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Abstract: The mean velocity distributions of unstably and stably stratified atmospheric surface layers
(ASLs) are investigated here using the symmetry approach. Symmetry groups for the mean momen-
tum and the Reynolds stress equations of ASL are searched under random dilation transformations,
which, with different leading order balances in different flow regions, lead to a set of specific scalings
for the characteristic length `13 (defined by Reynolds shear stress and mean shear). In particular,
symmetry analysis shows that in the shear-dominated region, `13 scales linearly with the surface
height z, which corresponds to the classical log law of mean velocity. In the buoyancy-dominated
region, `13/L ∼ (z/L)4/3 for unstably stratified ASL and `13/L ∼ const for stably stratified ASL,
where L is the Obukhov length. The specific formula of the celebrated Monin–Obukhov similarity
function is obtained, and hence an algebraic model of mean velocity profiles in ASL is derived,
showing good agreement with the datum from the QingTu Lake observation array (QLOA) in China.

Keywords: atmospheric surface layer; mean velocity profile; symmetry analysis

1. Introduction

The atmospheric surface layer (ASL) is a specific turbulent boundary layer (TBL) in
which atmosphere exchanges momentum and energy with the earth’s surface through
nearly constant momentum and heat flux [1]. Due to its large dimension in the horizontal
and surface-normal directions, ASL typically reaches a (friction) Reynolds number of
several millions [2], making it a candidate for the study of high Reynolds number canonical
wall turbulence. Also, as a result of the diurnal release and absorption of the heat of the
earth’s surface, the turbulent flow states of ASL in the daytime and at night are significantly
different [3]. Notable observation arrays, such as QLOA [4] and SLTEST (Surface Layer
Turbulence and Environmental Science) [5], have been established to experimentally study
the high Reynolds number properties of turbulent boundary layers [2,5–13]. Due to the
limitation of grid spatial resolution, the numerical weather research and forecasting model
(WRF) cannot solve the flow field in the ASL [14]. Therefore, studies on the unified
description of mean velocity distribution (MVD) under various momentum and heat flux
conditions are important for applications in the weather forecasting, pollutant prediction,
and wind energy industry [1,3,15–17].

Since the boundary layer concept of Prandlt [18], the Monin–Obukhov (MO) similarity
theory [19] has been a milestone for understanding the ASL and is regarded as the starting
point of modern micrometeorology [16]. The MO theory relies on statistical stationarity
and horizontal homogeneity, which results in the constant momentum and heat flux in
the surface-height (or wall-normal) direction. In particular, four physical parameters are
proposed in MO to depict the mean flow of the ASL: heat flux Hw = w′T′, friction velocity
uτ =

√
−u′w′, buoyancy force factor g/T, and the height z. Dimensional analysis leads to

the Obukhov length scale L = −u3
τ/
[
κw′T′g/T

]
, where T is the mean temperature, g is
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the acceleration of gravity, κ is the von Kármán constant, and w′ and T′ are the fluctuating
wall-normal velocity and temperature, respectively. In practical terms, L can be explained
as a critical height, below which turbulence is dominated by the wall-induced shear effect,
and above which it is dominated by buoyancy. Consequently, a non-dimensional similarity
variable ζ = z/L is defined by MO to quantify the ratio between the shear production and
buoyancy effect in the ASL. Since then, statistical quantities have all been expressed as
certain functions of ζ, validated by many atmospheric experimental studies [20,21].

Particularly for the mean velocity distribution, MO proposed investigating the follow-
ing dimensionless similarity function:

ϕm(ζ) =
κz
uτ

dU
dz

. (1)

To determine ϕm, an implicit function equation ϕ4
m − γϕ3

mζ = 1 has been derived under an
approximation of the kinetic energy balance equation, known as the O’KEYPS equation
(Obukhov, Kazansky, Ellison, Yamamoto, Panofsky, and Sellers) [22]. However, the constant
eddy diffusivity assumed in the O’KEYPS equation remains a subject of doubt, and the
empirical parameter γ, which varies from 5 to 18 for different data sets, indicates that the
form of ϕm in the O’KEYPS equation may not be universal [23].

On the other hand, based on the Kansas experimental measurements, ϕm = (1− 16ζ)−1/4

for ζ < 0 and ϕm = 1 + 4.7ζ for ζ > 0 are well-known as the Businger–Dyer (BD)
function [24,25]. However, the asymptotic scaling of BD function at the free convection
limit, i.e., ϕm ∼ (−ζ)−1/4 for−ζ � 1, differs from the prediction by teh O’KEYPS equation.
To address this, Carl et al. [26] proposed a modified ϕm = (1− 15ζ)−1/3, to conform with
the O’KEYPS equation. Moreover, Kader and Yaglom [27] argued that in the O’KEYPS
equation, γ� 1, as the buoyancy acts only on the direction normal to the earth’s surface
and hence contributes mostly to momentum transfer. They also proposed the same scaling
ϕm ∼ (−ζ)1/3, validated by their measured data in the top convective sublayer of the
ASL [27].

More recently, Katul et al. developed a heuristic model of MVD in ASL under the
attached eddy hypothesis. The characteristic velocity uτ is derived from the assumed
inertial-range spectrum, which further leads to a relation between buoyancy and momen-
tum flux [23,28]. This model yields a similar prediction to that of the O’KEYPS equation,
but it incorporates more physical considerations. For example, the large value of γ is
attributed to the effects of turbulent transport, pressure redistribution, and the anisotropy
of turbulent eddies. However, it should also be noted that the functional form of the simi-
larity function becomes more complicated, and its prediction for the stable ASL deviates
from observations. To account for this, Li et al. revisited Katul’s model by introducing the
Ozmidov scale [29] and obtained a better description of the data. Liu et al. developed an
analytical model describing the vertical structure of conventionally neutral atmospheric
boundary layers, providing predictions of wind and turbulent shear stress profiles [17,30].
In addition to the works mentioned, there are also efforts to extend the MO theory by
further consideration of large-scale coherent structures [31], turbulence anisotropy [32],
and non-zero vertical turbulent transport effects [33].

