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Abstract: We have studied a class of (1 + 1)-dimensional equations that models phenomena with
heterogeneous diffusion, advection, and reaction. We have analyzed these fourth-order partial
differential equations within the framework of group methods. In this class, the diffusion coefficient
is constant, while the coefficients of advection and the reaction term are assumed to depend on the
unknown density u(t, x). We have identified the Lie symmetries extending the Principal Algebra
along with all the conservation laws corresponding to the different forms of the coefficients, and have
derived several brief applications.
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1. Introduction

In this paper, we consider the following class of reaction–diffusion–advection equations:

ut + Auxxxx + f (u)ux + g(u) = 0. (1)

We assume a high-order linear diffusion with a constant coefficient A. In the above equation,
the coefficient of the advection term f (u) and the reaction term g(u) are arbitrary functions
that depend on u.

Equation (1) generalizes

wt = −wxxxx + c(wq)x + w(a− w), (2)

introduced in [1], where the authors provided an analysis of a Fisher–KPP [2,3] nonlinear
reaction equation in a problem with higher-order diffusion and in the presence of an
advection term. A more careful study of diffusion based on statistical concepts and a
random walk approach can be found in [4]. Moreover, other proposals using the free energy
in the Landau–Ginzburg approach to analyze diffusion processes have been followed
in [5–7], and can generally reach fourth-order diffusion. The second-order diffusion derived
in the case of Fick’s law is a special instance of this approach. Higher-order diffusion (i.e.,
heterogeneous diffusion) may be seen as a perturbation of the standard second-order
diffusion; see, e.g., [7–10] for extensions of the Fisher–Kolmogorov-type equation to the
fourth order. Actually, the problem of writing a higher-order diffusion equation has been
the focus of many scientists for several decades [11–15].

Here, the class (1) is studied in the wide framework of group techniques. This paper
falls within a set of papers belonging to a wider project in which we take into considera-
tions the symmetry structure of certain classes of reaction–diffusion–advection equations
(RDAEs); see, e.g., [16–20], and for classes of the same type where advection is neglected,
see [21] and references within. Moreover a significant contribution has been provided
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by Cherniha and his co-workers in the field of symmetries applied to RDAEs that model
several diffusion phenomena [22–25].

One of the most relevant applications of Lie symmetries concerns the search for
solutions that are invariant with respect to these symmetries. This approach provides a
methodological way to derive exact solutions. In the case of a (1 + 1)-dimensional PDE,
this method leads to the search for solutions of ODEs.

In this paper, starting from the well known Lie invariance criterion, we obtain clas-
sifying equations that allow us to find several extensions of the Principal Lie Algebra
LP [26],which is concerned with special forms of the arbitrary parameters f (u) and g(u)
describing class (1). In the analysis of PDEs, conservation laws are essential, as they can
detect conserved physical quantities; they are additionally employed to search for solutions,
additional symmetries (including potential symmetries [27,28]), and to reach solutions in a
numerical way. Here, we determine them using the multipliers method [29,30]. Finally, we
derive a first integral and several special exact solutions as brief applications of our previous
results. We leave a wider and richer discussion about these results to a future work.

As far as we know, RDAEs (1) have not been previously studied within the framework
of group methods. It is worth noting that in this study we have selected different forms
of constitutive functions using symmetry classifications, a number of which may have
significance in real processes. For example, Equations (2) are invariant only with respect to
translations in time and space, while we have found that when the advection coefficient is

f (u) = f1 ln(u) (3)

and the reaction term is
g(u) = u(g0 + g1 ln(u)), (4)

which is a generalized logistic type [19], the corresponding Equation (1) admits an addi-
tional Lie generator that allows exact solutions to be obtained and can be written in the
conservative form. Finally, we wish to emphasize that the construction of exact solutions
for real problems, the existence and uniqueness of their solutions, and the accuracy and
stability of numerical methods, although not the main focus of the present work, can be
analyzed with the help of conservation laws.

The rest of this paper is outlined as follows. In Section 2, after having carried out the
classifying conditions, a symmetry classification with respect to f (u) and g(u) is obtained.
Section 3 is devoted to the derivation of multipliers and their corresponding conserved
vectors. In Section 4, we briefly illustrate a number of applications. Finally, our conclusions
are presented in Section 5.

