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Abstract: In our ongoing study, we explore the concepts of I3-Cauchy and I3-Cauchy for triple
sequences in the context of random 2-normed spaces (RTNS). Moreover, we introduce and analyze
the notions of I3-convergence, I3-convergence, I3-limit points, and I3-cluster points for random
2-normed triple sequences. Significantly, we establish a notable finding that elucidates the connection
between I3-convergence and I3-convergence within the framework of random 2-normed spaces,
highlighting their interrelation. Additionally, we provide an illuminating example that demonstrates
how I3-convergence in a random 2-normed space might not necessarily imply I3-convergence. Our
observations underscore the importance of condition (AP3) when examining summability using
ideals. Furthermore, we thoroughly investigate the relationship between the properties (AP) and
(AP3), illustrating through an example how the latter represents a less strict condition compared to
the former.

Keywords: randon 2-normed space; Ideal; I-convergence; I-Cauchy; I-limit; I-cluster;
property (AP3)

1. Introduction

Menger’s work [1] marked a significant advancement in the realm of metric axioms,
as it introduced a novel approach by associating each pair of points in a set with a distri-
bution function. Schweizer and Sklar [2] subsequently expanded upon this idea, which
originally emerged as the concept of a statistical metric space. The key innovation was to
replace nonnegative real values with distribution functions. Within this framework, the
family of probabilistic normed spaces emerged as a notable subset, wherein probability
distribution functions replaced traditional norms for vectors instead of numerical values.
The inception of probabilistic normed spaces was initially attributed to Šerstnev in 1963, as
documented in [3].

In the 1960s, Gähler [4] played a pivotal role in propelling the concept of 2-normed
spaces forward. Building on this groundbreaking work, several other scholars have
adopted this concept. Gürdal and Pehlivan [5] extensively examined statistical conver-
gence, statistical Cauchy sequences, and other aspects of statistical convergence within
2-normed spaces. Within the realm of 2-normed spaces, Gürdal and Açk [6] investi-
gated I-Cauchy and I-Cauchy sequences. Moreover, Sarabadan and Talebi [7] delved
into statistical convergence and ideal convergence of function sequences within 2-normed
spaces. Arslan and Dündar [8] also explored I-convergence, I-convergence, I-Cauchy, and
I∗-Cauchy sequences of functions within 2-normed spaces. It is important to emphasize
that significant progress in this field has been well-documented in references [9,10].

Subsequently, Alsina et al. [11] introduced a novel definition of PN (probabilistic normed)
spaces, building upon Šerstnev’s foundational work. This advancement ultimately led to
the identification of a crucial category of PN spaces known as Menger spaces.
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More recently, Golet [12] expanded the scope of probabilistic normed spaces to include
both random and probabilistic 2-normed spaces. This expansion was influenced by Gahler’s
concept of a 2-norm, as outlined in [4].

Moving on to the realm of convergence, Fast independently extended the concept of
statistical convergence from the context of real number sequences [13,14]. Subsequently,
Sahiner et al. [15,16] applied this notion to triple sequences. In this context, a triple sequence
{ξrst}r,s,t∈N is considered convergent to ζ if, for any given ε > 0, there exists a natural
number p0(ε) such that |ξrst − ζ| < ε holds for all r, s, and t exceeding p0(ε). Furthermore,
the concept of density $(E) for a subset E of N3 was introduced and defined as the limit of
the expression

$(E) = lim
n,m,p→∞

1
nmp

m

∑
r=1

n

∑
s=1

p

∑
t=1

χE(r, s, t) exists,

where χE represents the characteristic function of the set E.
The concept of “ideal convergence”, which expands on statistical convergence, finds

its theoretical roots in the framework of the ideal I as it pertains to subsets of natural
numbers. Kostyrko et al. [17] propelled the study of I-convergence even further, utilizing
the framework of the ideal I when dealing with subsets of natural numbers. Sahiner
and Tripathy [16] subsequently applied the notion of I-convergence to triple sequences
in metric spaces, attracting considerable attention from mathematicians across various
disciplines. For instance, Altaweel et al. [18] adapted this theory to the fuzzy metric space,
while Kočinac and Rashid [9] expanded it to encompass the probabilistic metric space.
Furthermore, Rashid and Kočinac and Rashid [10] delved into the investigation of the
ideal of convergence within the framework of fuzzy 2-normed space. The introduction of
I∗-convergence in [17] spurred extensive research efforts aimed at uncovering its relation-
ship with I-convergence.

Recently, Mohiuddine and Alotaibi [19] delved into the domain of RTNS, with a spe-
cific focus on exploring stability results associated with the cubic functional equation. In the
context of double sequences situated in random 2-normed spaces, Mohiuddine et al. [19]
introduced and thoroughly examined the concepts of I-convergence and I-convergence.
Their research also unveiled a correlation between these two modes of convergence, estab-
lishing that I∗-convergence serves as a sufficient condition for I-convergence.

Moreover, they presented a compelling instance demonstrating that, in the general
scenario, I-convergence does not necessarily imply I∗-convergence when applied to
random 2-normed spaces. For further exploration of random 2-normed spaces, please
consult the references [20–22].

The work introduced by [23] focuses on the investigation of unbounded fuzzy order
convergence and its real-world applications. Moreover, the article delves into the correla-
tion between unbounded fuzzy order convergence and theoretical concepts such as fuzzy
weak order units and fuzzy ideals. Within the scope of our research, the authors in [24]
propose an enhanced algorithm for deionising images, which is based on the TV model.
This approach effectively tackles the aforementioned challenges. The introduction of the L1
reg. term serves to simplify the solution, facilitating the recovery of high-quality images.
Through the reduction in estimated parameters and the application of inverse gradients for
estimating the regularization parameter, it enables global adaptation, thereby improving
the denoising effect in conjunction with the TV reg. term. Initially, the application of energy-
density modeling for strongly interacting substances, such as atomic nuclei and dense stars,
may seem unrelated to the exploration of ideal convergence in random 2-normed spaces.
Nevertheless, it is plausible to identify certain conceptual connections between the two.
Acknowledging these potential correlations, the researchers in the study by Papakonstanti-
nou and Hyun [25] establish a foundation for interdisciplinary collaborations that leverage
the respective strengths of each field. This collaborative endeavor aims to advance the
understanding of complex systems, ultimately promoting advancements in both theoretical
and practical research.
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In this research, we focus on examining the rough convergence of triple sequences
within the context of 2-normed spaces rather than in random environments. Furthermore,
we introduce and analyze the concepts of I3-convergence, I∗3 -convergence, I3-limit points,
and I3-cluster points for random 2-normed triple sequences. We establish a noteworthy
result, demonstrating that I∗3 -convergence implies I3-convergence in the context of random
2-normed spaces, highlighting the interplay between these two forms of convergence. The
study of the ideal of convergence in random 2-normed spaces is crucial across various
disciplines such as functional analysis, probability theory, and stochastic processes. This
significance stems from its ability to generalize classical spaces, enabling the analysis of
random variables and sequences. Moreover, these spaces provide a suitable mathematical
structure for modeling stochastic processes, aiding in the development of accurate models
for random phenomena. Understanding the ideal of convergence is vital for statistical
analysis, facilitating the formulation of robust methods for handling data with inherent
randomness. Additionally, its relevance in functional analysis, particularly in relation to
linear operators and function spaces, has implications for fields like quantum mechanics
and signal processing. Furthermore, its contribution to the advancement of probability the-
ory, particularly concerning random variable convergence and limit theorems, establishes a
strong theoretical foundation for various probabilistic concepts and results. Ultimately, this
investigation serves as a fundamental basis for the development of sophisticated models,
analysis techniques, and mathematical tools to address real-world challenges associated
with randomness and uncertainty.

This paper is organized as follows: The next section introduces and discusses funda-
mental definitions and early discoveries concerning a random 2-normed space. Section 3
establishes that, assuming a general condition, the condition (AP3) is both necessary and
sufficient for the equivalence of the I3 and I∗3 -Cauchy criteria. Moreover, it includes a
specific example illustrating that the I3-Cauchy condition is not always met. Section 4
explores various significant and previously unexplored aspects of I3- and I∗3 -convergence
concerning triple sequences within a random 2-normed space. It also investigates related
implications, including the characterization of compactness in terms of I3-cluster points,
which is discussed in Section 5. Section 6 focuses on presenting some applications of the
ideal of convergence of triple sequences in the context of a random 2-normed space. In
Section 7, the study presents its findings and offers specific recommendations to other
researchers regarding potential future research directions based on the study’s results.

2. Definitions, Notations and Preliminary Results

In this section, we will revisit fundamental definitions and notations that serve as the
foundation for the current investigation.

A distribution function is a member of the set D+, where D+ is defined as follows:

D+ = { f : R→ (0, 1); f is left-continuous, nondecreasing, f (0) = 0, and f (+∞) = 1}

Within this context, the subsetW+ can be described asW+ = f ∈ D+ : l− f (+∞) = 1,
where l− f (+∞) represents the left limit of the function f at the point ξ. The space D+ can
be partially ordered using the standard pointwise ordering of functions, which means that
f ≤ g if and only if f (ξ) ≤ g(ξ) holds for every ξ in the real numbers. For any a ∈ R, we
can define a distribution function εa, as follows:

εa(ξ) =

{
0, if ξ ≤ a;
1, if ξ > a.

