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Abstract: In this paper, a weakly coupled system (by the displacement of symmetric type) consisting
of a viscoelastic Kirchhoff plate equation involving free boundary conditions and the viscoelastic
wave equation with Dirichlet boundary conditions in a bounded domain is considered. Under the
assumptions on a more general type of relaxation functions, an explicit and general decay rate result
is established by using the multiplier method and some properties of the convex functions.
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1. Introduction

In this paper, we consider the following weakly coupled system of Kirchhoff plate and
wave equations:

utt − γ∆utt + ∆2u−
∫ t

0
g1(t− s)∆2u(s) ds + αv = 0 in Ω× (0, ∞)

vtt − ∆v +
∫ t

0
g2(t− s)∆v(s) ds + αu = 0 in Ω× (0, ∞)

u = ∂νu = 0 on Γ0 × (0, ∞)

B1u− B1

{∫ t

0
g1(t− s)u(s) ds

}
= 0 on Γ1 × (0, ∞)

B2u− γ∂νutt − B2

{∫ t

0
g1(t− s)u(s) ds

}
= 0 on Γ1 × (0, ∞)

v = 0 on Γ× (0, ∞)

u(0) = u0, ut(0) = u1, v(0) = v0, vt(0) = v1 in Ω,

(1)

where Ω is an open set of R2 with regular boundary Γ = ∂Ω = Γ0 ∪ Γ1 (class C4 will be
enough), such that Γ0 ∩ Γ1 = ∅, the initial data u0, u1, v0 and v1 lie in an appropriate
Hilbert space; the constant γ > 0 is the rotational inertia of the plate; and the constant
0 < µ < 1

2 is the Poisson coefficient. The boundary operators B1, B2 are defined by

B1u = ∆u + (1− µ)B1u,

B2u = ∂ν∆u + (1− µ)B2u,

and

B1u = 2ν1ν2ux1x2 − ν2
1 ux2x2 − ν2

2 ux1x1 ,

B2u = ∂τ

(
(ν2

1 − ν2
2)ux1x2 + ν1ν2(ux2x2 − ux1x1)

)
,

where ν = (ν1, ν2) is the unit outer normal vector to Γ, and τ = (−ν2, ν1) is a unit tangent
vector.
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The coupling parameter α is assumed to satisfy:

|α| < λ0η,

where λ2
0 is the first eigenvalue of the operator ‘−∆ ’ with Dirichlet boundary conditions,

and η2 is the coercivity constant of the operator Å = ∆2, defined as follows:

Å : D(Å) ⊂ L2(Ω)→ L2(Ω),

with domain

D(Å) = {u ∈ H4(Ω) ∩ H2
Γ0
(Ω) : ∆u + (1− µ)B1u = ∂ν∆u + (1− µ)B2u = 0 on Γ1},

with H2
Γ0

= V = {u ∈ H2(Ω) : u = ∂νu = 0 on Γ0}.
It is clear that Å is positive definite and self-adjoint. We also define

H1
Γ0
(Ω) = {u ∈ H1(Ω) : u = 0 on Γ0}.

We have, for all u, v ∈ V (see [1]):

〈Å
1
2 u, Å

1
2 v〉L2(Ω) =

(
Åu, v

)
V′×V

= a(u, v),

where a : V ×V → R is a symmetric bilinear form defined by

a(u, v) =
∫

Ω
{ux1x1 vx1x1 + ux2x2 vx2x2 + 2(1− µ)ux1x2 vx1x2 + µ(ux1x1 vx2x2 + ux2x2 vx1x1)}dx.

We first recall the following Green’s formula (see [2]):

a(u, v) =
∫

Ω
∆2uvdx +

∫
Γ
(B1u∂νv−B2uv)dΓ, ∀u ∈ H4(Ω), v ∈ H2(Ω).

For further purposes, we need a weaker version of the above. Indeed, as D(Ω)
(the space of all functions defined in Ω, which are restrictions to Ω of C∞ functions with
compact support in R2) is dense in E(∆2, L2(Ω)) :=

{
u ∈ H2(Ω) | ∆2u ∈ L2(Ω)

}
equipped

with its natural norm, we deduce that u ∈ E(∆2, L2(Ω)) (see Theorem 5.6 in [3]) satisfies
B1u ∈ H−

1
2 (Γ) and B2u ∈ H−

3
2 (Γ) with

a(u, v) =
∫

Ω
∆2uvdx + 〈B1u, ∂νv〉

H−
1
2 (Γ),H

1
2 (Γ)
− 〈B2u, v〉

H−
3
2 (Γ),H

3
2 (Γ)

, ∀ v ∈ H2(Ω).

Now, with the parameter γ > 0, we define a space W = H1
Γ0,γ(Ω) equivalent to

H1
Γ0
(Ω), with its inner product being

〈u1, u2〉H1
Γ0,γ(Ω) ≡ 〈u1, u2〉L2(Ω) + γ〈∇u1,∇u2〉L2(Ω) ∀ u1, u2 ∈ H1

Γ0
(Ω),

and with its dual (pivotal with respect to L2 inner product) denoted as H−1
Γ0,γ(Ω).

When g1 = g2 = α = 0, the first equation, in system (1), is well known as the Kirchhoff
plate equation, while the second equation represents the classical wave equation. We study,
in the present paper, a weak coupling of a symmetric type of these two equations (with the
presence of memory terms), which means that the equations are coupled by displacements.

Model (1) describes the interaction of a viscoelastic Kirchhoff plate with rotational
forces, and a viscoelastic membrane. The plate is clamped along Γ0, and without bending
and twisting moments on Γ1.
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We first recall some results for a single-wave equation and Kirchhoff plate equation.
For a viscoelastic wave equation, we refer to [4–8] and references therein, in which the
authors proved that the energy decays exponentially if the relaxation function g decays ex-
ponentially, and polynomially if g decays polynomially. In [9], Cavalcanti et al. considered
the following wave equation:

utt − κ0∆u +
∫ t

0
div[a(x)g(t− s)∇u(s)]ds + f (u) + b(x)h(ut) = 0,

where frictional damping was also considered. They proved an exponential stability result
for g decaying exponentially and h having linear and polynomial stability result for g
decaying polynomially and h having a polynomial growth near zero. We mention, in the
case where κ0 = 1 and f = h = 0, that the uniform decay of solutions was obtained in [10].
For the viscoelastic Kirchhoff plate equation, in [11], the authors showed the exponential
and polynomial decay of the solutions to the viscoelastic plate equation. They considered a
relaxation function satisfying

−d0g(t) ≤ g′(t) ≤ −d1g(t), 0 ≤ g′′(t) ≤ d2g(t).

For some positive constant di, i = 0, 1, 2. Park et al. [12] obtained a general decay for
weak viscoelastic Kirchhoff plate equations with delay boundary conditions. Motivated by
the work of Lasiecka and Tatar [13], where a wave equation with frictional damping was
considered, another step forward was taken by considering relaxation functions satisfying

g′(t) ≤ −H(g(t)),

where the function H > 0 satisfies H(0) = H′(0) = 0, and is strictly increasing and strictly
convex near the origin. This condition was first introduced by Alabau-Boussouira and
Cannarsa [14]. It turned out that the convexity properties can be explored for a general class
of dissipative systems [15,16]. We also point out that the importance of the works [15,16]
in which simple sharp optimal or quasi-optimal upper energy decay rates have been
established.

For a coupled wave system, a general model on coupled wave equations with weak
damping is given by:

utt − ∆u +
∫ t

0
g1(t− s)∆u(s)ds + h1(ut) = f1(u, v),

vtt − ∆v +
∫ t

0
g2(t− s)∆v(s)ds + h2(vt) = f2(u, v).

