer are denoted as W ⊂ Rn×m and b ⊂ Rn×1, respectively. The affine
function parameters θ = {W1:L, b1:L} will be optimized. δ is a rectified linear unit function.
The output value of the hidden layer is aL ⊂ Rm×1, and set the input a1 to ek.

Since the neural network may output a potentially infeasible υθ(ek) for a given error
ek, Dykstra’s projection algorithm [38] is introduced to ensure that subsequent states and
controls remain feasible. Its structure is shown in Figure 3.
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Theorem 2. By applying Dykstra’s projection algorithm, the optimal control input υθ(ek) converges
to the orthogonal projection of υθ(ek) onto the polytopic U	 αkKE as t→ ∞ .

Proof of Theorem 2. First, define the orthogonal projection of υθ(ek) onto the polytopic
U	 αkKE as P

(
υθ(ek)

)
, and a series of variables v(k,t) and I(k,t) are generated from the

DNN structure, which is extended by Dykstra’s projection algorithm. It then iterates as

v(k,t) = P
(
υθ(ek)

)(
v(k−1,t) − I(k,t−1)

)
, (48)

I(k,t) = v(k,t) −
(

v(k−1,t) − I(k,t−1)
)

. (49)

Assume that the starting condition of the algorithm is v(0,0) = v(e0) and I(0,0) = 0.
When t→ ∞ , we have I(k,t) = I(k,t−1), it is clearly that v(k,t) = v(k+1,t) (i.e., the nominal
control input υθ(ek) converges to P

(
υθ(ek)

)
). �

Thus, given a state error ek, control policy will output P
(
υθ(ek)

)
= f (ek; θ).

According to the policy gradient theory presented in [39], the gradient of the value
function ∇θVθ

N(e) with respect to the policy parameters θ is

∇θVθ
N(e) = Ev

[
Vθ

N(e)∇θ log φ(vt; f (et; θt), Σ)
]
, (50)

where φ(vt; f (et; θt), Σ) is a multivariate Gaussian probability density function used to
sample control inputs υθ(ek), centered at the DNN output f (ek; θ) with diagonal covariance
Σ, the covariance Σ anneals to 0 at the end of training to return to the control police.

The neural network parameters iterate by using stochastic gradient descent as

θt+1 = θt − γtVθ
N(e)∇θt log φ(vt; f (et; θt), Σ). (51)

The learning rate γt of DNN is selected as a positive number.
The termination criterion for the iteration is defined as

|θt+1 − θt| ≤
∣∣∣Vθ

N(e)−Vθ
N−1(e)

∣∣∣. (52)
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For application of the proposed approach, instead of focusing on constructing a set of
polytopic regions, function approximation and reinforcement learning techniques are used
to directly learn an approximate optimal control policy. Furthermore, the policy gradient
method guarantees the control action converges to locally optimal solutions by applying
function approximation to generate unbiased estimates of the gradient with respect to the
parameter θ. The proposed optimization method significantly enhances the computational
performance of the system control while ensuring the feasibility of control inputs.

3.3. The Feedback Mechanism of the Control Synthesis

In this paper, the feedback loop encompasses state error, state error variety rate, and
cost function, as illustrated in Figure 4. Expressly, the state error and error variety rate are
conveyed to the fuzzy controller, subsequently yielding an error scaling vector associated
with constraints at the subsequent time step. Simultaneously, the state error contributes to
the optimization process of the cost function. The resulting cost function value is then fed
back into the auxiliary control law, thereby determining the auxiliary control rate for the
upcoming sampling time.

Figure 4. The flowchart depicting the feedback processing mechanism of the control synthesis.

The comparison between the computational performance of the proposed algorithm
and HTMPC is shown in Table 1. Where qX, qU, qE, and qE f in Table 1 denote the numbers
of affine inequalities of the irreducible representation of the sets X, U, E, and E f employed
in the propose scheme; qS and qG f are the numbers of affine inequalities of the irreducible
representation of the state homothetic set and the terminal constraint set, respectively.

Table 2 clearly demonstrates that assigning the scaling vector to the fuzzy controller’s
specialized treatment not only provides a more comprehensive consideration of the impact
of state error and error variety rate on error tube scaling, but also effectively reduces
the number of decision variables and inequality constraints in the optimization process.
Furthermore, the design of a symmetric constrained DNN structure addresses the issue of
the exponential growth of polyhedra construction with the increasing number of constraints
during the optimization. Consequently, implementing the proposed algorithm allows for
a substantial reduction in computational complexity while enhancing the flexibility of
system control.
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Table 2. The comparison of computational complexity between the proposed approach and HTMPC.