2. Invariance and Classifying Conditions

In this section, we look for symmetry operators for Equation (1) in the form

X = ξ1(t, x, u)∂t + ξ2(t, x, u)∂x + η(t, x, u)∂u. (5)

To this end, we follow well known monographs in the field [28,31–37]. By applying the Lie
infinitesimal criterion, we can write the invariance condition for Equation (1):

X(4)[ut + Auxxxx + f (u)ux + g(u)]
∣∣∣ut+Auxxxx+ f (u)ux+g(u)=0 = 0. (6)

In this case, the fourth extended operator X(4) is

X(4) = X + ζt∂ut + ζx∂ux + ζxxxx∂uxxxx (7)
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with

ζt = Dtη − utDtξ1 − uxDtξ2, (8)

ζx = Dxη − utDxξ1 − uxDxξ2, (9)

ζxx = Dxζx − utxDxξ1 − uxxDxξ2, (10)

ζxxx = Dxζxx − utxxDxξ1 − uxxxDxξ2, (11)

ζxxxx = Dxζxxx − utxxxDxξ1 − uxxxxDxξ2, (12)

where Dt and Dx represent the total derivatives with respect to t and x, respectively.
After deriving the determining system for the infinitesimal unknowns ξ1, ξ2, and η

from (6), these functions are restricted to the forms

ξ1 = 4φ1(t), (13)

ξ2 = φ1t x + φ2(t), (14)

η = φ3(t)u + φ4(t, x), (15)

where the functions φi, i = 1, . . . , 4 satisfy the following classifying conditions:

(φ3u + φ4) fu + 3φ1t f − φ1ttx− φ2t = 0, (16)

(φ3u + φ4)gu + (4φ1t − φ3)g + φ4x f + Aφ4xxxx + φ3tu + φ4t = 0. (17)

For arbitrary functions f and g, we obtain

φ1t = 0, φ2t = 0, φ3 = 0, φ4 = 0. (18)

We can now affirm the following theorem.

Theorem 1. For arbitrary functions f and g, Equation (1) admits a two-dimensional Lie algebra
spanned by

X1 = ∂t, X2 = ∂x. (19)

This algebra is called the “principal Lie algebra” and is denoted by LP .
Now, we seek specific forms of the functions f (u) and g(u) such that Equation (1)

admits additional Lie symmetries.
From (16), we carry out

fuφ4xx = 0, and fuuφ4x = 0, (20)

bringing us to the following three cases:

1. f (u) = f0
2. f (u) = f0 + f1u, f1 6= 0
3. fuu 6= 0

We analyze these cases separately in the next three subsections.

2.1. Constant Advection Term Coefficient

Here, we consider the advection term coefficient to be constant, that is,

f (u) = f0. (21)

We recall that the following invertible change of the independent variable:

x → x + f0t (22)

maps Equation (1) to
ut + Auxxxx + g(u) = 0. (23)
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Thus, the special cases of (1) where the advection term does not appear can be recovered
from the symmetry analysis of this subsection. However, in this study we choose to retain
the advection term in Equation (1).

In this case, from (16), we obtain

φ1(t) = c1t + c2, φ2(t) = 3c1 f0t + c3. (24)

From (17), we obtain
φ4x guu = 0, (25)

therefore, we need to consider the two subcases guu = 0 and guu 6= 0.

2.1.1. guu = 0

If guu = 0, i.e., g(u) = g0 + g1u, Equation (1) becomes

ut + Auxxxx + f0ux + g0 + g1u = 0. (26)

In this case, we obtain
φ3 = −4c1g1t + c4, (27)

and φ4(t, x) is a solution of the equation

φ4t + Aφ4xxxx + f0φ4x + φ4g1 + 4c1g0 + g0(4c1g1t− c4) = 0. (28)

Then, the additional generators are

X3 = u∂u, (29)

X4 = 4t∂t + (3 f0t + x)∂x − 4g1tu∂u, (30)

Xφ = φ4∂u, (31)

where φ4(t, x) is a solution of

φ4t + Aφ4xxxx + f0φ4x + φ4g1 = 0. (32)

Without loss of generality, we can assume g0 = 0. Indeed, in the case where g1 6= 0,
the simple transformation u→ u− g0

g1
maps (26) to

ut + Auxxxx + f0ux + g1u = 0, (33)

while in the case where g1 = 0 the simple transformation u → u − g0t maps (26) with
g1 = 0 to

ut + Auxxxx + f0ux = 0. (34)

2.1.2. guu 6= 0

If guu 6= 0, we obtain φ4(t, x) = φ4(t) and condition (17) becomes

φ3guu + φ3t u− φ3g + φ4gu + 4c1g + φ4t = 0. (35)

To discuss (35), we can distinguish the following two cases.