The set D, along with its subsets, can be subjected to partial ordering using the con-
ventional pointwise order. In this ordering, εa represents the maximum element within D+.

Definition 1 ([20]). A t-norm is a continuous mapping ∗ : [0, 1] × [0, 1] → []0, 1 such that
([0, 1], ∗) is an abelian monoid with unit one and c ∗ d ≥ a ∗ b if c ≥ a and d ≥ bfor all
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a, b, c, d ∈ [0, 1]. A triangle function γ is a binary operation onD+, which is commutative, associative
and γ( f , ε0) = f for every f ∈ D+.

The concept of a 2-normed space was first introduced by Gähler.

Definition 2 ([4]). Suppose X is a linear space with dimension d, where 2 ≤ d < ∞. A 2-norm
on X is defined as a function ‖·, ·‖ : X × X → R that satisfies the following conditions for any
ξ, ζ ∈ X: (i) ‖ξ, ζ‖ = 0 if and only if ξ and ζ are linearly dependent. (ii) ‖ξ, ζ‖ = ‖y, x‖.
(iii) ‖αξ, ζ‖ = |α|‖ξ, ζ‖ for all α ∈ R. (iv) ‖ξ + ζ, η‖ ≤ ‖ξ, η‖+ ‖ζ, η‖.

In this context, we refer to (X, ‖·, ·‖) as a 2-normed space.

Example 1 ([4]). Take X = R2 being equipped with the 2-norm ‖ξ, ζ‖ = the area of the parallelo-
gram spanned by the vectors ξ and ζ, which may be given explicitly by the formula

‖ξ, ζ‖ = |ξ1ζ2 − ξ2ζ1|, where ξ = (ξ1, ξ2), y = (ζ1, ζ2).

In a recent development, Golet introduced the concept of a RTNS in the following manner.

Definition 3 ([12]). Let X be a linear space of a dimension greater than one, γ be a triangle
function, and ψ : X × X → D+. Then, ψ is called a probabilistic 2-norm on X and (X, ψ, γ) a
probabilistic 2-normed space if the following conditions are satisfied:

(i) ψξ,ζ(t) = ε0(t) if ξ and ζ are linearly dependent, where ψξ,ζ(t) denotes the value of ψξ,ζ
at t ∈ R;

(ii) ψξ,ζ(t) 6= ε0(t) if ξ and ζ are linearly independent;
(iii) ψξ,ζ = ψζ,ξ for every ξ, ζ in X;

(iv) ψαξ,ζ(t) = ψξ,ζ

(
t
|α|

)
for every t > 0, α 6= 0 and ξ, ζ ∈ X;

(v) ψξ+ζ,η ≥ γ(ψξ,η , ψζ,η) whenever ξ, ζ, η ∈ X.

If (v) is replaced by
(v’) ψξ+ζ,η(t1 + t2) ≥ ψξ,η(t1) ∗ ψζ,η(t2), for all ξ, zeta, η ∈ X and t1, t2 ∈ R+, then triple

(X, ψ, ∗) is called a RTNS.

Remark 1 ([19]). Note that every 2-normed space (X, ‖·, ·‖ can be made a random 2-normed space
in a natural way, by setting

(a) ψξ,ζ(t) = ε0(t− ‖ξ, ζ‖), for every ξ, ζ ∈ X, t > 0 and a ∗ b = min{a, b}, a, b ∈ [0, 1];
(b) ψξ,ζ(t) = t

t+‖ξ,ζ‖ , for every ξ, ζ ∈ X, t > 0 and a ∗ b = ab, a, b ∈ [0, 1].

Definition 4 ([26]). A double sequence ξnkn, k ∈ N is considered to be statistically convergent to
µ according to Pringsheim’s criteria if, for every ε > 0, the set K(ε), defined as:

K(ε) = {(n, m) ∈ N×N : |ξnm− µ| ≥ ε},

satisfies the condition $(K(ε)) = 0.

It is important to highlight that if we have a convergent double sequence ξnkn, k ∈ N,
it also exhibits statistical convergence to the same limit. Conversely, when ξnkn,k∈N is
statistically convergent, the limit is uniquely determined.

Now, let us consider a triple sequence ξnkln, k, l ∈ N consisting of real numbers. We
define it as “bounded” if there exists a positive real number M such that |ξnkl| < M for all
n, k, l ∈ N.
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We introduce a set E that is a subset of N×N×N. We denote Enkl as the set of indices
(i, j, p) such that i ≤ n, j ≤ k, and p ≤ l. If the sequence |Enkl |

nkl has a limit in Pringsheim’s
sense, we say that E possesses triple natural density, and we represent it as:

δ3(E) = lim
n,k,l→∞

|Enkl |
nkl

.

Now, let us establish the concept of statistical convergence for a triple sequence
ξnkln, k, l ∈ N toward ξ ∈ R. For any given ε > 0, if the triple density δ3(E(ε)) = 0, where

E(ε) = {(n, k, l) ∈ N×N×N : |ξnkl − ξ| ≥ ε},

then we affirm that the triple sequence statistically converges to ξ.

Definition 5 ([15]). Let us consider a 2-normed space denoted as (X, ‖·, ·‖). In this space, a triple
sequence ξnkln, k, l ∈ N is classified as a statistically Cauchy sequence if, for any element a ∈ X
and for any positive value of ε, we satisfy the condition δ3(E(ε)) = 0, where

E(ε) = {(n, k, l), (r, s, t) ∈ N×N×N : ‖ξnkl − ξrst, a‖ ≥ ε}.

In such a situation, we represent it as:

st− lim
n,k,l→∞
i,j,p→∞

∥∥ξnkl − ξijp, a
∥∥ = 0.

Definition 6 ([20]). Let us consider a 2-normed space denoted as (X, ‖·, ·‖). Within this space, a
triple sequence ξnkln, k, l ∈ N is regarded as statistically convergent to an element ξ ∈ X if, for any
element a ∈ X, and for any given positive value of ε, we satisfy the condition δ3(E(ε)) = 0, where

E(ε) = {(n, k, l) ∈ N×N×N : ‖ξnkl − ξ, a‖ ≥ ε}.

In this scenario, we express it as:

st− lim
n,k,l→∞

‖ξnkl − ξ, a‖ = 0.

Definition 7 ([19]). Let (X, ψ, ∗) be an RTNS. A sequence x = ξmnkn, k, m ∈ N is considered
statistically convergent to ξ if, for all a ∈ X and for every ε > 0 and v ∈ (0, 1), the condition

δ3{r ≤ m, s ≤ n, t ≤ k : ψξrst, ξ, a(ε) ≤ 1−v} = 0

is satisfied, or equivalently,

lim
n,k,m→∞

1
mnk

∣∣{r ≤ m, s ≤ n, t ≤ k : ψξrst ,ξ,a(ε) ≤ 1−v
}∣∣ = 0.

In this scenario, we express it as stψ − lim x = ξ.

Definition 8 ([27]). An ideal, denoted as I , is defined as a non-empty class within the set 2N that
adheres to the following conditions:

(i) The additive property: If two sets, S and T, belong to I , then their union T ∪ S is also an
element of I .

(ii) The hereditary property: If a set T belongs to I , and another set S is a subset of T, then S is
also an element of I .
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Definition 9 ([17]). A non-trivial ideal, denoted as I , is distinguished by the property that it does
not encompass the entire set 2N. Furthermore, it earns the label “admissible” when it satisfies two
specific conditions: it is non-trivial, and for every natural number l, the singleton set l is included
in I .

Definition 10 ([17]). For any given ideal I , a corresponding filter is associated with it, denoted as
F (I). This filter is defined as follows:

F (I) = {K ⊆ N : N \ K ∈ I}.

Moreover, when an admissible ideal I is considered within the set 2N, it is said to possess the
property referred to as (AP) if, for any sequence A1, A2, · · · comprising mutually exclusive sets from
I , there exists another sequence {B1, B2, · · · } consisting of subsets of N, such that each symmetric

difference Ai∆Bi (for all i = 1, 2, · · · ) is finite, and the union of all Bi (i.e.,
∞⋃

i=1

Bi) is an element of I

Definition 11 ([17]). Consider a nontrivial ideal I ⊂ P(N) within the set of natural numbers N.
A sequence x = ξnn∈N is deemed I-convergent to L if, for every ε > 0, the set

{k ∈ N : |ξn − L| ≥ ε} ∈ I .

In this situation, we express it as I-lim x = L.

Definition 12 ([19]). Let I be a nontrivial ideal of N×N, and let (X, ψ, ∗) be a random 2-normed
space. A double sequence x = ξ jk consisting of elements from X is considered I2-convergent to

ξ ∈ X within the context of the random 2-normed space (or Iψ
2 -convergent to ξ) if, for all a ∈ X

and any ε > 0 and v ∈ (0, 1), the set{
(j, k) ∈ N×N : ψξ jk−ξ,a(ε) ≤ 1−v

}
∈ I2.

In this situation, we represent it as Iψ
2 − lim x = ξ.

Definition 13 ([28]). A nontrivial ideal I3 of N3 is referred to as strongly admissible if it includes
sets of the form i×N×N, N× i×N, and N×N× i for each i ∈ N. It is evident that a strongly
admissible ideal also qualifies as an admissible ideal.