This paper aims to understand the MVD from a symmetry perspective. It is worth
noting that symmetry analysis is a well-developed method for finding the similarities or
invariant solutions of differential equations. A typical example is the Blasius similarity
solution of a laminar boundary layer flow, the symmetry analysis of which involves three
steps. First, search the dilation symmetry transformation that keeps the governing equation
unchanged; second, obtain the dilation invariants for the independent and dependent
variables; finally, use these invariants as variables to transfer the partial differential equation
to an ordinary differential equation. When dealing with turbulence, there is a challenge
in these steps because of the unknown Reynolds stresses. However, by searching the
symmetry of characteristic length scales, one can construct candidate invariant solutions by
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using group invariants as similarity variables. This approach has been utilized to describe
turbulent mean flows in wall flows, with details provided in [34–36].

Specifically, for canonical turbulent boundary layers, a multi-layer description of the
mean velocity profiles has been obtained in [34–36] through a random dilation analysis of
Reynolds-averaged Navier–Stokes equations. In comparison to previous works, the novelty
in [34–36] is that different leading order balances are considered in the symmetry analysis,
and a general ansatz is proposed to connect the local dilation invariants. In the past few
years, a large set of experimental and direct numerical simulation (DNS) data of canonical
wall flows (channel, pipe, and turbulent boundary layer—TBL) have verified the multi-
layer description, with successful extensions to complex boundary conditions, including
pressure gradient effects, heat flux effects, and surface roughness [37,38]. Note that, as ASL
is also a wall-induced shear flow, the dilation symmetry proposed in [34–36] along the
wall-normal direction (z) may also exist. Thus, we plan to develop a similar modeling of
the ASL in this paper based on the symmetry analysis approach.

Before proceeding further, it is important to note that a theoretical description of
thermally stratified ASL flow is crucial for climate modeling of the near-surface wind fields.
For instance, in the Weather Research and Forecasting (WRF) model, due to computational
power cost, the WRF cannot resolve the near wall flow details. Therefore the Monin–
Obukhov similarity theory (MOST) is used to estimate the exchanges of heat, momentum
and humidity between the earth’s surface and the ASL. Specially for the wind speed at
approximately 10 m above the earth’s surface, the accuracy of MOST is crucial for WRF
predictions. Various corrections of MOST have been proposed in the WRF [14]. In this
context, we present a theoretical framework for describing thermally stratified ASLs based
on the symmetry approach, which offers a more comprehensive understanding compared
to the models and corrections based on MOST. The results can be integrated into the WRF
to enhance the prediction of near-surface wind fields.

The rest of this paper is organized as follows. The balance equations and the dilation
symmetry analysis are introduced in Section 2. Section 3 introduces the experimental data,
the comparison of which with our theory is provided in Section 4. Final conclusions are
presented in Section 5.

2. Methods

This study is inspired by the symmetry approach for canonical TBL developed by She
et al. and Chen et al. [35,36]. Note that to obtain the mean velocity distributions in ASL,
one needs to address the closure problem of the unknown Reynolds shear stress. In the
literature, this is usually resolved by the hypothesis of eddy viscosity or mixing length (the
so-called stress length here), which builds a relation between the mean shear and Reynolds
stress. However, these hypotheses have no link with the balance equations. The current
paper aims to develop a procedure to determine the mixing length (or stress length) based
on the balance equations. As we demonstrate below, the balance equations allow for a set
of random dilations, which define the dilation invariant of the stress length. By assuming
a constant dilation invariant, we can thus obtain the power-law scaling exponent for the
stress length function, and hence the mean velocity distributions in ASL. Therefore, the key
contribution of our paper is to present the rationale behind the scaling exponent of stress
length from the symmetry consideration of the balance equations. This is reminiscent of
Monin and Obukhov, who also derived the logarithmic law of wind distribution based on
the concept of dilation symmetry [19]. However, our approach contains more mathematical
details and extends to different flow regions.
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The ensemble averaged momentum and Reynolds stresses equations are [27,36]

∂−u′w′

∂z
+ ν

∂2U
∂z2 = 0, (2)

−u′w′
∂U
∂z︸ ︷︷ ︸

SP

+ p′
∂u′

∂x︸ ︷︷ ︸
Ru

− 1
2

∂u′2w′

∂z︸ ︷︷ ︸
Tu

− ν|∇u′|2︸ ︷︷ ︸
εu

+ ν
∂2

∂z2

(
1
2

u′2
)

︸ ︷︷ ︸
Du

= 0, (3)

p′
∂v′

∂y︸ ︷︷ ︸
Rv

− 1
2

∂v′2w′

∂z︸ ︷︷ ︸
Tv

− ν|∇v′|2︸ ︷︷ ︸
εv

+ ν
∂2

∂z2

(
1
2

v′2
)

︸ ︷︷ ︸
Dv

= 0, (4)

w′T′
g
T︸ ︷︷ ︸

B

+ p′
∂w′

∂z︸ ︷︷ ︸
Rv

− 1
2

∂w′3 + 2p′w′

∂z︸ ︷︷ ︸
Tw

− ν|∇w′|2︸ ︷︷ ︸
εw

+ ν
∂2

∂z2

(
1
2

w′2
)

︸ ︷︷ ︸
Dw

= 0, (5)

−1
2

w′w′
∂U
∂z
− 1

2
u′

∂p′

∂z
− 1

2
w′

∂p′

∂x
− 1

2
∂u′w′w′

∂z
− ν|∇u′ • ∇w′|+ ν

∂2

∂z2

(
1
2

u′w′
)
= 0, (6)

where overline denotes the time-spatial ensemble average; p′ is the pressure fluctuation
and u′, w′, v′ are the streamwise, vertical (or surface-height), and spanwise velocity fluctua-
tions with U the mean streamwise velocity; SP is the shear production; Ru,w,v are pressure
redistribution terms; Tu,w,v are vertical spatial turbulent transports; εu,w,v are turbulent
dissipation rates; Du,w,v are diffusion terms; subscript u, w, v denote three velocity fluctua-
tion components.

