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Abstract: Interval numbers comprise potential fields of application and describe the imprecision
brought on by the flexible nature of data between boundaries. The recently added type-2 interval
number allows a more thorough understanding of interval numbers. Differential equations are
commonly employed in mathematical models to handle dynamic problems. It is essential to provide
theories of differential equations to describe these models in an ambiguous environment controlled
by type-2 interval numbers. This study proposes the type-2 interval context solvability requirements
for the initial-valued first differential equation. The conditions for the solution’s existence and
uniqueness must be met before a brief manifestation of the solution under generalized Hukuhara
differentiation occurs. An economic order quantity model analysis in a type-2 interval scenario uses
a generalized Hukuhara differentiation approach.

Keywords: generalized Hukuhara difference; type-2 interval number; generalized Hukuhara
differentiability; Riemann integrability; differential equation; existence and uniqueness theorem;
lot-size model

1. Introduction

Almost all instances, including observations, measurements, and decision making,
entail some degree of imprecision. To roughly trace the real-world process, computational
simulations evolve. It necessitates a piece of mathematical equipment to address such hazy
issues because the parameters and variables employed in mathematical models are subject
to uncertainty. The commonly used mathematical foundation of interval numbers and fuzzy
logic might meet the requirement. While the fuzzy theory offers an understanding of a sense
of belongingness, interval numbers can clarify the data with ambiguity between boundaries.
Calculus and algebraic topics are included in interval numbers and potential applications.
Pioneering works in the interval number theory were contributed by Moore [1], Aubin
and Frankowska [2], and Lakshimikantham [3]. The initial trend was about establishing
the notion of interval arithmetic and its applications. In these concerns, several worthy
research findings [4–10] were attached in the literature on interval uncertainty, addressing
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the introduction of interval numbers and their applications in applied science, engineering,
and management. The application area of the interval number theory was broadened in
reliability optimization [11], design [12,13], and bio-mathematical models [14]. The interval
number expresses the sense of uncertainty due to the variance of concerned data in a
specific range. In certain instances of mathematical modeling, the upper and lower ends of
the interval numbers may be flexible. For example, in the retail sector, customer demand
pattern alters between ranges. That is, the ranges’ ends are also elastic. To address this
scenario, we must broaden the definition of uncertainty as provided by interval numbers. In
this context, the philosophy of type-2 interval numbers comes into the picture, generalizing
the notion of interval uncertainty. Rahman et al. [15] defined the type-2 interval numbers.
Discussions of the solving criteria for differential equations in type-2 interval surroundings
and their direct effects on constructing an economic lot-size model are contained in this
research. This paper advances the theory of interval differential equations using the recently
established approach to type-2 interval number-based uncertainty. Subsequent segments
of this section, therefore, outline the literature on type-2 interval number theory, interval
calculus, differential equations, and the research voids that prompted authors to develop
the hypotheses in this study.

1.1. Literature on Type-2 Interval Number Theory

Interval numbers carry uncertainties due to the inexactness of the parameters involved
in decision-making procedures. However, addressing ambiguity in portraying data be-
tween specific upper and lower bounds is challenging. It is better to describe the lower
and upper limits of the intervals to be flexible within bounds. Rahman et al. [15] hinted
at an imprecise phenomenon where the ends of such intervals again fluctuate between
bounds. In that study, they also introduced some preliminaries on the limit, continuity,
and differentiability of the type-2 interval numbers. Another succeeding research [16]
portrayed the arithmetic properties of the interval numbers and their consequences. They
also discussed an inventory model in the light of type-2 interval theory. The optimization
approaches of both constrained and unconstrained types for dealing with the mathematical
model under the mentioned interval uncertainty were discussed later by Rahman et al. [17].
Rahman et al. [18] also used a genetic algorithm to address the inventory model under
type-2 interval uncertainty in a metaheuristic optimization approach. The real-coded
self-organizing migrating genetic algorithm was utilized to discuss warehousing decision
strategies in a type-2 interval scenario. Das et al. [19] dealt with ranking type-2 interval
numbers and manifested the consequence on unconstrained non-linear programming mod-
els. Rahaman et al. [20] added some fundamental definitions of type-2 interval arithmetic
and conformable calculus. We have yet to notice any research article emphasizing the
theory of differential equations accounting for type-2 interval uncertainties.

1.2. Literature on Interval-Valued Calculus and Differential Equations

We surveyed the research on conventional interval-valued calculus and differential
equations to introduce the mathematical foundations of type-2 interval-valued differential
equations. Interval numbers’ arithmetic characteristics are distinct from those of crisp
numbers. For example, −A is not the additive inverse of the interval number A. The
difference between two interval numbers is not uniquely defined. This fact has the con-
sequence of introducing the Hukuhara and generalized Hukuhara differences. Therefore,
researchers introduced integral and differential calculus theories for interval-valued func-
tions. A remarkable contribution was made by Stefanini and Bede [21]. They discussed
differentiation using the generalized Hukuhara difference for functions involving interval
impreciseness. A numerical solution scheme for interval-valued differential equations
under the mentioned approach was credited by an immediate investigation [22]. In this
context, a comparative manifestation of fuzzy and interval-valued calculus was contributed
by Stefanini [23]. The notion of generalized Hukuhara difference was one of the central
concerns of the paper by Tao and Zhang [24], where they characterized the functions
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incurring the interval uncertainty. Lupulescu [25] discussed the properties of the interval-
valued functions concerning integral and differential calculus. Agarwal et al. [26] was the
pioneer in introducing fractional calculus for interval-valued functions. The theories of
fuzzy and interval fractional calculus evolved together. In this context, we can address the
works [27–33] on the ideas and applications of the Riemann–Liouville and Caputo frac-
tional differential equations under fuzzy uncertainty. The generalized Hukuhara difference
for fuzzy and interval-valued functions was used in introducing the fractional derivatives
and integrals of those functions. Lupulescu [34] contributed a detailed and worthy study
on the differential and integral calculus of fractional order for interval-valued functions in
this directrix. The confirmable definition of derivative and integration was discussed in the
interval frame by Salahshour et al. [35].

1.3. Motivations and Objectives of This Paper

The synopsis of the previous discussion guides us in the direction of the inspiration
for this paper. We uncover the following details:

1. The theory of interval numbers and its applications has potential literature involving
arithmetic properties of interval numbers, differential and integral calculus of interval-
valued functions, and optimization approaches concerning interval-valued objective
functions and constraints.

2. The standard interval number theory faces challenges when attempting to make
sense of certain perplexing circumstances. The type-2 interval concept was created,
broadening the interval uncertainty range.

3. By adding preliminary arithmetic features and optimization issues, the type-2 interval
number theory is constrained. Several computational problems were solved using
type-2 interval uncertainty.

By integrating the previously described ideas, we arrive at our motives and established
goals for this work, which are as follows:

1. Several mathematical models involve differential equations. The differential equation
theory under said uncertainty needs to discuss such models under type-2 interval
uncertainty. Addressing the mathematical model using crisp differential equations
succeeding by optimization under type-2 interval uncertainty may not be a convincing
approach in many cases. Differential equation approach under generalized Hukuhara
differentiability of type-2 interval-valued functions for discussing and analyzing the
whole mathematical problem may be fruitful alternatives in this context. Thus, we
find the usefulness of the type-2 interval-valued differential equations.

2. Before going for a detailed manifestation of the differential equation under type-2 interval
uncertainty, we address the existence and uniqueness of the solvability criteria.

3. In this paper, we endeavor to determine the conditions for the first-order type-2
interval-valued differential equation’s existence of a single solution. The solution of a
first-order linear differential equation under various scenarios with type-2 interval
uncertainty is next discussed, followed by a discussion of the existence and uniqueness
theory. The proposed approach is followed promptly by an appraisal of an economic
order quantity model.

1.4. Summary of the Organization of This Paper

Following the introduction section, this paper is organized as follows. Section 2
discusses some preliminaries regarding the theory of type-2 interval numbers. Section 3
discusses the conditions for the existence and uniqueness of a differential equation under
said uncertainty. Section 4 discusses cases for solving a first-order linear differential equa-
tion under different type-2 interval uncertainty cases. Section 5 describes an EOQ model
for deteriorated commodities using the generalized Hukuhara differentiation approach for
type-2 interval-valued functions. Section 6 concludes this paper.
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2. Mathematical Preliminaries

This section revisits some mathematical preliminaries on type-2 interval uncertainty
based on the proposed theory introduced in this paper.

Definition 1 ([15,16]). An interval number given by A = [[aLL, aLU ], [ aUL, aUU ]] in which
aLL ≤ aLU ≤ aUL ≤ aUU is called a T2IN.

A T2IN has uncertain upper and lower bounds. The lower and upper bounds lie in
the intervals [aLL, aLU ], and [aUL, aUU ], respectively. As a particular case, if the upper and
lower bounds lie in {aLL, aLU} and {aUL, aUU}, respectively, then a T2IN includes the uncer-
tain combinations of four interval numbers, namely, [aLL, aUL], [aLL, aUU ], [aLU , aUL], and
[aLU , aUU ]. Therefore, a T2IN is an uncertain combination of interval numbers. Thus, a T2IN
generalizes the traditional interval numbers. Figure 1 depicts the sense of generalization in
interval uncertainty made by a T2IN.