In [17], Han and Wang established several results related to local existence, global
existence and finite time blow-up (the initial energy E(0) < 0), by taking h1(ut) = |ut|m−1ut
and h2(vt) = |vt|r−1vt. Later on, Houari et al. [18] improved the last results by considering
a larger class of initial data for which the initial energy can take positive values. Messaoudi
and Tatar [13] considered a coupled system only with viscoelastic terms, and proved
exponential decay and polynomial decay results. Al-Gharabli and Kafini considered the
system in [13] and established a more general decay result; see [19]. Mustafa [20] considered
the following problem

utt − ∆u +
∫ t

0
g1(t− s)∆u(s)ds + f1(u, v) = 0,

vtt − ∆v +
∫ t

0
g2(t− s)∆v(s)ds + f2(u, v) = 0,

and proved the well-posedness and energy decay result. The decay result was improved
by Messaoudi and Hassan in their recent paper [21], where they established a new general
decay result for a wider class of relaxation functions. We also mention the work [22], in
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which the authors proved the global existence and decay rate estimates of solutions for a
system of viscoelastic wave equations of the Kirchhoff type with logarithmic nonlinearity.

For indirect stabilization, Alabau et al. [23] considered the stabilization of an ab-
stract system of two coupled second-order evolution equations, wherein only one of
the equations is stabilized and showed that the energy decays polynomially. Recently,
Hajej et al. [24] studied the indirect stabilization (only one equation of the coupled system
is damped) of a coupled wave equation and Kirchhoff plate equation without viscoelastic
terms (g1 = g2 = 0), and with frictional damping, the polynomial decay was derived. Mo-
tivated by these works, in this paper, we study the stability of this coupled system but only
with the presence of viscoelastic terms in the two equations with a wider class of relaxation
functions. We establish a very general energy decay result of the system by the general
approach in [14].

Hereinafter, we assume that

(A1): gi : [0,+∞)→ (0,+∞) (for i = 1, 2) are two non-increasing C1 functions such that:

1−
∫ ∞

0
gi(τ) dτ = li > 0.

(A2): There exists a positive C1 function Q : (0,+∞) → (0,+∞), where Q is linear or a
strictly increasing and strictly convex C2 function on (0, r], (r < 1), with Q(0) =
Q′(0) = 0, such that

g′i(t) ≤ −ξi(t)Q(gi(t)), ∀ t ≥ 0,

where ξ1 and ξ2 are positive non-increasing differentiable functions.

Remark 1. The function Q, defined in assumption (A2), was introduced by Alabau-Boussouira
and Cannarsa [14].

To simplify calculations in our analysis, we introduce the following notations:

(g1�u)(t) =
∫ t

0
g1(t− s)a(u(t)− u(s), u(t)− u(s))ds,

(g2 ◦ v)(t) =
∫ t

0
g2(t− s)‖v(t)− v(s)‖2ds.

We will use C and c, throughout this paper, to denote generic positive constants.
The paper is organized as follows. The well-posedness of the problem, that is, the

existence of a global weak solution, is proved in Section 2. In Section 3, we state and
establish the general decay result of the energy by using the perturbed energy method,
which introduces a new Lyapunov function.

2. Global Existence

This section deals with the existence and uniqueness of a global weak solution. In fact,
we start by proving the existence and uniqueness of a unique local weak solution by using
the Faedo–Galerkin approach, and afterward, show that this solution is global. This means
that our system is well-posed.

We start this section by presenting the definition of a weak solution of the problem (1).

Definition 1. Let T > 0. A pair of functions (u, v) such that

u ∈ C([0, T], V) ∩ C1([0, T], W), v ∈ C([0, T], H1
0(Ω)) ∩ C1([0, T], L2(Ω)),

is called a weak solution of the problem (1) if



Symmetry 2023, 15, 1917 5 of 23

∫
Ω

uttwdx + γ
∫

Ω
∇utt∇wdx + a(u, w)−

∫ t

0
g1(t− s)a(u(s), w)ds + α

∫
Ω

vwdx = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x)

and

∫
Ω

vttydx +
∫

Ω
∇v∇ydx−

∫ t

0
g2(t− s)

∫
Ω
∇v(s)∇ydxds + α

∫
Ω

uydx = 0,

v(x, 0) = v0(x), vt(x, 0) = v1(x)

for all test functions w ∈ V, y ∈ H1
0 and almost all t ∈ [0, T].

Now, we state the local existence theorem.

Theorem 1. Suppose (A1) holds and let (u0, u1) ∈ V ×W and (v0, v1) ∈ H1
0(Ω) × L2(Ω).

Then, problem (1) has a unique local weak solution on [0, T], for any T > 0.

Proof. The existence is proven using the Faedo–Galerkin method. In order to do so, let
{wj}∞

j=1 and {yj}∞
j=1 be a basis of V and H1

0 , respectively. Define Vm = span{w1, w2, . . . , wm}
and Ym = span{y1, y2, . . . , ym}. The projection of the initial data on the finite dimensional
subspaces Vm and Ym is given by

um
0 (x) =

m

∑
j=1

ajwj, um
1 (x) =

m

∑
j=1

bjwj, vm
0 (x) =

m

∑
j=1

cjyj, vm
1 (x) =

m

∑
j=1

djyj,

such that

(um
0 , vm

0 )→ (u0, v0) in V × H1
0(Ω), and (um

1 , vm
1 )→ (u1, v1) in W × L2(Ω). (2)

We search a solution of the form

um(x, t) =
m

∑
j=1

hj(t)wj(x), vm(x, t) =
m

∑
j=1

k j(t)yj(x),

which satisfy the approximate problem in Vm and Ym, respectively:

∫
Ω

um
tt wdx + γ

∫
Ω
∇um

tt∇wdx + a(um, w)−
∫ t

0
g1(t− s)a(um(s), w)ds + α

∫
Ω

vmwdx = 0,∫
Ω

vm
tt ydx +

∫
Ω
∇vm∇ydx−

∫ t

0
g2(t− s)

∫
Ω
∇vm(s)∇ydxds + α

∫
Ω

umydx = 0, (3)

um(0) = um
0 , um

t (0) = um
1 , vm(0) = vm

0 , vm
t (0) = vm

1 .

This system leads to a system of ODEs for unknown functions hj(t) and k j(t). Based
on the standard existence theory for ODE, one can conclude the existence of a solution
(um, vm) of (3) on a maximal interval [0, tm), 0 < tm ≤ T for each m ≥ 1. In fact, tm = T,
and the local solution is uniformly bounded independent of m and t. To show this, we
take w = um

t in the first equation of (3) and y = vm
t in the second one. By summing up the

resulting equations and integrating by parts over Ω, we obtain

d
dt

Em(t) =
1
2
(g1
′�um)(t)− 1

2
g1(t)a(um, um) +

1
2
(g′2 ◦ ∇vm)(t)− 1

2
g2(t)‖∇vm(t)‖2, (4)
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where

Em(t) =
1
2

(
1−

∫ t

0
g1(s)ds

)
a(um, um) +

1
2
‖um

t ‖2 +
γ

2
‖∇um

t ‖2 +
1
2
(g1�um)(t)

+
1
2

(
1−

∫ t

0
g2(s)ds

)
‖∇vm‖2 +

1
2
(g2 ◦ ∇vm)(t) +

1
2
‖vm

t ‖2 + α
∫

Ω
umvmdx.

Notably, by (2), that (um
0 , v0

m) and (um
1 , vm

1 ) are bounded, respectively, in V × H1
0(Ω)

and W × L2(Ω), we integrate (4) over (0, t), 0 < t < tm, to obtain

Em(t) ≤ Em(0) ≤ M,

where M is a positive constant independent of t and m. Thus, we can extend tm to T and,
in addition, we have

(um) is a bounded sequence in L∞(0, T; V),

(um
t ) is a bounded sequence in L∞(0, T; W),

(vm) is a bounded sequence in L∞(0, T; H1
0(Ω)),

(vm
t ) is a bounded sequence in L∞(0, T; L2(Ω)).

Therefore, there exists a subsequence of (um) and (vm), still denoted by (um) and (vm),
respectively, such that

um ⇀ u weakly star in L∞(0, T; V) and weakly in L2(0, T; V),

um
t ⇀ ut weakly star in L∞(0, T; W) and weakly in L2(0, T; W),

vm ⇀ v weakly star in L∞(0, T; H1
0(Ω)) and weakly in L2(0, T; H1

0(Ω)),

vm
t ⇀ vt weakly star in L∞(0, T; L2(Ω)) and weakly in L2(0, T; L2(Ω)).

