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Abstract: This paper addresses the flexible flow shop scheduling problem with unloading operations,
which commonly occurs in modern manufacturing processes like sand casting. Although only a few
related works have been proposed in the literature, the significance of this problem motivates the need
for efficient algorithms and the exploration of new properties. One interesting property established is
the symmetry of the problem, where scheduling from the first stage to the last or vice versa yields
the same optimal solution. This property enhances solution quality. Considering the problem’s
theoretical complexity as strongly NP-Hard, approximate solutions are preferable, especially for
medium and large-scale instances. To address this, a new two-phase heuristic is proposed, consisting
of a constructive phase and an improvement phase. This heuristic builds upon an existing efficient
heuristic for the parallel machine-scheduling problem and extends it to incorporate unloading times
efficiently. The selection of the two-phase heuristic is justified by its ability to generate high-quality
schedules at each stage. Moreover, new efficient lower bounds based on estimating minimum idle
time in each stage are presented, utilizing the polynomial parallel machine-scheduling problem
with flow time minimization in the previous stage. These lower bounds contribute to assessing
the performance of the two-phase heuristic over the relative gap performance measure. Extensive
experiments are conducted on benchmark test problems, demonstrating the effectiveness of the
proposed algorithms. The results indicate an average computation time of 9.92 s and a mean relative
gap of only 2.80% for several jobs up to 200 and several stages up to 10.
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1. Introduction

Scheduling plays a critical role in the production planning of manufacturing systems
and serves as a key determinant of success in today’s competitive marketplace [1]. The
flexible flow shop scheduling problem (FFSP) is prevalent in diverse industries, includ-
ing the chemical industry [2], metallurgy [3], textile manufacturing [4], semiconductor
production [5], logistics, paper manufacturing, and construction. An FFSP configuration
comprises multiple production stages, where each stage contains several identical machines
operating in parallel. Although some stages may have only a single machine, an FFSP
must include at least one stage with multiple machines to qualify as an FFSP. Within the
FFSP setup, the objective is to process a set of jobs while optimizing a specific objective
function. It is important to note that each job must traverse through all the stages and
be processed by precisely one machine at each stage. Unlike the flow shop scheduling
problem (FSP), the FFSP presents a larger solution space and a more complex solving
process due to the presence of parallel machines at different processing stages [6–9]. This
characteristic of the FFSP introduces additional challenges in scheduling jobs efficiently.
The FFSP can be further divided into two sub-problems. The first sub-problem involves
machine selection for each operation, where decisions must be made regarding which
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machine should perform a particular job at each stage. The second sub-problem entails
determining the optimal sequence of operations for each machine in the system.

The FFSP can be categorized into three types based on the characteristics of parallel
machines: FFSP with identical parallel machines (FFSP-IPM), FFSP with uniform parallel
machines (FFSP-UM), and FFSP with unrelated parallel machines (FFSP-UPM) ([10]). These
classifications help differentiate the variations of FFSP based on the nature of the parallel
machines involved.

1.1. FFSP Recent Publications

The FFSP has been gaining significant attention in both academic research and the
manufacturing industry, primarily because of its relevance and applicability in diverse
production systems. Flexible production systems are particularly favored, especially in
make-to-order environments where unexpected disruptions often arise during the execution
of scheduling plans. Researchers have observed in recent years that flexible systems, such
as the flexible flow shop, offer efficient approaches to address the inherent uncertainties in
these environments [11,12]. The literature on FFSP is abundant. Comprehensive literature
reviews on FFSP can be found in [13–16]. These sources offer detailed insights and analysis
of the FFSP problems. The following presents a brief literature review of recent publications
focusing on various variants of the FFSP.

In [17], the authors focused on the distributed FFSP with blocking constraints. They
proposed the utilization of greedy algorithms to tackle this problem. In the latter algo-
rithm, machine idle time is minimized through active decoding. A neighborhood search
framework is then implemented to increase the diversity of solutions. For generating
favorable initial solutions, a blocking constraint heuristic rule is introduced. In [18], a
FFSP problem with energy considerations is studied. A multi-objective MILP is proposed
for the latter problem. In addition, a Q-learning and an improved genetic algorithm are
presented to solve the addressed problem. The authors in [19] discuss the different solution
representations for the FFSP, their advantages and their disadvantages, and how to strike a
balance between reducing the solution space and ensuring an efficient search within the
reduced solution space. The authors in [20] address the dynamic FFSP with re-entrant jobs
and take into account worker fatigue and skill levels. A multi-agent technique reinforced
with deep learning is used to provide a near-optimal solution. Extensive experimental
study shows the efficiency of the proposed algorithm. The work in [21] studies an FFSP
problem with fuzzy maintenance time and with robots. A bi-objective mathematical model
is presented, and two multi-objective decision-making approaches, namely LP-metric and
goal attainment (GA), are utilized to solve the problem. The efficiency of the proposed
solution approaches is evaluated and ranked using the “TOPSIS” (Technique for Order
of Preference by Similarity to Ideal Solution) method. In the study [22], several uncertain
parameters related to the production process in FFSP are considered. A two-stage stochastic
programming is proposed to solve the addressed problem. To effectively solve the prob-
lem at hand, a novel variant of the pointer-based discrete differential evolution (PDDE)
algorithm, called H-PDDE, is proposed. This variant aims to enhance the performance
and efficiency of the PDDE algorithm in tackling the given problem. A distributed FFSP
with multiprocessor jobs is addressed in [23]. The studied problem is formulated as a
Markov Decision Process (MDP) and subsequently solved using a hybrid Q-learning-local
search algorithm. This approach combines the advantages of Q-learning, a reinforcement
learning technique, with local search methods to effectively find near-optimal solutions
for the problem. Revised and improved mathematical integer formulations are proposed
for the FFSP with chaining time-lag and time-varying resources in [24]. To strengthen the
formulations, valid inequalities are developed. These valid inequalities are tested and
assessed and the obtained results show their performance.