If we define I0
3 =

{
A ⊂ N3 : ∃m(A) ∈ N such that ∀i, j, k ≥ m(A), (i, j, k) /∈ A

}
, then

I0
3 constitutes a nontrivial strongly admissible ideal. It is noticeable that I3 is a strongly

admissible ideal if and only if I0
3 ⊂ I3.

Definition 14 ([28]). An admissible ideal I3 ⊂ N3 adheres to the property (AP3) if, for every
countable collection of mutually disjoint sets {H1, H2, · · · } that belong to I3, there exists a count-
able family of sets {G1, G2, · · · } such that the symmetric difference Hj4Gj ∈ I3 is contained
within the finite union of rows and columns in N3 for each j ∈ N, and G =

⋃∞
j=1 Gj ∈ I3.

Consequently, it follows that Gj ∈ I3 for each j ∈ N.

Remark 2. It is crucial to note that when the ideal I corresponds to I0, I-convergence coincides
entirely with the conventional concept of convergence. Conversely, if we define Id as the collection
of all subsets A of N3 for which the triple natural density δ3(A) equals zero, then Id-convergence
becomes equivalent to statistical convergence.

Triple sequences that converge with respect to I may not necessarily be bounded. For
instance, consider the ideal I as I0 in N3. If we define {ξnkm}n,k,m∈N as follows:
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ξnkm =

{
km, if n = 1;
1, if n 6= 1.

In this case, the sequence ξnkmn,k,m∈N is unbounded; however, it is still I-convergent.

3. I3 and I∗3 -Cauchy of Triple Sequences

In this section, we will redirect our attention towards investigating the concepts of
Iψ

3 -Cauchy and I∗,ψ3 -Cauchy triple sequences within the framework of (X, ψ, ∗). Further-
more, we will explore the interconnections and associations among these ideas.

Definition 15. Let (X, ψ, ∗) be a RTNS and I3 ⊂ 2N
3

be a strongly admissible ideal. A triple
sequence x = {ξmnk} of elements in Xis said to be

(a) An Iψ
3 -Cauchy sequence in X if for every v ∈ (0, 1), ε > 0 and a nonzero z ∈ X, there exist

r = r(v), s = s(v), r = r(v) such that{
(m, n, k) ∈ N3 : ψξmnk−ξrst ,η(ε) ≤ 1−v

}
.

(b) An I∗,ψ3 -Cauchy sequence in X if for every v ∈ (0, 1), ε > 0 and a nonzero z ∈ X, there
exists

K =
{
(mj, nj, k j) : m1 < m2 < · · · ; n1 < n2 < · · · ; k1 < k2 < · · ·

}
⊂ N3

such that K ∈ F (I3) and {ξmjnjkj
} is ψ-Cauchy sequence in X.

The following theorem establishes a connection between triple Cauchy sequences
under Iψ

3 and I∗,ψ3 .

Theorem 1. Let (X, ψ, ∗) be a random 2-normed space and I3 ⊂ 2N
3

be a strongly admissible
ideal. If {ξmnk} is an I∗,ψ3 -triple Cauchy sequence, then {ξmnk} is an Iψ

3 -triple Cauchy sequence.

Proof. For any ε > 0 and v within the open interval (0, 1), and for any non-zero element
z ∈ X, the sequence {ξmnk} is an I∗,ψ3 -triple Cauchy sequence if the following conditions
are met: There exists a set

K =
{
(mj, nj, k j) : m1 < m2 < · · · ; n1 < n2 < · · · ; k1 < k2 < · · ·

}
∈ F (I3)

and a number r0 ∈ N, such that

ψξmjnjkj
−ξmsnsks ,η(ε) > 1−v

for every j and s greater than or equal to r0. Fix p = mr0+1, q = nr0+1, and w = kr0+1. Then,
for every v in (0, 1), ε > 0, and a non-zero z ∈ X, the following condition holds:

ψξmjnjkj
−ξpqw ,η(ε) > 1−v

for every j greater than or equal to r0. Additionally, let H be the complement of the set K in
N. It is evident that H ∈ F (I3), and we can establish that:

A(ε) =

{
(m, n, k) ∈ N : ψξmjnjkj

−ξpqw ,η(ε) ≤ 1−v

}
⊂ H ∪ {(m1, m2, . . . ; n1, n2, . . . ; k1, k2, . . .)} ∈ I3.

Therefore, for any v in (0, 1), ε > 0, and a non-zero z ∈ X, we can find (p, q, w) ∈ N
such that A(ε) ∈ I3, implying that the sequence {ξmnk} is an Iψ

3 -triple Cauchy sequence.
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Theorem 2. Let us consider a countable assortment of subsets represented as Pi i∈N within the set
N3. Each of these subsets, which we still denote as Pi i∈N, is part of a filter denoted as F (I3), which
is linked to a strongly admissible ideal known for possessing the property (AP3). In this context, we
can establish the presence of a set denoted as P that is contained within the set N3. Additionally,
this set P is also a member of the filter F (I3), and furthermore, the disparity between P and each Pi
is finite for all i.

Proof. Let A1 = N3 \ P1, Am = (N3 \ Pm) \ (A1 ∪ A2 ∪ · · · ∪ Am−1), (m = 2, 3, · · · ). It is
easy to observe that Ai ∈ I3 for each i and Ai ∪ Aj = ∅, when i 6= j. Then, by (AP3)
property of I3, we conclude that there exists a countable family of sets {B1, B2, · · · }, such
that Aj4Bj ∈ I0

3 , i.e., Aj4Bj is included in a finite union of rows and columns in N3 for
each j and B =

⋃∞
j=1 Bj ∈ I3. Put P = N3 \ B. It is clear that P ∈ F (I3).

Now, we will establish that the set P \ Pi has a finite number of elements for every i.
Let us suppose there exists a natural number j0 such that the set P \ Pj0 contains an infinite
number of elements. Given that each difference Aj4Bj (for j = 1, 2, 3, . . . , j0) is confined
within a finite combination of rows and columns, we can identify specific natural numbers
m0, n0, k0 ∈ N, such that: j0⋃

j=1

Bj

 ∩ Cm0n0k0 =

 j0⋃
j=1

Aj

 ∩ Cm0n0k0 (1)

where Cm0n0k0 = {(m, n, k) : m ≥ m0, n ≥ n0, k ≥ k0}. If m ≥ m0, n ≥ n0, k ≥ k0 and

(m, n, k) /∈ B, then (m, n, k) /∈ ⋃j0
j=1 Bj and so by (1), (m, n, k) /∈ ⋃j0

j=1 Aj.

Since Aj0 =
(
N3 \ Pj0

)
\ ⋃j0

j=1 Aj and (m, , n, k) /∈ Aj0 , (m, n, k) /∈ ⋃j0
j=1 Aj we have

(m, n, k) ∈ Pj0 for m ≥ m0, n ≥ n0 and k ≥ k0. Consequently, for all natural numbers
m satisfying m ≥ m0, n satisfying n ≥ n0, and k satisfying k ≥ k0, we find that (m, n, k)
belongs to both P and Pj0 . This observation demonstrates that the set P \ Pj0 contains only
a finite number of elements. This contradicts our initial assumption that the set P \ Pj0
is infinite.

Theorem 3. Let (X, ψ, ∗) be a RTNS and I3 ⊂ 2N
3

be a strongly admissible ideal with property
(AP3). Then, the concepts Iψ

3 -triple Cauchy sequence and I∗,ψ3 -triple Cauchy sequence coincide.

Proof. If {ξmnk} is I∗,ψ3 -triple Cauchy sequence, then it is Iψ
3 -triple Cauchy sequence by

Theorem 1 (even if I3 does not have the (AP3) property).
Now, we need to demonstrate the reverse statement. Suppose we have an Iψ

3 -triple
Cauchy sequence denoted as ξmnk. As per the definition, there exists specific values
m0 = m0(v), n0 = n0(v), and k0 = k0(v) such that:

A(v) =
{
(m, n, k) ∈ N3 : ψξmnk−ξm0n0k0

,η(ε) ≤ 1−v
}
∈ I3

for every v ∈ (0, 1), ε > 0 and a non-zero z ∈ X.
Let Pi =

{
(m, n, k) ∈ N3 : ψξmnk−ξri si ti ,η(ε) > 1− 1

i

}
, i = 1, 2, · · · , where ri = m0

(
1
i

)
,

si = n0

(
1
i

)
, ti = k0

(
1
i

)
. It is clear that Pi ∈ F (I3) for i = 1, 2, · · · . Since I3 has the property

(AP3), then by Theorem 2 there exists a set P ⊂ N3 such that P ∈ F (I3), and P \ Pi is finite
for all i. Now, we prove that

lim
m,n,k,r,s,t→∞

(m,n,k),(r,s,t)∈P

ψξmnk−ξrst ,η(ε) = 1.
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To prove this, let ε > 0, v ∈ (0, 1) and w ∈ N such that
(

1− 1
w

)
∗
(

1− 1
w

)
> 1−v.