(5)

Now, integrate (3) over (0, t) to obtain∫
Ω

um
t wdx + γ

∫
Ω
∇um

t ∇wdx +
∫ t

0
a(um, w)ds−

∫ t

0

∫ s

0
g1(s− ζ)a(um(ζ), w)dζds

+α
∫ t

0

∫
Ω

vmwdxds =
∫

Ω
um

1 wdx + γ
∫

Ω
∇um

1 ∇wdx.∫
Ω

vm
t ydx +

∫ t

0

∫
Ω
∇vm∇ydxds−

∫ t

0

∫ s

0
g2(s− ζ)

∫
Ω
∇vm(ζ)∇ydxdζds

+α
∫ t

0

∫
Ω

umydxds =
∫

Ω
vm

1 ydx.

Using (5) and letting m→ ∞, we obtain for all w ∈ V and y ∈ H1
0∫

Ω
utwdx + γ

∫
Ω
∇ut∇wdx−

∫
Ω

u1wdx− γ
∫

Ω
∇u1∇wdx

= −
∫ t

0
a(u, w)ds +

∫ t

0

∫ s

0
g1(s− ζ)a(um(ζ), w)dζds− α

∫ t

0

∫
Ω

vwdxds (6)∫
Ω

vtydx−
∫

Ω
v1ydx = −

∫ t

0

∫
Ω
∇v∇ydxds

+
∫ t

0

∫ s

0
g2(s− ζ)

∫
Ω
∇v(ζ)∇ydxdζds− α

∫ t

0

∫
Ω

uydxds.
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Using the fact that the right-hand side of the first equation and the second one in (6)
is an absolutely continuous function—hence, it is differentiable almost everywhere—we
obtain

∫
Ω

uttwdx + γ
∫

Ω
∇utt∇wdx + a(u, w)−

∫ t

0
g1(t− s)a(u(s), w)ds + α

∫
Ω

vwdx = 0, ∀ w ∈ V,∫
Ω

vttydx +
∫

Ω
∇v∇ydx−

∫ t

0
g2(t− s)

∫
Ω
∇v(s)∇ydxds + α

∫
Ω

uydx = 0, ∀ y ∈ H1
0(Ω).

Regarding the initial conditions, we can also use (6) to verify that

u(0) = u0, ut(0) = u1, v(0) = v0, vt(0) = v0.

For uniqueness, let us assume that (u1, v1), (u2, v2) are two weak solutions of (1). Then,
(p, q) = (u1 − u2, v1 − v2) satisfies

ptt − γ∆ptt + ∆2 p−
∫ t

0
g1(t− s)∆2 p(s)ds + αq = 0, in L2(0, T; V′),

qtt − ∆q +
∫ t

0
g2(t− s)∆q(s)ds + αp = 0, in L2(0, T; H−1(Ω)), (7)

p(0) = pt(0) = q(0) = qt(0) = 0.

We shall use the Visik–Ladyzenskaya method. We consider, for each s ∈ [0, T], the
following functions:

ψ(t) =


−
∫ s

t
p(ζ)dζ, 0 ≤ t ≤ s,

0, s ≤ t ≤ T,

and ϕ(t) =


−
∫ s

t
q(ζ)dζ, 0 ≤ t ≤ s,

0, s ≤ t ≤ T.

The derivatives (in the distributions sense ) of ψ and ϕ are given by

ψ′(t) =


p(t), 0 ≤ t ≤ s,

0, s ≤ t ≤ T,
and ϕ′(t) =


q(t), 0 ≤ t ≤ s,

0, s ≤ t ≤ T.

It is clear that

ψ, ψ′ ∈ L∞(0, T; V) and ϕ, ϕ′ ∈ L∞(0, T; H1
0(Ω)),

which implies that

ψ ∈ C0([0, T]; V) and ϕ ∈ C0([0, T]; H1
0(Ω)).

By composing the first equation in (7) using ψ and the second equation using ϕ, we
obtain

∫ s

0
((I − γ∆)ptt, ψ(t))V′×Vdt +

∫ s

0
(∆2 p, ψ(t))V′×Vdt−

∫ s

0

∫ t

0
g1(t− ζ)(∆2 p(ζ), ψ(t))V′×Vdζdt

+α
∫ s

0
(q, ψ(t))V′×Vdt = 0,∫ s

0
(qtt, ϕ(t))H−1(Ω)×H1

0 (Ω)dt−
∫ s

0
(∆q, ϕ(t))H−1(Ω)×H1

0 (Ω)dt

+
∫ s

0

∫ t

0
g2(t− ζ)(∆q(ζ), ϕ(t))H−1(Ω)×H1

0 (Ω)dζdt + α
∫ s

0
(p, ϕ(t))H−1(Ω)×H1

0 (Ω)dt = 0.
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Using the fact that ψ(s) = ϕ(s) = pt(0) = qt(0) = 0, ψ′(t) = p(t) and ϕ′(t) = q(t) in
[0, s], we integrate by parts and add the resulting equations to obtain

−
∫ s

0
(pt, p(t))W ′×Wdt +

∫ s

0
a(ψ′(t), ψ)dt−

∫ s

0

∫ t

0
g1(t− ζ)a(ψ′(ζ), ψ(t))dζdt

−
∫ s

0
(qt, q(t))H−1(Ω)×H1

0 (Ω)dt +
∫ s

0
(ϕ′(ζ), ϕ)H1

0 (Ω)dt

−
∫ s

0

∫ t

0
g2(t− ζ)(ϕ′(ζ), ϕ(t))H1

0 (Ω)dζdt + α
∫ s

0

(
(q(t), ψ(t))L2(Ω) + (p(t), ϕ(t))L2(Ω)

)
dt = 0,

which, by using (11), results in: and (12)

1
2

d
dt

{
−
∫ s

0
‖p‖2

Wdt +
∫ s

0

(
1−

∫ t

0
g1(ζ)dζ

)
a(ψ, ψ)dt +

∫ s

0
(g1�ψ)(t)dt−

∫ s

0
‖q‖2

H1
0 (Ω)

dt

+
∫ s

0

(
1−

∫ t

0
g2(ζ)dζ

)
‖ϕ(t)‖2

H1
0 (Ω)

dt
}

+
1
2

∫ s

0
g1(t)a(ψ, ψ)dt− 1

2

∫ s

0
(g′1�ψ)(t)dt +

1
2

∫ s

0
g1(t)‖ϕ‖2

H1
0 (Ω)

dt− 1
2

∫ s

0
(g′2 ◦ ∇ϕ)(t)dt

= −α
∫ s

0

(
(q(t), ψ(t))L2(Ω) + (p(t), ϕ(t))L2(Ω)

)
dt.

Now, using the fact that gi,−g′i , a(ψ, ψ) ≥ 0 for i = 1, 2, and W, H1
0 ⊂ L2(Ω), we

obtain the existence of a positive constant C such that

1
2
‖p(s)‖2 +

1
2
‖ψ(0)‖2 +

1
2
‖q(s)‖2 +

1
2
‖ϕ(0)‖2

≤ C
∫ s

0
(‖q(t)‖‖ψ(t)‖+ ‖p(t)‖‖ϕ(t)‖)dt. (8)

Finally, let p1(t) =
∫ t

0
p(ζ)dζ and q1(t) =

∫ t

0
q(ζ)dζ. We have , for all t ∈ [0, s]

ψ(t) = p1(t)− p1(s), ψ(0) = −p1(s),

and
ϕ(t) = q1(t)− q1(s), ϕ(0) = −q1(s).