The above equations for ASL are similar to the canonical boundary layer flows ex-
cept for the additional buoyancy term (i.e., the heat flux) B = w′T′g/T in Equation (5).
The buoyancy term could be an energy source for upward heat flux (B > 0), or a sink
for downward heat flux (B < 0). Since the shear production (SP) decreases as z−1 and
the buoyancy (B) is invariant as the height Z increases, the shear production dominates
the balance equations for small z while the buoyancy dominates for large z. As shown
below, the alteration of dominant balance would result in different dilation transformations,
leading to different scalings in different flow regions.

To proceed, normalizing the above Equations (2)–(6) by the friction velocity uτ , the wall
heat flux Hw, and the Obukhov length L yields

∂−u′+w′+

∂ζz
+

1
L+

∂2U+

∂ζ2
z

= 0, (7)

−u′+w′+
∂U+

∂ζz
+ p′+

∂u′+

∂ζx
− 1

2
∂u′+2w′+

∂ζz
− 1

L+
|∇Lu′+|2 + 1

L+

∂2

∂ζ2
z

(
1
2

u′+2
)
= 0, (8)

p′+
∂v′+

∂ζy
− 1

2
∂v′+2w′+

∂ζz
− 1

L+
|∇Lv′+|2 + 1

L+

∂2

∂ζ2
z

(
1
2

v′+2
)
= 0, (9)

w′+T′+ + p′+
∂w′+

∂ζz
− 1

2
∂w′+3 + 2p′+w′+

∂ζz
− 1

L+
|∇Lw′+|2 + 1

L+

∂2

∂ζ2
z

(
1
2

w′+2
)
= 0, (10)

−1
2

w′+w′+
∂U+

∂ζz
− 1

2
u′+

∂p′+

∂ζz
− 1

2
w′+

∂p′+

∂ζx
− 1

2
∂u′+w′+w′+

∂ζz
−

1
L+
|∇Lu′+ • ∇Lw′+|+ 1

L+

∂2

∂ζ2
z

(
1
2

u′+w′+
)
= 0, (11)

where superscript plus + means being normalized by wall variables, i.e.,

[u′+, v′+, w′+, U+, p′+, L+, T′+] =
[

u′

uτ
,

v′

uτ
,

w′

uτ
,

U
uτ

,
p′

u2
τ

,
L

ν/uτ
,

T′

κHw/uτ

]
,
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and ∇L = ∂/∂ζx + ∂/∂ζy + ∂/∂ζz is gradient operator, with ζx = x/L, ζy = y/L, and
ζz ≡ ζ = z/L.

Following the step in [35,36], we define the Reynolds shear stress length function

`∧13 =

√
−u′+w′+

∂U+/∂ζ
, which characterizes the size of eddies responsible for vertical momentum

transport. This enables us to solve the mean velocity profile from Equation (7):

U+(h/L) =
∫ h/L

h0/L

√
−u′+w′+

`∧13
dζ. (12)

Here, h is the height of interest, h0 is the typical roughness height, and `∧13 = `13/L

with `13 =
√
−u′w′

∂U/∂z . Note that ASL is a constant momentum flux layer, which means
−u′+w′+ = 1; hence, Equation (12) is written

U(h) = uτ

∫ h

h0

dz
`13

. (13)

Once `13 is known, the mean velocity U(h) can also be determined.
To obtain the formula of `13, a random dilation transformation [36] is introduced

as follows:

ζ∗i = qiζi, U∗ = λUU L∗ = λLL u′∗i = λiu′i, p′∗ = λp p′, T′∗ = λTT′, (14)

where qi and λU , λL are regular dilation factors, while λi , λp, and λT are random factors
with zero means; and i = (1, 2, 3) denotes (x, y, z). Note that superscript ‘+’ is neglected
here. Substituting (14) into the balance Equations (7)–(11), the symmetry requires that
equations under dilation remain invariant, which leads to the following relationships
among dilation parameters:

λ1λ3

q3
=

1
λL

λU

q2
3

, (15)

λ1λ3
λU
q3

=
λpλ1

q1
=

λ1λ1λ3

q3
=

1
λL

λ1λ1

q2
1

=
1

λL

λ1λ1

q2
2

=
1

λL

λ1λ1

q2
3

, (16)

λpλ2

q2
=

λ2λ2λ3

q3
=

1
λL

λ2λ2

q2
1

=
1

λL

λ2λ2

q2
2

=
1

λL

λ2λ2

q2
3

, (17)

λ3λT =
λpλ3

q3
=

λ3λ3λ3

q3
=

1
λL

λ3λ3

q2
1

=
1

λL

λ3λ3

q2
2

=
1

λL

λ3λ3

q2
3

, (18)

λ3λ3
λU
q3

=
λpλ1

q3
=

λpλ3

q1
=

λ1λ3λ3

q3
=

1
λL

λ1λ3

q2
1

=
1

λL

λ1λ3

q2
2

=
1

λL

λ1λ3

q2
3

. (19)

An important fact is that in different flow regions, there are different leading order
balances in (7)–(11) so that we can define a locally valid dilation group by neglecting unim-
portant terms. This provides extra freedoms for the group parameters in Equations (15)–(19),
as practised below in different flow layers.