In [25], a comprehensive review of constructive heuristics for the FFSP is performed.
The reviewed heuristics are assessed experimentally and compared to four new proposed
heuristics. Two memory-based constructive heuristics are proposed, wherein jobs are
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sequentially inserted into a partial sequence. Promising insertions are retained in a list to
form the constructed sequence. Two Johnson’s algorithm-based constructive heuristics are
proposed as the second approach. The authors in [26] addressed an FFSP problem with
batch arising in the sand casting industry and proposed an enhanced cuckoo algorithm was
developed. In this improved version, crossover and mutation operations were introduced
to enhance the search capability of the cuckoo algorithm by replacing long and short flight
strategies. An FFSP problem taking into account human factors effect is studied in [27].
The two considered human factors are the fatigue factor and the multi-skilled workers. An
agent-based simulation system was created to handle uncertainties in the worker fatigue
model. In addition, this work introduces a novel simulation-based optimization (SBO)
framework that combines reinforcement learning (RL) and genetic algorithm (GA) to tackle
the hybrid flow shop scheduling problem. In [28], a distributed two-stage FFSP problem
with maintenance requirements is considered. A mixed-integer programming model and a
genetic algorithm are proposed. The FFSP problem with chaining time-lag constraints and
time-varying resources is investigated over the research work [24]. The latter work presents
new enhanced integer mathematical formulations and valid inequalities. The authors
in [29] study the FFSP with energy considerations. An optimization algorithm based on
the Hybrid Aquila Optimizer (HAO) is proposed to solve the latter problem. In [30], the
distributed heterogeneous FFSP with lot-streaming is investigated. A mixed-integer linear
programming model is presented, and a family of constructive heuristics and an iterated
local search algorithm are proposed. The presented constructive heuristics are time-based
rules. For more details on the FFSP, the reader is referred to the recent review paper [13–16].

1.2. FFSP Resolution Approaches

The scheduling problems associated with FFSP are known to be NP-Hard combina-
torial optimization problems, as established in prior research [31–33]. This classification
indicates the inherent computational complexity of solving FFSP scheduling problems.
NP-hardness implies that finding an optimal solution for these problems is challenging and
time-consuming, especially as the size of the problem instance increases. Consequently,
developing efficient algorithms and heuristics becomes crucial in addressing FFSP schedul-
ing problems and obtaining near-optimal solutions within reasonable time frames. The
NP-Hard nature of FFSP scheduling problems underscores the significance of ongoing
research efforts to devise effective methodologies and optimize scheduling strategies for
practical applications in various industries.

According to existing literature [9,34,35], the FFSP can be primarily tackled using two
types of methods: exact methods and approximate methods. Exact methods encompass
approaches such as mixed-integer linear programming (MILP) [36], branch-and-bound
algorithm (B&B) [37,38], and branch-and-cut method [39,40]. On the other hand, approxi-
mate methods mainly include heuristic methods and metaheuristic algorithms. Heuristic
algorithms leverage the specific characteristics of FFSP [31,41], such as dispatching rules
and NEH [42], to obtain feasible solutions within a relatively short time. However, the
quality of these solutions cannot be guaranteed.

In contrast, metaheuristic algorithms, such as simulated annealing (SA) [43], artificial
bee colony algorithm (ABC) [44], migrating birds optimization algorithm (MBO) [45], ge-
netic algorithms (GA) [10], and others [9,46], are efficient and popular methods for solving
FFSP. It is worth noting that for the effective implementation of metaheuristic algorithms,
specific encoding and decoding rules must be designed for the FFSP problem [47–49]. If
not properly designed, the solution quality of metaheuristic algorithms can suffer ([50–53]).
In comparison, exact algorithms can solve small-sized problems optimally, albeit with
slower computation speed. However, for large-sized problems, finding a feasible solution
becomes challenging, and it may even lead to memory limitations [40]. On the other
hand, approximate methods provide approximate solutions with unpredictable perfor-
mance. Consequently, studying the efficiency of exact algorithms in addressing scheduling
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problems, especially for small-sized instances where optimal solutions are desired, holds
significant importance.

A hybrid metaheuristic combines multiple metaheuristic algorithms or incorporates
elements from different techniques to solve optimization problems. This approach has
gained attention from scholars across various fields. In [54], the authors proposed a hybrid
tournament differential evolution algorithm to solve a two-warehouse inventory control
problem with deteriorating items. The objective was to determine the lot size, maximum
shortage level, and cycle length for the system. Similarly, in [55], the authors utilized binary
tournament-based quantum-behaved particle swarm optimization algorithms to tackle
an imperfect production inventory problem with shortages. In the context of the FFSP,
several studies proposed such a technique (hybrid metaheuristics) to tackle complex FFSP
problems. In this regard, the authors in [56] proposed a Hybrid Brain Storm optimization
algorithm (HBOS) to solve a distributed FFSP problem. In addition, a mathematical
model is formulated. A hybrid EDA-DE algorithm is proposed in [57] to address the
two-stage FFSP. This algorithm combines the estimation of distribution algorithm (EDA)
and differential evolution (DE) algorithm. It takes into account job-dependent deteriorating
effects and non-identical job sizes simultaneously, especially in the context of parallel
batching machines. In [58], Evolutionary algorithms such as particle swarm optimization
and genetic algorithms are combined with a clustering-based approach to handle the hybrid
flow shop scheduling problem. This problem involves unrelated and eligible machines, as
well as fuzzy processing times and fuzzy due dates.

To the best of the author’s knowledge, there is limited literature on the MILP modeling
of FFSP. For example, authors in [36] have proposed the only MILP model for FFSP-UP.
However, for the extended problems of FFSP, such as FFSP with sequence-dependent
setup times, no-wait FFSP, and FFSP with blocking, there are currently no feasible MILP
models available to solve them. Although the popularity of MILP modeling for scheduling
problems has grown in recent years, thanks to advancements in computing performance
and the availability of efficient software tools like CPLEX and GUROBI, there is still a
need for significant efforts to enhance their performance in the field of scheduling. Indeed,
when it comes to medium-sized and large-sized problems, these mathematical models still
encounter several significant challenges. The complexity and computational requirements
of the models increase exponentially as the problem size grows, leading to difficulties in
finding feasible solutions within reasonable time limits ([10,13–16,39,40]).