1. φ3 = c5
Here, φ4 = c4 and (35) becomes

c5guu− c5g + c4gu + 4c1g = 0, (36)

which implies that

g(u) = g0eg1u or g(u) = g0(u + g1)
g2 . (37)
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(a) If g(u) = g0eg1u, we obtain c5 = 0 and c4 = −4 c1
g1

from (36). Then, for
g(u) = g0eg1u we obtain the following additional generator:

X3 = 4t∂t + (3 f0t + x)∂x −
4
g1

∂u. (38)

(b) If g(u) = g1(u + g0)
g2 , then in the same way we obtain

c1 = c5
1− g2

4
, c4 = c5g0 (39)

from (36) and

X3 = 4t(1− g2)∂t + (1− g2)(3 f0t + x)∂x + 4(u + g0)∂u. (40)

It is be useful to recall here that we can assume g0 = 0 through the transforma-
tion u→ u− g0.

2. φ3 6= const
By differentiating Equation (35) with respect to t and u, we obtain

φ3t uguu + φ3tt + φ4t guu = 0. (41)

From this equation, we can derive(
φ4t

φ3t

)
t
= 0 ⇒ φ4(t) = c4φ3(t) + c5. (42)

Substituting this into (41), we can carry out the following additional restriction on φ3:

φ3tt

φ3t

= c6 = constant. (43)

In order to find additional generators, it must be the case that c6 6= 0, which implies
that φ3(t) = c8 + c7ec6t with c6c7 6= 0. In this case, it is possible to determine that g(u)
must be of the form

g(u) = (u + g2)(g0 + g1ln(u + g2)), g1 6= 0, (44)

and that
c4 = g2, c6 = −g1, c1 = c5 = c8 = 0. (45)

Then, for g of the form (44), the following generator exists:

X3 = e−g1t(g2 + u)∂u. (46)

Of course, in this case we can assume that g2 = 0.

2.2. Linear Advection Term Coefficient

Here, we consider the advection term coefficient in the linear form:

f (u) = f0 + f1u with f1 6= 0. (47)

In this case, from (16), we obtain

φ3(t) = −3φ1t , φ4(t, x) =
1
f1
(xφ1tt + φ2t − 3 f0φ1t). (48)

From (17), we need to consider the following three subcases: g(u) nonlinear, g(u) linear
but non-constant, and g(u) constant.
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2.2.1. guu 6= 0

In this case, from (17), we immediately obtain

φ1(t) = c1t + c2, φ2(t) = c3t + c4 (49)

and find extensions of LP if

g(u) = g0(g1 + u)
7
3 , g0 6= 0, (50)

and c3 = 3c1( f0 − f1g1). Then, Equation (1) becomes

ut + Auxxxx + ( f0 + f1u)ux + g0(g1 + u)
7
3 = 0, (51)

and admits the following additional Lie symmetry:

X3 = 4t∂t + (x + 3( f0 − f1g1)t)∂x − 3(g1 + u)∂u. (52)

Without loss of generality, we can assume that f0 = 0 and that g1 = 0. This can be proved
using the following transformation:

x → x + ( f0 − f1g1)t, t→ t, u→ u− g1, (53)

which maps (51) to
ut + Auxxxx + f1uux + g0u

7
3 = 0. (54)

Equation (54) admits the additional Lie symmetry

X3 = 4t∂t + x∂x − 3u∂u. (55)

2.2.2. g(u) = g0 + g1u, with g1 6= 0

In this case, we have

φ1(t) = c1, φ2(t) = c3e−g1t + c2, φ3(t) = 0, φ4(t) = −c3
g1

f1
e−g1t. (56)