Symmetry 2023, 15, x FOR PEER REVIEW 4 of 27 
 

 

1.4. Summary of the Organization of This Paper 

Following the introduction section, this paper is organized as follows. Section 2 dis-

cusses some preliminaries regarding the theory of type-2 interval numbers. Section 3 dis-

cusses the conditions for the existence and uniqueness of a differential equation under 

said uncertainty. Section 4 discusses cases for solving a first-order linear differential equa-

tion under different type-2 interval uncertainty cases. Section 5 describes an EOQ model 

for deteriorated commodities using the generalized Hukuhara differentiation approach 

for type-2 interval-valued functions. Section 6 concludes this paper. 

2. Mathematical Preliminaries 

This section revisits some mathematical preliminaries on type-2 interval uncertainty 

based on the proposed theory introduced in this paper. 

Definition 1 ([15,16]). An interval number given by 𝒜 = [[𝑎𝐿𝐿, 𝑎𝐿𝑈], [ 𝑎𝑈𝐿, 𝑎𝑈𝑈]]  in which 

𝑎𝐿𝐿 ≤ 𝑎𝐿𝑈 ≤ 𝑎𝑈𝐿 ≤ 𝑎𝑈𝑈 is called a T2IN. 

A T2IN has uncertain upper and lower bounds. The lower and upper bounds lie in 

the intervals [𝑎𝐿𝐿 , 𝑎𝐿𝑈], and [𝑎𝑈𝐿, 𝑎𝑈𝑈], respectively. As a particular case, if the upper and 

lower bounds lie in {𝑎𝐿𝐿, 𝑎𝐿𝑈} and {𝑎𝑈𝐿, 𝑎𝑈𝑈}, respectively, then a T2IN includes the uncer-

tain combinations of four interval numbers, namely, [𝑎𝐿𝐿,  𝑎𝑈𝐿], [𝑎𝐿𝐿, 𝑎𝑈𝑈], [𝑎𝐿𝑈,  𝑎𝑈𝐿], and 
[𝑎𝐿𝑈 , 𝑎𝑈𝑈] . Therefore, a T2IN is an uncertain combination of interval numbers. Thus, a 

T2IN generalizes the traditional interval numbers. Figure 1 depicts the sense of generali-

zation in interval uncertainty made by a T2IN. 

 

Figure 1. Graphical representation of a T2IN is given as 𝒜 = [[𝑎𝐿𝐿, 𝑎𝐿𝑈], [ 𝑎𝑈𝐿, 𝑎𝑈𝑈]]. 

Definition 2 ([15]). Let 𝒜 = [[𝑎𝐿𝐿, 𝑎𝐿𝑈], [ 𝑎𝑈𝐿, 𝑎𝑈𝑈]]  and ℬ = [[𝑏𝐿𝐿, 𝑏𝐿𝑈], [𝑏𝑈𝐿, 𝑏𝑈𝑈]]  be two 

T2INs and 𝛾 be any real number. Then, addition and scalar multiplication are given as  

Addition. 𝒜⊞ℬ = [[𝑎𝐿𝐿 + 𝑏𝐿𝐿, 𝑎𝐿𝑈 + 𝑏𝐿𝑈], [𝑎𝑈𝐿 + 𝑏𝑈𝐿, 𝑎𝑈𝑈 + 𝑏𝑈𝑈]] 

Scalar multiplication. 𝛾 ⊡𝒜 = {
[[𝛾𝑎𝐿𝐿, 𝛾𝑎𝐿𝑈], [𝛾𝑎𝑈𝐿, 𝛾𝑎𝑈𝑈]]𝑓𝑜𝑟 𝛾 ≥ 0
[[𝛾𝑎𝑈𝑈 , 𝛾𝑎𝑈𝐿], [𝛾𝑎𝐿𝑈 , 𝛾𝑎𝐿𝐿]], 𝑓𝑜𝑟 𝛾 < 0

 
 

Definition 3 ([19]). The interval width of 𝒜 = [[𝑎𝐿𝐿, 𝑎𝐿𝑈], [𝑎𝑈𝐿, 𝑎𝑈𝑈]] is defined as 𝒲(𝒜) =

[𝑎𝑈𝐿 − 𝑎𝐿𝑈 , 𝑎𝑈𝑈 − 𝑎𝐿𝐿]. 

Figure 1. Graphical representation of a T2IN is given as A = [[aLL, aLU ], [ aUL, aUU ]].

Definition 2 ([15]). Let A = [[aLL, aLU ], [ aUL, aUU ]] and B = [[bLL, bLU ], [bUL, bUU ]] be two
T2INs and γ be any real number. Then, addition and scalar multiplication are given as

Addition. A� B = [[aLL + bLL, aLU + bLU ], [aUL + bUL, aUU + bUU ]]

Scalarmultiplication. γ�A =

{
[[γaLL, γaLU ], [γaUL, γaUU ]] f or γ ≥ 0
[[γaUU , γaUL], [γaLU , γaLL]], f or γ < 0

Definition 3 ([19]). The interval width of A = [[aLL, aLU ], [aUL, aUU ]] is defined asW(A) =
[aUL − aLU , aUU − aLL].

For example, let a T2IN be taken as A = [[2, 3], [10, 11]]. Then, the interval width
is (A) = [7, 9], an interval itself. A T2IN is a degenerate interval number when the
bounds were crisp instead of intervals. Then, aLL = aLU = aL, aUL = aUU = aU , and
W(A) = aU − aL is the width of the interval number [aL, aU ].

Definition 4 ([19]). Let A = [[aLL, aLU ], [aUL, aUU ]] and B = [[bLL, bLU ], [bUL, bUU ]] be two
T2INs. Then, W(A) <in W(B) is equivalent to aUL − aLU ≥ bUL − bUL and aUU − aLL ≥
bUU − bLL . In that case, we say that A has a greater interval width than B.
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Definition 5 ([15]). The generalized Hukuhara difference between two T2Ins A = [[aLL, aLU ],
[aUL, aUU ]] and B = [[bLL, bLU ], [bUL, bUU ]] is defined as

A�g B =
[[min{aLL − bLL, aUU − bUU}, min{aLU − bLU , aUL − bUL}],
[max{aLL − bLL, aUU − bUU}, max{aLU − bLU , aUL − bUL}]]

Lemma 1 ([19]). Let A = [[aLL, aLU ], [aUL, aUU ]] and B = [[bLL, bLU ], [bUL, bUU ]] be two
T2INs. Then, the generalized Hukuhara difference between them depends on interval widths as
follows:

A�g B =

{
[[aLL − bLL, aLU − bLU ], [aUL − bUL, aUU − bUU ]], whenW(A) <in W(B)
[[aUU − bUU , aUL − bUL], [aLU − bLU , aLL − bLL]], whenW(B) <in W(A)

3. Existence and Uniqueness of Initial Valued Differential Equations

A type-2 interval number C = [[cLL, cLU ], [cUL, cUU ]] will be the generalized Hukuhara
difference of A and B only if either of the following conditions is satisfied: A = B � C
whenW(A) <in W(B), or B = A� {(−1)� C} whenW(B) <in W(A).

A function ‖.‖4 : K4 → R+ defined by ‖A‖4 = max{|aLL|, |aLU |, |aUL|, |bUU |} is the
norm on the set of all type-2 interval numbers. The norm ‖.‖4 gives the metric ∆4 :
K4 × K4 → R+ defined by ∆4(A,B) = max{|aLL − bLL|, |aLU − bLU |, |aUL − bUL|,
|aUU − bUU |}, for two type-2 interval numbers A = [[aLL, aLU ], [aUL, aUU ]] and B =
[[bLL, bLU ], [bUL, bUU ]]. The space of all type-2 interval numbers is complete under the
metric ∆4. Also, it can be shown that the metric is sequentially compact, totally bounded,
and separable.

Definition 6. A function F defined as F (x) = [[fLL(x), fLU(x)], [fUL(x), fUU(x)]], where each of
fLL, fLU, fUL, and fUU are all crisp functions maintaining the order fLL(x) ≤ fLU(x) ≤ fUL(x) ≤
fUU(x) throughout the domain of definitions D is called a T2IF on D.

C([a, b], K4), the set of all type-2 interval-valued continuous functions defined on
([a, b]), is a closed subset of B([a, b], K4), and hence it is a complete norm space.

Theorem 1. Let F be a T2IF defined on [a, b] that is given by F (x) =
[[ fLL(x), f LU(x)], [ fUL(x), fUU(x)]]. IfF is generalized Hukuhara differentiable andW-monotonic
on [a, b] , then each of fLL, f LU , fUL, fUU are differentiable on [a, b], and furthermore:

(i) dF (x)
dx =

[
[ d fLL(x)

dx , d fLU(x)
dx ], [ d fUL(x)

dx , d fUU(x)
dx ]

]
, when F isW-increasing for all x ∈ [a, b].

(ii) dF (x)
dx =

[
[ d fUU(x)

dx , d fUL(x)
dx ], [ d fLU(x)

dx , d fLL(x)
dx ]

]
, when F isW-decreasing for all x ∈ [a, b].

Proof of Theorem 1. Let x ∈ [a, b] arbitrary and, F is generalized Hukuhara differentiable.

That is, dF (x)
dx = lim

ε→0

F (x0+ε)�gF (x0)
ε exists finitely, and F is W-monotone on [a, b]. We

consider two cases as follows:

Case 1. WhenW-increasing on [a, b]

Since dF (x)
dx = lim

ε→0

F (x+ε)�gF (x)
ε exists, then lim

ε→0−
F (x+ε)�gF (x)

ε = lim
ε→0+

F (x+ε)�gF (x)
ε .