If (m, n, k), (r, s, t) ∈ P, then P \ Pw is a finite set, so there exists q = q(w) such that
(m, n, k), (r, s, t) ∈ P for all m, n, k, r, s, t > q(w). Hence, it can be concluded that for
all m, n, k, r, s, t greater than a certain threshold q(w): ψξmnk−ξrwswtw ,η(ε/2) > 1− 1

w and
ψξrst−ξrwswtw ,η(ε/2) > 1− 1

w . As a result, we can infer that:

ψξmnk−ξrst(ε) ≥ ψξmnk−ξrwswtw ,η(ε/2) ∗ ψξrst−ξrwswtw ,η(ε/2) >
(

1− 1
w

)
∗
(

1− 1
w

)
> 1−v

for all m, n, k, r, s, t > q(w).
Therefore, for any given ε > 0 and v ∈ (0, 1), there exists a threshold q = q(w) such

that when m, n, k, r, s, t > q(w), and all these values are elements of some set P belonging
to the filter F (I3):

ψξmnk−ξrst ,η(ε) > 1−v.

This holds true for every non-zero element z in the set X. Hence, it demonstrates that
ξmnk constitutes an I∗,ψ3 -triple Cauchy sequence within the space X.

4. I3-and I∗3 -Convergence in RTN

In this section, our investigation is focused on the concept of ideal convergence as it
pertains to triple sequences within a RTNS. We will introduce the notion of I∗3 -convergence
for triple sequences in this space and establish that I∗3 -convergence implies I3-convergence,
although the reverse is not necessarily valid. It is crucial to emphasize that in this section,
we consistently treat I3 as a nontrivial admissible ideal within N3.

Definition 16. Consider a non-trivial ideal I within the set of natural numbers N3, and let
(X, ψ, ∗) represent a random 2-normed space. Now, let us introduce a triple sequence denoted as
x = ξ jkm, consisting of elements from X. We define this triple sequence as I3-convergent to L ∈ X

with respect to the random 2-normed space ψ, or, more succinctly, as Iψ
3 -convergent to L, if, for

every ε > 0 and v ∈ (0, 1), and for all a ∈ X, the set{
(j, k, m) ∈ N3 : ψξ jkm−L,a(ε) ≤ 1−v

}
belongs to the ideal I3. In such a context, we express this as Iψ

3 -lim x = L.

Theorem 4. Let (X, ψ, ∗) be a RTNS. Then, the following statements are equivalent:

(a) Iψ
3 -lim x = L;

(b)
{
(j, k, m) ∈ N3 : ψξ jkm ,L,a(t) ≤ 1−v

}
∈ Iψ

3 for every t > 0, v ∈ (0, 1) and a ∈ X;

(c)
{
(j, k, m) ∈ N3 : ψξ jkm ,L,a(t) > 1−v

}
∈ F (Iψ

3 ) for every t > 0, v ∈ (0, 1) and a ∈ X;

(d) I3-lim ψξ jkm ,L,a(t) = 1.

Proof. We will refrain from presenting the proof as it can be readily comprehended.

Theorem 5. Let (X, ψ, ∗) be a random 2-normed space. If a triple sequence x =
{

ξ jkm

}
is

Iψ
3 -convergent, then the Iψ

3 -limit is necessarily unique.
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Proof. Assume that Iψ
3 -lim x = L1 and Iψ

3 -lim x = L2. For a given v ∈ (0, 1) and ε > 0,
and for any element a ∈ X, select η > 0 such that (1− η) ∗ (1− η) > 1−v. We then define
the following sets as:

Hψ,1(η, ε) =
{
(j, k, m) ∈ N3 : ψξ jkm−L1,a(ε/2) ≤ 1− η

}
Hψ,2(η, ε) =

{
(j, k, m) ∈ N3 : ψξ jkm−L2,a(ε/2) ≤ 1− η

}
.

Given that Iψ
3 -lim x = L1, it follows that Hψ,1(r, ε) ∈ I3. Moreover, by utilizing

Iψ
3 -lim x = L2, we can conclude that Hψ,2(r, ε) ∈ I3. Now, let us define Hψ(η, ε) =

Hψ,1(η, ε) ∪ Hψ,2(η, ε) ∈ I3. As a result, we establish that Hψ(η, ε) ∈ I3. This, in turn,
implies that its complement, denoted as Hc

ψ(η, ε), is not empty within F (I3). If we have
(j, k, m) ∈ Hc

ψ(η, ε), it follows that (j, k, m) ∈ Hc
ψ,1(η, ε) ∩ Hc

ψ,2(η, ε), and thus:

ψL1−L2,a(ε) ≥ ψξ jkm−L1,a

( ε

2

)
∗ ψξ jkm−L2,a

( ε

2

)
≥ (1− η) ∗ (1− η) > 1−v.

Given that v > 0 was chosen arbitrarily, it follows that ψL1−L2,a(ε) = 1 for all ε > 0.
Consequently, we can conclude that L1 = L2.

Theorem 6. Let (X, ψ, ∗) be a random 2-normed space and let x = {ξ jkm} be triple sequences in

X. If ψ-lim x = L, then Iψ
3 -lim x = L.

Proof. Assume that ψ-lim x = L. Then, for any v ∈ (0, 1) and ε > 0, and for all a ∈ X, there
exists a positive integer N such that ψξ jkm−L,a(ε) > 1−v for all j, k, m > N. Considering
this, we can observe that the set

Q(ε) =
{
(j, k, m) ∈ N3 : ψξ jkm−L,a(ε) ≤ 1−v

}
is contained in {1, 2, 3, · · · , N − 1} and the ideal I3 is admissible; thus, we have Q(ε) ∈ I3.
Therefore, Iψ

3 -lim x = L.

In the forthcoming example, it is not guaranteed that the converse of what Theorem 6
asserts holds true.

Example 2. Consider the space X = R3 equipped with the Euclidean 2-norm, denoted as ‖ξ, ζ‖,
defined by the vectors ξ and ζ. These vectors can be explicitly expressed using the formula:

‖ξ, ζ‖ = |ξ1ζ2− ξ2ζ1|+ |ξ1ζ3− ξ3ζ1|+ |ξ2ζ3− ξ3ζ2|, where x = (ξ1, ξ2, ξ3), y = (ζ1, ζ2, ζ3)

and a ∗ b = ab for a, b ∈ [0, 1]. For all x ∈ X, t > 0 and nonzero z ∈ X, consider

ψξ,η(t) =

{
t

t+‖ξ,η‖ , if t > 0;
0, if t ≤ 0.

Now, we have (X, ψ, ∗) as a RTNS. Next, we introduce a double sequence denoted as x =
{ξmnk}, defined as follows:

ξmnk =

{
(mnk, 0, 0), if m, n, k are squre;
(0, 0, 0), otherwise.
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Write Hr,s,t(v, ε) =
{

m ≤ r, n ≤ s, k ≤ t : ψξmnk−L,a(ε) ≤ 1−v
}

, ε > 0, v ∈ (0, 1),
a ∈ X and L = (0, 0, 0). We observe that

ψξmnk−L,a(t) =

{
t

t+mnk(η2+η3)
, if m, n and k are square;

1, otherwise.

Taking m, n, k→ ∞, we obtain

lim
m,n,k→∞

ψξmnk−L,a(t) =
{

0, if m, n and k are square;
1, otherwise.

Therefore, it can be observed that a triple sequence x = {ξmnk} does not exhibit convergence
within the space (X, ψ, ∗). However, if we define I = I(δ) =

{
A ⊂ N3 : δA = 0

}
, then because

Hr,s,t(v, ε) ⊂ {(1, 0, 0), (4, 0, 0), · · · }, we have δ3{Hr,s,t(v, ε)} = 0. In other words, Iψ
3 -lim x = L.

Theorem 7. Let (X, ψ, ∗) be a random 2-normed space and let x = {ξ jkm} and y = {ζ jkm} be
triple sequences in X.

(a) If Iψ
3 -lim x = L1 and Iψ

3 -lim y = L2, then Iψ
3 -lim(x + y) = L1 + L2.

(b) If Iψ
3 -lim x = L, then If Iψ

3 -lim βx = βL.

Proof. (a) Assume that Iψ
3 -lim x = L1 and Iψ

3 -lim y = L2. For any given v ∈ (0, 1) and
ε > 0, and for all a ∈ X, select η > 0 such that (1− η) ∗ (1− η) > 1− v. We can then
define the following sets as:

Hψ,1(η, ε) =
{
(j, k, m) ∈ N3 : ψξ jkm−L1,a(ε/2) ≤ 1− η

}
Hψ,2(η, ε) =

{
(j, k, m) ∈ N3 : ψξ jkm−L2,a(ε/2) ≤ 1− η

}
.

Given that Iψ
3 -lim x = L1, we can establish that Hψ,1(r, ε) ∈ I3. Similarly, by

employing Iψ
3 -lim x = L2, we conclude that Hψ,2(r, ε) ∈ I3. Now, let us introduce

Hψ(η, ε) = Hψ,1(η, ε) ∪ Hψ,2(η, ε) ∈ I3.
Consequently, we have Hψ(η, ε) ∈ I3. This implies that its complement Hc

ψ(η, ε) is
non-empty within F (I3). Now, our task is to demonstrate that:

Hc
ψ(η, ε) ⊂

{
(j, k, m) ∈ N3 : ψ(ξ jkm+ζ jkm)−(L1+L2),a(ε) > 1−v

}
.

If (j, k, m) ∈ Hc
ψ(η, ε), then we have ψξ jkm−L1,a(ε/2) > 1− η and ψζ jkm−L2,a(ε/2) >

1− η. Consequently,

ψ(ξ jkm+ζ jkm)−(L1+L2),a(ε) ≥ ψξ jkm−L1,a(ε/2) ∗ ψζ jkm−L2,a(ε/2)

> (1− η) ∗ (1− η)

> 1−v.