2.1. Homogeneous Dilations in the Shear Dominated Layer

In the shear dominated layer, the shear production (SP) is balanced by dissipation from
all three spatial directions. Hence, all the spatial derivatives in (3)–(6) are important, leading to
a homogeneous dilation in three directions, i.e., q1 = q2 = q3 = q in (15)–(19). Furthermore,

from λ1λ3
λU
q =

λpλ1
q = 1

λL

λ1λ3
q2 , we obtain λUλL = q−1; considering λ3λT = 1 for constant

heat flux, from Equations (15), (18), and (19), we obtain λ2
L/λU = q−3, and hence
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λL = q−4/3, (20)

λU = q1/3, (21)

λ1λ1 = λ1λ3 = λ3λ3 = q2/3, (22)

λpλ1 = λpλ3 = λ1λ1λ3 = λ2λ3λ3 = λ3λ3λ3 = q. (23)

Therefore, the dilation factor for length function `∧13 is

λ13 =
λ1λ3

1/2

λU/q
=

q1/3

q1/3/q
= q, (24)

whose corresponding dilation invariant is

I13 =
`∧13
ζ

. (25)

It is a normal result that length function takes its ordinary dimension if no direction
is preferred, the same as the classical dimensional analysis result. In [36], the dilation
invariant for stress length is found to be I13 = 0.45, and hence `∧13 = 0.45ζ for canonical
boundary layer flows. In ASL, the value of I13 may slightly change, but the functional form
is the same.

2.2. Inhomogeneous Dilation in the Convective Layer (B > 0)

Let us consider the region where height z > L and B > 0, and hence the buoy-
ancy term overtakes the shear production to balance dissipation in Equations (16)–(18).
Subsequently, the shear production and turbulent transport terms could be neglected in
Equations (16)–(18). On the other hand, in the Reynolds shear stress Equation (11) or (19),
the dominant balance is still between the first term of production and the fifth term of dissi-
pation. Based on these considerations, Equations (15), (18) and (19) could be, respectively,
simplified to

λ1λ3

q
=

1
λL

λU

q2 , (26)

λ3λT = =
1

λL

λ3λ3

q2 , (27)

λ3λ3
λU
q

=
1

λL

λ1λ3

q2 . (28)

Furthermore, considering that momentum and heat flux are constant in the buoyancy
dominant layer, we obtain λ3λT = 1 and λ1λ3 = 1, and hence λU = q−1/3, λT = q−4/3 and
λ3λ3 = q2/3. Thus, the dilation factor of `∧13 is

λ13 =
1

λU/q
= q4/3. (29)

Therefore, in the convective layer, the stress length satisfies `∧13 ∝ ζ4/3.

2.3. Inhomogeneous Dilation in the Stably Stratified Layer (B < 0)

When B < 0, buoyancy, acting as a sink, would absorb kinetic energy. Hence, the domi-
nant balance for the Reynolds normal stresses are between SP and B (instead of dissipation).
In other words, when summing Equations (8)–(10) all together, the balance is between SP
and B. Under this condition, the dilation parameters are simplified to be

λ3λT = λ1λ3
λU
q

. (30)
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Again, as λ3λT = 1 and λ1λ3 = 1, we obtain λU = q. Therefore, the dilation parameter of
`13 is

λ13 =
1

λU/q
= 1, (31)

which means that `∧13 is a constant.

2.4. Composite Formula of `∧13 in ASL

According to the dilation analysis above, the scaling of `∧13 in different flow layers is
obtained. Following the same matching procedure introduced in [35], a two-layer formula
of stress length connecting the adjacent power-law scalings can be obtained:

`∧13 ∝

 ζ
(

1− ζ
ζUC

)1/3
, ζ < 0

ζ
(

1 + ζ
ζSC

)−1
, ζ > 0

. (32)

Here, ζUC and ζSC are empirical parameters to be determined from data. In [33], they are
given as ζUC = 1/6.3 and ζSC1/2, respectively. For ζ below the critical height ζUC and
ζSC, the linear scaling of `∧13 is consistent with wall-attached eddy size in the log layer [39].
For ζ above ζUC, the scaling ζ4/3 for unstably stratified ASL indicates that the momentum
transport eddies are stretched in the vertical direction by the buoyancy force. On the
contrary, for stably stratified ASL, the buoyancy force depresses eddy size in a vertical
direction, resulting in a finite value of `∧13.

2.5. Composite Formula of φm in ASL

According to the definitions of φm and `13, we obtain the relation between φm and
`13 as:

φm(ζ) =

√
−u′w′

`13
× κz

uτ
. (33)

Considering that
√
−u′w′/uτ = 1, we have

φm ∝

{
(1− ζ/ζUC)

−1/3, ζ < 0
1 + ζ/ζSC, ζ > 0

. (34)

3. Data

Data collected for the verification of our derivations include the Kansas measurements,
the AHATS (advection horizontal array turbulence study) measurements, and the QLOA
measurements. AHATS investigated surface-layer turbulence in the San Joaquin Valley,
California, during the summer of 2008, while details on Kansas and AHATS are referred to
references [24,40].

For QLOA, it is conducted on the dry lake bed located in Minqin County, Gansu
Province, in the northwestern region of China. QLOA has one main tower that is 32 m
high, surrounded by twenty lower towers that are 5 m high and shaped like the character
‘T’. Data measured from the main tower are examined here, which are acquired from
eleven sonic anemometers. Wind speed vectors and virtual temperature are sampled at
a frequency of 50 Hz. QLOA has collected day and night data lasting about ten years,
covering various weather conditions, and has been used to study the large-scale motion,
energy spectrum, amplitude modulation between multi-scale turbulent motions, and two-
phase flows during sand storms [4,41,42]. The observations of QLOA are divided into
time-ensemble blocks of 1 h. This study uses 12 sets of unstably stratified data and 11 sets
of stably stratified data, with details shown in Table 1. The pretreatment of the data is
conducted to transform wind signals into a streamwise direction [4]. The friction velocity

uτ is estimated using Reynolds shear stress, uτ =
√

∑11
i=1〈−u′w′〉i/11. Here i denotes sonic
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anemometer at various heights and 〈∗〉i means averaging one hour at ith height. Similarly,
the wall heat flux is estimated by Hw = ∑11

i=1〈w′T′〉i/11. To obtain shear production, dU/dz
is calculated from mean velocity data using the log-polynomial fitting [43], specifically,
U = c0 + c1 log z + c2(log z)2. At each height z, five adjacent points are used to determine
the coefficients c0, c1, and c2, so that dU/dz = c1/z + 2c2 log z/z. The turbulent dissipation
rate is estimated using ε ≈ 1