Then, by Lemma 1, we have obtained the type-2 interval equation as follows:

lim
ε→0−

[
[ fUU(x + ε)− fUU(x), fUL(x + ε)− fUL(x)]
[ fLU(x + ε)− fLU(x), fLL(x + ε)− fLL(x)]

,
]

ε
= lim

ε→0+

[
[ fLL(x + ε)− fLL(x), fLU(x + ε)− fLU(x)]
[ fUL(x + ε)− fUL(x), fUU(x + ε)− fUU(x)]

,
]

ε

The above equation leads to the consequence as follows:
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
[

Lim
ε→0−

fLL(x+ε)− fLL(x)
ε , lim

ε→0−
fLU(x+ε)− fLU(x)

ε

]
[

lim
ε→0−

fUL(x+ε)− fUL(x)
ε , lim

ε→0−
fUU(x+ε)− fUU(x)

ε

],

 =


[

lim
ε→0+

fLL(x+ε)− fLL(x)
ε , lim

ε→0+

fLU(x+ε)− fLU(x)
ε

]
[

lim
ε→0+

fUL(x+ε)− fUL(x)
ε , lim

ε→0+

fUU(x+ε)− fUU(x)
ε

],


Equating components of T2IN, we conclude that each of fLL, fLU , fUL, fUU are differ-

entiable on x ∈ [a, b], and in that case, dF (x)
dx =

[[
d fLL(x)

dx , d fLU(x)
dx

]
,
[

d fUL(x)
dx , d fUU(x)

dx

]]
.

Case 2. WhenW-decreasing on [a, b]

Since dF (x)
dx = lim

ε→0

F (x+ε)�gF (x)
ε exists, then lim

ε→0−
F (x+ε)�gF (x)

ε = lim
ε→0+

F (x+ε)�gF (x)
ε .

Then, by Lemma 1, we have obtained the type-2 interval equation as follows:

lim
ε→0−

[
[ fLL(x + ε)− fLL(x), fLU(x + ε)− fLU(x)]
[ fUL(x + ε)− fUL(x), fUU(x + ε)− fUU(x)]

,
]

ε
= lim

ε→0+

[
[ fUU(x + ε)− fUU(x), fUL(x + ε)− fUL(x)]
[ fLU(x + ε)− fLU(x), fLL(x + ε)− fLL(x)]

,
]

ε

The above equation leads to the consequence as follows:
[

lim
ε→0−

fUU(x+ε)− fUU(x)
ε , lim

ε→0−
fUL(x+ε)− fUL(x)

ε

]
[

lim
ε→0−

fLU(x+ε)− fLU(x)
ε , lim

ε→0−
fLL(x+ε)− fLL(x)

ε

] ,

 =


[

lim
ε→0+

fUU(x+ε)− fUU(x)
ε , lim

ε→0+

fUL(x+ε)− fUL(x)
ε

]
[

lim
ε→0+

fLU(x+ε)− fLU(x)
ε , lim

ε→0+

fLL(x+ε)− fLL(x)
ε

] ,


Equating components of T2IN, we conclude that each of fLL, fLU , fUL, fUU are differ-

entiable on x ∈ [a, b], and in that case, dF (x)
dx =

[
[ d fUU(x)

dx , d fUL(x)
dx ], [ d fLU(x)

dx , d fLL(x)
dx ]

]
. �

Definition 7. Let F be a T2IF defined on [a, b] given by F (x) =
[[ fLL(x), fLU(x)], [ fUL(x), fUU(x)]]. Then,F is Riemann integrable on [a, b] when fLL, f LU , fUL,
and fUU are all Riemann integrable functions on [a, b]. In that case, we define the Riemann integra-
tion of the T2IF F as follows:

∫ b

a
F (x)dx = [[

∫ b

a
fLL(x)dx,

∫ b

a
fLU(x)dx], [

∫ b

a
fUL(x)dx,

∫ b

a
fUU(x)dx]]

Now, we introduce the existence and uniqueness of solvability of the differential
equation in a type-2 interval environment.

Let us consider a type-2 interval-valued differential equation of first order given as{
d
∼
y2

dx =
∼
F2(x,

∼
y2(x))

∼
y2(x0) =

∼
y02

(1)

In Equation (1),
∼
y2 is a type-2 valued dependent variable while x is a crisp independent

variable.
In the system given by Equation (1),

∼
F2 : [a, b]× I2 → I2 is a type-2 interval-valued

function (where I2 is the set of all type-2 interval numbers), which is given by four compo-
nents as follows:

∼
F2(x,

∼
y2(x)) =

[[
fLL(x,

∼
y2(x)), fLU(x,

∼
y2(x))

]
,
[

fUL(x,
∼
y2(x)), fUU(x,

∼
y2(x))

]]
Also, the dependent variable

∼
y2 and initial value

∼
y02 are given respectively as

∼
y2(x) =[[

yLL(x,
∼
y2), yLU(x,

∼
y2)
]
,
[
yUL(x,

∼
y2), yUU(x,

∼
y2)
]]

and
∼

y02 = [[y0LL, y0LU], [y0UL, y0UU]]. In
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Equation (1), d
∼
y2

dx represents the generalized Hukuhara differentiability of the type-2 valued
dependent variable

∼
y2 concerning x, the crisp independent variable.

Now, Equation (1) is equivalent to the integral equation

∼
y2(x)�gH

∼
y02 =

∫ x

x0

∼
F2(u,

∼
y2(u))du. (2)

Using the sense of the generalized Hukuhara difference of a type-2 interval-valued
function, Equation (2) is equivalent to either

∼
y2(x) =

∼
y02 �

∫ x

x0

∼
F2(u,

∼
y2(u))du (3)

Or,
∼

y02 =
∼
y2(x)� (−1)�

∫ x

x0

∼
F2(u,

∼
y2(u))du (4)

Theorem 2. We define a closed ball in type-2 interval-valued functions as follows:

Br(
∼

y02) =
{∼

z2 ∈ I2 : µ2(
∼
z2,

∼
y02) ≤ r

where µ2 is the type-2 interval numbers metric and r is a positive real number. In the above definition,
Br(

∼
y02) is the closed ball having a radius r and a center at

∼
y02. Then, we construct a region R* as

follows: R* = [x0, x0 + h]× Br(
∼

y02), where x0, h are crisp numbers and
∼

y02 is a type-2 interval

number. Then, we construct
∼
F2 : R* → I2 as a continuous, non-trivial type-2 valued function,

which satisfies the Lipschitz condition as follows:

µ2(
∼
F2(x,

∼
y2(x)),

∼
F2(x,

∼
z2(x))) ≤ kµ2(

∼
y2(x),

∼
z2(x)) (5)

for all (x,
∼
y2(x)), (x,

∼
z2(x)) in R∗.

Then, the system given by Equation (1) has two unique solutions,
∼
y2

1
and

∼
y2

2
, provided by

the successive iterations as follows:
∼

y(n+1), 2
1
(x) =

∼
y02 �

∫ x
x0

∼
F2(u,

∼
yn, 2

1
(u))du

∼
y02 =

∼
y(n+1), 2

2
(x)� (−1)�

∫ x
x0

∼
F2(u,

∼
yn, 2

2
(u))du

(6)

Proof of Theorem 2. It is perceived that Equation (1) is equivalent to either Equation (3) or
Equation (4).

Since I2, the space of all type-2 interval numbers form a metric space under the metric
µ2, (I2, µ2) is a metric Hausdroff space and is therefore locally compact. Therefore, Br(

∼
y02)

is compact. Then, fUL − fLU and fUU − fLL are bounded functions defined on R∗. Thus,
positive real numbers M1 and M2 exist such that the following are true:{

( f UL − fLU)(x,
∼
y2) ≤ M1

( f UU − fLL)(x,
∼
y2) ≤ M2

(7)

Therefore, the interval width of
∼
F2 satisfies the following inequalities:

W(
∼
F2(x,

∼
y2(x))) ≤in [M1, M2] (8)
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Since
∼

y02 is a non-trivial type-2 interval number,W(
∼

y02) <in [0, 0]. That is, (y0UL −
y0LU) ≥ 0 and (y0UU − y0LL) ≥ 0. Let h1 = min

{
h, (y0UL−y0LU)

M1
, (y0UU−y0LL)

M2

}
. Now, nega-

tion of
∫ x

x0

∼
F2(u,

∼
y2(u))du can be obtained as follows:

(−1)�
∫ x

x0

∼
F2(u,

∼
y2(u))du

=
[[
−
∫ x

x0
fUU(u,

∼
y2(u))du,−

∫ x
x0

fUL(u,
∼
y2(u))du

]
,
[
−
∫ x

x0
fLU(u,

∼
y2(u))du,−

∫ x
x0

fLL(u,
∼
y2(u))du

]]
Therefore, the interval width representation of the above equation can be obtained as

follows:

W
(
(−1)�

∫ x

x0

∼
F2(u,

∼
y2(u))du

)
=

[∫ x

x0

( fUU − fLL)
(

u,
∼
y2(u)

)
du,

∫ x

x0

( fUL − fLU)
(

u,
∼
y2(u)

)
du
]

≤in [M1, M2](x− x0) ≤in [M1h1, M2h1] ≤in [(y0UL − y0LU), (y0UU − y0LL)] =W(
∼

y02)

That is, W
(
(−1)�

∫ x

x0

∼
F2(u,

∼
y2(u))du

)
≤in W(

∼
y02) (9)

Therefore, the Hukuhara difference
∼

y02 �H (−1)�
∫ x

x0

∼
F2(u,

∼
y2(u))du exists.