Equation (1) assumes the form

ut + Auxxxx + ( f0 + f1u)ux + g0 + g1u = 0 (57)

and admits the additional Lie symmetry generator

X3 = e−g1t∂x −
g1

f1
e−g1t∂u. (58)

Without loss of generality, we can assume that f0 = g0 = 0. Indeed, the transformation

x → x +
f0g1 − f1g0

g1
t, t→ t, u→ u− g0

g1
, (59)

maps (57) to
ut + Auxxxx + f1uux + g1u = 0 (60)

and admits the additional Lie symmetry generator (58).
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2.2.3. g(u) = g0

In this case, we obtain

φ1(t) = c1t + c2, φ2(t) = −
7
2

g2 f1c1t2 + c3t + c4, (61)

φ3(t) = −3c1, φ4(t) =
1
f1
(c3 − c17g2 f1t− 3c1 f0). (62)

Equation (1) assumes the form

ut + Auxxxx + ( f0 + f1u)ux + g0 = 0 (63)

and admits the additional Lie symmetry generators

X3 = 4t∂t +

(
x− 7

2
g0 f1t2

)
∂x −

(
3u + 7g0t + 3

f0

f1

)
∂u, (64)

X4 = t∂x +
1
f1

∂u. (65)

Without loss of generality, we can assume that f0 = 0; indeed, in this case, the simple
transformation x → x + f0t maps (63) to

ut + Auxxxx + f1uux + g0 = 0 (66)

and admits the additional Lie symmetry generators (64) and (65) with f0 = 0.

2.3. Nonlinear Advection Term Coefficient

When fuu 6= 0, Equation (1) has a nonlinear advection term coefficient. In this case,
we immediately obtain

φ4(t, x) = φ4(t), φ1(t) = c1t + c2 (67)

and (16) becomes
(φ3u + φ4) fu + 3c1 f − φ2t = 0. (68)

Observing that if we want to obtain extensions of LP , then φ3(t) and φ4(t) cannot both be
zero, we can distinguish the following three subcases depending on the function f :

• f (u) = f0 + f1(u + f2)
f3 with f1 f3 6= 0, f3 6= 1

• f (u) = f0 + f1 ln(u + f2) with f1 6= 0
• f (u) = f0 + f1e f2u with f1 f2 6= 0

2.3.1. f (u) = f0 + f1(u + f2)
f3 with f1 f3 6= 0, f3 6= 1

In this case, we have

φ3(t) = −
3c1

f3
, φ4(t) = −

3c1 f2

f3
, φ2(t) = 3c1 f0t + c3. (69)

From (17), we obtain extensions of LP if

g(u) = g0(u + f2)
4
3 f3+1. (70)

Then, the equation

ut + Auxxxx + ( f0 + f1(u + f2)
f3)ux + g0(u + f2)

4
3 f3+1 = 0 (71)



Symmetry 2023, 15, 1936 8 of 17

admits the following additional Lie symmetry:

X3 = 4t∂t + (x + 3 f0t)∂x −
3(u + f2)

f3
∂u. (72)

Without loss of generality, we can assume that f0 = f2 = 0. This is proved using the
transformation

x → x + f0t, t→ t, u→ u− f2, (73)

which maps Equation (71) to

ut + Auxxxx + f1u f3 ux + g0u
4
3 f3+1 = 0, (74)

admitting the additional Lie symmetry in (72) with f0 = f2 = 0.
It can be observed that if we remove the conditions f3 6= 1 and f1 6= 0 from this case we

can obtain two previous results. In fact, by choosing f1 = 0, f2 = g0, and f3 =
3
4
(g2− 1), we

obtain case 1(b) from Section 2.1.2, while if we choose f0 = f̄0 − f1g1, f2 = g1, and f3 = 1
we obtain the result from Section 2.2.1.