Hence,

Hc
ψ(η, ε) ⊂

{
(j, k, m) ∈ N3 : ψ(ξ jkm+ζ jkm)−(L1+L2),a(ε) > 1−v

}
.

Since Hc
ψ(η, ε) ∈ F (I3), we have Iψ

3 -lim(x + y) = L1 + L2.

(b) The case where β = 0 is straightforward. Now, consider the situation when β 6= 0.
For any given v ∈ (0, 1), ε > 0, and for all a ∈ X, we have:

G(ε) =
{
(j, k, m) ∈ N3 : ψξ jkm−L,a(ε) > 1−v

}
∈ F (I3).
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We only need to demonstrate that for every v ∈ (0, 1), ε > 0, and all a ∈ X, we have:

G(ε) ⊂
{
(j, k, m) ∈ N3 : ψβξ jkm−βL,a(ε) > 1−v

}
.

Let (j, k, m) ∈ G(ε). Then we have ψξ jkm ,L,a(ε) > 1−v. Now,

ψβξ jkm−βL,a(ε) = ψξ jkm−L,a

(
ε

|β|

)
≥ ψξ jkm−L,a(ε) ∗ ψ0,a

(
ε

|β| − ε

)
= ψξ jkm−L,a(ε) ∗ 1 = ψξ jkm−L,a(ε) > 1−v.

Hence
G(ε) ⊂

{
(j, k, m) ∈ N3 : ψβξ jkm−βL,a(ε) > 1−v

}
.

Definition 17. Let (X, ψ, ∗) be a random 2-normed space. We define that a sequence x = ξ jkm
consisting of elements from X is I∗3 -convergent to L ∈ X concerning the random 2-normed space ψ
under the condition that there exists a subset H, defined as follows:

H = {(js, ks, ms) : j1 < j2 < · · · ; k1 < k2, · · · ; m1 < m2 < · · · }

of N3 of N3 such that H belongs to the filter F (I3) (which means N3 \ H ∈ I3), and the ψ-limit of
ξ jsksms as s approaches infinity is equal to L. In this context, we denote this as I ,ψ

3 -lim x = L, and

we refer to L as the I ,ψ
3 -limit of the triple sequence x =

{
ξ jkm

}
.

Theorem 8. Let (X, ψ, ∗) be a random 2-normed space and I3 be an admissible ideal. If x = {ξ jkm}
is a triple sequence of elements in X and I∗,ψ3 -lim x = L, then Iψ

3 -lim x = L.

Proof. If I∗,ψ3 -lim x = L, then

H = {(js, ks, ms) : j1 < j2 < · · · ; k1 < k2, · · · ; m1 < m2 < · · · }

of N3 such that H ∈ F (I3) (meaning N3 \ H ∈ I3) and ψ-lims ξ jsksms = L. Consequently,
for any ε > 0, v ∈ (0, 1), and all a ∈ X, there exists a positive integer N such that
ψjsksms ,L,a(ε) > 1−v for all s > N. Given that (js, ks, ms) ∈ H : ψjsksms−L,a(ε) ≤ 1−v is a
subset of {j1 < j2 < · · · < jN−1; k1 < k2, · · · < jN−1; m1 < m2 < · · · < mN−1} and consid-
ering the admissibility of the ideal I3, we can conclude that:{

(js, ks, ms) ∈ H : ψjsksms−L,a(ε) ≤ 1−v
}
∈ I3.

Therefore,{
(j, k, m) ∈ N3 : ψξ jkm−L,a(ε)

}
⊂

H ∪ {j1 < j2 < · · · < jN−1; k1 < k2, · · · < jN−1; m1 < m2 < · · · < mN−1} ∈ I3

for any ε > 0, v ∈ (0, 1) and all a ∈ X and so Iψ
3 -lim x = L.

The example provided below demonstrates that the reverse of Theorem 8 may not
necessarily hold true.
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Example 3. Consider X = R3 equipped with the Euclidean 2-norm, denoted as ‖ξ, ζ‖, defined by
the vectors ξ and ζ. These vectors can be explicitly described by the formula:

‖ξ, ζ‖ = |ξ1ζ2− ξ2ζ1|+ |ξ1ζ3− ξ3ζ1|+ |ξ2ζ3− ξ3ζ2|, where x = (ξ1, ξ2, ξ3), y = (ζ1, ζ2, ζ3)

and a ∗ b = ab for a, b ∈ [0, 1]. For all x ∈ X, t > 0 and nonzero z ∈ X, consider

ψξ,η(t) =

{
t

t+‖ξ,η‖ , if t > 0;
0, if t ≤ 0.

In this context, (X, ψ, ∗) forms a RTNS.
Consider a decomposition of N3 denoted as N3 =

⋃
i,j,l4ijl , such that for any (m, n, k) ∈ N3,

each4ijl contains infinitely many (i, j, l) triplets, where i ≥ m, j ≥ n, l ≥ k, and4mnk ∩4ijl =

∅ for (i, j, l) 6= (m, n, k). Now, let I3 represent the set of all subsets of N3 that intersect with at
most a finite number of4ijl . It is important to note that I3 qualifies as an admissible ideal. Next,
let us introduce a double sequence ξmnk =

1
ijl if (m, n, k) ∈ 4ijl . Then,

ψξmnk ,a(t) =
t

t + ‖ξmnk, a‖ → 1

as m, n, k→ ∞ and for all a ∈ X. Hence, Iψ
3 -limm,n,k ξmnk = 0.

Now, let us assume that I∗,ψ3 -limm,n,k ξmnk = 0. In this case, there exists a subset M =
(mj, nj, k j) : m1 < m2 < · · · ; n1 < n2 < · · · ; k1 < k2 < · · · of N3 such that M ∈ F (I3) and ψ-
limj ξmjnjkj

= 0. Furthermore, since M ∈ F (I3), there exists a set G ∈ I3 such that M = N3 \G.
Now, from the definition of I3, there exist, say p, q, r ∈ N such that

G ⊂
( p⋃

m=1

(
∞⋃

n,k=1

4mnk

))
∪
( q⋃

n=1

(
∞⋃

m,k=1

4mnk

))
∪
(

r⋃
k=1

(
∞⋃

m,n=1

4mnk

))

But then4p+1,q+1,r+1 ⊂ M, and therefore

ξmjnjkj
=

1
(p + 1)(q + 1)(r + 1)

for infinitely many (mj, nj, k j)’s from M, which contradicts the condition ψ-limj ξmjnjkj
= 0.

Hence, the assumption that I∗,ψ3 -limm,n,k ξmnk = 0 results in a contradiction.

Theorem 9. Consider a RTNS space denoted as (X, ψ, ∗). In this context, the following conditions
are equivalent:

(a) I∗,ψ3 -lim x = L.
(b) There exist two sequences, namely y = ζmnk and z = zmnk, both belonging to the space X,

such that x = y + z, ψ-lim y = L, and the set {(m, n, k) : zmnk 6= θ} is an element of the set
I3, where θ represents the zero element of the space X.

Proof. If condition (a) is satisfied, then there exists a subset K = {(mj, nj, k j) : m1 < m2 <

· · · ; n1 < n2 < · · · , · · · ; k1 < k2 < · · · } of N3 such that

K ∈ F (I3) and ψ− lim
j

ξmjnjkj
= L. (2)

We define the sequences y = {ζmnk} and z = {zmnk} as

ζmnk =

{
ξmnk, if (m, n, k) ∈ K;
L, if (m, n, k) /∈ K.
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and zmnk = ξmnk − ζmnk for all (m, n, k) ∈ N3. For given ε > 0, v ∈ (0, 1), a ∈ X and
(m, n, k) ∈ K, we have

ψζmnk−L,a(ε) = 1 > 1−v.

By utilizing (2), we can deduce that ψ-lim y = L. Furthermore, because the set
{(m, n, k) : zmnk 6= θ} is contained within the complement of set K (i.e., KC), it follows that
{(m, n, k) : zmnk 6= θ} ∈ I3.

Assuming condition (ii) is met, we find that K = {(m, n, k) : zmnk = θ} ∈ F (I3)
constitutes an infinite set. Clearly, the set K ∈ F (I3) is infinite. Let us denote it as
K =

{
(mj, nj, k j) : m1 < m2 < · · · ; n1 < n2 < · · · ; k1 < k2 < · · ·

}
. Given that ξmjnjkj

=

ζmjnjkj
and ψ-limj ζmjnjkj

= L, it logically follows that ψ-limj ξmjnjkj
= L. Consequently, we

can assert that I∗,ψ3 -limm,n,k ξmnk = L. Thus, this completes the proof.

Theorem 10. Let (X, ψ, ∗) be an RTNS.

(a) If X has no accumulation point, then I3 and I∗3 -convergence coincide for each strongly
admissible ideal I3.

(b) If X has an accumulation point ξ, then there exists a strongly admissible ideal I3 and a double
sequence y = {ζmnk} for which Iψ

3 -lim y = ξ but I∗,ψ3 -lim y does not exist.