Control Strategy Number of Decision Variables Number of Inequality Constraints Upper Bound on the Number
of Critical Regions

Proposed Approach N(m + n) + n N(qX + qU + qE) + qE f
0

HTMPC N(m + n + 1) + n + 1 N(qX + qU + qS + 1) + qS + qG f 2
N(qX+qU+qS+1)+qS+qG f

3.4. The DNN-Based RMPC with a Fuzzy-Based Tube Size Controller Structure

To recapitulate, the proposed RMPC scheme comprises a fuzzy-based tube size con-
troller and a DNN-based nominal RMPC part. The fuzzy-based tube size controller is
employed to adjust error tube scaling. Meanwhile, the tightened sets (i.e., the minimal
disturbance invariant set with an adjustable parameter αk) and disturbance rejection gain
K are computed online to restrain state error. Then, the DNN nominal RMPC is used to
generate the time-varying nominal system in the case that the constraints associated with α
are satisfied. It provides a theoretically rigorous and technically achievable framework for
RMPC with online parameter estimation to improve calculated performance.

In this paper, we obtain the error tube shape set E by computing the minimum
robust positively invariant set using the method described in [34]. Moreover, we set the
error bound e0 to 3.7 and secured the rate of error variation e′0 by 2.5. As parameter α
typically ranges between 1 and 2, we design the fuzzy rule table in the Table 3 format.
Table 3 shows that inputting a data pair (e0, e′0) determines a reasonable value for α, which
subsequently dictates αk+1’s value according to Equation (27). The determination of αk+1
further influences determining associated constraints αk+1E, αk+1KE, X	 αk+1E, and U	
αk+1KE. Additionally, disturbance rejection rate and terminal cost function for control can
be determined based on Equations (29) and (30). To meet specified constraints, constrained
time-varying nominal system trajectories are computed through a Dykstra’s projection
algorithm-extended constrained DNN. The actual system will track the nominal trajectory
while satisfying relevant conditions. Section 4 will explicitly discuss DNN parameter
settings depending on the dimensionality of input and output variables. Specifically,
Algorithm 1 gives the main procedure of the proposed control scheme, and its whole
structure diagram is presented in Figure 5.

Algorithm 1 DNN-based RMPC with a fuzzy-based tube size controller

Given initial conditions e0 = 0, α0 = 1 and weighting matrices Qe, Qv, determine the set E.
Compute the terminal weight matrix P and disturbance rejection gain K by using (29) and (30).
1: Randomly initialize θ
2: Set learning rate γ
3: for each time instant k = 0,1,2,. . .,N do
4: Compute polytopic αkE, αkKE, X	 αkE and U	 αkKE
5: if constraints (41)–(46) are satisfied then
6: repeat calculate θt+1 by using (51)
7: until convergence
8: else
9: let ek+1 = ek
10: end if
11: Solve the optimization problem (39) and (40) based on θt+1 to obtain v∗k (ek),
12: Compute the error variety rate ec and the corresponding scaling vector α, then obtain the successor
scaling vector αt+1 by using (27),
13: Calculate the control input as uk(e) = υθ(ek) + Kek, and then implement uk to the system.
14: end for

Table 3. Fuzzy rule comparison table.

Scaling Vector
Fuzzy Rule Control Region

G1 G2 G3 G4 G5

α 0.5–0.8 0.9–1.2 0–0.4 1.3–1.6 1.7–2.0
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Figure 5. The structure of the constrained DNN-based robust model predictive control scheme with
an adjustable error tube.

4. Simulations and Comparison Study

In this section, the advantages of the Algorithm 1 are illustrated by the following
simulation examples of both 2-D and 4-D systems. The simulation experiments were
conducted using Matlab, and the polyhedral constraint set was constructed utilizing the
Mosek and MPT toolbox. Subsequently, the convex optimization problem of the actual
system was solved. Deep learning toolboxes were employed to train neural networks for
determining optimal control inputs in a nominal system.

Example 1. Consider a 2-D double integrator discrete-time system in the form of (1) with

A =

[
1 1
0 1

]
, B =

[
0.5
1

]
. (53)

The state constraints are x ∈ X , {[10,−2]× [−10, 2]}, the disturbance is bounded
as w ∈ W , {w|‖w‖∞ ≤ 0.1}, and the control constraint is u ∈ U , {u||u| ≤ 1}. The
performance index function is defined in (39)–(46) with Qe = I2 and Qv = 0.01, the terminal
cost Vf (e) is the value function ‖eN‖2

P, while P is calculated from (30). Then, disturbance
rejection gain K is computed by using (29). The set E is computed as a polytopic. The
horizon length is selected as N = 12. The system is simulated using the initial condition
x0 = z0 = (−4,−2) and α0 = 1, the value of αk+1 is induced by Equation (27). In the
context of neural network architecture determination, Figure 6 compares system nominal
state trajectories when employing different network structures and deep neural networks
with varying layers.