1.3. Manufacturing Practical Example for the FFSP with Unloading Operations

From a practical point of view, unloading operations can indeed be as important as
setup times in certain real-life manufacturing processes. The sand casting process serves as
a real-life manufacturing example where the unloading operation plays a critical role [26].
Indeed, in the context of sand casting, the unloading (or removal) operation refers to the
process of removing the sand mold from the solidified metal casting. Sand casting is a
widely used manufacturing method for producing metal components with complex shapes
and sizes. After the molten metal has been poured into the sand mold and allowed to cool
and solidify, the unloading operation begins. The primary goal is to separate the solidified
metal casting from the surrounding sand mold without causing any damage to the casting
itself. The removal process typically involves various techniques and equipment, including:

1. Shakeout: The sand mold is vibrated or mechanically shaken to loosen and remove
the sand from the casting. This can be done manually or using specialized equipment
such as shakeout machines or tumblers.

2. Knockout: In this method, the sand mold is physically knocked or struck to dislodge
the sand from the casting. This can be done by hand or with the help of hammers,
mallets, or pneumatic tools.

3. Sandblasting: High-pressure air or abrasive materials are used to remove the remain-
ing sand particles from the casting surface. Sandblasting helps to achieve a clean and
smooth finish on the casting.
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4. Cleaning and finishing: After most of the sand has been removed, the casting may
undergo further cleaning and finishing processes to remove any remaining traces of
sand, smooth rough edges, or remove any surface imperfections.

The unloading operation in sand casting is a critical step in the manufacturing process.
It requires careful handling to ensure the integrity of the casting while effectively and
efficiently separating it from the sand mold, which requires skilled operators.

1.4. FFSP with Unloading Operations and Research Gaps Identification

It is important to mention that machining and non-machining times are the two
main inputs into scheduling problems. The machining time is the processing time, while
the non-machining time contains the setup time (preparation time), the loading, and the
unloading time. The non-machining activities time is about 95% of the total time utilized in
production [59]. Therefore, it is very crucial to take into account the non-machining time
during scheduling to narrow the gap between theory and practical. In this context, several
research works in the area of FFSP considering setup time (loading and/or preparation of
machines) are presented [60–66].

In the majority of the presented works [13–16] for the FFSP, the unloading time, or the
time required to remove a job from a machine, is neglected. A few research papers taking
into account the unloading time (independently from the processing time) were presented.
A review of these few papers is presented in the sequel. In this context, authors in [67]
addressed the two-stage FFSP with independent setup and unloading times where the first
stage contains only one machine. The authors proposed a family of efficient heuristics,
which are based on Sule’s rule [68], initially developed for scheduling in permutation
flow shop environments. In [69], the authors addressed the multi-stage Flexible Flow
Shop Problem (FFSP) with the objective of minimizing maximum lateness. The problem
involved jobs with precedence constraints, due dates, and lag times, which could include
setup, unloading, or transportation times. The study presented a family of heuristics,
four of which were extensions of existing heuristics initially developed for the flow shop
scheduling problem. Additionally, other heuristics were specifically designed to effectively
consider the precedence constraints. In [43], the study focused on the Flexible Flow Shop
Problem with an unrelated parallel machine (FFSP-UP) with total flow time minimization.
The jobs are subject to setup and unloading time constraints. The authors proposed a
metaheuristic based on simulated annealing to address this problem effectively. The
study in [70] focuses on the two-stage no-wait FFSP problem, where one stage contains
one machine, and the setup and unloading times for each job are independent of the
processing time. Recognizing the problem’s NP-completeness, the research proposes a
heuristic algorithm that independently addresses the sequencing and assignment of jobs
to each stage. This heuristic employs Sule’s rule to schedule jobs in the first stage, which
consists of a single machine. In the second stage, each completed job from the first stage
is assigned to the most available machine. The work in [71] focuses on a multiple-lot lot-
streaming problem in a two-stage FFSP with unloading times comprising one machine in
the first stage and two parallel machines in the second stage. The study utilizes fundamental
findings from the single-lot problem to develop mathematical programming-based heuristic
methods for solving the problem.

The literature review of FFSP with unloading operation reveals a relatively limited
body of research on this specific aspect. Despite the considerable attention given to FFSP,
studies that specifically take into account unloading operations are scarce. Recognizing the
importance of the unloading phase in several manufacturing processes, it becomes evident
that this aspect merits a more comprehensive investigation. Efficient unloading operations
are integral to the seamless functioning of FFSP, influencing the overall productivity and
effectiveness of manufacturing processes. Given the current gaps in the literature, there
exists a need for further exploration and analysis of the FFSP unloading operation. Un-
derstanding and addressing the unique challenges and opportunities presented by this
component can contribute significantly to the advancement of manufacturing systems
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and optimization strategies. Based also on the existing literature for FFSP with unloading
times ([43,67–71]), it turns out that these studies focus on limited configurations involving
two stages, with one machine in one of them. However, this motivates the consideration
of the general case of multi-stage FFSP with unloading operations. Moreover, none of the
previously presented papers solely address the unloading operation, which highlights the
importance of gaining a comprehensive understanding of its impact.

Therefore, this paper integrates the unloading operation in a Flexible Flow Shop Prob-
lem with identical parallel machines at each stage. The obtained problem is an extension
of the classical FFSP. This is the flexible flow shop scheduling problem with unloading
operations (FFSPU). The unloading operation for each processed job on a machine requires
a certain time to be performed. Until and during the unloading phase, a machine is not
available for treating other jobs. Generally, the unloading operation is performed by an
operator, which can be a human, a robot, or other equipment. The operator has the flexi-
bility to initiate the unloading immediately after the completion of the processing stage.
Alternatively, the unloading operation can be postponed or delayed to a later date without
extending the overall makespan of the process. This flexibility provides the operator with
the opportunity to make decisions regarding the optimal timing for starting the unloading
operation. During the waiting period for unloading, the operator can utilize this time to
perform other jobs, therefore maximizing efficiency and productivity. This flexibility in
scheduling allows for improved resource utilization and adaptability within the overall
operational process. The goal of this research work is to study the FFSPU with the purpose
of finding the optimal processing sequences on the machines that minimize the makespan.