K1−K0

∫ K1
K0

(E11(k)k5/3/C11)
3/2dk, where E11 is the spectrum

of streamwise velocity fluctuation, C11 = 0.5 is the longitudinal Kolmogorov constant,
while K0 and K1 indicate the start and the end of the Kolmogorov initial range, and
wavenumber k is calculated from frequency and local mean velocity by using the Taylor
freezing hypothesis, k = 2π f /U [44].

Table 1. The information of QLOA data used in this paper.

No. Time and Date uτ (m/s) Hw (K·m/s) L (m)

1 2014-5-23 7:00–8:00 0.28 0.016 −96.4
2 2014-5-23 8:00–9:00 0.31 0.087 −22.8
3 2014-5-23 9:00–10:00 0.32 0.155 −13.5
4 2014-5-23 10:00–11:00 0.33 0.203 −11.4
5 2014-5-23 11:00–12:00 0.34 0.222 −11.4
6 2014-5-23 12:00–13:00 0.29 0.209 −7.7
7 2014-5-23 13:00–14:00 0.33 0.230 −10.4
8 2014-5-23 14:00–15:00 0.29 0.279 −6.1
9 2014-5-23 15:00–16:00 0.30 0.180 −9.8
10 2014-5-23 16:00–17:00 0.34 0.161 −16.9
11 2014-5-23 17:00–18:00 0.39 0.147 −27.2
12 2014-5-23 18:00–19:00 0.35 0.080 −36.8
13 2014-3-27 0:00–1:00 0.26 −0.036 31.0
14 2014-3-27 1:00–2:00 0.59 −0.057 237.6
15 2014-3-27 2:00–3:00 0.67 −0.055 351.0
16 2014-3-27 3:00–4:00 0.59 −0.039 350.5
17 2014-3-27 4:00–5:00 0.48 −0.026 263.9
18 2014-3-27 5:00–6:00 0.41 −0.018 259.4
19 2014-3-27 6:00–7:00 0.31 −0.014 134.9
20 2014-3-27 7:00–8:00 0.25 −0.007 143.8
21 2014-5-23 2:00–3:00 0.22 −0.025 27.5
22 2014-5-23 6:00–7:00 0.21 −0.013 47.2
23 2014-5-23 20:00–21:00 0.23 −0.019 40.6

4. Results

In Section 2, we demonstrate that different leading order balances of the budget
equations lead to different dilation symmetries. However, due to a scarcity of data, it is
impossible to check every equation for Reynolds stresses. To address this, we sum together
Equations (3)–(5) and obtain the turbulent kinetic energy equation (TKE), which could
also be used to verify the leading order balances in different flow conditions. Accordingly,
Figure 1 shows the wall-normal (or surface-normal) variation of shear production (SP),
buoyancy effect (B), dissipation rate (ε), and all other terms (including pressure and spatial
transport effects) as the residue (i.e., SP + B − ε). In particular, Figure 1a presents the
neutrally stratified ASL where heat flux is small and the Obukhov length L is about
−96.4 m. It is clear that for lower heights (e.g., z < 10 m), the dominant balance is between
the shear production and dissipation, which is consistent with the analysis in Section 2.1.
Conversely, for z > 10 m, the residue is comparable with the dissipation, but the buoyancy
term is always smaller than others, hence indicating the neutral stratification condition.

In contrast, Figure 1b shows the unstably stratified case in which L = −6.1 m. While
the dominant balance is between the shear production and the dissipation for z < 1 m,
the heat flux is much larger than the neutral case. For z > 5 m, the heat flux is comparable
to the dissipation and the shear production, indicating a strong buoyancy effect that
plays a role as an energy source—consistent with the analysis in Section 2.2. Meanwhile,
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the pressure and transport effect (indicated by the residue) is negative, drawing out the
local kinetic energy to other flow regions.
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Figure 1. The measured TKE budget in QLOA for neutrally (a), unstably (b) and stably (c) stratified
ASL. The inset shows TKE budget for z > 5 m.

Moreover, the TKE budget for the stably stratified ASL is shown in Figure 1c for which
L = 27.5 m. It is obvious that when z < 20 m, the shear production and dissipation are
the two dominant terms. However, for z > 20 m, the shear production, buoyancy effect,
dissipation, and the transport effect are all comparable with each other. The notable point is
that the buoyancy term B is negative (consistent with the analysis in Section 2.3), indicating
that it drains out flow energy as the role of dissipation ε, a distinct feature for the stably
stratified condition.

Therefore, different leading order balances specified in the above Section 2 have all been
verified by ASL data. Now, let us validate the scaling of stress length derived in Section 2.
Figure 2 shows the comparison between Equation (32) and the data, with panel (a) for the stable
stratification and (b) for the unstable stratification of ASL. Note that φm are extracted from
Kansas and AHATS data and then translated to `13 using `13 = κz/φm. Dashed lines indicate
the linear scaling, while solid lines are Equation (32) derived from our symmetry analysis.
For |ζ| = |z/L| < 0.1, the stress length `∧13 displays a linear variation (dashed line), indicating
the dominance of the shear production and hence the log-law of mean velocity. However,
for large |ζ|, `∧13 deviates from linear behavior. On the one hand, for stable stratification in
Figure 2a, `∧13 tends to be a constant. A close examination of the data shows the best fit of
`∧13 = 0.35ζ(1 + 2.0ζ)−1 for QLOA measurements, while `∧13 = 0.35ζ(1 + 4.0ζ)−1 for the
Kansas and AHATS measurements. The different value of ζSC = 0.5 for QLOA compared to
ζSC = 0.25 for Kansas and AHATS is understandable because a non-zero pressure and spatial
transport effect may bring in different heat flux, subsequently altering ζSC. Such a point
has been observed and explained in [33]. On the other hand, as shown in Figure 2b for the
unstable stratification case, all the data from QLOA, Kansas, and AHATS align nicely. They
follow the trend of Equation (32) with `∧13 = 0.40ζ(1− 6.3ζ)1/3, which is a general expression
for the unstable stratification of ASL.