Indeed, from Figure 6, it is evident that when utilizing a symmetric DNN with six
hidden layers, the trajectories of system nominal states can reach the desired values more
rapidly (i.e., the trajectories of system nominal states reaching the origin by the 12th
sampling time).
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Figure 6. Nominal state trajectories under various DNN architectures.

The state trajectories for the proposed RMPC scheme are indicated in Figure 7. The
solid line represents the state trajectory of the nominal system (3), while the dash-dot line
is the state trajectory of the actual system (1). The error tube αkE is depicted by green
polytopes, while the 0-step homothetic tube controllability set X0 is represented by the
dark gray area. Obviously, the local state at each instance is regulated in an error tube αkE
centered around the trajectory of the nominal state. As anticipated, the cross-section of the
error tube diminishes as the nominal state converges towards the origin.

Figure 7. The state trajectories of the proposed algorithm (N = 12). Colors in the figure represent
specific categories as follows: the green polytopes depicte the error tube for every sampling times;
the dark gray area represents the 0-step homothetic tube controllability set X0; the gray area declares
the undesirable state area.

Then, in order to make the comparison between the control performance of Algorithm 1
and the RMPC algorithm more apparent, N is set to 25. Figure 8 shows the state curves
for Algorithm 1 and the HTMPC strategy. The state constraint is shown in the gray
region. Algorithm 1 makes that initiating from an initial condition significantly distant
from the desired equilibrium point enables faster convergence to the target state while
maintaining a narrower range of fluctuation in state error when satisfying origin constraints
for disturbances and state.
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Figure 8. State astringency comparison between Algorithm 1 and the HTMPC (N = 25). (a) Curves
of x1 obtained by implementing two control algorithms, respectively; (b) curves of x2 obtained by
implementing two control algorithms, respectively.

Figure 9 presents the control input curves generated by two optimization methods. The
region shown in gray is U. Obviously, the control action of the actual system (1) consistently
satisfies the control constraint. Meanwhile, Algorithm 1 accelerates the convergence of the
control input toward the desired equilibrium point with reduced overshoot.

Figure 9. Control input astringency comparison between Algorithm 1 and the HTMPC (N = 25).

For the purpose of validating the efficacy of Algorithm 1 in reducing optimization time,
a statistical analysis was conducted on the optimization time. Furthermore, to investigate
the trend of optimization time, a slightly larger value of N (N = 50) was selected during
the experimentation. As shown in Figure 10, the computational efficiency of Algorithm
1 is generally 2–3 orders of magnitude faster than HTMPC. In addition, as N increases,
the calculation time for HTMPC exhibits an exponential growth trend. In contrast, the
calculation time required by Algorithm 1 shows a gradual slowing trend and eventually
stabilizes within 0.16 ms. Specifically, Algorithm 1 saves an average of 339.54 times more
optimization time than HTMPC. When N = 50, A1 can save 726.23 times the optimization
time compared to HTMPC.
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Figure 10. Comparison of Algorithm 1 and the HTMPC for computational efficiency (N = 50). (a) The
statistical of computational time for Algorithm 1. (b) The statistical of computational time for HTMPC.

Example 2. To further authenticate the proposed approach, consider the system of the form (1) with
four state dimensions and two control input dimensions as

A =


1 1.5 0 0

0.5 −0.5 1 0
0 0.1 0.1 0

0.5 0 0.5 0.5

, B =


0 1
1 0.1
1 0
0 0

. (54)

Constraints are given by the inequalities as

x ∈ X ,

x||x| ≤


5
5
2
2


, u ∈ U ,

{
u||u| ≤

[
1
1

]}
(55)

The parameters are set to horizon N = 30, weighting matrices Qe = diag{10, 10, 1, 1}
and Qv = diag{0.01, 0.01}. The system is simulated according to the provided initial
condition x0 = z0 = (−3,−4,−1.5, 1). The other parameters of the system are under the
same conditions as those in Example 1. Algorithm 1 will be implemented in this system to
test its control performance for large-scale systems. Furthermore, the final DNN structure
is determined by comparing the Euclidean norms of state errors generated when applying
different deep neural network architectures, as illustrated in Figure 11. Specifically, the
chosen DNN configuration comprises a symmetric deep neural network with eight hidden
layers, each containing 14 neurons.

The Euclidean norm ‖e‖2 =
√

∑4
i=1(ei)

2 is employed to depict the trend of state error
changes. As indicated in Figure 11, it is observed that when applying a symmetric neural
network with eight hidden layers, the system’s state error is generally more minor and
converges within the neighborhood of zero more quickly.