1.5. Comparison of the Proposed Algorithms with the Existing Ones and Main Contributions

It is important to note that the FFSP is a challenging problem from a theoretical
perspective since it is strongly NP-Hard, even if only two stages are involved, and one
of them contains more than one machine [31]. Even if preemption is allowed, the FFSP
remains NP-Hard [32]. Consequently, the majority of the FFSP variants are strongly NP-
Hard [13–16]. In our case, the current studied problem FFSPU is NP-Hard in the strong
sense. To tackle the latter problem, a two-phase efficient heuristic is proposed. This
heuristic is based on solving iteratively a parallel identical machine-scheduling problem
with release dates, unloading times, and delivery times. The proposed heuristic is a two-
phase procedure. In the first phase, an initial feasible solution is derived. The second phase
is an improvement. In addition, a family of efficient lower bounds is presented. These
lower bounds allow the evaluation of the performance of the proposed heuristic over the
relative gap. An extensive computational study is carried out on benchmark test problems.
This computational study provides evidence that the newly proposed lower bounds and
the heuristic are efficient.

To the best of the author’s knowledge, there is currently no existing algorithm pro-
posed to solve the FFSPU (Flexible Flow Shop Scheduling Problem with Unloading).
Consequently, in this study, the proposed algorithms are qualitatively compared to existing
procedures, including metaheuristics, hybrid metaheuristics, and exact solutions such as
the MILP (Mixed-Integer Linear Programming). This comparison serves to highlight the
novelty and effectiveness of the proposed algorithms in addressing the FFSPU, filling
the gap in the existing literature. Indeed, when compared to the existing approximate
solutions for the FFSP (especially the metaheuristics and hybrid metaheuristics), the two-
phase heuristic proposed in this study is considered preferable. Indeed, the two-phase
heuristic generates schedules that exhibit high-quality solutions at each stage. This implies
that the resulting schedules are likely to be closer to the optimal solution compared to
the existing approximate solution. In addition, the two-phase heuristic is designed to
provide near-optimal solutions within an acceptable computation time. This is especially
important for medium and large-scale instances of the FFSPU, where exact methods tend
to be inefficient, and metaheuristics are time-consuming procedures. The preference for the
two-phase heuristic is justified by its ability to strike a balance between solution quality
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and computational efficiency. Furthermore, the two-phase heuristic uses an extended
version of an existing efficient heuristic for the parallel machine-scheduling problem with
release and delivery times that incorporate unloading times efficiently. By leveraging this
extension, the heuristic becomes more adaptable to the specific requirements of the FFSPU.
Finally, an extensive experimental study conducted on benchmark test problems supports
the effectiveness of the two-phase heuristic. The results demonstrate its effectiveness, as
indicated by the average computation time and mean relative gap. Considering these
factors, the two-phase heuristic emerges as a preferable choice for addressing the FFSPU.
Its ability to produce high-quality solutions within a reasonable computation time makes it
a valuable contribution to the field.

The main contributions of the current study are as follows:

• The study focuses on the FFSPU, which has received limited attention in existing
literature. By addressing this underexplored problem, the research contributes to
gaining deeper insights and expanding the existing knowledge base in this field.

• The research presents intriguing new properties of the studied problem, such as its
symmetry, which has a positive impact on enhancing the solution quality. These novel
properties contribute to advancing the potential improvements in solving the problem.

• The research introduces a novel and efficient two-phase heuristic that offers a short
computational time while producing near-optimal solutions. This proposed heuristic
provides a promising approach to address the problem effectively and efficiently.

• The study presents new lower bounds that serve as a metric to measure the maximum
deviation of the proposed two-phase heuristic from the optimal solution. These lower
bounds provide valuable insight into evaluating the performance of the heuristic and
its proximity to the optimal solution.

• Consider the multi-stage FFSPU with up to ten stages, capturing the essence of the FFSPU.

1.6. Outline of the Paper

The remainder of this paper follows the following structure. Section 2 presents the
definition of the problem as well as its important features. Section 3 presents the set of
lower bounds. Section 4 describes the details of the proposed heuristic. Section 5 presents
the experimental study as well as the obtained results. Lastly, the conclusion and future
work are presented in Section 6.

2. Problem Description

In this section, we will formally define the study problem. In addition, some of its key
characteristics are discussed.

2.1. Problem Definition

The flexible flow shop scheduling problem with unloading operations (FFSPU) consists
of processing a set J = {1, 2, . . . , n} of n jobs over K stages S1, S2, . . . , SK in series. A set
Mi =

{
Mi,1, Mi,2, . . . , Mi,mi

}
of mi identical parallel machines is composing the stage Si

(i = 1, . . . , K). The processing time of job j at stage Si is denoted by pri,j. After finishing
processing on a machine Mi,u of stage Si the job j ∈ J requires uni,j units of time to be
unloaded. It is worth mentioning that the starting of the unloading operation for a job
j ∈ J could not be its completion of processing. Indeed, the unloading is independent
of the processing. During the period between the ending processing and the ending of
the unloading period, the machine Mi,u is not available for processing other jobs. This is
because the unloading is independent of processing. In addition, the unloading operation’s
earliest starting time for a job j ∈ J is its ending processing date. Each job j ∈ J is
processed from stage S1 to stage SK in that order. The scheduling is performed under the
following assumptions:

• Job preemption during the processing is not allowed.
• Each job is processed only in one machine.
• A machine processes at most one job at the same time.
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• The buffer between two consecutive stages has unlimited capacity.
• All the processing and unloading times pri,j, uni,j (i = 1, . . . , K; j = 1, . . . , n) are deter-

ministic and positive integers.
• All machines and all jobs are available from time zero onwards.

The completion time of a job within a feasible schedule is the date of completing the
unloading operation. If σ denotes a feasible schedule and ci,j(σ) the completion unloading
time of job j in stage Si relative to σ, then the maximum completion time (or makespan) is
given by:

Cmax(σ) = max
j∈J

(cK,j(σ)).