We construct C0 = [x0, x0 + h1] × Br(
∼

y02), a compact set. Then, we consider two
operations, Φ and Ψ, as follows:

Φ(
∼
y2(x0)) = Ψ(

∼
y2(x0)) =

∼
y02

Φ(
∼
y2(x)) =

∼
y02 �

∫ x
x0

∼
F2(u,

∼
y2(u))du

Ψ(
∼
y2(x)) =

∼
y02 �H (−1)�

∫ x
x0

∼
F2(u,

∼
y2(u))du

(10)

In System (10), the operator Φ is well-defined irrespective of the choice of the neigh-
borhood of x0. But, Ψ is well-defined depending on the choice of the neighborhood of x0.
Now, by the metric space property, we have the following results:

µ2

(
Φ
(∼

y2(x)
)

,
∼

y02

)
= µ2

(
∼

y02 �
∫ x

x0

∼
F2

(
u,
∼
y2(u)

)
du,

∼
y02

)

= µ2(
∫ x

x0

∼
F2(u,

∼
y2(u))du, 0) ≤

∫ x

x0

µ2(
∼
F2(u,

∼
y2(u)), 0)du ≤ M3(x− x0) (11)

The above result is obtained as
∼
F2, which is a continuous function on the compact set

C0. Again,

µ2

(
Ψ
(∼

y2(x)
)

,
∼

y02

)
= µ2

(
∼

y02 �H (−1)�
∫ x

x0

∼
F2

(
u,
∼
y2(u)

)
du,

∼
y02

)

= µ2(
∫ x

x0

∼
F2(u,

∼
y2(u))du, 0) ≤

∫ x

x0

µ2(
∼
F2(u,

∼
y2(u)), 0)du ≤ M3(x− x0) (12)

Next, we consider h2 = min{min{h, (y0UL−y0LU)
M1

, (y0UU−y0LL)
M2

}, r
M3
}, and we construct

C1 = [x0, x0 + h2]× Br(
∼

y02). We consider all the continuous functions from C1 to Br(
∼

y02).
All such functions are complete under the sup metric for type-2 interval-valued functions.

Let
∼
y2 and

∼
z2 be two such continuous functions defined on C1. Then, the following

inequalities are obtained:

Then, µ2

(
Φ
(∼

y2(x)
)

, Φ
(∼

z2(x)
))
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= µ2

(
∼

y02 �
∫ x

x0

∼
F2

(
u,
∼
y2(u)

)
du,

∼
y02 �

∫ x

x0

∼
F2

(
u,
∼
z2(u)

)
du
)

= µ2

(∫ x

x0

∼
F2

(
u,
∼
y2(u)

)
du,

∫ x

x0

∼
F2

(
u,
∼
z2(u)

)
du
)

≤
∫ x

x0

µ2(
∼
F2

(
u,
∼
y2(u)

)
,
∼
F2

(
u,
∼
z2(u)

)
)du

≤ k
∫ x

x0

µ2(
∼
y2(u),

∼
z2(u))du

≤ k
∫ x

x0

max
u∈[x0,x0+h2]

µ2(
∼
y2(u),

∼
z2(u))du

≤ k(x− x0)µ2, sup(
∼
y2,
∼
z2)

And similarly, µ2

(
Ψ
(∼

y2(x)
)

, Ψ
(∼

z2(x)
))
≤ k(x− x0)µ2,sup(

∼
y2,
∼
z2).

If we take, h3 < min{min{min{h, (y0UL−y0LU)
M1

, (y0UU−y0LL)
M2

}, r
M3
}, 1

k}, then k(x− x0) < 1.
Therefore, both Φ and Ψ become contractions. Since Φ is a contraction, by the Banach

fixed-point theorem, Φ has a unique fixed point
∼
y2

1
, which can be obtained by Picard’s

successive iterations on the process Φ and, hence,

∼
y(n+1), 2

1
(x) =

∼
y02 �

∫ x

x0

∼
F2(u,

∼
yn, 2

1
(u))du

Also, Ψ is a contraction; thus, by the Banach fixed-point theorem, Ψ has a unique

fixed point
∼
y2

2
, which can be obtained by Picard’s successive iterations on the process Ψ

and, hence,
∼

y(n+1), 2
2
(x) =

∼
∼

y02 �H (−1)�
∫ x

x0

∼
F2

(
u,
∼
y2(u)

)
du

Or equivalently,

∼
y02 =

∼
y(n+1), 2

2
(x)� (−1)�

∫ x

x0

∼
F2(u,

∼
yn, 2

2
(u))du

This completes the proof with the conclusion that Equation (1) has two unique solutions,
which can be uniquely obtained by Equation (6), provided certain conditions hold. �

Remark 1. This section ends with the proof of the theorem addressing the existence and uniqueness
criteria for solving the differential equation in a type-2 interval environment. The succeeding section
thus provides a detailed solution approach in different cases.

4. Solutions of First-Order Linear Differential Equations in Type-2
Interval Environment

A first-order linear non-homogenous differential equation in a type-2 interval environ-
ment can be represented as follows:{

d
∼
y2

dx =
∼
k2
⊙ ∼

y2 �
∼

M2
∼
y2(0) =

∼
y02

(13)
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The preceding text ensures the existence of the solution. Here, we consider the
following two cases depending upon the generalized Hukuhara differentiability of the
type-2 interval-valued dependent variable

∼
y2.

Case 1. When
∼
y2 is generalized Hukuhara differentiable of the first type

In this case, we consider four subcases concerning the signs of the type-2 interval

numbers
∼
k2 and

∼
M2.

Subcase 1.1. When both
∼
k2 and

∼
M2 are positive type-2 interval numbers

In this scenario, the type-2 interval-valued differential equation in System (13) can be
replaced by the equation incorporating four components as follows:[[

dyLL
dx

,
dyLU

dx

]
,
[

dyUL
dx

,
dyUU

dx

]]
= [[kLLyLL + MLL, kLUyLU + MLU ], [kULyUL + MUL, kUUyUU + MUU ]]

This gives four differential equations, which are given below.
dyLL

dx = kLLyLL + MLL
dyLU

dx = kLUyLU + MLU
dyUL

dx = kULyUL + MUL
dyUU

dx = kUUyUU + MUU

(14)

By solving the first equation in System (14), we obtain

yLLe−kLLx = −MLL
kLL

e−kLLx + c1

The initial condition
∼
y2(0) =

∼
y02 compromises the crisp component yLL(0) = y0LL,

which provides the value of the integrating constant as c1 = y0LL +
MLL
kLL

. Hence, the first
component of the type-2 interval-valued solution is obtained as follows:

yLL =
MLL
kLL

(
ekLLx − 1

)
+ y0LLekLLx

Similarly, the remaining components of the type-2 interval-valued solution are ob-
tained as follows:

yLU =
MLU
kLU

(
ekLU x − 1

)
+ y0LUekLU x

yUL =
MUL
kUL

(
ekULx − 1

)
+ y0ULekULx

yUU =
MUU
kUU

(
ekUU x − 1

)
+ y0UUekUU x

Subcase 1.2. When
∼
k2 and

∼
M2 are positive and negative type-2 interval numbers, respectively

In this scenario, the type-2 interval-valued differential equation in System (13) can be
replaced by the equation incorporating four components as follows:[[

dyLL
dx

,
dyLU

dx

]
,
[

dyUL
dx

,
dyUU

dx

]]
= [[kLLyLL −MUU , kLUyLU −MUL], [kULyUL −MLU , kUUyUU −MLL]]

This gives four differential equations, which are given below,
dyLL

dx = kLLyLL −MUU
dyLU

dx = kLUyLU −MUL
dyUL

dx = kULyUL −MLU
dyUU

dx = kUUyUU −MLL

(15)
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Following the process detailed in the preceding Subcase 1.1, the four components of
the solution are obtained as follows:

yLL =
MUU
kLL

(
1− ekLLx

)
+ y0LLekLLx

yLU =
MUL
kLU

(
1− ekLU x

)
+ y0LUekLU x

yUL =
MLU
kUL

(
1− ekULx

)
+ y0ULekULx

yUU =
MLL
kUU

(
1− ekUU x

)
+ y0UUekUU x

Subcase 1.3. When
∼
k2 and

∼
M2 are negative and positive type-2 interval numbers, respectively

In this scenario, the type-2 interval-valued differential equation in System (13) can be
replaced by the equation incorporating four components as follows:[[

dyLL
dx

,
dyLU

dx

]
,
[

dyUL
dx

,
dyUU

dx

]]
= [[−kUUyUU + MLL,−kULyUL + MLU ], [−kLUyLU + MUL,−kLLyLL + MUU ]]

This gives four differential equations, which are given below,

dyLL
dx

= −kUUyUU + MLL (16)

dyLU
dx

= −kULyUL + MLU (17)

dyUL
dx

= −kLUyLU + MUL (18)

dyUU
dx

= −kLLyLL + MUU (19)