Consequently, (8) becomes

1
2
‖p(s)‖2 +

1
2
‖p1(s)‖2 +

1
2
‖q(s)‖2 +

1
2
‖q1(s)‖2

≤ C
∫ s

0
(‖q(t)‖‖p1(t)− p1(s)‖+ ‖p(t)‖‖q1(t)− q1(s)‖)dt

≤ C
{ ∫ s

0
‖q(t)‖‖p1(t)‖dt +

∫ s

0
‖q(t)‖‖p1(s)‖dt

+
∫ s

0
‖p(t)‖‖q1(t)‖dt +

∫ s

0
‖p(t)‖‖q1(s)‖dt

}
≤ C

{ ∫ s

0
‖q(t)‖‖p1(t)‖dt +

∫ s

0

√
2Cs‖q(t)‖ 1√

2Cs
‖p1(s)‖dt

+
∫ s

0
‖p(t)‖‖q1(t)‖dt +

∫ s

0

√
2Cs‖p(t)‖ 1√

2Cs
‖q1(s)‖dt

}
≤ C

2

∫ s

0
‖p(t)‖2dt +

C
2

∫ s

0
‖p1(t)‖2dt + TC2

∫ s

0
‖p2(t)‖2dt +

1
4
‖p1(s)‖2

+
C
2

∫ s

0
‖q(t)‖2dt +

C
2

∫ s

0
‖q1(t)‖2dt + TC2

∫ s

0
‖q2(t)‖2dt +

1
4
‖q1(s)‖2,
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which implies that

1
4
‖p(s)‖2 +

1
4
‖p1(s)‖2 +

1
4
‖q(s)‖2 +

1
4
‖q1(s)‖2

≤ C
∫ s

0

(
‖p(t)‖2 + ‖p1(t)‖2 + ‖q(t)‖2 + ‖q1(t)‖2

)
dt.

By using Gronwall’s Lemma, we deduce that

1
4
‖p(s)‖2 +

1
4
‖p1(s)‖2 +

1
4
‖q(s)‖2 +

1
4
‖q1(s)‖2 ≤ 0.

Then, we can determine that

p(s) = q(s) = 0, in L2(Ω), ∀ s ∈ (0, T),

and since p(0) = q(0) = 0, we obtain

p(s) = q(s) = 0, in L2(Ω), ∀ s ∈ [0, T],

which means that (u1, v1) = (u2, v2).

Consequently, the proof of the local existence of a weak solution is complete. Further-
more, it is easy to see that

l1a(u, u) + ‖ut‖2 + γ‖∇ut‖2 + l2‖∇v‖2 + ‖vt‖2 ≤ 2E(t) ≤ 2E(0),

which shows that the solution is bounded and global in time.
This completes the proof.

We also need the following regularity result. Indeed, in some parts of the paper, we
multiply the first equation by ut and the second one by vt. This is only possible if we are
working with regular solutions. For this reason, we will introduce a theorem for regular
solutions as well. Thus, it is enough to work with regular solutions all time. The decay
rate estimates for weak solutions are obtained using standard density arguments. But,
before performing this, we present the definition of regular solutions in our case, which
was introduced in Definition 2 [11].

Definition 2. We previously stated that (u0, u1) is 2-regular if

uj ∈ H4−j(Ω) ∩V, j = 0, . . . , 2; u3 ∈W,

where uj is obtained by the following recursive formulas:

uj+2 − γ∆uj+2 = ∆2uj,

uj = ∂νuj = 0, on Γ0,

B1uj = 0, on Γ1, ∀ j = 1, 2.

B2uj = γ∂νuj+2, on Γ1.

Now, we present our regularity result.

Theorem 2. Suppose (A1) holds and suppose that (u0, u1) is 2-regular and (v0, v1) ∈
(

H2(Ω)∩
H1

0(Ω)
)
× H1

0(Ω). Then, the solution of problem (1) satisfies

u ∈ C([0, T], V ∩ H4(Ω)) ∩ C1([0, T], W ∩ H3(Ω)),

v ∈ L∞([0, T], H2(Ω) ∩ H1
0(Ω)) ∩W1,∞([0, T], H1

0(Ω)) ∩W2,∞([0, T], L2(Ω)).
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Proof. The proof can be performed by combining the arguments used, for example,
in [9,11].

3. General Decay

In this section, we will present and establish our principal theorem of this paper, which
states the general decay of the energy of our system. This will be conducted by the help of
the perturbed energy method. First, we introduce the energy functional by

E(t) =
1
2

(
1−

∫ t

0
g1(s)ds

)
a(u, u) +

1
2
‖ut‖2 +

γ

2
‖∇ut‖2 +

1
2
(g1�u)(t) +

1
2

(
1−

∫ t

0
g2(s)ds

)
‖∇v‖2

+
1
2
(g2 ◦ ∇v)(t) +

1
2
‖vt‖2 + α

∫
Ω

uvdx,

which satisfies the following dissipation identity:

Proposition 1. Under the hypothesis of Theorem 2, the following identity holds:

E′(t) =
1
2
(g′1�u)(t)− 1

2
g1(t)a(u, u) +

1
2
(g′2 ◦ ∇v)(t)− 1

2
g2(t)‖∇v(t)‖2 ≤ 0. (9)

Proof. In (1), upon multiplying the first equation by ut and the second one by vt, add the
resulting equations and integrate by parts over Ω to obtain

d
dt

{
1
2
‖ut‖2 +

γ

2
‖∇ut‖2 +

1
2

a(u, u) +
1
2
‖vt‖2 +

1
2
‖∇v‖2 + α

∫
Ω

uvdxdy
}

−
∫ t

0
g1(t− s)a(u(s), ut)ds−

∫ t

0
g2(t− s)

∫
Ω
∇v(s)∇vt(t)dxds = 0 (10)

By the virtue of Lemma 2.1 in [11], we have

a
(∫ t

0
g1(t− s)u(s)ds, ut

)
= −1

2
g1(t)a(u, u)− 1

2
d
dt

{
(g1�u)(t)−

(∫ t

0
g1(s)ds

)
a(u, u)

}
+

1
2
(g′1�u)(t), (11)

For any u ∈ C1(0, T; H2(Ω)).
Besides, a direct computation shows that

∫ t

0
g2(t− s)

∫
Ω
∇v(s)∇vt(t)dxds =

1
2
(g′2 ◦ ∇v)(t)− 1

2
g2(t)‖∇v(t)‖2

− 1
2

d
dt

{
(g2 ◦ ∇v)(t)−

(∫ t

0
g2(s)ds

)
‖∇v(t)‖2

}
. (12)

By replacing (11) and (12) in (10), we obtain the desired result.
The main result of this paper reads as follows.

Theorem 3. Suppose that (u0, u1) is 2-regular and (v0, v1) ∈
(

H2(Ω) ∩ H1
0(Ω)

)
× H1

0(Ω).
Assume that (A1) and (A2) hold. Then, there exist positive constants β1 and β2, such that the
energy E(t) satisfies for any t > g−1(r)

E(t) ≤ β2Q−1
1

(
β1

∫ t

g−1(r)
ξ(s)ds

)
, (13)

where ξ(t) = min{ξ1(t), ξ2(t)}, g(t) = max{g1(t), g2(t)} and Q1(t) =
∫ r

t

1
sQ′(s)

ds.
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Remark 2 ([25]).

1. The following Jensen’s inequality is critical to prove our main result. Let G be a convex
increasing function on [a, b], h : Ω→ [a, b] and m is the integrable function on Ω, such that

m(x) ≥ 0 and
∫

Ω
m(x) dx = k > 0, then Jensen’s inequality states that

G
[1

k

∫
Ω

h(x)m(x) dx
]
≤ 1

k

∫
Ω

G[h(x)]m(x) dx.

2. From (A2), we infer that lim
t→+∞

gi(t) = 0. Then, there exists some large enough t1 ≥ 0,

such that

gi(t1) = r ⇒ gi(t) ≤ r, ∀ t ≥ t1. (14)

Since Q is a positive continuous function and gi, ξi are positive non-increasing continuous
functions, we can obtain for every t ∈ [0, t1],

0 < gi(t1) ≤ gi(t) ≤ gi(0) and 0 < ξi(t1) ≤ ξi(t) ≤ ξi(0), i = 1, 2,

which implies for some positive constants ai and bi:

ai ≤ ξi(t)Q(gi(t)) ≤ bi, i = 1, 2.