The objective is to find a feasible schedule σ∗ that minimizes the makespan or the
makespan. Following the three-field notation [72], the current studied problem is denoted

FHK,
((

PM(l)
)K

l=1

)∣∣uni,j
∣∣Cmax.

In the latter notation, the first field, FHK indicates the flexible flow shop with K

stages. The symbol
((

PM(l)
)K

l=1

)
is precise that in each stage, we have identical parallel

machines. In the second field, the unloading time is presented. The last field is reserved for
the objective function, which is the makespan.

An illustrative example is presented as follows.

Example 1. Consider the two-stage FFSPU where n = 5, and m1 = m2 = 2. The processing times
pri,j and the unloading times uni,j (i = 1, 2 and j ∈ J) are presented in Table 1.

Table 1. Data of Example 1.

j 1 2 3 4 5

S1 pr1,j 1 2 1 2 2
un1,j 1 1 2 1 2

S2 pr2,j 2 1 1 2 1
un2,j 1 1 1 1 1

Figure 1 presents a feasible schedule for the addressed scheduling problem.
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Figure 1. Gantt chart of a feasible schedule for Example 1.
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In Figure 1, job 4 remains on machine M1,2 after completing processing at Time 5. The
unloading operation starts later at Time 7 and finishes at Time 8. This is the completion time
c1,4 of job 4. This shows that the unloading operation is independent of processing time.

In this regard, the waiting unloading time refers to the duration during which a job
must wait before it can undergo the unloading operation. This typically occurs when the
unloading resource (operator) or equipment is occupied with another job or when some
specific constraints or dependencies delay the start of the unloading process. In our case,
the waiting unloading is managed to ensure the schedule stays within the makespan of the
critical path.

2.2. Problem’s Proprieties
2.2.1. Complexity

The complexity of the studied problem is the subject of Lemma 1.

Lemma 1. The problem FHK,
((

PM(l)
)K

l=1

)∣∣uni,j
∣∣Cmax is NP-Hard in the strong sense.

Proof. The problem FHK,
((

PM(l)
)K

l=1

)∣∣uni,j
∣∣Cmax is an extension of the two-stage FFSP

FH2,
((

PM(l)
)2

l=1

)
| |Cmax (K = 2 and uni,j = 0), which is strongly NP-Hard [73]. �

2.2.2. Symmetry Propriety

Definition 1. The reverse problem of FHK,
((

PM(l)
)K

l=1

)∣∣uni,j
∣∣Cmax is defined as scheduling

from the last stage SK until reaching the first stage S1, in that order. In other terms, the reverse
problem (the symmetric) is obtained by inverting the roles of the stages.

Based on the latter definition, the following notations and definitions are presented.

• The forward problem of FHK,
((

PM(l)
)K

l=1

)∣∣uni,j
∣∣Cmax is the scheduling from S1

to SK.

• The backward (or symmetric) problem of FHK,
((

PM(l)
)K

l=1

)∣∣uni,j
∣∣Cmax is the schedu-

ling from SK to S1.

Definition 2

• The stages and the number of machines for the backward problem are, respectively, denoted
SB

k = SK−k+1 and mB
k = mK−k+1 (k = 1, . . . , K).

• The machines are denoted MB
k,l = MK−k+1,l

(
k = 1, . . . , K; l = 1, 2, . . . , mB

k
)
.

• The processing and unloading times for the backward problem are denoted prB
k,j and unB

k,j,
respectively.

• The processing and unloading times for the backward problem are defined prB
k,j = un K−k+1,j

and unB
k,j = pr K−k+1,j, respectively.

• The backward (or symmetric) problem is denoted FHK,
((

PM(l)
)1

l=K

)∣∣∣unB
k,j

∣∣∣Cmax.

• FHK,
((

PM(l)
)1

l=K

)∣∣∣unB
k,j

∣∣∣Cmax is the notation of the symmetric of FHK,((
PM(l)

)K

l=1

)∣∣uni,j
∣∣Cmax.

It is worth mentioning that for the symmetric problem, the unloading time for a job is
equivalent to its processing time. Conversely, the processing time serves as the unloading
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time for the symmetric problem. This occurs because scheduling for the symmetric problem
proceeds from the last stage to the first in that particular direction, resulting in an inversion
of the roles between processing time and unloading time.

The following result illustrates the importance of studying the symmetric problem.

Proposition 1. Any feasible schedule FS for the problem FHK,
((

PM(l)
)K

l=1

)∣∣uni,j
∣∣Cmax is

naturally transformed into a feasible schedule FSB for the symmetric problem and vice versa.
Moreover, the schedules FS and FSB have the same makespan.

Proof. Let FS be a feasible schedule for FHK,
((

PM(l)
)K

l=1

)∣∣uni,j
∣∣Cmax. Naturally, a feasi-

ble schedule FSB for the symmetric problem is obtained by keeping the same assignments
and sequences in the machines as for FS. A new reversed time scale is adopted and given
by the following expression: tB = Cmax − t, where t is the forward problem time scale.
The two feasible schedules FS and FSB have the same critical path and, therefore, have
the same makespan. Similarly, by adopting the same above strategy, a feasible schedule
FSB for the symmetric problem is transformed into a feasible schedule FS for the original
problem with t = Cmax − tB and tB the reverse time scale. �

To illustrate the symmetric problem concept, example 1 is reconsidered. For this
example, the data for the reverse (symmetric) problem is given in the following table
(Table 2).

Table 2. Data of Example 1 for the symmetric problem.

j 1 2 3 4 5

SB
1 = S2 prB

1,j 1 1 1 1 1
unB

1,j 2 1 1 2 1
SB

2 = S1 prB2,j 1 1 2 1 2
un2,j 1 2 1 2 2

Figure 2 presents a feasible schedule for the symmetric problem.
It is worth mentioning that the symmetric problem is investigated automatically for

the proposed procedures (lower bounds and heuristic) to improve the quality of the final
obtained solution.