Finally, the mean velocity profile is obtained using Equation (13) with the stress length
provided in Equation (32). While MVD data of Kansas and AHATS measurements are not
available, the comparison is presented here only for the QLOA measurements, as shown in
Figure 3. In total, there are twelve mean velocity profiles presented here; they are measured
in different time. At h = 30 m (the highest data point for experimental observation),
the friction Reynolds number Re30m = 30 m∗uτ

ν is calculated, along with the value of the
Obukhov length L, both marked on top of the labels for each of the subplots. Notably,
subplots (a), (g), and (h) pertain to the neutrally stratified ASL indicated by the very large
value of |L|, approximately 100 m. The latter condition means that most of the data points
are measured in the flow region |z/L| < 0.1, in which buoyancy is insignificant. Moreover,
subplots (b), (c), (d), (e), and (f) are for unstably stratified ASL, where the heat flux is
upward and L is negative. The rest of the subplots are for stably stratified ASL where
L is positive. The dashed lines in Figure 3 indicate the log-law, which agrees with most
flow data for neutrally stratified cases (subplots (a), (g), and (h)), but only depicts data
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at small z for other flow cases. The red lines in Figure 3 indicate the predictions using
`∧13 = 0.35ζ(1 + 2.0ζ)−1 for unstable cases, while blue lines indicate the predictions using
`∧13 = 0.40ζ(1− 6.3ζ)1/3 for stable cases. It is evident that data deviation from the log-law
is well captured by the formula of `13 derived from our symmetry analysis.
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Figure 2. The normalized stress length `∧13 = `13/L for stably (a) and unstably (b) stratified ASL.
Circles are QLOA measurements; squares are Kansas experimental data [24], and triangles are AHATS
experimental data [40].

It should be mentioned that, to obtain the mean velocity profile, an integration param-
eter h0 is needed in Equation (13), which indicates the surface roughness height in QLOA.
According to our study, we find that h0 varies slightly for the above twelve mean velocity
profiles. That is, for subplots (a)–(f), h0 = (0.08, 0.23, 0.57, 0.42, 0.32, 0.20) mm; for subplots
(g)–(l), h0 = (0.60, 0.20, 0.28, 1.30, 1.60, 1.90) mm. The mechanism for the slight variation of
these h0 heights deserves future studies.

Figure 3. Cont.
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Figure 3. Mean velocity distributions measured in QLOA for neutrally (a,g,h), unstably (b–f), and
stably (i–l) stratified ASL. Dashed lines indicate the log-law; solid lines are given by Equation (13)
provided with Equation (32).

5. Conclusions

The symmetry approach developed for canonical wall turbulence [35,36] has now
been extended to describe the mean velocity distribution in the stratified atmospheric
surface layer. By performing the random dilation on the governing equations and further
considerations on different leading order balances, the scaling of Reynolds stress length
is specified in different flow layers. That is, in the shear-dominated log layer, `13 ∝ ζ; in
the buoyancy dominated layer, `13 ∝ ζ4/3 for unstably stratified ASL while a constant `13
for stably stratified ASL. Using the matching procedure in [35,36], a composite formula of
`13 is obtained, i.e., 0.40ζ(1− 6.3ζ)1/3 for unstable stratification and 0.35ζ(1 + 2.0ζ)−1 for
stable stratification, which leads to a close representation for the mean velocity distributions
measured in QLOA.

It should be noted that the linear coefficients are 0.40 for unstable stratification and
0.35 for stable stratification. Additionally, the value of ζUC,SC cannot be explained by
the symmetry view. More effort should be devoted to determining these values from
a theoretical perspective. Furthermore, the symmetry approach can also be applied to
describe the intensity profiles in the streamwise, wall-normal, and spanwise directions,
which will be investigated in the future.

Author Contributions: Conceptualization, Y.J. and X.C.; methodology, Y.J.; software, Y.J.; validation,
Y.J.; formal analysis, Y.J.; investigation, Y.J.; resources, Y.J.; data curation, Y.J.; writing—original draft
preparation, Y.J. and X.C.; writing—review and editing, Y.J. and X.C.; visualization, Y.J.; supervision,
X.C.; project administration, X.C.; funding acquisition, X.C. All authors have read and agreed to the
published version of the manuscript.



Symmetry 2023, 15, 1951 12 of 13

Funding: X. Chen acknowledges the support by the National Natural Science Foundation of
China, No. 12072012, 92252201 and 91952302, and “the Fundamental Research Funds for the Cen-
tral Universities”.

Data Availability Statement: There is no new data used in this study.