Proof. (a) Consider a triple sequence x = ξmnk in the space X. Assuming that I∗,ψ3 -lim x = ξ,
we can conclude that there exists a set M in F (I3) (i.e., N3 \M = H ∈ I3), such that

ψ− lim
m,n,k→∞

(m,nk,k)∈M

x = ξ. (3)

For any positive value ε, a parameter v within the range of (0,1), and a non-zero
element z in the space X, it can be deduced from (3) that there exists a natural number r0
such that ψξmnk−ξ,η(ε) > 1−v holds for all m, n, k > r0. Consequently

A(v) =
{
(m, n, k) ∈ N3 : ψξmnk−ξ,η(ε) ≤ 1−v

}
⊂ H ∪ (M ∩M1),

where M1 = ({1, 2, · · · r0 − 1} ×N×N) ∪ (N× {1, 2, · · · r0 − 1} ×N) ∪ (N × N × {1, 2,
· · · r0 − 1}).

Now, since H∪ (M∩M1) ∈ I3, consequently, we have A(v) ∈ I3 and so Iψ
3 -lim x = ξ.

Next, we will demonstrate that if Iψ
3 -lim x = ξ, then I∗,ψ3 -lim x = ξ. To establish this, given

that the set X lacks accumulation points, we can find a value δ within the interval (0,1) such
that for any ε > 0 and a non-zero element z ∈ X

Q(ξ, δ) = {x ∈ X : ψx−ξ,η(ε) > 1− δ} = {ξ}.

As Iψ
3 -lim x = ξ, we have (m, n, k) ∈ N3 : ψξmnk−ξ,η(ε) ≤ 1− δ ∈ I3. This implies{

(m, n, k) : ψξmnk−ξ,η(ε) > 1− δ
}
= {(m, n, k) : ξmnk = ξ} ∈ F (I3).

Consequently, I∗,ψ3 -lim x = ξ.
(b) Since ξ functions as an accumulation point within the space X, ”, there exists a

sequence zj j∈N consisting of distinct points, all distinct from ξ, within X. This sequence

converges to ξ, ” and for a non-zero element a ∈ X, ” the sequence ψ(zj − ξ, a) exhibits a
monotonic increase toward 1.
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Now, let us delve into a partition of the set of natural numbers N into infinite sets,
denoted as Ej j ∈ N, and define 4j as (m, n, k) : max m, n, k ∈ Ej. Consequently, 4j j ∈ N
constitutes a partition of N3, and the ideal I3 is defined as follows:

I3 = {A ⊂ N3 : A is included in a finite union of 4′js}

This particular ideal, denoted as I3, possesses strong admissibility. Now, we will
establish a connection between the sequence {ξmnk} and the sequence εn = ψzn−ξ,a for
n ∈ N and a non-zero element a in X. Let us assume that we have η within the interval (0,1),
ε > 0, and a non-zero element a in X. We can choose γ from the set of natural numbers
such that εγ > 1− η. Then, we define A(η) as follows:

A(η) =
{
(m, n, k) : ψξmnk−ξ,a(ε) ≤ 1− η

}
⊂

γ⋃
j=1

4j.

Consequently, A(η) falls under the set I3, and we can infer that Iψ
3 -lim x = ξ.

Now, assuming that I∗,ψ3 -lim x = ξ, it follows that there exists H in I3 such that
M = N3 \ H, resulting in ψ-limm,n,k→∞m,n,k)∈M ξmnk = ξ.

Based on the definition of I3, “there exists an integer l such that H is a subset of⋃l
j=14j”. This implies that4l+1 is a subset of N \H = M. “Considering the construction of
4l+1”, we can infer that, for any given r0 ∈ N,, “the inequality ψξmnk−ξ,a(ε) = 1− ε l+1 < 1
holds for an infinite number of (m, n, k) with (m, n, k) ∈ M” and m, n, k ≥ r0. “This
contradicts the fact that ψ-limm,n,k→∞m,n,k)∈M ξmnk = ξ”.

Similarly, if we assume that I∗,ψ3 -limm,n,k→∞ ξmnk = p “for p 6= ξ”, it leads to a
contradiction.

Remark 3. As deduced from the previous outcome, it is clear that I∗3 -convergence entails I3-
convergence, but the converse is not always valid. This raises the question of when the reverse
relationship may be established. If the ideal I3 is endowed with property (AP3)," the following
theorem demonstrates that the reverse relationship indeed holds true.

Theorem 11. If I3 is an admissible ideal of N3 having the property (AP3) and (X, ψ, ∗) is a RTNS,
then, for an arbitrary triple sequence x = {ξmnk} of elements of X, Iψ

3 -limm,n,k→∞ ξmnk = L
implies I∗,ψ3 -limm,n,k→∞ ξmnk = L.

Proof. Assume that I3 satisfies property (AP) and Iψ
3 -lim x = L. Under these conditions,

for any given ε > 0, v within the interval (0, 1), and for every a in X,{
(m, n, k) ∈ N3 : ψξmnk−L,a(ε) ≤ 1−v

}
∈ I3.

Let us establish the set Eq for q belonging to the natural numbers N and for a given
ε > 0, as follows:

Eq =

{
(m, n, k) ∈ N3 : 1− 1

q
≤ ψξmnk−L,a(ε) < 1− 1

q + 1

}
.

Clearly, the set {E1, E2, · · · } is countable and falls within the set I3. Additionally,
Ei ∩ Ej = ∅ for i 6= j. By virtue of property (AP), there exists a countable family of sets
Q1, Q2, · · · ∈ I3 such that the symmetric difference Ei4Qi is a finite set for each i ∈ N,
and Q =

⋃∞
i=1 Qi ∈ I3. From the definition of the associated filter F (I3), there is a set

M ∈ F (I3) such that M = N3 \ Q. To prove the theorem, it suffices to demonstrate that
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the subsequence {ξmnk}(m,n,k)∈M converges to L concerning the probabilistic norm ψ. Let
η > 0 and ε > 0. Choose s ∈ N such that 1

s < η. Then,{
(m, n, k) ∈ N3 : ψξmnk−L,a(ε) ≤ 1− η

}
⊂
{
(m, n, k) ∈ N3 : ψξmnk−L,a(ε) ≤ 1− 1

s

}
⊂

s+1⋃
i=1

Ei.

Since Ei4Qi, i = 1, · · · , s + 1 are finite, there exists (m0, n0, k0) ∈ N3 such that

s+1⋃
i=1

Qi ∩{(m, n, k) : m ≥ m0, n ≥ n0, k ≥ k0} =
s+1⋃
i=1

Ei ∩{(m, n, k) : m ≥ m0, n ≥ n0, k ≥ k0}.

If m ≥ m0, n ≥ n0, k ≥ k0 and (m, n, k) ∈ M then (m, n, k) /∈ ⋃s+1
i=1 Qi and so (m, n, k) /∈⋃s+1

i=1 Ei. Hence, for every m ≥ m0, n ≥ n0, k ≥ k0 and (m, n, k) ∈ M, we have

ψξmnk−L,a(ε) > 1− η.

Since η > 0 was arbitrary, we have I∗,ψ3 -lim x = L.

Theorem 12. If (X, ψ, ∗) possesses at least one accumulation point, and for any arbitrary triple
sequence x = {ξmnk} consisting of elements from X and for every L ∈ X, the condition Iψ

3 -
lim x = L implies I∗,ψ3 -lim x = L,; then, it can be concluded that I3 has property (AP3).

Proof. Assume L ∈ X is an accumulation point of X. In this scenario, there exists a sequence
zrr ∈ N consisting of distinct elements from X, where none of these elements are equal to L.
Furthermore, we have L = lim r → ∞zr = L, and the sequence ψzr−L,ar ∈ N is an increasing
sequence that converges to 1 for a non-zero element a in X. Let εrr ∈ N = ψzr−L,ar ∈ N.
Now, consider a disjoint family of nonempty sets from I3 denoted as

{
Aj
}

j ∈ ker. We
define a sequence x = ξmnk as follows:

ξmnk =

{
zj, if (m, n, k) ∈ Aj;
L, if (m, n, k) /∈ Aj.

for any j. Let ε > 0, η ∈ (0, 1) and a non-zero a ∈ X. Choose r ∈ N such that εr < η.
Subsequently, we can express A(η) as

{
(m, n, k) : ψξmnk−L,a(ε) ≤ 1− η

}
, which is a subset

of
⋃r

j=1 Aj. Consequently, A(η) ∈ I3, and thus, Iψ
3 -lim x = L.

Based on our assumption, we can then conclude that I∗,ψ3 -lim x = L. Therefore, there
exists a set B ∈ I3 such that M = N3 \ B ∈ F (I3), and thus,

ψ-lim m,n,k→∞
(m,n,k)∈M

ξmnk = L (4)

Consider the sets Bj = Aj ∩ B for j ∈ N. It follows that Bj ∈ I3 for each j ∈ N. Furthermore,⋃∞
j=1 Bj = B ∩⋃∞

j=1 Aj ⊂ B, and thus,
⋃∞

j=1 Bj ∈ I3.
Now, let us fix an arbitrary j ∈ N. If Aj ∩M is not included in the finite union of rows

and columns in N3, then M must contain an infinite sequence of elements {(mr, nr, kr)},
where both mr, nr, kr → ∞, and ξmrnrkr = zj 6= L for all r ∈ N, which contradicts (4).
Therefore, Aj ∩ M must be contained in the finite union of rows and columns in N3.
Consequently, Aj4Bj = Aj \ Bj = Aj \ B = Aj ∩M is also included in the finite union of
rows and columns. This confirms that the ideal I3 indeed possesses property (AP3).