2.3.2. f (u) = f0 + f1 ln(u + f2) with f1 6= 0

In this case, we obtain

c1 = 0, φ4(t) =
φ2t f2

f1
, φ3(t) =

φ2t

f1
. (75)

From (17), we obtain extensions of LP if

g(u) = (u + f2)(g0 + g1 ln(u + f2)); (76)

moreover, if g1 6= 0, then φ2(t) = c4e−g1t + c3, while if g1 = 0, then φ2(t) = c4t + c3. Then,

ut + Auxxxx + ( f0 + f1 ln(u + f2))ux + (u + f2)(g0 + g1 ln(u + f2)) = 0 (77)

admits a third Lie symmetry. If g1 6= 0, this is

X3 = e−g1t( f1∂x − g1(u + f2)∂u), (78)

while if g1 = 0 (that is, if g(u) is linear), it is

X3 = t f1∂x + (u + f2)∂u. (79)

In this case, without loss of generality, we can assume that f0 = f2 = 0, because with the
transformation

x → x + f0t, t→ t, u→ u− f2 (80)

we obtain
ut + Auxxxx + f1 ln(u)ux + u(g0 + g1 ln(u)) = 0, (81)

from which the additional generators can be obtained from (78) and (79) by setting f2 = 0.
It can be observed that if we remove the condition f1 6= 0, by choosing f1 = 0 and

f2 = g2 we obtain the same result as in the second case in Section 2.1.2.

2.3.3. f (u) = f0 + f1e f2u with f1 f2 6= 0

In this case, we obtain

φ4(t) = −
3c1

f2
, φ3(t) = 0, φ2(t) = 3c1 f0t + c3. (82)
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From (17), we obtain extensions of LP if

g(u) = g0e
4
3 f2u. (83)

Then, equation
ut + Auxxxx +

(
f0 + f1e f2u

)
ux + g0e

4
3 f2u = 0 (84)

admits the following additional Lie symmetry:

X3 = 4t∂t +
x + 3 f0t

f2
∂x −

3
f2

∂u. (85)

Without loss of generality, we can assume that f0 = 0 (in this case, it is enough to use the
transformation x → x + f0t). Equation (1) assumes the form

ut + Auxxxx + f1e f2uux + g0e
4
3 f2u = 0 (86)

and admits the following additional Lie symmetry:

X3 = 4t∂t + x∂x −
3
f2

∂u. (87)

If we remove the condition f1 6= 0, by choosing f1 = 0 and f2 =
2
4

g1 we obtain the same

result as in case 1(a) in Section 2.1.2.
Our results are summarized in Table 1, which lists the functions f and g (in their

equivalent simplified form) for which Equation (1) admits additional generators with
respect to the principal Lie algebra, along with their corresponding generators.

Thus, we have proved the following theorem.

Theorem 2. The functions f and g for which the Lie algebra in Equation (1) admits extension
with respect to the principal Lie algebra are shown in Table 1 along with their corresponding
additional generators.

Table 1. Functions f and g and their corresponding additional generators with respect to the principal
Lie algebra.

f(u) g(u) Additional Generators

f1u f3 , f3 6= 0 g0u
4
3 f3+1 X3 = 4t∂t + x∂x − 3

f3
u∂u

f1 ln(u) u(g0 + g1ln(u)), g1 6= 0 X3 = e−g1t( f1∂x − g1u∂u)

f1 ln(u) g0u X3 = t f1∂x + u∂u

f1e f2u, f2 6= 0 g0e4 f2u/3 X3 = 4t∂t + x∂x − 3
f2

∂u

f1u, f1 6= 0 g1u X3 = e−g1t
(

∂x − g1
f1

∂u

)
f1u, f1 6= 0 g0 X3 = t∂x +

1
f1

∂u

X4 = 4t∂t +
(

x− 7
2 g0 f1t2

)
∂x −

(
3u + 7g0t + 3 f0

f1

)
∂u

0 g1u X3 = 4t∂t + x∂x − 4g1tu∂u,
X4 = u∂u, Xφ = φ(u)∂u
with φ(u) solution of the eq. φt + Aφxxxx + g1φ = 0

3. Multipliers and Conservation Laws

In this section, we look for local conservation laws of class (1) and provide a brief
overview of key related concepts (see, e.g., [29] and references therein).
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Taking into account that the independent variables are the time t and spatial variable x,
a conservation law [34] for an equation F belonging to class (1) is a divergence expression
of a vector T ≡ (T1, T2)

div T ≡ Dt(T1) + Dx(T2) = 0,

which holds true for all solutions of the equation F . Here, T is called a conserved vector
associated with this conservation law.