Acknowledgments: The authors thank Zhen-Su She for helpful comments and suggestions at the
early stage of this study. The authors also thank Xiaojing Zheng and Guohua Wang for sharing the
QLOA data with us and for many helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Panofsky, H.A. The Atmospheric Boundary Layer Below 150 Meters. Annu. Rev. Fluid Mech. 1974, 6, 147–177. [CrossRef]
2. Marusic, I.; Mathis, R.; Hutchins, N. Predictive model for wall-bounded turbulent flow. Science 2010, 329, 193–196. [CrossRef]

[PubMed]
3. Monin, A.S. The Atmospheric Boundary Layer. Annu. Rev. Fluid Mech. 1970, 2, 225–250. [CrossRef]
4. Wang, G.; Zheng, X. Very large scale motions in the atmospheric surface layer: A field investigation. J. Fluid Mech. 2016,

802, 464–489. [CrossRef]
5. Klewicki, J.C.; Foss, J.F.; Wallace, J.M. High Reynolds Number [Rθ = O(106)] Boundary Layer Turbulence in the Atmospheric

Surface Layer Above Western Utah’ s Salt Flats. In Flow at Ultra-High Reynolds and Rayleigh Numbers ; Springer: Berlin/Heidelberg,
Germany, 1998; pp. 450–466.

6. Metzger, M.M.; Klewicki, J.C. A comparative study of near-wall turbulence in high and low Reynolds number boundary layers.
Phys. Fluids 2001, 13, 692–701. [CrossRef]

7. Andreas, E.L.; Claffey, K.J.; Jordan, R.E.; Fairall, C.W.; Guest, P.S.; Persson, P.O.G.; Grachev, A.A. Evaluations of the von Kármán
constant in the atmospheric surface layer. J. Fluid Mech. 2006, 559, 117–149. [CrossRef]

8. Marusic, I.; Kunkel, G.J. Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys. Fluids 2003,
15, 2461–2464. [CrossRef]

9. Marusic, I.; Monty, J.P.;Hultmark, M.; Smits, A.J. On the logarithmic region in wall turbulence. J. Fluid Mech. 2013, 716, 1–11.
[CrossRef]

10. Kunkel, G.J.; Marusic, I. Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an
atmospheric flow. J. Fluid Mech. 2006, 548, 375–402. [CrossRef]

11. Klewicki, J.C. Reynolds Number Dependence, Scaling, and Dynamics of Turbulent Boundary Layers. J. Fluids Eng. 2010,
132, 094001. [CrossRef]

12. Chen, X.; Sreenivasan, K.R. Reynolds number scaling of the peak turbulence intensity in wall flows. J. Fluid Mech. 2021, 908, R3.
[CrossRef]

13. Chen, X.; Sreenivasan, K.R. Law of bounded dissipation and its consequences in turbulent wall flows. J. Fluid Mech. 2022,
933, A20. [CrossRef]

14. Lee, J.; Lee, H.J.; Kim, K.B.; Shin, H.H.; Lim, J.M.; Hong, J.; Lim, K.S.S. Height correction method based on the Monin–Obukhov
similarity theory for better prediction of near-surface wind fields. Atmos. Res. 2023, 292, 106882. . [CrossRef]

15. Wyngaard, J.C. Atmospheric Turbulence. Annu. Rev. Fluid Mech. 1992, 24, 205–234. [CrossRef]
16. Foken, T. 50 Years of the Monin-Obukhov Similarity Theory. Bound.-Layer Meteorol. 2006, 119, 431–447. [CrossRef]
17. Liu, L.; Gadde, S.N.; Stevens, R.J.A.M. Universal Wind Profile for Conventionally Neutral Atmospheric Boundary Layers. Phys.

Rev. Lett. 2021, 126, 104502. [CrossRef] [PubMed]
18. Prandlt, L. Meteorogische An wendung der Stromungslehre. Beitr. Phys. At. 1932, 19, 188–202
19. Monin, A.S.; Obukhov, A.M. Basic laws of turbulent mixing in the ground of the atmosphere. Doki. Akad. Nauk SSSR 1954,

151, 1963–1987.
20. Högström, U. Analysis of Turbulence Structure in the Surface Layer with a Modified Similarity Formulation for Near Neutral

Conditions. J. Atmos. Sci. 1990, 47, 1949–1972. [CrossRef]
21. Högström, U. Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteorol. 1996, 78, 215–246.

[CrossRef]
22. Priestley, C.H.B.; Panofsky, H.A. An alternative derivation of the diabatic wind profile. Q. J. R. Meteorol. Soc. 2010, 87, 437–438.

[CrossRef]
23. Katul, G.G.; Konings, A.G.; Porporato, A. Mean velocity profile in a sheared and thermally stratified atmospheric boundary layer.

Phys. Rev. Lett. 2011, 107, 268502. [CrossRef] [PubMed]
24. Businger, J.A. Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci. 1971, 28, 181–189. [CrossRef]
25. Dyer, A.J. A review of flux-profile relationships. Bound.-Layer Meteorol. 1974, 7, 363–372. [CrossRef]
26. Carl, D.M.; Tarbell, T.C.; Panofsky, H.A. Profiles of Wind and Temperature from Towers over Homogeneous Terrain. J. Atmos. Sci.

1973, 30, 788–794. [CrossRef]

http://doi.org/10.1146/annurev.fl.06.010174.001051
http://dx.doi.org/10.1126/science.1188765
http://www.ncbi.nlm.nih.gov/pubmed/20616273
http://dx.doi.org/10.1146/annurev.fl.02.010170.001301
http://dx.doi.org/10.1017/jfm.2016.439
http://dx.doi.org/10.1063/1.1344894
http://dx.doi.org/10.1017/S0022112006000164
http://dx.doi.org/10.1063/1.1589014
http://dx.doi.org/10.1017/jfm.2012.511
http://dx.doi.org/10.1017/S0022112005007780
http://dx.doi.org/10.1115/1.4002167
http://dx.doi.org/10.1017/jfm.2020.991
http://dx.doi.org/10.1017/jfm.2021.1052
http://dx.doi.org/10.1016/j.atmosres.2023.106882
http://dx.doi.org/10.1146/annurev.fl.24.010192.001225
http://dx.doi.org/10.1007/s10546-006-9048-6
http://dx.doi.org/10.1103/PhysRevLett.126.104502
http://www.ncbi.nlm.nih.gov/pubmed/33784136
http://dx.doi.org/10.1175/1520-0469(1990)047<1949:AOTSIT>2.0.CO;2
http://dx.doi.org/10.1007/BF00120937
http://dx.doi.org/10.1002/qj.49708737317
http://dx.doi.org/10.1103/PhysRevLett.107.268502
http://www.ncbi.nlm.nih.gov/pubmed/22243189
http://dx.doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2
http://dx.doi.org/10.1007/BF00240838
http://dx.doi.org/10.1175/1520-0469(1973)030<0788:POWATF>2.0.CO;2