From Equations (16) and (19) of the above system, we obtain

d2yLL

dx2 = −kUU
dyUU

dx

d2yLL

dx2 = −kUU [−kLLyLL + MUU ]

d2yLL

dx2 − kLLkUUyLL = −kUU MUU

Therefore, the solution is

yLL(x) = c3e
√

kLLkUU x + c4e−
√

kLLkUU x +
1

D2 − kLLkUU
(−kUU MUU)

yLL(x) = c3e
√

kLLkUU x + c4e−
√

kLLkUU x +
MUU
kLL

(20)

Using Equation (20) in Equation (16) and find the value of yUU(x) as follows:

yUU(x) =
1

kUU

[
MLL −

√
kLLkUU

(
c3e
√

kLLkUU x − c4e−
√

kLLkUU x
)]

(21)
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Using the initial conditions yLL(0) = y0LL and yUU(0) = y0UU in Equations (20) and (21),

we obtain c3 + c4 = y0LL − MUU
kLL

and c3 − c4 = MLL−kUUy0UU√
kLLkUU

= −
(

y0UU − MLL
kUU

)√
kUU
kLL

.
Therefore, the values of the integrating constants are obtained as follows:

c3 =
1
2

[(
y0LL −

MUU
kLL

)
−
(

y0UU −
MLL
kUU

)√
kUU
kLL

]

c4 =
1
2

[(
y0LL −

MUU
kLL

)
+

(
y0UU −

MLL
kUU

)√
kUU
kLL

]
Therefore, the solutions of the crisp differential Equations (16) and (19) can be obtained

as follows:

yLL(x) =
(

y0LL − MUU
kLL

)
cosh

(√
kLLkUU x

)
−
(

y0UU − MLL
kUU

)√
kUU
kLL

sinh
(√

kLLkUU x
)
+ MUU

kLL

yUU(x) =
(

y0UU − MLL
kUU

)
cosh

(√
kLLkUU x

)
−
(

y0LL − MUU
kLL

)√
kLL
kUU

sinh
(√

kLLkUU x
)
+ MLL

kUU

Similarly, by solving the crisp differential Equations (17) and (18), we obtain the
following results:

yLU(x) =
(

y0LU −
MUL
kLU

)
cosh

(√
kLUkULx

)
−
(

y0UL −
MLU
kUL

)√
kUL
kLU

sinh
(√

kLUkULx
)
+

MUL
kLU

yUL(x) =
(

y0UL −
MLU
kUL

)
cosh

(√
kLUkULx

)
−
(

y0LU −
MUL
kLU

)√
kLU
kUL

sinh
(√

kLUkULx
)
+

MLU
kUL

Subcase 1.4. When both
∼
k2 and

∼
M2 are negative type-2 interval numbers

In this scenario, the type-2 interval-valued differential equation in System (13) can be
replaced by the equation incorporating four components as follows:[[

dyLL
dx

,
dyLU

dx

]
,
[

dyUL
dx

,
dyUU

dx

]]
= [[−kUUyUU −MUU ,−kULyUL −MUL], [−kLUyLU −MLU ,−kLLyLL −MLL]]

This gives four differential equations, which are given below,

dyLL
dx

= −kUUyUU −MUU (22)

dyLU
dx

= −kULyUL −MUL (23)

dyUL
dx

= −kLUyLU −MLU (24)

dyUU
dx

= −kLLyLL −MLL (25)

Following the process detailed in the preceding Subcase 1.3, the four components of
the solution are obtained as follows:

yLL(x) =
(

y0LL +
MLL
kLL

)
cosh

(√
kLLkUU x

)
−
(

y0UU + MUU
kUU

)√
kUU
kLL

sinh
(√

kLLkUU x
)
− MLL

kLL

yLU(x) =
(

y0LU + MLU
kLU

)
cosh

(√
kLUkULx

)
−
(

y0UL +
MUL
kUL

)√
kUL
kLU

sinh
(√

kLUkULx
)
− MLU

kLU

yUL(x) =
(

y0UL +
MUL
kUL

)
cosh

(√
kLUkULx

)
−
(

y0LU + MLU
kLU

)√
kLU
kUL

sinh
(√

kLUkULx
)
− MUL

kUL

yUU(x) =
(

y0UU + MUU
kUU

)
cosh

(√
kLLkUU x

)
−
(

y0LL +
MLL
kLL

)√
kLL
kUU

sinh
(√

kLLkUU x
)
− MUU

kUU
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Case 2. When
∼
y2 is generalized Hukuhara differentiable of the second type

In this case, we consider four subcases concerning the signs of the type-2 interval

numbers
∼
k2 and

∼
M2.

Subcase 2.1. When both
∼
k2 and

∼
M2 are positive type-2 interval numbers

In this scenario, the type-2 interval-valued differential equation in System (13) can be
replaced by the equation incorporating four components as follows:[[

dyUU
dx

,
dyUL

dx

]
,
[

dyLU
dx

,
dyLL
dx

]]
= [[kLLyLL + MLL, kLUyLU + MLU ], [kULyUL + MUL, kUUyUU + MUU ]]

This above equation gives four differential equations, which are given below.

dyUU
dx

= kLLyLL + MLL (26)

dyUL
dx

= kLUyLU + MLU (27)

dyLU
dx

= kULyUL + MUL (28)

dyLL
dx

= kUUyUU + MUU (29)

From Equations (26) and (29) of the above system, we obtain

d2yLL

dx2 = kUU
dyUU

dx

d2yLL

dx2 = kUU [kLLyLL + MLL]

d2yLL

dx2 − kLLkUUyLL = kUU MLL

Therefore, the solution is

yLL(x) = c7e
√

kLLkUU x + c8e−
√

kLLkUU x +
1

D2 − kLLkUU
(kUU MLL)

yLL(x) = c7e
√

kLLkUU x + c8e−
√

kLLkUU x − MLL
kLL

(30)

Using Equation (30) in Equation (29), we find the value of yUU(x) as follows:

yUU(x) =
1

kUU

[
−MUU +

√
kLLkUU

(
c7e
√

kLLkUU x − c8e−
√

kLLkUU x
)]

(31)

Using the initial conditions yLL(0) = y0LL and yUU(0) = y0UU in Equations (32) and (31),

we obtain c7 + c8 = y0LL +
MLL
kLL

and c7 − c8 =
(

y0UU + MUU
kUU

)√
kUU
kLL

.
Therefore, the values of the integrating constants are obtained as follows:

c7 =
1
2

[(
y0LL +

MLL
kLL

)
+

(
y0UU +

MUU
kUU

)√
kUU
kLL

]

c8 =
1
2

[(
y0LL +

MLL
kLL

)
−
(

y0UU +
MUU
kUU

)√
kUU
kLL

]
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Therefore, the solutions of the crisp differential Equations (26) and (29) can be obtained
as follows:

yLL(x) =
(

y0LL +
MLL
kLL

)
cosh

(√
kLLkUU x

)
+

(
y0UU +

MUU
kUU

)√
kUU
kLL

sinh
(√

kLLkUU x
)
− MLL

kLL

yUU(x) =
(

y0UU +
MUU
kUU

)
cosh

(√
kLLkUU x

)
+

(
y0LL +

MLL
kLL

)√
kLL
kUU

sinh
(√

kLLkUU x
)
− MUU

kUU

Similarly, by solving the crisp differential Equations (27) and (28), we obtain the
following results:

yLU(x) =
(

y0LU +
MLU
kLU

)
cosh

(√
kLUkULx

)
+

(
y0UL +

MUL
kUL

)√
kUL
kLU

sinh
(√

kLUkULx
)
− MLU

kLU

yUL(x) =
(

y0UL +
MUL
kUL

)
cosh

(√
kLUkULx

)
+

(
y0LU +

MLU
kLU

)√
kLU
kUL

sinh
(√

kLUkULx
)
− MUL

kUL

Subcase 2.2. When
∼
k2 and

∼
M2 are positive and negative type-2 interval numbers, respectively

In this scenario, the type-2 interval-valued differential equation in System (13) can be
replaced by the equation incorporating four components as follows:[[

dyUU
dx

,
dyUL

dx

]
,
[

dyLU
dx

,
dyLL
dx

]]
= [[kLLyLL −MUU , kLUyLU −MUL], [kULyUL −MLU , kUUyUU −MLL]]

This above equation gives four differential equations, which are given below.

dyUU
dx

= kLLyLL −MUU (32)

dyUL
dx

= kLUyLU −MUL (33)

dyLU
dx

= kULyUL −MLU (34)

dyLL
dx

= kUUyUU −MLL (35)