A conserved vector T is said to be trivial if its divergence vanishes identically. Other-
wise, it is called nontrivial. If two conserved vectors differ by a trivial conserved vector,
they are called equivalent.

From now on, we call a conservation law of the equation F an equivalence class of
conserved vectors of F .

The order of a conserved vector T is the maximal order of derivatives that explicitly
appear in T. The order of a conservation law is the minimum of the order of conserved
vectors T over all conserved vectors belonging to the same class.

A multiplier is a function of the independent variables t and x along with the depen-
dent variable u and its derivatives up to a certain order, which multiplies the equation F to
transform it into a conservation law.

It can be observed that each equation of class (1) can be expressed in Cauchy–Kovalevskaya
form with respect to the independent variable t, implying [30] that all of its nontrivial (up to
equivalence) local conservation laws arise from multipliers; moreover, for each multiplier
there exists a nontrivial (up to equivalence) local conservation law such that

Dt(T1) + Dx(T2) = (ut + Auxxxx + f (u)ux + g(u))Q. (88)

3.1. Multipliers

In order to find conservation laws, we begin by calculating the multipliers, which are
non-zero functions Q that identically satisfy the condition

δ

δu
[(ut + Auxxxx + f (u)ux + g(u))Q] = 0, (89)

where
δ

δu
represents the Euler operator, which in this case is

δ

δu
=

∂

∂u
− Dt

(
∂

∂ut

)
− Dx

(
∂

∂ux

)
+ D2

x

(
∂

∂uxx

)
− D3

x

(
∂

∂uxxx

)
+ D4

x

(
∂

∂uxxxx

)
. (90)

Moreover, (1) consists of even-order evolution equations, and we only need to consider
multipliers Q that depend on t, x, u, and derivatives of u with respect to x of an order not
greater than the order of equation [33].

We can apply (89) to look for multipliers:

Q = Q(t, x, u, ux, uxx, uxxx, uxxxx). (91)

Then, condition (89) becomes

( fuux + gu)Q− Dt(Q)− Dx[Qux (ut + Auxxxx + f ux + g) + f Q]+

+ D2
x[Quxx (ut + Auxxxx + f ux + g)]− D3

x[Quxxx (ut + Auxxxx + f ux + g)]+

+ D4
x[Quxxxx (ut + Auxxxx + f ux + g) + AQ] = 0. (92)

This condition splits with respect to any derivatives of u that do not appear in Q. From the
coefficient of the eighth-order derivative of u with respect to x, we obtain

2AQuxxxx = 0, (93)
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that is,
Q = Q(t, x, u, ux, uxx, uxxx). (94)

Substituting (94) into (92), we obtain

( fuux + gu)Q− Dt(Q)− Dx[Qux (ut + Auxxxx + f ux + g) + f Q]+

+ D2
x[Quxx (ut + Auxxxx + f ux + g)]− D3

x[Quxxx (ut + Auxxxx + f ux + g)] + D4
x(AQ) = 0.

(95)

From the coefficient of utxxx, we obtain

−2Quxxx = 0, (96)

that is,
Q = Q(t, x, u, ux, uxx). (97)

Substituting (97) into (95), we have

( fuux + gu)Q− Dt(Q)− Dx[Qux (ut + Auxxxx + f ux + g) + f Q]+

+ D2
x[Quxx (ut + Auxxxx + f ux + g)] + D4

x(AQ) = 0. (98)

From the coefficient of the sixth-order derivative of u with respect to x, we obtain

2AQuxx = 0, (99)

that is,
Q = Q(t, x, u, ux). (100)

Substituting (100) into (98), we obtain

( fuux + gu)Q− Dt(Q)− Dx[Qux (ut + Auxxxx + f ux + g) + f Q] + D4
x(AQ) = 0. (101)

From the coefficient of utx, we obtain

−2Qux = 0, (102)

that is,
Q = Q(t, x, u). (103)

Substituting (103) into (101), we have

( fuux + gu)Q− Dt(Q)− Dx( f Q) + D4
x(AQ) = 0. (104)

From the coefficient of uxxxx, we obtain

2AQu = 0, (105)

that is,
Q = Q(t, x). (106)

Finally, substituting (106) into (104), we obtain

guQ−Qt − f Qx + AQxxxx = 0. (107)