This shows that for every t ∈ [0, t1],

g′i(t) ≤ −ξi(t)Q(gi(t)) ≤ −
ai

gi(0)
gi(0) ≤ −

ai
gi(0)

gi(t), i = 1, 2. (15)

3. If different functions Q1 and Q2 have the properties mentioned in (A2), such that g′1(t) ≤
−Q1(g1(t)) and g′2(t) ≤ −Q2(g2(t)), then there exists r < min{r1, r2} small enough so
that, e.g., Q1(t) ≤ Q2(t) on the interval (0, r]. Thus, the function Q(t) = Q1(t) satisfies
(A2) for both functions g1 and g2 for all t ≥ t1.

We will work with regular solutions; by standard density arguments, the decay result
remains valid for weak solutions as well. In order to prove the main Theorem (3), we need
to introduce several lemmas. To this end, let us introduce the functionals

I(t) =
∫

Ω
(uut + γ∇ut∇u) dx +

∫
Ω

vvt dx, (16)

and

K(t) = −
∫

Ω
ut

∫ t

0
g1(t− s)(u(t)− u(s)) ds dx− γ

∫
Ω
∇ut

∫ t

0
g1(t− s)∇(u(t)− u(s)) ds dx

−
∫

Ω
vt

∫ t

0
g2(t− s)(v(t)− v(s)) ds dx. (17)

Lemma 1. Assume that (A1) and (A2) hold. Then, the functional I(t) introduced in (16) satisfies
(along the solution) the estimate

I′(t) ≤
∫

Ω
|ut|2 dx + γ

∫
Ω
|∇ut|2 dx− l1

2
a(u, u) +

1− l1
2l1

(g1�u)(t)

+
∫

Ω
|vt|2 dx− l2

2

∫
Ω
|∇v|2 dx +

1− l2
2l2

(g2 ◦ ∇v)(t)− 2α
∫

Ω
uv dx. (18)

Proof. Direct differentiation of I, using (1), yields
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I′(t) =
∫

Ω
|ut|2 dx +

∫
Ω

uutt dx + γ
∫

Ω
|∇ut|2 dx + γ

∫
Ω
∇u∇utt dx +

∫
Ω
|vt|2 dx +

∫
Ω

vvtt dx

=
∫

Ω
|ut|2 dx + γ

∫
Ω
|∇ut|2 dx− a(u, u) +

∫ t

0
g1(t− s)a(u(s), u(t)) ds

+
∫

Ω
|vt|2 dx−

∫
Ω
|∇v|2 dx +

∫ t

0
g2(t− s)

∫
Ω
∇v(s)∇v(t) dx ds− 2α

∫
Ω

uv dx. (19)

By using the Cauchy–Schwarz inequality, Young’s inequality and the fact that
∫ t

0
g1(s)ds

≤
∫ +∞

0
g1(s)ds = 1− l1, we obtain

∫ t

0
g1(t− s)a(u(t), u(s)) ds

=
∫ t

0
g1(t− s)a(u(s)− u(t), u(t)) ds +

∫ t

0
g1(t− s)a(u(t), u(t)) ds

≤
∫ t

0
g1(t− s){a(u(s)− u(t), u(s)− u(t))}

1
2 {a(u(t), u(t))}

1
2 ds +

(∫ t

0
g1(s)ds

)
a(u(t), u(t))

≤ l1
2

a(u(t), u(t)) +
1

2l1

(∫ t

0

√
g1(t− s)

{
g1(t− s)a(u(s)− u(t), u(s)− u(t))

} 1
2

ds

)2

+(1− l1)a(u(t), u(t)) (20)

≤
(

1− l1
2

)
a(u(t), u(t)) +

1− l1
2l1

(g1�u)(t).

Furthermore, we have (see, for example, [5]) that∫ t

0
g2(t− s)

∫
Ω
∇v(s)∇v(t) dx ds

≤ (1− l2
2
)
∫

Ω
|∇v|2 dx +

1− l2
2l2

(g2 ◦ ∇v)(t). (21)

Inserting (20) and (21) in (19), the assertion of the lemma is established.

Lemma 2. Assume that (A1) and (A2) hold. Then, the functional K(t) introduced in (17) satisfies,
along the solution, the estimate

K′(t) ≤
(

δ−
∫ t

0
g1(s)ds

)(∫
Ω
|ut|2dx

)
+

{
δ(C + 1) + δ(1− l1)(δ + 2(1− l1))−

∫ t

0
g1(s)ds

}
a(u, u)

+γ

(
δ−

∫ t

0
g1(s)ds

)(∫
Ω
|∇ut|2dx

)
+

{
(1− l1)(C + 2)

4δ
+ δ(1− l1) + (1− l1)2

}
(g1�u)(t)

−Cg1(0)
2δ

(g′1�u)(t) +
(

δ−
∫ t

0
g2(s)ds

)(∫
Ω
|vt|2dx

)
+δ
(

C + 1 + 2(1− l2)2
)(∫

Ω
|∇v|2dx

)
+

{
(1− l2)(C + 1)

4δ
+ (2δ +

1
4δ

)(1− l2)
}
(g2 ◦ ∇v)(t)

−Cg2(0)
4δ

(g′2 ◦ ∇v)(t), ∀ δ > 0. (22)
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Proof. By exploiting equation (1) and integrating by parts, we have

K′(t) =

(
−
∫ t

0
g1(s)ds

)(∫
Ω
|ut|2dx

)
−
∫

Ω
ut

∫ t

0
g′1(t− s)(u(t)− u(s))dsdx

−
∫

Ω
utt

∫ t

0
g1(t− s)(u(t)− u(s))dsdx

−γ
∫

Ω
∇utt

∫ t

0
g1(t− s)∇(u(t)− u(s))dsdx

−γ
∫

Ω
∇ut

∫ t

0
g′1(t− s)∇(u(t)− u(s))dsdx− γ

(∫ t

0
g1(s)ds

)(∫
Ω
|∇ut|2dx

)
−
∫

Ω
vtt

∫ t

0
g2(t− s)(v(t)− v(s)dsdx

−
∫

Ω
vt

∫ t

0
g′2(t− s)(u(t)− u(s))dsdx−

(∫ t

0
g2(s)ds

)(∫
Ω
|vt|2dx

)
=

(
−
∫ t

0
g1(s)ds

)(∫
Ω
|ut|2dx

)
−
∫

Ω
ut

∫ t

0
g′1(t− s)(u(t)− u(s))dsdx

+a
(

u,
∫ t

0
g1(t− s)(u(t)− u(s))ds

)
−
∫ t

0
g1(t− s)a

(
u(s),

∫ t

0
g1(t− s)(u(t)− u(s))ds

)
ds

+α
∫

Ω
v
∫ t

0
g1(t− s)(u(t)− u(s))dsdx

−γ
∫

Ω
∇ut

∫ t

0
g′1(t− s)∇(u(t)− u(s))dsdx− γ

(∫ t

0
g1(s)ds

)(∫
Ω
|∇ut|2dx

)
+
∫

Ω
∇v

∫ t

0
g2(t− s)∇(v(t)− v(s))dsdx

−
∫

Ω

(∫ t

0
g2(t− s)∇v(s)ds

)(∫ t

0
g2(t− s)∇(u(t)− u(s))ds

)
dx

+α
∫

Ω
u
∫ t

0
g2(t− s)(v(t)− v(s))dsdx−

(∫ t

0
g2(s)ds

)(∫
Ω
|vt|2dx

)
−
∫

Ω
vt

∫ t

0
g′2(t− s)(u(t)− u(s))dsdx. (23)

Using Young’s inequality and Cauchy–Schwarz’s inequality , we obtain for any δ > 0

−
∫

Ω
ut

∫ t

0
g′1(t− s)(u(t)− u(s))dsdx ≤ δ

∫
Ω
|ut|2 +

1
4δ

∫
Ω

(∫ t

0
g′1(t− s)(u(t)− u(s))ds

)2
dx

≤ δ
∫

Ω
|ut|2 −

g1(0)
4δ

∫ t

0
g′1(t− s)