Symmetry 2023, 15, 1951 13 of 13

27. Kader, B.A.; Yaglom, A.M. Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. J. Fluid Mech.
1990, 212, 637–662. [CrossRef]

28. Gioia, G.; Guttenberg, N.; Goldenfeld, N.; Chakraborty, P. Spectral theory of the turbulent mean-velocity profile. Phys. Rev. Lett.
2010, 105, 184501. [CrossRef]

29. Li, D.; Salesky, S.T.; Banerjee, T. Connections between the Ozmidov scale and mean velocity profile in stably stratified atmospheric
surface layers. J. Fluid Mech. 2016, 797, R3. [CrossRef]

30. Liu, L.; Stevens, R.J.A.M. Vertical structure of conventionally neutral atmospheric boundary layers. Proc. Natl. Acad. Sci. USA
2022, 119, e2119369119. [CrossRef]

31. Salesky, S.T.; Anderson, W. Coherent Structures Modulate Atmospheric Surface Layer Flux-Gradient Relationships. Phys. Rev.
Lett. 2020, 125, 124501. [CrossRef]

32. Stiperski, I.; Calaf, M. Generalizing Monin-Obukhov Similarity Theory (1954) for Complex Atmospheric Turbulence. Phys. Rev.
Lett. 2023, 130, 124001. [CrossRef] [PubMed]

33. Ji, Y.; She, Z.S. Analytic derivation of Monin-Obukhov similarity function for open atmospheric surface layer. Sci. China Phys.
Mech. Astron. 2021, 64, 34711. [CrossRef]

34. Chen, X.; Hussain, F. Similarity transformation for equilibrium boundary layers, including effects of blowing and suction. Phys.
Rev. Fluids 2017, 2, 034605. [CrossRef]

35. She, Z.S.; Chen, X.; Hussain, F. Quantifying wall turbulence via a symmetry approach: A Lie group theory. J. Fluid Mech. 2017,
827, 322–356. [CrossRef]

36. Chen, X.; Hussain, F.; She, Z.S. Quantifying wall turbulence via a symmetry approach. Part 2. Reynolds stresses. J. Fluid Mech.
2018, 850, 401–438. [CrossRef]

37. She, Z.S.; Wu, Y.; Chen, X.; Hussain, F. A multi-state description of roughness effects in turbulent pipe flow. New J. Phys. 2012,
14, 093054. [CrossRef]

38. Wu, B.; Bi, W.; Hussain, F.; She, Z.S. On the invariant mean velocity profile for compressible turbulent boundary layers. J. Turbul.
2017, 18, 186–202. [CrossRef]

39. Jiménez, J. Cascades in Wall-Bounded Turbulence. Annu. Rev. Fluid Mech. 2012, 44, 27–45. [CrossRef]
40. Salesky, S.T.; Katul, G.G.; Chamecki, M. Buoyancy effects on the integral lengthscales and mean velocity profile in atmospheric

surface layer flows. Phys. Fluids 2013, 25, 105101. [CrossRef]
41. Liu, H.; Wang, G.; Zheng, X. Amplitude modulation between multi-scale turbulent motions in high-Reynolds-number atmospheric

surface layers. J. Fluid Mech. 2019, 861, 585–607. [CrossRef]
42. Liu, H.; Zheng, X. Large-scale structures of wall-bounded turbulence in single- and two-phase flows: Advancing understanding

of the atmospheric surface layer during sandstorms. Flow 2021, 1, E5. [CrossRef]
43. Högström, U. Nondimensional wind and temperature profiles in the atmospheric boundary layer: A re-evaluation. Bound.-Layer

Meteorol. 1988, 42, 55–78. [CrossRef]
44. Li, X.; Zimmerman, N.; Princevac, M. Local Imbalance of Turbulent Kinetic Energy in the Surface Layer. Bound.-Layer Meteorol.

2008, 129, 115–136. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1017/S0022112090002129
http://dx.doi.org/10.1103/PhysRevLett.105.184501
http://dx.doi.org/10.1017/jfm.2016.311
http://dx.doi.org/10.1073/pnas.2119369119
http://dx.doi.org/10.1103/PhysRevLett.125.124501
http://dx.doi.org/10.1103/PhysRevLett.130.124001
http://www.ncbi.nlm.nih.gov/pubmed/37027866
http://dx.doi.org/10.1007/s11433-020-1652-x
http://dx.doi.org/10.1103/PhysRevFluids.2.034605
http://dx.doi.org/10.1017/jfm.2017.464
http://dx.doi.org/10.1017/jfm.2018.405
http://dx.doi.org/10.1088/1367-2630/14/9/093054
http://dx.doi.org/10.1080/14685248.2016.1269911
http://dx.doi.org/10.1146/annurev-fluid-120710-101039
http://dx.doi.org/10.1063/1.4823747
http://dx.doi.org/10.1017/jfm.2018.906
http://dx.doi.org/10.1017/flo.2021.6
http://dx.doi.org/10.1007/BF00119875
http://dx.doi.org/10.1007/s10546-008-9304-z

	Introduction
	Methods
	Homogeneous Dilations in the Shear Dominated Layer
	Inhomogeneous Dilation in the Convective Layer (B>0)
	Inhomogeneous Dilation in the Stably Stratified Layer (B<0)
	Composite Formula of 13 in ASL
	Composite Formula of m in ASL

	Data
	Results
	Conclusions
	References