Following the process detailed in the preceding Subcase 2.1, the four components of
the solution are obtained as follows:

yLL(x) =
(

y0LL − MUU
kLL

)
cosh

(√
kLLkUU x

)
+
(

y0UU − MLL
kUU

)√
kUU
kLL

sinh
(√

kLLkUU x
)
+ MUU

kLL

yLU(x) =
(

y0LU − MUL
kLU

)
cosh

(√
kLUkULx

)
+
(

y0UL − MLU
kUL

)√
kUL
kLU

sinh
(√

kLUkULx
)
+ MUL

kLU

yUL(x) =
(

y0UL − MLU
kUL

)
cosh

(√
kLUkULx

)
+
(

y0LU − MUL
kLU

)√
kUL
kLU

sinh
(√

kLUkULx
)
+ MLU

kUL

yUU(x) =
(

y0UU − MLL
kUU

)
cosh

(√
kLLkUU x

)
+
(

y0LL − MUU
kLL

)√
kLL
kUU

sinh
(√

kLLkUU x
)
+ MLL

kUU

Subcase 2.3. When
∼
k2 and

∼
M2 are negative and positive type-2 interval numbers, respectively

In this scenario, the type-2 interval-valued differential equation in System (13) can be
replaced by the equation incorporating four components as follows:[[

dyUU
dx

,
dyUL

dx

]
,
[

dyLU
dx

,
dyLL
dx

]]
= [[−kUUyUU + MLL,−kULyUL + MLU ], [−kLUyLU + MUL,−kLLyLL + MUU ]]
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Following the process detailed in the preceding Subcases 1.1 and 1.2, the four compo-
nents of the solution are obtained as follows:

yLL =
MUU
kLL

(
1− e−kLLx

)
+ y0LLe−kLLx

yLU =
MUL
kLU

(
1− e−kLU x

)
+ y0LUe−kLU x

yUL =
MLU
kUL

(
1− e−kULx

)
+ y0ULe−kULx

yUU =
MLL
kUU

(
1− e−kUU x

)
+ y0UUe−kUU x

Subcase 2.4. When both
∼
k2 and

∼
M2 are negative type-2 interval numbers

In this scenario, the type-2 interval-valued differential equation in System (13) can be
replaced by the equation incorporating four components as follows:[[

dyUU
dx

,
dyUL

dx

]
,
[

dyLU
dx

,
dyLL
dx

]]
= [[−kUUyUU −MUU ,−kULyUL −MUL], [−kLUyLU −MLU ,−kLLyLL −MLL]]

Following the process detailed in the preceding Subcases 1.1 and 1.2, the four compo-
nents of the solution are obtained as follows:

yLL(x) =
MLL
kLL

(
e−kLLx − 1

)
+ y0LLe−kLLx

yLU(x) =
MLU
kLU

(
e−kLU x − 1

)
+ y0LUe−kLU x

yUL(x) =
MUL
kUL

(
e−kULx − 1

)
+ y0ULe−kULx

yUU(x) =
MUU
kUU

(
e−kUU x − 1

)
+ y0UUe−kUU x

5. Inventory Control Problem as an Application

Several scholars have looked at the application of the interval number theory to
inventory managerial challenges. Interval numbers express the disparity of ambiguity in
a range of values. In certain instances of mathematical modeling, the upper and lower
ends of the interval numbers may be flexible. For example, the demand pattern fluctuates
between ranges in a storefront setting. Sometimes, the ranges’ limitations are also variable.
To address this scenario, we must broaden the definition of uncertainty as provided by
interval numbers. Therefore, this section discusses an economic order quantity model
under type-2 interval uncertainty. The hypotheses of the model are as follows:

1. Demand is a linear function of price and stock, i.e., as time goes on, the demand rate

increases linearly. D(t) = a− b
∼
p2 + c

∼
I2(t), where

∼
p2 is the selling price per unit,

∼
I2(t)

is the stock as type-2 interval numbers, and a, b, c are positive crisp constants.

2. The deterioration rate
∼
θ2 is constant and assumed to be a type-2 interval number.

3. No shortage is allowed.
4. The replenishment rate is infinite, but the lot size is finite.
5. The time horizon is finite.
6. The lead time is zero.
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5.1. Model Formulation and Discussion

Let us describe an EOQ model and assume that the initial stock level
∼

Q2 is the starting
point for the proposed inventory model with deteriorated items. Due to the combined
effects of demand and deterioration, a progressive stock level declined over the entire
period. Following the gradual decay, the inventory level drops to zero at the end of the lot
cycle, i.e., at the time t = T. The following type-2 interval-valued differential equation is the
mathematical representative of the proposed EOQ model:

d
∼
I2

dt
+
∼
θ2
∼
I2(t) = −

{
a− b

∼
p2 + c

∼
I2(t)

}
(36)

with
∼
I2(0) =

∼
Q2 and I2(T) = 0.

Case 1. When
∼
I2(t) is generalized Hukuhara differentiable of the first type

In this case, Equation (36) can be written as follows:[[
dILL

dt , dILU
dt

]
,
[

dIUL
dt , dIUU

dt

]]
+ [[θLL, θLU ], [θUL, θUU ]][[ILL, ILU ], [IUL, IUU ]]

= −a + b[[pLL, pLU ], [pUL, pUU ]]− c[[ILL, ILU ], [IUL, IUU ]]

This preceding expression gives four differential equations, which are given below.

dILL
dt

+ θLL ILL = −a + bpLL − cIUU (37)

dILU
dt

+ θLU ILU = −a + bpLU − cIUL (38)

dIUL
dt

+ θUL IUL = −a + bpUL − cILU (39)

dIUU
dt

+ θUU IUU = −a + bpUU − cILL (40)

From Equations (37) and (40), we obtain a system of crisp differential equation as
given below. 

dILL
dt = −θLL ILL − cIUU + α1

dIUU
dt = −cILL − θUU IUU + α4

ILL(T) = 0, IUU(T) = 0
(41)

where α1 = −a + bpLL, α4 = −a + bpUU and from Equations (38) and (39), we obtain a
system of crisp differential equation as given below.

dILU
dt = −θLU ILU − cIUL + α2

dIUL
dt = −CILU − θUL IUL + α3

ILU(T) = 0, IUL(T) = 0
(42)

where α2 = −a + bpLU and α3 = −a + bpUL.
We solve System (41) using Lagrange’s multiplier method in the following way:

d(ILL + λIUU)

dt
= −(θLL + λc)ILL − (c + λθUU)IUU + α1 + λα4

i.e.,
d(ILL + λIUU)

dt
= −(θLL + λc)

{
ILL +

(c + λθUU)

(θLL + λc)
IUU −

α1 + λα4

(θLL + λc)

}
(43)
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We chose a λ such that (c+λθUU)
(θLL+λc) = λ, which gives two different values of λ, say λ1

and λ2, and Equation (43) becomes

d(ILL + λIUU)

dt
= −(θLL + λc)

{
ILL + λIUU −

α1 + λα4

(θLL + λc)

}

i.e.,
du(t)

dt
= −(θLL + λc)u(t), where u(t) = ILL + λIUU −

α1 + λα2

(θLL + λc)

or u(t) = Ae−(θLL+λc)t

ILL + λIUU −
α1 + λα4

(θLL + λc)
= Ae−(θLL+λc)t

This satisfies the initial conditions ILL(T) = 0 and IUU(T) = 0.

ILL + λIUU =
α1 + λα4

(θLL + λc)

(
1− e(θLL+λc)(T−t)

)
For two values of λ1 and λ2, we obtain two simultaneous equations:

ILL + λ1 IUU = M1

(
1− eN1(T−t)

)
(44)

ILL + λ2 IUU = M2

(
1− eN2(T−t)

)
(45)

where M1 = α1+λ1α4
(θLL+λ1c) , N1 = (θLL + λ1c), M2 = α1+λ2α4

(θLL+λ2c) , and N2 = (θLL + λ2c).
Solving Equations (44) and (45), we obtain the solution of System (41).

ILL(t) =
M1λ2(1−eN1(T−t))−M2λ1(1−eN2(T−t))

λ2−λ1

IUU(t) =
M1(1−eN1(T−t))−M2(1−eN2(T−t))

λ1−λ2
0 ≤ t ≤ T

(46)

Using the initial conditions ILL(0) = QLL and IUU(0) = QUU in Equation (46), we
obtain two components of the type-2 interval-valued order size as given below.

QLL =
M1λ2

(
1− eN1T)−M2λ1

(
1− eN2T)

λ2 − λ1

QUU =
M1
(
1− eN1T)−M2

(
1− eN2T)

λ1 − λ2

Similarly, solving System (42) by Lagrange’s multiplier method

ILU + µIUL =
α2 + µα3

(θLU + µc)

(
1− e(θLU+µc)(T−t)

)
where µ =

(c + µθUL)

(θLU + µc)

So, for µ1 and µ2, we obtained the solutions as
ILU(t) =

M3µ2(1−eN3(T−t))−M4µ1(1−eN4(T−t))
µ2−µ1

IUL(t) =
M3(1−eN3(T−t))−M4(1−eN4(T−t))

µ1−µ2

0 ≤ t ≤ T

(47)

where M3 = α2+µ1α3
(θLU+µ1c) , N3 = (θLU + µ1c), M4 = α2+µ2α3

(θLU+µ2c) , and N4 = (θLU + µ2c).
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Using the initial conditions ILU(0) = QLU and IUL(0) = QUL in System (47), we obtain
two components of the type-2 interval-valued order size as given below.