∫
Ω
|u(t)− u(s)|2dxds

≤ δ
∫

Ω
|ut|2 −

Cg1(0)
4δ

(g′1�u)(t), (24)

and
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a
(

u,
∫ t

0
g1(t− s)(u(t)− u(s))ds

)
=

∫ t

0
g1(t− s)a(u(t), u(t)− u(s))ds

≤
∫ t

0
g1(t− s)[a(u(t), u(t))]

1
2 [a(u(t)− u(s), u(t)− u(s))]

1
2 ds

≤ δa(u, u) +
1
4δ

{∫ t

0
g1(t− s)[a(u(t)− u(s), u(t)− u(s))]

1
2 ds
}2

≤ δa(u, u) +
1− l1

4δ
(g1�u)(t). (25)

Furthermore, we have

−
∫ t

0
g1(t− s)a

(
u(s),

∫ t

0
g1(t− s)(u(t)− u(s))ds

)
ds

≤
(∫ t

0
g1(t− s)[a(u(s), u(s))]

1
2 ds
)(∫ t

0
g1(t− s)[a(u(t)− u(s), u(t)− u(s))]

1
2 ds
)

≤ δ

(∫ t

0
g1(t− s)[a(u(s), u(s))]

1
2 ds
)2

+
1
4δ

(∫ t

0
g1(t− s)[a(u(t)− u(s), u(t)− u(s))]

1
2 ds
)2

≤ δ

(∫ t

0
g1(t− s)[a(u(s), u(s))]

1
2 ds
)2

+
1− l1

4δ
(g1�u)(t). (26)

Now, we will estimate the term
(∫ t

0
g1(t− s)[a(u(s), u(s))]

1
2 ds
)2

. We have(∫ t

0
g1(t− s)[a(u(s), u(s))]

1
2 ds
)2

≤ (1− l1)
∫ t

0
g1(t− s)a(u(s), u(s))ds

= (1− l1)
∫ t

0
g1(t− s)(a(u(t)− u(s), u(t)− u(s)) + 2a(u(t), u(s))− a(u(t), u(t)))ds

= (1− l1)(g1�u)(t)− (1− l1)
(∫ t

0
g1(s)ds

)
a(u, u) + 2(1− l1)

∫ t

0
g1(t− s)a(u(t), u(s))ds

≤ (1− l1)(g1�u)(t)− (1− l1)
(∫ t

0
g1(s)ds

)
a(u, u) + δ(1− l1)a(u, u)

+
(1− l1)2

δ
(g1�u)(t) + 2(1− l1)2a(u, u)

= (1− l1)
(

δ + 2(1− l1)−
∫ t

0
g1(s)ds

)
a(u, u) +

(
1− l1 +

(1− l1)2

δ

)
(g1�u)(t). (27)

Inserting (27) in (26), we obtain

−
∫ t

0
g1(t− s)a

(
u(s),

∫ t

0
g1(t− s)(u(t)− u(s))ds

)
ds

≤ δ(1− l1)
(

δ + 2(1− l1)−
∫ t

0
g1(s)ds

)
a(u, u)

+

(
δ(1− l1) + (1− l1)2 +

(1− l1)
4δ

)
(g1�u)(t). (28)
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Next, we have

α
∫

Ω
v
∫ t

0
g1(t− s)(u(t)− u(s))dsdx

≤ δ
∫

Ω
|v|2dx +

C(1− l1)
4δ

(g1�u)(t)

≤ Cδ
∫

Ω
|∇v|2dx +

C(1− l1)
4δ

(g1�u)(t). (29)

The term −γ
∫

Ω
∇ut

∫ t

0
g′1(t− s)∇(u(t)− u(s))dsdx can be estimated as follows:

−γ
∫

Ω
∇ut

∫ t

0
g′1(t− s)∇(u(t)− u(s))dsdx

≤ γδ
∫

Ω
|∇ut|2 −

Cg(0)
4δ

(g′1�u)(t). (30)

Furthermore, we determine that

α
∫

Ω
u
∫ t

0
g2(t− s)(v(t)− v(s))dsdx

≤ Cδa(u, u) +
C(1− l2)

4δ
(g2 ◦ ∇v)(t). (31)

The remaining terms can be estimated as, for example, in [5] (see estimates (3.14)–(3.16)
in the mentioned paper). ∫

Ω
∇v

∫ t

0
g2(t− s)∇(v(t)− v(s))dsdx

≤ δ
∫

Ω
|∇v|2dx +

1− l2
4δ

(g2 ◦ ∇v)(t), (32)

−
∫

Ω

(∫ t

0
g2(t− s)∇v(s)ds

)(∫ t

0
g2(t− s)∇(v(t)− v(s))ds

)
dx

≤ (2δ +
1
4δ

)(1− l2)(g2 ◦ ∇v)(t) + 2δ(1− l2)2
∫

Ω
|∇v|2dx, (33)

and

−
∫

Ω
vt

∫ t

0
g′2(t− s)(u(t)− u(s))dsdx

≤ δ
∫

Ω
|vt|2dx− Cg2(0)

4δ
(g′2 ◦ ∇v)(t). (34)

By combining (23) and (34), we achieve the desired estimate.

Now, we define the functional F(t). The idea is to construct a new Lyapunow function,
equivalent to the energy quantity, that will satisfy an “appropriate” inequality. Let

F(t) = NE(t) + N1 I(t) + N2K(t),

where N, N1 and N2 are positive constants that will be chosen later. It is easy to verify that
for a large enough N, we have F ∼ E, i.e.,

c1E(t) ≤ F(t) ≤ c2E(t),

for some c1, c2 > 0.
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Lemma 3. The functional F satisfies

F′(t) ≤ −
(∫

Ω
|ut|2 dx +

∫
Ω
|vt|2 dx + γ

∫
Ω
|∇ut|2 dx dy

)
− 4(1− l)

(
a(u, u) +

∫
Ω
|∇v|2 dx

)
+ c((g1�u)(t) + (g2 ◦ ∇v)(t))− 2αN1

∫
Ω

uv dx, ∀ t ≥ t1, (35)

where t1 was introduced in (14) and c > 0.

Proof. Let

g0 = min
{∫ t1

0
g1(s)ds,

∫ t1

0
g2(s)ds

}
> 0, and l = min{l1, l2}.

By using (9), (18) and (22), we obtain for any t ≥ t1

F′(t) = NE′(t) + N1 I′(t) + N2K′(t)

≤ −(N2(g0 − δ)− N1)

(∫
Ω
|ut|2 dx +

∫
Ω
|vt|2 dx + γ

∫
Ω
|∇ut|2 dx

)
−

(
N1l
2
− N2δ

(
C + 1 + 2(1− l)2

)
− N2δ2(1− l) + N2g0

)
a(u, u)

−
(

N1l
2
− N2δ

(
C + 1 + 2(1− l)2

)) ∫
Ω
|∇v|2 dx

+

(
N1(1− l)

2l
+ N2

( (C + 2)(1− l)
4δ

+ δ(1− l) + (1− l)2
))

(g1�u)(t)

+

(
N1(1− l)

2l
+ N2

( (C + 1)(1− l)
4δ

+ (2δ +
1
4δ

)(1− l)
))

(g2 ◦ ∇v)(t)

+

(
N
2
− CN2g0

2δ

){
(g′1�u)(t) + (g′2 ◦ ∇v)(t)

}
− 2αN1

∫
Ω

uv dx. (36)

Taking δ = l
4N2(C+1+2(1−l)2)

, (36) becomes

F′(t) ≤ −
(

N2g0 −
l

4(C + 1 + 2(1− l)2)
− N1

)(∫
Ω
|ut|2 dx +

∫
Ω
|vt|2 dx + γ

∫
Ω
|∇ut|2 dx

)
−

(
N1l
2
− l

4
− l2(1− l)

16N2(C + 1 + 2(1− l)2)2 + N2g0

)
a(u, u)

−
(

N1l
2
− l

4

) ∫
Ω
|∇v|2 dx

+
(N1(1− l)

2l
+

N2
2 (C + 2)(1− l)(C + 1 + 2(1− l)2)

l

+
l(1− l)

4(C + 1 + 2(1− l)2)
+ N2(1− l)2

)
(g1�u)(t)

+

(
N1(1− l)

2l
+

N2
2 (C + 2)(1− l)(C + 1 + 2(1− l)2)

l
+

l(1− l)
2(C + 1 + 2(1− l)2)

)
(g2 ◦ ∇v)(t)

+

(
N
2
−

2Cg0N2
2 (C + 1 + 2(1− l)2)

l

){
(g′1�u)(t) + (g′2 ◦ ∇v)(t)

}
− 2αN1

∫
Ω

uv dx.