Symmetry 2023, 15, 1845 18 of 22

1 
 

 
 
 
 

 
0 5 10 15 20 25 30

0.0

0.3

0.6

0.9

Typical DNN with 8 Hidden Layers

Symmetrical DNN with 10 Hidden Layers

Symmetrical DNN with 6 Hidden Layers

Symmetrical DNN with 8 Hidden Layers

Sampling Time

Euclidean N
orm

 of State Error

Figure 11. Euclidean norm of state error under various DNN architectures.

Figure 12 depicts the state variable curves for each dimension. The figure demonstrates
that the time-varying nominal system obtained by online learning results in a slight error
and shorter adjustment time during the convergence of the nominal state. The translucent
area in these figures represents the range of error fluctuations; evidently, Algorithm 1
generally yields a bound on state errors than HTMPC, indicating greater flexibility in
scaling the state tube. Furthermore, in Table 2, a visual comparison is performed using
specific data to effectively demonstrate the error-constraining capabilities when evaluating
the tracking performance of the actual system against the nominal system, employing
Algorithm 1 and HTMPC. In order to mitigate the extreme influence of outliers, we opted
for the mean squared error (MSE), known for its numerical stability, as the metric for
assessing the tracking performance.

The utilization of Algorithm 1 for controlling a 4-D system, as illustrated in Table 4,
leads to a minor MSE between the nominal and actual states across all four dimensions. The
average MSE of the four dimensions is reduced by 67.86% when Algorithm 1 is employed,
compared to its counterpart HTMPC. Consequently, the implementation of Algorithm 1
ensures a closer approximation of the actual state to the nominal state with reduced error.

Table 4. The MSE of state trajectories produced by two distinct control methodologies.

Control Strategy
Mean Squared Error

X1 X2 X3 X4

Algorithm 1 0.257407572 0.250064179 0.081418276 0.150326006
HTMPC 1.226454484 0.606667032 0.166021517 0.300930419

Moreover, the time-varying nominal system generated by Algorithm 1, as depicted in
Figure 13, exhibits enhanced control input stabilization capabilities with a faster conver-
gence rate and reduced overshoot.
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Figure 12. State astringency comparison between Algorithm 1 and the HTMPC (N = 30). (a) Curves
of state obtained by implementing two distinct control algorithms, respectively. (b) Curves of state
obtained by implementing two distinct control algorithms, respectively. (c) Curves of state obtained
by implementing two distinct control algorithms, respectively. (d) Curves of state obtained by
implementing two distinct control algorithms, respectively.

Figure 13. Control input astringency comparison between Algorithm 1 and the HTMPC (N = 30).
(a) Curves of control input v1 for the nominal system obtained by employing two distinct control
algorithms, respectively. (b) Curves of control input v2 for the nominal system obtained by employing
two distinct control algorithms, respectively.
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From a computational perspective, Algorithm 1 exhibits more pronounced advantages
regarding computational efficiency for large-scale systems. As illustrated in Table 5, it can be
observed that the proposed method significantly reduces the computation time to less than
6 ms when applied to four-dimensional input systems. In contrast, the HTMPC approach
requires a longer computation time. On average, Algorithm 1 achieves optimization up to
7218.07 times faster than HTMPC.

Table 5. Comparison of Algorithm 1 and the HTMPC for computational efficiency.

Control Strategy
Horizon Length (N)

10 20 30 40 50

Algorithm 1 0.003938 s 0.004592 s 0.004823 s 0.004967 s 0.005094 s
HTMPC 23.179 s 27.674 s 30.239 s 38.098 s 49.837 s

The table denotes the calculation time unit “second” as “s”.

5. Conclusions

This paper presents a mathematically rigorous and computationally tractable RMPC
scheme for constrained linear systems with bounded disturbance. Firstly, a more flexible
approach is proposed to adjust the size of the corresponding tube cross-section by incor-
porating a fuzzy-based tube size controller, which is influenced by both error magnitude
and error variability ratio. Subsequently, the OCP for systems is reformulated as an on-
line learning problem with iterative parameters. A time-varying nominal system for the
control scheme is generated from the DNN-based nominal RMPC. Additionally, Dykstra’s
projection algorithm is incorporated into the DNN optimization process to ensure the
feasibility of the successor state and control input. The proposed integrated control strategy
significantly reduces the computational time while enhancing control effectiveness, thereby
enabling its potential application in large-scale systems. Simulation results demonstrate the
effectiveness of the proposed optimal control algorithm. The current study is constrained
by the need for a measurable criterion for evaluating the suboptimal nature of the derived
control law, thus impeding our ability to ascertain its degree of alignment with an optimal
solution. To address this constraint, it might be imperative to devise metrics or algorithms
capable of proficiently assessing the efficacy of the control.
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