QLU =
M3µ2

(
1− eN3T)−M4µ1

(
1− eN4T)

µ2 − µ1

QUL =
M3
(
1− eN3T)−M4

(
1− eN4T)

µ1 − µ2

Several relevant costs and the earned revenue will be obtained as follows:

(i) The replenishment cost is constant and is taken to be K.
(ii) Holding cost: Let hc = [[hcLL, hcLU ], [hcUL, hcUU ]] be the per unit holding cost per

unit of time. Then, the holding cost
∼

HC2 = [[HCLL, HCLU ], [ HCUL, HCUU ]] is given
by

HCLL = hcLL

T∫
0

ILL(t)dt = hcLL

T∫
0

M1λ2

(
1− eN1(T−t)

)
−M2λ1

(
1− eN2(T−t)

)
λ2 − λ1

dt

=
hcLL

λ2 − λ1

[
M1λ2

N1

(
N1T + 1− eN1T

)
− M2λ1

N2

(
N2T + 1− eN2T

)]

HCLU = hcLU

T∫
0

ILU(t)dt = hcLU

T∫
0

M3µ2

(
1− eN3(T−t)

)
−M4µ1

(
1− eN4(T−t)

)
µ2 − µ1

dt

=
hcLU

µ2 − µ1

[
M3µ2

N3

(
N3T + 1− eN3T

)
− M4µ1

N4

(
N4T + 1− eN4T

)]

HCUL = hcUL

T∫
0

IUL(t)dt = hcUL

T∫
0

M3

(
1− eN3(T−t)

)
−M4

(
1− eN4(T−t)

)
µ1 − µ2

dt

=
hcUL

µ1 − µ2

[
M3

N3

(
N3T + 1− eN3T

)
− M4

N4

(
N4T + 1− eN4T

)]

HCUU = hcUU

T∫
0

IUU(t)dt = hcUU

T∫
0

M1

(
1− eN1(T−t)

)
−M2

(
1− eN2(T−t)

)
λ1 − λ2

dt

=
hcUU

λ1 − λ2

[
M1

N1

(
N1T + 1− eN1T

)
− M2

N2

(
N2T + 1− eN2T

)]
(iii) Purchase cost: Let m = [[mLL, mLU ], [mUL, mUU ]] be the per unit purchasing cost

per unit of time. Then, the purchasing cost
∼

PC2 = [[PCLL, PCLU ], [ PCUL, PCUU ]] is
given by

PCLL = mLLQLL = mLL
M1λ2

(
1− eN1T)−M2λ1

(
1− eN2T)

λ2 − λ1

PCLU = mLUQLU = mLU
M3µ2

(
1− eN3T)−M4µ1

(
1− eN4T)

µ2 − µ1
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PCUL = mULQUL = mUL
M3
(
1− eN3T)−M4

(
1− eN4T)

µ1 − µ2

PCUU = mUUQUU = mUU
M1
(
1− eN1T)−M2

(
1− eN2T)

λ1 − λ2

(iv) The total sales revenue is
∼

SR2 = [[SRLL, SRLU ], [ SRUL, SRUU ]] during the entire
cycle. Then,

SRLL = pLL

T∫
0

{a− bpUU + cILL(t)}dt

= pLL(a− bpUU)T +
pLLc

λ2 − λ1

[
M1λ2

N1

(
N1T + 1− eN1T

)
− M2λ1

N2

(
N2T + 1− eN2T

)]

SRLU = pLU

T∫
0

{a− bpUL + cILU(t)}dt

= pLU(a− bpUL)T +
pLUc

µ2 − µ1

[
M3µ2

N3

(
N3T + 1− eN3T

)
− M4µ1

N4

(
N4T + 1− eN4T

)]

SRUL = pUL

T∫
0

{a− bpLU + cIUL(t)}dt

= pUL(a− bLU)T +
pULc

µ1 − µ2

[
M3

N3

(
N3T + 1− eN3T

)
− M4

N4

(
N4T + 1− eN4T

)]

SRUU = pUU

T∫
0

{a− bpLL + cIUU(t)}dt

= pUU(a− bpLL)T +
pUUc

λ1 − λ2

[
M1

N1

(
N1T + 1− eN1T

)
− M2

N2

(
N2T + 1− eN2T

)]

Therefore, the total average profit
∼

TP2 = [[TP1LL, TP1LU ], [TP1UL, TP1UU ]] of the sys-
tem during the entire cycle is given by:
TP1LL = SRLL−K−HCUU−PCUU

T , TP1LU = SRLU−K−HCUL−PCUL
T , TP1UL = SRUL−K−HCLU−PCLU

T ,
and TP1UU = SRUU−K−HCLL−PCLL

T .
Therefore, the optimization problem for the proposed model can be written mathe-

matically in the following form: 
Max TP1LL
Max TP1LU
Max TP1UL
Max TP1UU
0 ≤ t ≤ T

(48)

Case 2. When
∼
I2(t) is generalized Hukuhara differentiable of the second type
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In such cases,[[
dIUU

dt , dIUL
dt

]
,
[

dILU
dt , dILL

dt

]]
+ [[θLL, θLU ], [θUL, θUU ]][[ILL, ILU ], [IUL, IUU ]]

= −a + b[[pLL, pLU ], [pUL, pUU ]]− c[[ILL, ILU ], [IUL, IUU ]]

This gives four differential equations, which are given below.

dIUU
dt

+ θLL ILL = −a + bpLL − cIUU (49)

dIUL
dt

+ θLU ILU = −a + bpLU − cIUL (50)

dILU
dt

+ θUL IUL = −a + bpUL − cILU (51)

dILL
dt

+ θUU IUU = −a + bpUU − cILL (52)

From Equations (49) and (52), we obtain the following system of crisp differential
equation with initial conditions,

dILL
dt = −cILL − θUU IUU + α4

dIUU
dt = −θLL ILL − cIUU + α1

ILL(0) = QLL, IUU(0) = QUU

(53)

and from Equations (50) and (51), we obtain the following system of crisp differential
equation with initial conditions,

dILU
dt = −cILU − θUL IUL + α3

dIUL
dt = −θLU ILU − cIUL + α2

ILU(0) = QLU , IUL(0) = QUL

(54)

By solving Systems (53) and (54) by applying the process as in Case 1, we obtain

the total average profit
∼

TP2 = [[TP2LL, TP2LU ], [ TP2UL, TP2UU ]] of the system during the
entire cycle, which is given by:
TP2LL = SRLL−K−HCUU−PCUU

T , TP2LU = SRLU−K−HCUL−PCUL
T , TP2UL = SRUL−K−HCLU−PCLU

T
and TP2UU = SRUU−K−HCLL−PCLL

T . (See Appendix A).
Therefore, the optimization problem for the proposed model can be written mathe-

matically in the following form: 
Max TP2LL
Max TP2LU
Max TP2UL
Max TP2UU
0 ≤ t ≤ T

(55)

5.2. Numerical Results and Its Graphical Display

The following data are considered as inputs for the numerical optimization of the
models for both cases:

a = 300, b = 0.1, pLL = 15, pLU = 16, pUL = 18, pUU = 19, c = 0.15, θLL = 0.045, θLU = 0.05, θUL = 0.06, θUU = 0.065.
K = 300, pcLL = 4.5, pcLU = 5, pcUL = 5.5, pcUU = 6, hLL = 2.5, hLU = 3, hUL = 3.5, hUU = 4.

Then, the optimum results for the two cases are as follows:

Case 1. When
∼
I2(t) is generalized Hukuhara differentiable of the first type
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Then, the values of intermediate parameters as follows: α1 = −298.5, α4 = −298.1,
α2 = −298.4, α3 = −298.2, λ1 = 1.06889, λ2 = −0.935553, M1 = −3005.530558822599,
M2 = 205.71744291978783, N1 = 0.2053335, N2 = −0.09533294999999999, µ1 = 1.03389,
µ2 = −0.967222, M3 = −2958.33647270502, M4 = 104.90169777447744,
N3 = 0.20508349999999997, and N4 = −0.0950833. For the optimal values of the objec-

tive function, the total average profit is
∼

TP2
*
= [[1578.07, 2271.07], [3319.43, 4008.27]] with

optimal lot size
∼

Q2

*
= [[646.986, 649.412], [654.310, 656.782]] and optimal lot cycle T* = 1.806.

Figure 2 represents the graph for the total average profit concerning the time cycle.
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Case 2. When
∼
I2(t) is generalized Hukuhara differentiable of the second type

Then, the values of intermediate parameters as follows: α1 = −298.5, α4 = −298.1,
α2 = −298.4, α3 = −298.2, λ3 = 1.202, λ4 = −1.202, C1 = −3218.663334803273,
C2 = 632.8537170263784, D1 = 0.20409, D2 = 0.09591, µ3 = 1.095, µ4 = −1.095,
C3 = −3052.2490842490843, C4 = 299.7165354330709, D3 = 0.20475, D4 = 0.09525. For the

optimal values of the objective function, the total average profit is
∼

TP2
*
= [[1740.72, 2372.01],

[3334.59, 3970.55]] with optimal lot size
∼

Q2

*
= [[549.922, 547.967], [544.104, 542.148]] and

optimal lot cycle T* = 1.554. Figure 3 represents the graph for the total average profit
concerning the time cycle.

5.3. Applicability of the Proposed Model

Price has a ripple effect on customers’ appetite for merchandise in the context of
retailing. The buying and selling phenomenon in developing or underdeveloped nations
almost immediately shows that lower prices lure purchasers to the goods. Price, then, has
an impact on average profit as well. However, accurate pricing for an effective strategy
design favoring the retailer’s perspective possesses some sense of vagueness. The dilemma
in optimal pricing can be adjusted by considering interval decision phenomena in which
price can be considered as an interval number having upper and lower bounds of values.
However, it is not necessarily true for a real-world business scenario that the values can fit
within two specific bounds. Instead, it may be viewed in the type-2 interval number theory,
which provides a broader sense of interval uncertainty. Also, showrooms have impacts on
the demand regulation. The collection of active stock in the showroom creates additional
demand. In the same logic, various associated costs and the stock level can be taken into
account in the type-2 interval number setting. Since the impact of pricing on the demand
and profit control decisions is very significant and uncertainties arise in designing real-
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world strategies, the discussed theory and results can be applied in a showroom concerning
retail dealing phenomena.
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Figure 3. Total average profit (
∼

TP2
∗
) versus lot cycle (T∗) for the case of generalized Hukuhara

differentiability of the second type. The curves are represented by blue, yellow, green, and red for
TP2LL, TP2LU , TP2UL, and TP2UU , respectively. The concave curves exhibit the optimal value of the
total average profit.