At this point, we choose N1 that is large enough, so that

N1l
2
− l

4
> 4(1− l),
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and then N2 that is large enough, such that

N2g0 −
l

4(C + 1 + 2(1− l)2)
− N1 > 1,

and

N2g0 −
l2(1− l)

16N2(C + 1 + 2(1− l)2)2 > 0.

Now, we choose N that is large enough, such that

N
2
−

2Cg0N2
2 (C + 1 + 2(1− l)2)

l
> 0.

Thus, (35) is established.

Now, we are in a position to prove our main result.

Proof of Theorem (3). Taking into account (9) and (15), we obtain that for any t ≥ t1∫ t1

0
g1(s)a(u(t)− u(t− s), u(t)− u(t− s))ds

≤ − g1(0)
a1

∫ t1

0
g′1(s)a(u(t)− u(t− s), u(t)− u(t− s))ds ≤ −cE′(t),

and ∫ t1

0
g2(s)

∫
Ω
|∇v(t)−∇v(t− s)|2dxds

≤ − g2(0)
a2

∫ t1

0
g′2(s)

∫
Ω
|∇v(t)−∇v(t− s)|2dxds ≤ −cE′(t).

Therefore, (35) yields for some m > 0 and all t ≥ t1,

F′(t) ≤ −mE(t) + c(g1�u)(t) + c(g2 ◦ ∇v)(t)

≤ −mE(t)− cE′(t) + c
∫ t

t1

g1(s)a(u(t)− u(t− s), u(t)− u(t− s))ds

+c
∫ t

t1

g2(s)
∫

Ω
|∇v(t)−∇v(t− s)|2dxds. (37)

Denote L(t) = F(t) + cE(t). Clearly, L(t) is equivalent to E(t). It follows from (37)
that

L′(t) ≤ −mE(t) + c
∫ t

t1

g1(s)a(u(t)− u(t− s), u(t)− u(t− s))ds

+c
∫ t

t1

g2(s)
∫

Ω
|∇v(t)−∇v(t− s)|2dxds. (38)

Next, the following two cases are considered.
Case 1. The function Q(t) is linear.
We multiply (38) by ξ(t) and use Assumption (A2) and (9) to obtain
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ξ(t)L′(t) ≤ −mξ(t)E(t) + cξ(t)
∫ t

t1

g1(s)a(u(t)− u(t− s), u(t)− u(t− s))ds

+cξ(t)
∫ t

t1

g2(s)
∫

Ω
|∇v(t)−∇v(t− s)|2dxds

≤ −mξ(t)E(t) + c
∫ t

t1

ξ1(s)g1(s)a(u(t)− u(t− s), u(t)− u(t− s))ds

+c
∫ t

t1

ξ2(s)g2(s)
∫

Ω
|∇v(t)−∇v(t− s)|2dxds

≤ −mξ(t)E(t)− c
∫ t

t1

g′1(s)a(u(t)− u(t− s), u(t)− u(t− s))ds

−c
∫ t

t1

g′2(s)
∫

Ω
|∇v(t)−∇v(t− s)|2dxds

≤ −mξ(t)E(t)− cE′(t). (39)

Denote F (t) = ξ(t)L(t) + cE(t) ∼ E(t). Then, we have, from (39) and the fact that ξ
is non-increasing, that for any t ≥ t1:

F ′(t) ≤ −mξ(t)E(t).

Using the fact that F ∼ E, we obtain

F ′(t) ≤ −c1F (t),

for some positive constant c1. By applying Gronwall’s Lemma, we obtain the existence of a
constant c2 > 0 such that

F (t) ≤ c2e
−c1

∫ t

t1

ξ(s) ds
,

which yields to

E(t) ≤ c3e
−c1

∫ t

t1

ξ(s) ds
,

for some constant c3 > 0.
Case 2: Q is nonlinear. First, we define the following quantities

I1(t) =
κ

t

∫ t

0
a(u(t)− u(t− s), u(t)− u(t− s))ds, t > 0

and

I2(t) =
κ

t

∫ t

0

∫
Ω
|∇v(t)−∇v(t− s)|2dxds, t > 0.

Then, we have

I1(t) ≤
2κ

t

∫ t

0
[a(u(t), u(t)) + a(u(t− s), u(t− s))]ds

≤ 4κ

lt

(∫ t

0
(E(t) + E(t− s))ds

)
≤ 8κ

lt

∫ t

0
E(s)ds

≤ 8κ

lt

∫ t

0
E(0)ds =

8κ

l
E(0) < +∞,
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and likewise, we have

I2(t) ≤
8κ

l
E(0) < +∞.

Thus, choosing 0 < κ < 1 that is small enough so that, for all t > 0:

Ii(t) < 1, for i = 1, 2. (40)

Also, we define λ1(t) and λ2(t) by

λ1(t) = −
∫ t

0
g′1(s)a(u(t)− u(t− s), u(t)− u(t− s))ds,

and

λ2(t) = −
∫ t

0
g′2(s)

∫
Ω
|∇v(t)−∇v(t− s)|2dxds.

It is obvious that λi(t) ≤ −cE′(t), i = 1, 2.
Noting Q is strictly convex on (0, r] and Q(0) = 0, then Q(θx) ≤ θQ(x), provided that

0 ≤ θ ≤ 1 and x ∈ (0, r]. This, together with (A1), (40) and Jensen’s inequality, leads to

λ1(t) =
1

κ I1(t)

∫ t

0
I1(t)(−g′1(s))κa(u(t)− u(t− s), u(t)− u(t− s))ds

≥ 1
κ I1(t)

∫ t

0
I1(t)ξ1(s)Q(g1(s))κa(u(t)− u(t− s), u(t)− u(t− s))ds

≥ ξ1(t)
κ I1(t)

∫ t

0
Q(I1(t)g1(s))κa(u(t)− u(t− s), u(t)− u(t− s))ds

≥ ξ1(t)
κ

Q
(

1
I1(t)

∫ t

0
I1(t)g1(s)κa(u(t)− u(t− s), u(t)− u(t− s))ds

)
=

ξ1(t)
κ

Q
(

κ
∫ t

0
g1(s)a(u(t)− u(t− s), u(t)− u(t− s))ds

)
=

ξ1(t)
κ

Q
(

κ
∫ t

0
g1(s)a(u(t)− u(t− s), u(t)− u(t− s))ds

)
,

where Q is an extension of Q such that Q is strictly increasing and a strictly convex C2

function on (0,+∞). This implies that∫ t

0
g1(s)a(u(t)− u(t− s), u(t)− u(t− s))ds ≤ 1

κ
Q−1

(
κλ1(t)
ξ1(t)

)
.

Similarly, we have∫ t

0
g2(s)

∫
Ω
|∇v(t)−∇v(t− s)|2dxds ≤ 1

κ
Q−1

(
κλ2(t)
ξ2(t)

)
.