To better illustrate the symmetric aspect of the studied problem, Figure 3 has been
included. This figure visually represents the symmetrical characteristics inherent in the
problem under investigation. By examining this figure, readers can gain a better under-
standing of the symmetries present in the problem structure and how they may impact
the formulation and solution approach. The inclusion of Figure 3 enhances the clarity and
visual representation of the symmetric nature of the problem at hand.
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The latter proposition (Proposition 1) allows obtaining the following important result.

Corollary 1. The two problems FHK,
((

PM(l)
)K

l=1

)∣∣uni,j
∣∣Cmax (Forward) and FHK,((

PM(l)
)1

l=K

)∣∣∣unB
k,j

∣∣∣Cmax (symmetric) present the same optimal makespan.

Proof. An immediate consequence of Proposition 1. �

In the sequel, some useful notations are presented. For each stage Sk(k = 1, 2, . . . , K)
and for each job j ∈ J, a release date rek,j and a delivery time qek,j are expressed as follows. rek,j =

k−1
∑

i=1

(
pri,j + uni,j

)
if k > 1

rekj = 0 if k = 1
, and

 qek,j =
K
∑

i=k+1

(
pri,j + uni,j

)
if k < K

qek,j = 0 if k = K

respectively. In addition, for each stage Sk(k = 1, . . . , K):

• rek,j(i) denotes the ith smallest value of the rek,j’s ( j = 1, . . . , n).

• qek,j(i) denotes the ith smallest value of the qek,j’s (j = 1, . . . , n).

•
(

prk,j + unk,j

)
(i)

denotes the ith smallest value of the
(

pri,j + uni,j
)
’s (j = 1, . . . , n).

3. Lower Bounds

A set of lower bounds for the studied problem is presented in this section. These lower
bounds are of two kinds. The first type relies on the capacity relaxation of all stages except
one. A second lower bound is based on estimating the minimum idle time in each stage.
The lower bounds are also useful for assessing the effectiveness of the heuristic throughout
measuring the relative gap.

3.1. One-Stage-Based Lower Bound

By relaxing the capacities (Considering an infinite number of machines) for all stages
but stage Sk, we obtained a parallel machine-scheduling problem Pm| rek,j, unk,j, qek,j

∣∣∣Cmax

with release dates rek,j, unloading times unk,j, delivery times qek,j and several machines
m = mk. The latter problem is relaxed by omitting the idle time between the complete
processing of a job and the starting of the unloading operation. In so doing, the obtained
problem is a parallel machine one Pm| rek,j, qek,j

∣∣∣Cmax with only the release dates rek,j and
delivery times qek,j. The processing time is prk,j + unk,j for each job j.

In [74], authors proposed a lower bound for the parallel machine-scheduling problem
with release dates and delivery times Pm| rek,j, qek,j

∣∣∣Cmax . The latter lower bound is used

to provide a lower bound for the relaxed problem Pm| rek,j, qek,j

∣∣∣Cmax . This lower bound is
given by the following expression:

LBk
S =

⌈
1

mk

(
mk

∑
i=1

rek,j(i) +
n

∑
j=1

(
prk,j + unk,j

)
+

mk

∑
i=1

qek,j(i)

)⌉
(1)

Consequently, the following result holds.

Proposition 2.
LBS = max

1≤k≤K
{LBk

S} (2)



Symmetry 2023, 15, 2005 13 of 28

is a valid lower bound for the problem FHK,
((

PM(l)
)K

l=1

)∣∣uni,j
∣∣Cmax with time complexity

O(Kn).

Proof. LBk
S is a lower for a relaxed problem Pmk

∣∣ rek,j, qek,j

∣∣∣Cmax then LBk
S is also a lower

bound for the problem FHK,
((

PM(l)
)K

l=1

)∣∣uni,j
∣∣Cmax. Therefore, LBS = max

1≤k≤K
{LBk

S} is a

lower bound for the studied problem. In addition, the time complexity of LBk
S is O(n), thus

repeating it K times results in a time complexity O(Kn). �

3.2. Two-Stage Based Lower Bound

In this subsection, the second lower bound is derived. This lower bound is based
on estimating the minimum idle time in stage Sk based on a particular schedule in the
predecessor stage Sk−1, this is the two-stage-based lower bound. Before the presentation of
the derived lower bounds, we recall useful parallel machine-scheduling problems. This
problem is denoted Pm| |∑ Cj and described as follows. A set J = {1, 2, . . . , n} of n jobs
must be processed on m identical parallel machines Mi (i = 1, 2, . . . , m) without preemption.
Each job j ∈ J needs to be processed during pj units of time. The purpose is to find a feasible
schedule σ that minimizes ∑ Cj, where Cj is the completion time of job j with respect to
σ. It is worth mentioning that the Pm| |∑ cj problem is a polynomial one, and the optimal
solution is obtained using the Shortest Processing Time (SPT) dispatching rule [75].

The following useful notations and definitions are also required.

• SPTk(l): is the sum of the completion times of the l jobs with the smallest
(

prk,j + unk,j

)
(i)

(j ∈ J) and scheduled on the mk machines of stage Sk according to the SPT rule
(i ∈ {1, 2, . . . , K− 1}).
The following result presents the second lower bound.

Proposition 3. LBk
2S given by the following expression:

LBk
2S = rek−1,j(1) +

⌈
1

mk

(
SPTk−1(mk) +

n

∑
j=1

(
prk,j + unk,j

)
+

mk

∑
i=1

qek,j(i)

)⌉
(3)

is a valid lower bound in stage Sk (2 ≤ k ≤ K) with time complexity O(nlogn).