If I3 is an admissible ideal contained in 2N
3

and satisfies condition (AP), we can
straightforwardly establish that convergence with respect to I3 implies convergence with
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respect to I∗3 for any triple sequence ξmnk in the set X. However, it is important to note that,
unlike the equivalence between I3 and I∗3 -convergence for triple sequences, condition (AP)
is not a prerequisite.

As an illustration, consider the ideal I3 associated with Pringsheim’s convergence.
In this case, convergence with respect to I0

3 and I∗,03 is equivalent. However, it is worth
emphasizing that the sets Bi = i×N×N are elements of I0

3 and collectively form a partition
of N. If we remove only a finite number of elements from each Bi (or certain Bi’s) from
the set N, the resulting set does not belong to I0

3 . This illustrates that the property (AP) is
absent in the ideal I0

3 .
Now, considering double sequences, it becomes apparent that (AP) is essentially

stronger than (AP3). Consequently, the following results can be immediately derived from
Theorem 11.

Corollary 1. Let (X, ψ, ∗) be a RTNS and the ideal I3 possesses property (AP). If x = {ξmnk} is
a triple sequence in X such that Iψ

3 -lim x = L, then I∗,ψ3 -lim x = L.

5. I3-Limit Points and I3-Cluster Points in RTN

In this section, we introduce the concepts of I3-limit points and I3-cluster points in
the context of random 2-normed spaces. For information on statistical limit points and
statistical cluster points, as well as statistical limit points and statistical cluster points of
sequences in fuzzy 2-normed spaces and probabilistic normed spaces, please refer to the
citations mentioned in [21,29,30].

Definition 18. Let (X, ψ, ∗) be a random 2-normed space, and x = {ξmnk}. An element ζ is said
to be a limit point of the sequence x = {ξmnk} with respect to the random 2-norm ψ (or a ψ-limit
point) if there is subsequence of the sequence ξ which converges to ζ with respect to the probabilistic
norm random 2-norm ψ. By Lψ

3 (x), we denote the set of all limit points of the triple sequence
x = {ξmnk} with respect to the random 2-norm ψ.

Definition 19. Let (X, ψ, ∗) be a random 2-normed space, and x = {ξmnk}. An element ζ is said
to be an I3-limit point of the sequence ξ with respect to the random 2-norm ψ (or Iψ

3 -limit point)
if there is a subset H = {(mj, nj, k j) : m1 < m2 < · · · ; n1 < n2 < · · · ; k1 < k2 < · · · } of N3

such that H /∈ I3 and ψ-limj→∞ ξmjnjkj
= ζ. We denote by ΞI,ψ

3 (x), the set of all Iψ
3 -limit points

of the sequence x = {ξmnk}.

Definition 20. Let (X, ψ, ∗) be a RTN, and x = {ξmnk}. An element ζ is said to be an I3-cluster
point of ξ with respect to the random 2-norm ψ (or Iψ

3 -cluster point) if for each ε > 0 and v ∈ (0, 1)
and a non-zero a ∈ X

W = {(m, n, k) ∈ N3 : ψξmnk−ζ,a(ε) > 1−v} /∈ I3

By C I,ψ
3 (x), we denote the set of all Iψ

3 -cluster points of the sequence x = {ξmnk}.

Theorem 13. Let (X, ψ, ∗) be a RTN. Then, for every triple sequence x = {ξmnk} in X, we have
ΞI,ψ

3 (x) ⊂ C I,ψ
3 (x) ⊂ Lψ

3 (x)

Proof. Suppose ζ belongs to ΞI,ψ
3 (x). In that case, there exists a set H = {(mj, nj, k j) :

m1 <m2 < · · · ; n1 < n2 < · · · ; k1 < k2 < · · · } in N3 such that H /∈ I3 and ψ-
limj→∞ ξmjnjkj

= ζ. For each ε > 0, v ∈ (0, 1) and a non-zero a ∈ X, there exists N ∈ N
such that for m, n, k > N, we have ψξmnk−ζ,a(ε) > 1−v. Hence,

{mj+1 < mj+2 < · · · ; nj+1 < nj+2 < · · · ; k j+1 < k j+2 < · · · } ⊂
{(m, n, k) ∈ N3 : ψξmnk−ζ,a(ε) > 1−v}
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and consequently,
{(m, n, k) ∈ N3 : ψξmnk−ζ,a(ε) > 1−v} /∈ I3,

which means that ΞI,ψ
3 (x) ⊂ C I,ψ

3 (x).
If ζ is an element of C I,ψ

3 (x), then for any ε > 0, v within the interval (0, 1), and a
non-zero element a in X,

{(m, n, k) ∈ N3 : ψξmnk−ζ,a(ε) > 1−v} /∈ I3.

Let H =
{
(mj, nj, k j) : m1 < m2 < · · · ; n1 < n2 < · · · ; k1 < k2 < · · ·

}
. In that case,

there exists a subsequence {ξmnk}(m,n,k)∈H of {ξmnk} that converges to ζ in accordance
with the random 2-norm ψ. Consequently, ζ is a regular limit point of {ξmnk}, meaning
ζ ∈ Lψ

3 (x), and thus, C I,ψ
3 (x) ⊂ Lψ

3 (x). The proof of the theorem is now considered
complete.

Theorem 14. Let x = {ξmnk} be a sequence in a randon 2-normed space (X, ψ, ∗). Then
ΞI,ψ

3 (x) = C I,ψ
3 (x) = {ζ}, provided Iψ

3 -limm,n,k ξmnk = ζ.

Proof. Let κ ∈ ΞI,ψ
3 (x), where κ 6= ζ. Then, there exist two subsets H and H′, that is,

H = {(mj, nj, k j) : m1 < m2 < · · · ; n1 < n2 < · · · ; k1 < k2 < · · · } and H′ = {(rj, sj, tj) :
r1 < r2 < · · · ; s1 < s2 < · · · ; t1 < t2 < · · · } of N3 such that

H /∈ I3 and ψ- lim
j→∞

ξmjnjkj
= ζ; (5)

H′ /∈ I3 and ψ- lim
j→∞

ξrjsjtj = κ. (6)

By (6), given ε > 0, v ∈ (0, 1) and a non-zero a ∈ X, there exists N ∈ N, such that for
j > N we have ψξrj sj tj−κ,a(ε) > 1−v. Therefore,

A = {(rj, sj, tj) ∈ H′ : ψξrjsj tj−κ,a(ε) ≤ 1−v}

⊂ {(rj, sj, tj) : r1 < r2 < · · · < rN ; s1 < s2 < · · · < sN ; t1 < t2 < · · · < tN}.

Since I3 is an admissible ideal, it follows that A ∈ I3. Now, if we consider

B =
{
(rj, sj, tj) ∈ H′ : ψξrj sj tj−κ,a(ε) > 1−v

}
,

we observe that B /∈ I3.
In the alternative scenario where B ∈ I3, it would imply A ∪ B = H′ ∈ I3, which

contradicts (6). Given that Iψ
3 -limm,n,k ξmnk = ζ, it can be concluded that for any ε > 0, v

within the interval (0, 1), and a non-zero element a in X,

Q =
{
(m, n, k) ∈ N3 : ψξmnk−ζ,a(ε) ≤ 1−v

}
∈ I3.

Therefore,

Qc =
{
(m, n, k) ∈ N3 : ψξmnk−ζ,a(ε) > 1−v

}
∈ F (I3).

As for every ζ 6= κ, it holds that B ∩ Qc = ∅, we can infer that B ⊂ Q. Given that
C ∈ I3 implies B ∈ I3, this contradicts the assertion that B /∈ I3. Consequently, we can
conclude that ΞI,ψ

3 (x) = ζ.
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On the contrary, let us assume that κ ∈ C I,ψ
3 (x), where ζ 6= κ. As per the definition, for

any ε > 0, v within the interval (0, 1), and a non-zero element a in X,

A = {(m, n, k) ∈ N3 : ψξmnk−ζ,a(ε) > 1−v} /∈ I3,

B = {(m, n, k) ∈ N3 : ψξmnk−κ,a(ε) > 1−v} /∈ I3

When ζ 6= κ, it follows that A ∩ B = ∅, and hence, B ⊂ Ac. Furthermore, considering
that Iψ

3 -limm,n,k→∞ ξmnk = ζ, we can deduce that

Ac =
{
(m, n, k) ∈ N3 : ψξmnk−ζ,a(ε) ≤ 1−v

}
∈ I3.

Consequently, B ∈ I3, which contradicts the earlier statement that B /∈ I3. Hence, we
can conclude that C I,ψ

3 (x) = ζ. This completes the proof of the theorem.

The next two instances demonstrate that the notions of a cluster point and an I3-cluster
point are unrelated.

Example 4. This example shows how a sequence in a random 2-norm can have a cluster point
without simultaneously having an I3-cluster point, which corresponds to a non-trivial ideal I3 of
N3. Define I3 = {(2n, k, k) : k ∈ {1, 3, · · · , 2n− 1}, n ∈ N} in N3

Consider X = R2 with ‖x, y‖ = |x1y2 − x2y1|, where x = (x1, x2), y = (y1, y2) and let
a ∗ b = ab for all a, b ∈ [0, 1]. For x, y ∈ R2 and t > 0 Consider,

ψx,y(t) =
t

t + ‖x, y‖ .