We infer from (38) that for any t ≥ t1

L′(t) ≤ −mE(t) + cQ−1
(

κλ1(t)
ξ1(t)

)
+ cQ−1

(
κλ2(t)
ξ2(t)

)
. (41)

For ε0 < r, using (41) and the fact that E′ ≤ 0, Q′ > 0, Q′′ > 0, we find that the
functional K1, defined by

K1(t) = Q′
(

ε0
E(t)
E(0)

)
L(t) + E(t)
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is equivalent to E(t) and satisfies

K′1(t) = ε0
E′(t)
E(0)

Q′′
(

ε0
E(t)
E(0)

)
L(t) + Q′

(
ε0

E(t)
E(0)

)
L′(t) + E′(t)

≤ −mE(t)Q′
(

ε0
E(t)
E(0)

)
+ cQ′

(
ε0

E(t)
E(0)

)
Q−1

(
κλ1(t)
ξ1(t)

)
+ cQ′

(
ε0

E(t)
E(0)

)
Q−1

(
κλ2(t)
ξ2(t)

)
. (42)

Now, let Q∗ be the convex conjugate of Q in the sense of Young (see [26]). Then,

Q∗(s) = s(Q′)−1(s)−Q((Q′)−1(s)), (43)

which satisfies

ABi ≤ Q∗(A) + Q(Bi), i = 1, 2, (44)

with A = Q′
(

ε0
E(t)
E(0)

)
and Bi = Q−1

(
κλi(t)
ξi(t)

)
, i = 1, 2.

It is inferred from (42)–(44) that

K′1(t) ≤ −mE(t)Q′
(

ε0
E(t)
E(0)

)
+ cε0

E(t)
E(0)

Q′
(

ε0
E(t)
E(0)

)
+ cκ

(
λ1(t)
ξ1(t)

+
λ2(t)
ξ2(t)

)

is obtained by multiplying the last inequality by ξ(t) and using the fact that, as ε0
E(t)
E(0) <

r, Q′
(

ε0
E(t)
E(0)

)
= Q′

(
ε0

E(t)
E(0)

)
and λi(t) ≤ −cE′(t) (for i = 1, 2), that

ξ(t)K′1(t) ≤ −mE(t)ξ(t)Q′
(

ε0
E(t)
E(0)

)
+ cε0

E(t)
E(0)

ξ(t)Q′
(

ε0
E(t)
E(0)

)
− cE′(t).

Consequently, by letting K2 = ξK1 + cE, we have: α1K2(t) ≤ E(t) ≤ α2K2(t), for
some α1, α2 > 0.

Hence, we conclude that, for some constant β1 > 0 and for all t ≥ t1

K′2(t) ≤ −β1ξ(t)
E(t)
E(0)

Q′
(

ε0
E(t)
E(0)

)
:= −β1ξ(t)Q2

(
E(t)
E(0)

)
, (45)

where Q2(t) = tQ′(ε0t). Since Q′2(t) = Q′(ε0t) + ε0tQ′′(ε0t), then, using the strict convex-
ity of Q on (0, r], we reach that Q′2(t), Q2(t) > 0 on (0, 1]. Thus, with H(t) = α1K2(t)

E(0) and
using the fact that K2 ∼ E and (45), we have

H(t) ∼ E(t), (46)

and for some β2 > 0,
H′(t) ≤ −β2ξ(t)Q2(H(t)), ∀ t ≥ t1.

Integrating the latter over (t1, t) yields∫ t

t1

−H′(s)
Q2(H(s))

ds ≥ β2

∫ t

t1

ξ(s)ds,

which leads to

1
ε0

∫ ε0 H(t1)

ε0 H(t)

1
sQ′2(s)

ds ≥ β2

∫ t

t1

ξ(s)ds.
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Lastly, since the function Q1 given by Q1(t) =
∫ r

t
1

sQ′(s)ds is strictly decreasing on (0, r]
and lim

t→0
Q1(t) = +∞, we deduce that

H(t) ≤ 1
ε0

Q−1
1

(
β1

∫ t

t1

ξ(s)ds
)

.

Combining the latter with (46), one can claim that (13) holds.

In the following remark, we may extend our previous results in the case where we
take nonlinear coupling terms instead of the linear ones used in system (1) and also for a
quasi-linear version, where the material densities vary according to the velocity.

Remark 3.

1. We consider system (1) with f1(u, v) (respectively, f2(u, v)) instead of αv (respectively, αu),
that is

utt − γ∆utt + ∆2u−
∫ t

0
g1(t− s)∆2u(s) ds + f1(u, v) = 0 in Ω× (0, ∞)

vtt − ∆v +
∫ t

0
g2(t− s)∆v(s) ds + f2(u, v) = 0 in Ω× (0, ∞)

u = ∂νu = 0 on Γ0 × (0, ∞)

B1u− B1

{∫ t

0
g1(t− s)u(s) ds

}
= 0 on Γ1 × (0, ∞)

B2u− γ∂νutt − B2

{∫ t

0
g1(t− s)u(s) ds

}
= 0 on Γ1 × (0, ∞)

v = 0 on Γ× (0, ∞)

u(0) = u0, ut(0) = u1, v(0) = v0, vt(0) = v1 in Ω,

where fi, i = 1, 2, satisfy.
fi : R2 → R (for i = 1, 2) are C1 functions and there exists a positive function F such that

f1(x1, x2) =
∂F
∂x1

, f2(x1, x2) =
∂F
∂x2

, x1 f1(x1, x2) + x2 f2(x1, x2)− F(x1, x2) ≥ 0,

and∣∣∣ ∂ fi
∂x1

(x1, x2)
∣∣∣+ ∣∣∣ ∂ fi

∂x2
(x1, x2)

∣∣∣ ≤ d(1 + |x1|βi1−1 + |x2|βi2−1), ∀ (x1, x2) ∈ R2,

for some constant d > 0 and βij ≥ 1 for i, j = 1, 2.
By using the same method derived here, we may prove that the above system is well-posed and
a general decay rate can be established, as in (13).

2. By following the same approaches as in Sections 3 and 4, we shall prove that the following
quasi-linear coupled system

|ut|ρutt − γ∆utt + ∆2u−
∫ t

0
g1(t− s)∆2u(s) ds + f1(u, v) = 0 in Ω× (0, ∞)

|vt|ρvtt − ∆vtt − ∆v +
∫ t

0
g2(t− s)∆v(s) ds + f2(u, v) = 0 in Ω× (0, ∞)

u = ∂νu = 0 on Γ0 × (0, ∞)

B1u− B1

{∫ t

0
g1(t− s)u(s) ds

}
= 0 on Γ1 × (0, ∞)

B2u− γ∂νutt − B2

{∫ t

0
g1(t− s)u(s) ds

}
= 0 on Γ1 × (0, ∞)

v = 0 on Γ× (0, ∞)

u(0) = u0, ut(0) = u1, v(0) = v0, vt(0) = v1 in Ω,
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with ρ > 0, possess at least a weak solution u ∈ C([0, T], V) ∩ C1([0, T], W), v ∈ C([0, T],
H1

0(Ω)) ∩ C1([0, T], H1
0(Ω)); and moreover, we shall establish a general decay rate of energy

as in (13).

4. Conclusions

This paper focuses on the existence and the asymptotic stability of solutions for a
system of two coupled Kirchhoff plate and wave equations in a bounded domain of R2,
subject only to viscoelasticity dissipative terms and with the presence of rotational forces
(in the Kirchhoff plate equation). It should be noted that this model takes the memory
effects into account, which may exist in some materials, particularly in low temperature.
The first equation, in system (1), describes the motion of a plate, which is clamped along
one portion of its boundary and has free vibrations on the other portion of the boundary,
whereas the second one models the motion of a membrane. This work is motivated by
previous results concerning coupled wave equations [13,18–22] and coupled wave–plate
equations [24].

By using the Faedo–Galerkin method, we proved the existence of a unique global weak
solution. Furthermore, by constructing an appropriate Lyapunov function, we showed the
general decay of the energy associated with the system (1). As a future work, we aim to
change the type of damping by considering, for example, the Balakrishnan–Taylor damping
(of the form (∇y,∇yt)∆y), strong damping (of the form ∆2yt) or past history terms in the

Kirchhoff plate equation (of the form
∫ ∞

0
g1(s)∆2(x, t− s)ds ) or/and in the wave equation

(of the form
∫ ∞

0
g2(s)∆(x, t− s)ds ).
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