Proof. For an optimal schedule with makespan C∗max and a stage Sk (2 ≤ k ≤ K), consider
the followings:

• hi: The first processed job in machine Mk,i
• ni: The last unloaded job from machine Mk,i
• sk,hi

: The starting time of job hi on machine Mk,i
• Pk,i: The total processing time in machine Mk,i
• Unk,i: The total unloading time in machine Mk,i
• Idk,i: The total idle time of machine Mk,i from time 0 until the completion of unloading

of job ni. �

Thus,
sk,hi

+ Pk,i + Unk,i + Idk,i + qek,ni
≤ C∗max. (4)

We have,

∑mk
i=1 sk,hi

+ ∑mk
i=1 Pk,i + ∑mk

i=1 Unk,i + ∑mk
i=1 Idk,i + ∑mk

i=1 qek,ni
≤ mkC∗max, (5)
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Furthermore, we observe that:

∑mk
i=1 Pk,i = ∑n

j=1 pk,j and ∑mk
i=1 Unk,i = ∑n

j=1 unk,j (6)

In addition, we have:
∑mk

i=1 qek,j(i) ≤∑mk
i=1 qek,ni

(7)

By relaxing the release dates in stage Sk−1 and considering rek,j = rek,j(1), a parallel

machine problem Pmk−1

∣∣ ∣∣∑ Cj is obtained and

mk × rek,j(1) + SPTk−1(mk) ≤∑mk
i=1 sk,hi

(8)

Based on (5)–(8) it follows:

rek−1,j(1) +

⌈
1

mk

(
SPTk−1(mk) +

n

∑
j=1

(
prk,j + unk,j

)
+

mk

∑
i=1

qek,j(i)

)⌉
≤ C∗max

The main effort of computing LBk
2S is sorting prk,j + unk,j (j ∈ J) which requires

O(nlogn) time.
An immediate result is presented over the following corollary.

Corollary 2.
LBF

2S = max
2≤k≤K

{
LBk

2S

}
(9)

is a valid lower bound with time complexity O(Knlogn).

Proof. Based on the above proposition (Proposition 3), LBk
2S is a valid lower bound. Thus,

LBF
2S = max

2 ≤ k ≤ K

{
LBk

2S

}
is also a lower bound requiring O(Knlogn) time. �

Taking advantage of the symmetry propriety of the studied problem, the lower bound
given in Corollary 2 might be enhanced as follows.

Corollary 3. Considering the symmetric problem as defined in Definition 1, a similar lower bound
as LBB

2S is obtained and

LB2S = max
{

LBF
2S, LBB

2S

}
(10)

is a valid lower bound with time complexity O(Knlogn).

It is interesting to note that LBS and LBF
2S do not show dominance relationships. The

following are two examples that illustrate this.

Example 2. Consider the following instance: K = 3, m1 = m2 = m3 = 2 and n = 4. The
processing and unloading times in each stage are presented in Table 3.

Table 3. Data of Example 2 (LBS >LBF
2S).

j 1 2 3 4

S1
pr1,j 13 10 5 6
un1,j 10 11 9 7

S2
pr2,j 12 4 13 7
un2,j 9 8 5 12

S3
pr3,j 6 6 11 12
un3,j 8 12 13 15
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In this case, we have:

LB3
S =

⌈
{(13) + (19)}+ {(14) + (18)}+ [(14) + (20) + (24) + (27)] + (0)

2

⌉
= 75

Moreover, we have:

LB1
2S = 0 +

⌈
(0) + (23) + (21) + (14) + (13) + {(32) + (35)}

2

⌉
= 69

LB2
2S = 0 +

⌈
(14 + 13) + (21 + 12 + 18 + 19) + (14 + 20)

2

⌉
= 66

LB3
2S = 13 +

⌈
(12 + 18) + (14 + 20 + 24 + 27) + (0 + 0)

2

⌉
= 71.

Thus, in this case, we have LBS < LBF
2S.

Example 3. Consider the following two-stage instance: m1 = 1, m2 = 2 and n = 5. The
processing and unloading times are displayed in Table 4.

Table 4. Data of Example 3 (LBS < LB2S).

j 1 2 3 4 5

S1 pr1,j 1 1 1 1 1
un1,j 1 1 1 1 1

S2 pr2,j 2 4 3 1 2
un2,j 2 1 2 3 5

In this case, we have:

LB1
S =

⌈
(0) + (2 + 2 + 2 + 2 + 2) + (4)

1

⌉
= 14

LB2
S =

⌈
(2 + 2) + (4 + 5 + 5 + 4 + 7) + (0 + 0)

2

⌉
= 15

Therefore, LBS = max
(

LB1
S, LB2

S
)
= 15.

On the other hand, we have:

LB2
2S = 0 +

⌈
(2 + 4) + (4 + 5 + 5 + 4 + 7) + (0 + 0)

2

⌉
= 16.

Hence, we obtain LBS < LBF
2S.

3.3. A General Lower Bound

A more general and stronger lower bound can be derived by simultaneously consider-
ing LBS and LB2S. Therefore,

Corollary 4.
LB = max(LBS, LB2S) (11)

is a valid lower bound for the studied problem.

Proof. Immediate. �
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4. A Two-Phase Optimization-Based Heuristic (H)

In this section, we develop a heuristic that is based on a multi-start stage and which is
composed of two phases. This heuristic is designed to deliver approximate solutions that

are as close as possible to the optimal solution for FHK,
((

PM(l)
)K

l=1

)∣∣uni,j
∣∣Cmax problem.

Phase 1 (PH1) involves developing an initial feasible solution, which is then improved
in Phase 2 (PH2). During both phases, identical parallel machine-scheduling problems
with release dates rj, unload times uj and delivery times qj ( Pm

∣∣rj, uj, qj
∣∣Cmax ) must be

solved, or an equivalent variant that minimizes the maximum lateness ( Pm
∣∣rj, uj

∣∣Lmax ). In
this approach, a heuristic so-called Approximate Decomposition Algorithm for Unloading
(ADAU) is developed and used to derive an approximate solution for the Pm

∣∣rj, uj, qj
∣∣Cmax

problem since it is known to be intractable. It is worth mentioning that ADAU is general-
izing the Approximate Decomposition Algorithm (ADA), which is developed initially to
provide an approximate solution for Pm

∣∣rj, qj
∣∣Cmax [76].

ADAU is specifically designed to address the identical parallel machine-scheduling
problem with release dates, delivery times, and unloading times. It takes into account the
complexities associated with unloading times, which are the durations required to remove
completed jobs from machines before they can start processing the next job. By considering
these factors, ADAU aims to optimize scheduling outcomes comprehensively. On the other
hand, ADA is tailored to provide feasible solutions for the same parallel machine problem
but without considering unloading times. It focuses on finding schedules that meet the
necessary constraints and requirements without incorporating unloading times.