Then, (R, ψ, ∗) is a random 2-norm space. Let {xjkm} be a sequence in X defined by

xjkm =

{
0, if j, k, m are even;
jkm, otherwise.

Now, to show that this sequence has a cluster point but no I3-cluster, we can demonstrate as follows:

• The sequence has a cluster point: Given any small neighborhood around 0, the sequence will
have points that are arbitrarily close to 0 for infinitely many terms, implying that 0 is a
cluster point.

• The sequence does not have an I3-cluster: For the given sequence, the elements do not satisfy
the pattern required by I3, since the elements of I3 should be of the form (2n, k, k), where
n ∈ N and k ∈ {1, 3, · · · , 2n− 1}. The sequence

{
xjkm

}
does not strictly adhere to this

structure, thus not forming an I3-cluster. This example illustrates the existence of a cluster
point without an I3-cluster in (R2, ψ, ∗) defined by the given norm and operation.

Example 5. Let X = R2. Given the sequence
{

xjkm

}
defined as xjkm = jkm for all j, k, m ∈ N,

we need to examine its behavior in the context of the defined 2-normed space. The norm ‖·, ·‖ is
defined by ‖x, y‖ = |x1y2 − x2y1| for x = (x1, x2) and y = (y1, y2) in R2. The operation ∗
is defined as the standard multiplication a ∗ b = ab for all a, b ∈ [0, 1]. The function ψx,y(t) is
given by

t
t + ‖x, y‖ .

Then, (R2, ψ, ∗) is a random 2-normed space. To better illustrate this, let us first clarify the
definition of I3. We have I3 = {(2n, 2n, 2n) : n ∈ N}. The statement suggests that the sequence{

xjkm

}
lacks a cluster point in R but every odd positive integer turns into an I-cluster point. We

need to verify this fact considering the definitions provided. First, the I-cluster points are those that
belong to the set I3, which is defined as I3 = {(2n, 2n, 2n) : n ∈ N}. It follows that any term of
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the form xjkm = jkm will belong to this set if and only if j = k = m. This indicates that all terms of
the form xjkm, where j = k = m will be I-cluster points.

On the other hand, to show that the sequence does not have a cluster point in R, we need to
demonstrate that for any x ∈ R, there exists an ε > 0, such that the ball B(x, ε) contains at most
finitely many terms of the sequence xjkm. However, since this condition is not met, the set of cluster
points remains empty.

6. Applications

Below, we present several significant applications stemming from our study:

• The exploration of I3-Cauchy and I3-Cauchy concepts within random 2-normed
spaces holds substantial relevance in diverse fields, particularly in functional analysis
and mathematical modeling, where these concepts aid in the rigorous analysis of
complex systems and predictive modeling of their behavior over time.

• The introduction and analysis of I3-convergence, I3-convergence, I3-limit points, and
I3-cluster points for random 2-normed triple sequences serve as valuable tools for
understanding and characterizing the dynamic properties of evolving phenomena.
These applications find relevance in various areas such as statistical data analysis,
signal processing, and dynamical systems modeling.

• The elucidation of the relationship between I3-convergence and I3-convergence brings
to light the interdependencies between various convergence behaviors, thereby con-
tributing to the development of more robust and accurate predictive models. This
connection is particularly crucial in understanding complex systems, emphasizing the
necessity for a nuanced comprehension of convergence criteria.

• The illustration demonstrating the non-implication of I3-convergence by I3-convergence
underscores the intricacies involved in the analysis of complex systems and empha-
sizes the importance of discerning subtle variations in convergence criteria, a critical
factor in the accurate assessment of system behavior over time.

• Furthermore, the investigation of the relationship between properties (AP) and (AP3)
adds to the refinement of mathematical methodologies, providing valuable insights
into the conditions required for reliable summability assessments within the context
of ideals.

• The practical implications of these findings span diverse scientific domains, includ-
ing data analysis, system dynamics, and mathematical modeling, highlighting the
significance of this research in fostering a comprehensive understanding of complex
systems and enhancing predictive capabilities. One example that could be considered
in this context is the convergence of a sequence of points in a random 2-normed space
that models the behavior of a dynamic system, such as the dynamics of an ecological
system. For instance, consider a scenario where a mathematical model is employed to
study the population dynamics of a particular species in an ecosystem. Let us imagine
a scenario where a group of ecologists is studying the population dynamics of a certain
species of animal in a forest. They collect data on the population numbers over time
and employ a mathematical model based on the principles of a random 2-normed
space. This model helps them understand how the population of the species changes
over time due to various factors such as environmental conditions, availability of
food, and interactions with other species. Through the application of the concept of
ideal convergence in this random 2-normed space, the researchers can predict the
future behavior of the species’ population accurately. By understanding the rate of
convergence of the population dynamics towards a stable equilibrium, they can make
informed decisions about conservation efforts, resource management, and potential
interventions to maintain a sustainable balance within the ecosystem. The practical
implications of this finding extend beyond the field of ecology. Insights gained from
this research can be applied to various other scientific domains, such as data analysis
and system dynamics. For instance, the same principles could be used to predict
the convergence of a system’s behavior in a financial market or to understand the
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convergence of a particular statistical model in data analysis. This cross-disciplinary
application underscores the significance of this research in fostering a comprehensive
understanding of complex systems and enhancing predictive capabilities in various
scientific and practical domains.

• Hybrid Cars: The notion of convergence in a 2-normed space is essential in under-
standing the behavior of sequences in such spaces. However, linking this notion to
hybrid cars might require a specific application or context. Assuming you want to
explore the application of convergence in the context of hybrid cars, one possible
approach could be to consider the convergence of efficiency or performance measures.
Here is a general outline of how you might approach the application of the idea of
convergence in a random 2-normed space to hybrid cars:

(i) Understanding convergence in 2-normed spaces: Explain the concept of conver-
gence in 2-normed spaces, emphasizing the convergence of sequences to certain
limits and the role of the 2-norm in determining convergence behavior.

(ii) Applying 2-normed convergence to hybrid cars: Discuss how certain perfor-
mance parameters or metrics in hybrid cars, such as fuel efficiency or emissions,
can be represented as sequences in a 2-normed space. Explain how the conver-
gence behavior of these sequences might indicate the stability or improvement
of the performance metric over time.

(iii) Analyzing the ideal of convergence in hybrid cars: Present the ideal of conver-
gence in the context of hybrid cars, discussing how the convergence of efficiency
metrics signifies optimal performance or the achievement of predefined bench-
marks. Illustrate this with real-world examples or case studies where the conver-
gence of specific performance parameters has led to notable improvements in
hybrid car technology.

(iv) Challenges and future directions: Highlight any challenges or limitations associ-
ated with the application of convergence in the context of hybrid cars. Discuss
potential areas for future research, such as exploring alternative norms or re-
fining the convergence criteria to better represent the complexities of hybrid
car systems.

Summarize the significance of applying the concept of convergence in a 2-normed
space to hybrid cars, emphasizing its role in evaluating and improving the performance
and efficiency of hybrid vehicles. Discuss potential implications for the future development
of hybrid car technologies and their impact on the automotive industry and sustainability
efforts. Remember to provide detailed mathematical explanations, relevant data, and
real-world examples to support your arguments and enhance the understanding of the
convergence concept in the context of hybrid cars.

7. Conclusions and Future Work

This conclusion hints at a comprehensive investigation into the concepts of I3-Cauchy
and I3-Cauchy for triple sequences within the context of random 2-normed spaces. It also
introduces and analyzes the ideas of I3-convergence, I3-convergence, I3-limit points, and
I3-cluster points in the same context. The study seems to have uncovered an interesting
relationship between I3-convergence and I3-convergence in the framework of random 2-
normed spaces, emphasizing how they are interconnected. The example demonstrating the
possibility that I3-convergence does not imply I3-convergence adds depth to the findings,
underscoring the importance of condition (AP3) in the context of summability using ideals.
Additionally, the exploration of the relationship between properties (AP) and (AP3) further
enriches the understanding of these conditions, showcasing how the latter is comparatively
less stringent than the former.

To further advance this research, future efforts should consider the following avenues:
Firstly, we should explore the potential applicability of the established findings in diverse
mathematical contexts, thereby broadening the scope of analysis to encompass more gen-
eral frameworks and associated structures. Secondly, we should delve into additional case
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studies and counterexamples that can effectively elucidate the intricacies and subtleties in-
herent in the defined concepts, thereby fostering a deeper comprehension of the conditions
and their implications. Thirdly, we should undertake a more rigorous examination of the
relationship between conditions (AP) and (AP3), taking into account their ramifications
across various theoretical frameworks and their potential impact on pertinent theorems
and conjectures. Lastly, we should conduct comparative studies to juxtapose the results ob-
tained within the realm of random 2-normed spaces with analogous research in alternative
settings, such as normed spaces, metric spaces, and other correlated mathematical struc-
tures, thus facilitating a comprehensive understanding of the distinctive characteristics of
the discoveries. By addressing these aspects, this research has the potential to significantly
contribute to the comprehension of the interplay between I3-convergence, I3-convergence,
and related concepts within the domain of random 2-normed spaces, thereby fostering
enrichment within the broader landscape of mathematical analysis.
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