6. Conclusions

Type-2 interval number theory broadens the theory of interval numbers, making
the ends of an interval flexible within bounds. The arithmetic characteristics of type-
2 interval numbers and their usage for optimizing mathematical models, particularly
inventory models, have received focus. It is recommended to use the generalized Hukuhara
differentiability technique for discussing differential equation-based mathematical models
with type-2 interval uncertainty. Before discussing the solution approach, the solution’s
existence and its uniqueness, if it exists, must be verified. This paper contributes to the
existence and uniqueness theory for solving type-2 interval-valued differential equations.
Also, the solution approach of the type-2 interval-valued differential equations has been
discussed in this paper. The utility of the proposed theory has been exercised on an
EOQ model. The EOQ model of deteriorated items has been discussed for both cases of
generalized Hukuhara differentiability. The main aim of this paper is to establish the theory
of solvability of the type-2 interval-valued differential equations. The inventory model is
not a priority in this paper. This research is a precursor to differential equation concepts and
their utilization in a type-2 interval setting. The current form leaves room for additional
investigation in the following areas:

1. The theory of integral equations for type-2 interval-valued functions may be intro-
duced following the footsteps of this paper.

2. More implicit and explicit characteristics of type-2 interval-valued calculus may have
emerged as an epicenter for future research.

3. This theory’s fractional order counterpart may be a fruitful consequence of the pro-
posed approach.

4. We have discussed a popular lot-size model as an application of the proposed theory.
We have shortened our analysis because the inventory model was not our main
concern. In the future, a robust approach to model formulation and optimization
associated with raw data from the market will be the ultimate consequence of the
proposed theory.
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Appendix A

We solve System (43) using Lagrange’s multiplier method in the following way:

d(ILL + λIUU)

dt
= −(c + λθLL)ILL − (θUU + λc)IUU + α4 + λα1

i.e.,
d(ILL + λIUU)

dt
= −(c + λθLL)

{
ILL +

(θUU + λc)
(c + λθLL)

IUU −
α4 + λα1

(c + λθLL)

}
(A1)

We chose a λ such that (θUU+λc)
(c+λθLL)

= λ, which gives two different values of λ, say λ3

and λ4, and Equation (A1) becomes

d(ILL + λIUU)

dt
= −(c + λθLL)

{
ILL + λIUU −

α4 + λα1

(c + λθLL)

}

i.e.,
du(t)

dt
= −(c + λθLL)u(t), where u(t) = ILL + λIUU −

α4 + λα1

(c + λθLL)

or u(t) = Ae−(c+λθLL)t

ILL + λIUU −
α4 + λα1

(c + λθLL)
= Ae−(c+λθLL)t

This satisfies the initial conditions ILL(T) = 0 and IUU(T) = 0.

ILL + λIUU =
α4 + λα1

(c + λθLL)

(
1− e(c+λθLL)(T−t)

)
For the two values of λ3 and λ4, we obtain two simultaneous equations:

ILL + λ3 IUU = C1

(
1− eD1(T−t)

)
(A2)

ILL + λ4 IUU = C2

(
1− eD2(T−t)

)
(A3)

where C1 = α4+λ3α1
(c+λ3θLL)

, D1 = (c + λ3θLL), C2 = α4+λ4α1
(c+λ4θLL)

, and D2 = (c + λ4θLL).
Solving Equations (A2) and (A3), we obtain

ILL(t) =
λ4C1(1−eD1(T−t))−λ3C2(1−eD2(T−t))

λ4−λ3

IUU(t) =
C1(1−eD1(T−t))−C2(1−eD2(T−t))

λ3−λ4
0 ≤ t ≤ T

(A4)
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Using the initial conditions ILL(0) = QLL and IUU(0) = QUU in Equation (A4), we
obtain QLL =

λ4C1(1−eD1T))−λ3C2(1−eD2T)
λ4−λ3

QUU =
C1(1−eD1T)−C2(1−eD2T)

λ3−λ4

(A5)

Similarly, solving System (45) by Lagrange’s multiplier method

ILU + µIUL =
α3 + µα2

(c + µθLU)

(
1− e−(c+µθLU)t

)
where µ =

(θUL + µc)
(c + µθLU)

.

So, for µ3 and µ4, we obtained the solutions as
ILU(t) =

µ4C3(1−eD3(T−t))−µ3C4(1−eD4(T−t))
µ4−µ3

IUL(t) =
C3(1−eD3(T−t))−C4(1−eD4(T−t))

µ3−µ4

0 ≤ t ≤ T

(A6)

where C3 = α3+µ3α2
(c+µ3θLU)

, D3 = (c + µ3θLU), C4 = α3+µ4α2
(c+µ4θLU)

, and D4 = (c + µ4θLU).
Using the initial conditions ILU(0) = QLU and IUL(0) = QUL in Equation (A6)

we obtain QLU =
µ4C3(1−eD3T)−µ3C4(1−eD4T)

µ4−µ3

QUL =
C3(1−eD3T)−C4(1−eD4T)

µ3−µ4

Several relevant costs and the earned revenue will be obtained as follows:

(i) The replenishment cost is a constant, K, as in case 1.
(ii) Holding cost: Let hc = [[hcLL, hcLU ], [hcUL, hcUU ]] be the per unit holding cost per

unit of time. Then, the holding cost
∼

HC2 = [[HCLL, HCLU ], [ HCUL, HCUU ]] is given
by

HCLL = hcLL

T∫
0

ILL(t)dt = hcLL

T∫
0

λ4C1

(
1− eD1(T−t)

)
− λ3C2

(
1− eD2(T−t)

)
λ4 − λ3

dt

=
hcLL

λ4 − λ3

[
C1λ4

D1

(
D1T + 1− eD1T

)
− C2λ3

D2

(
D2T + 1− eD2T

)]

HCLU = hcLU

T∫
0

ILU(t)dt = hcLU

T∫
0

M3µ2

(
1− eN3(T−t)

)
−M4µ1

(
1− eN4(T−t)

)
µ2 − µ1

dt

=
hcLU

µ4 − µ3

[
C3µ4

D3

(
D3T + 1− eD3T

)
− C4µ3

D4

(
D4T + 1− eD4T

)]

HCUL = hcUL

T∫
0

IUL(t)dt = hcUL

T∫
0

C3

(
1− eD3(T−t)

)
− C4

(
1− eD4(T−t)

)
µ3 − µ4

dt

=
hcUL

µ3 − µ4

[
C3

D3

(
D3T + 1− eD3T

)
− C4

D4

(
D4T + 1− eD4T

)]

HCUU = hcUU

T∫
0

IUU(t)dt = hcUU

T∫
0

C1

(
1− eD1(T−t)

)
− C2

(
1− eD2(T−t)

)
λ3 − λ4

dt
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=
hcUU

λ3 − λ4

[
C1

D1

(
D1T + 1− eD1T

)
− C2

D2

(
D2T + 1− eD2T

)]
(iii) Purchase cost: Let pc = [[pcLL, pcLU ], [pcUL, pcUU ]] be the purchase cost per unit of

time. Then, the purchasing cost
∼

PC2 = [[PCLL, PCLU ], [ PCUL, PCUU ]] is given by

PCLL = pcLLQLL = pcLL

λ4C1

(
1− eD1T)

)
− λ3C2

(
1− eD2T)

λ4 − λ3

PCLU = pcLUQLU = pcLU
µ4C3

(
1− eD3T)− µ3C4

(
1− eD4T)

µ4 − µ3

PCUL = pcULQUL = pcUL
C3
(
1− eD3T)− C4

(
1− eD4T)

µ3 − µ4

PCUU = pcUUQUU = pcUU
C1
(
1− eD1T)− C2

(
1− eD2T)

λ3 − λ4

(iv) The total sales revenue is
∼

SR2 = [[SRLL, SRLU ], [ SRUL, SRUU ]] during the entire
cycle. Then,

SRLL = pLL

T∫
0

{a− bpUU + cILL(t)}dt

= pLL(a− bpUU)T +
pLLc

λ4 − λ3

[
C1λ4

D1

(
D1T + 1− eD1T

)
− C2λ3

D2

(
D2T + 1− eD2T

)]

SRLU = pLU

T∫
0

{a− bpUL + cILU(t)}dt

= pLU(a− bpUL)T +
pLUc

µ4 − µ3

[
C3µ4

D3

(
D3T + 1− eD3T

)
− C4µ3

D4

(
D4T + 1− eD4T

)]

SRUL = pUL

T∫
0

{a− bpLU + cIUL(t)}dt

= pUL(a− bLU)T +
pULc

µ3 − µ4

[
C3

D3

(
D3T + 1− eD3T

)
− C4

D4

(
D4T + 1− eD4T

)]

SRUU = pUU

T∫
0

{a− bpLL + cIUU(t)}dt

= pUU(a− bpLL)T +
pUUc

λ3 − λ4

[
C1

D1

(
D1T + 1− eD1T

)
− C2

D2

(
D2T + 1− eD2T

)]
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