The solution Q(t, x) depends on the functions f and g. We find solutions different from
zero only in the following cases:
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1. If f (u) = f0 and g(u) = g0 + g1u, then any solution of the linear equation

g1Q−Qt − f0Qx + AQxxxx = 0 (108)

will be a multiplier (without loss of generality, we can take g0 = 0 and f0 = 0).
2. If fu 6= 0 and g(u) = g0 + g1u (without loss of generality, we can take g0 = 0), then

from (107) we obtain
Q(t, x) = eg1t. (109)

3. If fu 6= 0 and gu = g0 + g1 f with g1 6= 0, then from (107) we obtain

Q(t, x) = e(g0+Ag4
1)t+g1x. (110)

3.2. Conservation Laws

In this subsection, we find conservation laws for equations of class (1) that admit
multipliers. For each multiplier admitted by the special Equation (1), a corresponding
conserved vector can be derived by integrating the divergence condition (88). We reach the
following results:

1. Considering f (u) = f0 and g(u) = g1u, we obtain the multiplier Q(t, x) as a solution
of Equation (108). In this case, Equation (1) is linear and can be written as follows:

ut + Auxxxx + f0ux + g1u = 0. (111)

As a result, we obtain the following conserved vector:

T1 = Qu, (112)

X1 = A(Quxxx −Qxuxx + Qxxux −Qxxxu)−Q f0u, (113)

where the function Q satisfies condition (108).
2. If we consider fu 6= 0 and g(u) = g1u, Equation (1) becomes

ut + Auxxxx + f (u)ux + g1u = 0. (114)

It admits the multiplier Q = eg1t, and by substituting this into (88) we are able to find
the following conserved vector:

T2 = eg1tu, (115)

X2 = eg1t(Auxxx + F(u)), (116)

where the function F(u) satisfies the condition

Fu(u) = f (u). (117)

3. Considering fu 6= 0 and gu = g1 f + g0 with g1 6= 0, we can write Equation (1) in the
following form:

ut + Auxxxx +
gu − g0

g1
ux + g(u) = 0. (118)

We obtain the multiplier Q = e(g0+Ag4
1)t+g1x, and by substituting it into (88) we obtain

the following conserved vector:

T3 = e(g0+Ag4
1)t+g1xu, (119)

X3 = e(g0+Ag4
1)t+g1x

(
Auxxx − g1 Auxx + g2

1 Aux +
1
g1

g−
Ag4

1 + g0

g1
u

)
. (120)
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It is straightforward to verify that Equation (81) falls into this case. In fact, the func-
tions f and g take forms (3) and (4), respectively, satisfying the condition

gu = g1 f + g0. (121)

We can now summarize our results about conservation laws in the following theorem.

Theorem 3. The equations of class (1) that admit a conservative form (up to equivalence) are (111), (114),
and (118). The corresponding conservative forms are

Dt(Qu) + Dx(A(Quxxx −Qxuxx + Qxxux −Qxxxu)−Q f0u) = 0 (122)

Dt
(
eg1tu

)
+ Dx

(
eg1t(Auxxx + F(u))

)
= 0 (123)

Dt

(
eHu

)
+ Dx

(
eH

(
Auxxx − g1 Auxx + g2

1 Aux +
1
g1

g−
Ag4

1 + g0

g1
u

))
= 0, (124)

where the function Q(t, x) satisfies condition (108) and H(t, x) = (g0 + Ag4
1)t + g1x.

4. Applications

In this section, we show examples od how these results can be applied. We obtain the
first integral of the conserved vectors under the time–space group invariant (see, e.g., [38]
and references therein) and exact invariant solutions.

4.1. First Integrals

For arbitrary forms of the functions f and g, we find that Equation (1) is invariant
under translations in both time and space. The invariance of (1) under a combination of
generators (19), specifically,

X = λ∂x + ∂t, (125)

provides the invariant solution
u(t, x) = v(σ), (126)

where σ = x − λt and λ is a constant. Substituting a traveling wave solution (126) into
Equation (1), we obtain the reduced fourth-order ODE:

−λv′ + Aviv + f (v)v′ + g(v) = 0. (127)

We can find a first integral of this equation if we have a conserved vector of Equation (1)
that is invariant with respect to (125).

In fact, if we have a conservation law

DtT + DxX = 0 (128)

with the conserved vector (T, X) being invariant with respect to (125), then we can write it
in terms of the transformed variables v and σ as follows:

DtT + DxX ≡ −λDσT̄ + DσX̄ = 0, (129)

where T̄ and X̄ are T and X, respectively, as written in the new variables v and σ. The
conservation law (129) provides the first integral

−λT̄ + X̄ = K. (130)
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In the previous section, if functions f and g are linked by the condition gu = g1 f + g0
with g1 6= 0 and fu 6= 0, then we obtain the multiplier (110) and the conserved vectors (119)
and (120), which are invariant with respect to (125) if we choose

λ = −
g0 + Ag4

1
g1

. (131)

Then, if we reduce equation

ut + Auxxxx +
gu − g0

g1
ux + g(u) = 0 (132)

by using the traveling wave solutions (126) with λ as provided by (131), we obtain the
reduced fourth-order ODE:

−λv′ + Aviv +
gv − g0

g1
v′ + g(v) = 0. (133)

By writing T3 and X3 in terms of the new variables v(σ) and σ = x +
g0 + Ag4

1
g1

t, we obtain

T̄3 = eg1σv, (134)

X̄3 = eg1σ

(
Av
′′′ − g1 Av′′ + g2

1 Av′ +
1
g1

g−
Ag4

1 + g0

g1
v

)
. (135)

Thus, a first integral (130) of Equation (133) is

eg1σ

(
Av
′′′ − g1 Av′′ + g2

1 Av′ +
1
g1

g
)
= K. (136)

4.2. Invariant Solutions

By solving (127), we can obtain traveling wave solutions. However, we may find
other invariant solutions using different symmetry generators as well, if they exist. In the
following, we provide several examples.

1. For Equation (81), using generator (78), we obtain

u(t, x) = v(t)e−
g1
f1

x
, (137)

where v(t) is a solution of the following ODE:

v′ +

(
g4

1
f 4
1

A + g0

)
v = 0, (138)

which can be solved as follows:

v(t) = v0e
g0+

g4
1

f 4
1

At
. (139)

2. For Equation (81), in the case where g1 = 0, when using generator (79) we obtain

u(t, x) = v(t)e
x

f1t , (140)
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where v(t) is a solution of the following ODE:

v′ +

(
A

f 4
1 t4

+
ln v

t
+ g0

)
v = 0, (141)

that is,

v(t) = e

(
A

2t3 f 4
1
− tg0

2 +
v0
t

)
. (142)

3. For Equation (66), using generator (65) we obtain

u(t, x) = v(t) +
x
f1t

, (143)

where v(t) is a solution of the following ODE:

v′ +
v
t
= 0, (144)

that is,
v(t) =

v0

t
. (145)

5. Conclusions

In this paper, we have used group techniques to study a class of type (1) heterogeneous
RDAEs. We have derived extensions of the principal Lie algebra concerned with several
couples of the function f (u) and g(u) that describe class (1). This offers a large number of
possibilities for further applications in the studies of real phenomena modeled by RDAEs.

We stress that the previous results derived from our analysis of the theoretical structure
of class (1) could allow special sets of constitutive parameters f (u) and g(u) to be identified
that could represent a better fit in simulations of real phenomena.

Moreover, it is a simple matter to ascertain that it is possible to characterize forms
of the reaction term g(u) such that they are of the generalized logistic function type. In
addition to its theoretical interest, the search for symmetries offers a powerful tool to find
solutions through reduction techniques.

The multipliers method has been applied to search for conservation laws. We observed
that equations of type (1) are of even order and admit a Cauchy–Kovalevskaya form.
Consequently, all nontrivial (up to equivalence) of local conservation laws arise from
multipliers depending on t, x, u, and derivatives of u with respect to x of order not greater
than four. Therefore, we have identified all the equations in the considered class that can
be in a conservative form, and have additionally written the concerned conserved vectors.
As is well known, conservative forms allow numerical techniques to be applied so in order
to find additional symmetries.

Finally, it is of interest to determine whether it is possible to obtain additional results
about the structure of equations using both conservation laws and symmetries. In fact, in
Section 4 we have illustrated how to obtain both first integral and exact invariant solutions.
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