In each iteration of ADAU (Adaptive Dispatching Algorithm with Unloading Times),
the algorithm selects the two machines with the lowest and highest completion times,
along with the corresponding scheduled jobs on those machines. This selection results in
a two-machine-scheduling problem that incorporates release dates, delivery times, and
unloading times ( P2

∣∣rj, uj, qj
∣∣Cmax ).

Solving this two-machine problem is comparatively easier than solving the general
problem Pm

∣∣rj, uj, qj
∣∣Cmax because it involves only two machines and a restricted number

of jobs. Thus, the focus of the algorithm shifts to finding an optimal solution for this
simplified problem.

To address this two-machine problem, in this work, a truncated branch-and-bound
algorithm is developed. If the newly obtained makespan is lower than the existing one,
an improvement is detected, and the existing solution is updated accordingly. However,
if no further improvement is detected or a predefined stopping condition is reached, the
algorithm proceeds by selecting the machine with the highest completion time and another
machine repeating the same procedure.

By iteratively applying these steps, ADAU aims to refine the scheduling solution and
improve the overall makespan. The use of the truncated branch-and-bound algorithm
allows for an efficient exploration of the solution space, ultimately leading to better schedul-
ing outcomes. The ADAU algorithm is fast and yields optimal scheduling in most cases,
according to our experiments.

Detailed descriptions of both the constructive (PH1) and improvement (PH2) phases
are provided in the sequel.

4.1. The Initial Solution Construction Phase

For each i (1 ≤ i ≤ K), a feasible schedule γi is built using a constructive procedure.
The pseudo-code for stage Si is presented over the following algorithm (Algorithm 1).

As a first step, a Pmi

∣∣rj, uj, qj
∣∣Cmax problem that is defined on stage Si is solved

(Steps 1–2). The previous resolution is performed using the already mentioned ADAU
heuristic. The obtained completion unloading times UCi,j (j ∈ J) in stage Si are considered
to be release dates for the stage Si+1 and the resulting problem Pmi+1

∣∣rj, uj, qj
∣∣Cmax is solved

(Steps 3.1–3.2). This operation is repeated for each downstream stage (from Si+2 until SK in
that order) (Steps 3.1–3.2).
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Solving the parallel machine PmK

∣∣rj, uj, qj
∣∣Cmax in the last stage SK gives a preliminary

estimate of the makespan (Step 4). As a last step in obtaining a complete solution, the same
iterative strategy is used to schedule the upstream stages Si−1, . . . , S1, as well. In fact, a
P
∣∣rj, uj

∣∣Lmax problem defined in stage Si−1 by setting a due date dj for each job j equal to its
start time in a stage in Si (Step 5.1). Using ADAU, a schedule of Si−1 that has a maximum
lateness of Li−1

max, is generated (Step 5.2). There are two possible scenarios:

• Scenario 1: Li−1
max > 0, it is necessary in this case that all the starting times are right-

shifted in all subsequent stages (Si, . . . , SK) by Li−1
max units of time;

• Scenario: Li−1
max ≤ 0, it is necessary in this case that all the starting times are left-shifted

in all subsequent stages (Si, . . . , SK) by Li−1
max units of time;

The value of UBi is obviously updated accordingly in both cases (Step 5.3).

Consequently, a feasible solution γi for FHK,
((

PM(l)
)K

l=1

)∣∣uni,j
∣∣Cmax problem is

obtained by repeating this process for stages Si−1, . . . , S1, in that order.
As a result, we can obtain up to K different schedules γ1, . . . , γK for i = 1, . . . , K. The

best-derived schedule is denoted by γ with makespan UB.

Algorithm 1: Construction of an initial feasible schedule γi

Step 1: For the problem Pmi

∣∣∣rj, uj, q,j

∣∣∣Cmax assign a release date rj = rei,j,
a processing time pj = pri,j, an unloading time uj = uni,j,
and a delivery time qj = qei,j for each j ∈ J.

Step 2: Solve Pmi

∣∣∣rj, uj, q,j

∣∣∣Cmax given in Step 1 using ADAU.
Let CUi,j be the completion unloading time for each j ∈ J.
If i = K then go to Step 4.

Step 3: For s = i + 1 to K//downstream phase
Begin
Step 3.1: For the problem Pms

∣∣∣rj, uj, qj

∣∣∣Cmax assign for j ∈ J
a release date rj = res,j, a processing time pj = prs,j,
an unloading time uj = uni,j, and a delivery time qj = qes,j.

Step 3.2: Solve Pms

∣∣∣rj, uj, qj

∣∣∣Cmax given in Step 3.1 using ADAU.
Let CUh,j be the completion unloading time for each j ∈ J.
End (For)

Step 4: Set UBi = max
j∈J

(
CUK,j

)
. If i = 1, then go to Step 6.

Step 5: For s = i− 1 down to 1//upstream phase
Begin
Step 5.1: For the problem Pms

∣∣∣rj, uj

∣∣∣Lmax assign for j ∈ J
a release date rj = res,j, a processing time pj = prs,j,
an unloading time uj = uni,j, and a due date dj = Ts+1,j where

Ts+1,j is the staring time of j ∈ J in stage Ss+1

Step 5.2: Solve Pms

∣∣∣rj, uj

∣∣∣Lmax given in Step 5.1 using ADAU.
Let Ts,j and Ls

max denote the starting time of j
and the maximum lateness, respectively.
Step 5.3: For all stages Sl ( s + 1 ≤ l ≤ K) and all j ∈ J, Set
Tl,j := Tl,j + Ls

max. Set UBi := UBi + Ls
max.

End (For)
Step 6: Save the obtained schedule γi and its corresponding makespan UBi.

It is important to highlight the potential benefits of leveraging the symmetry property
of the problem to improve solution quality. To support this assertion, an illustrative
example is provided below. This example serves to demonstrate how exploiting the
symmetry property can lead to enhancements in the overall solution approach and results.
By showcasing this specific case, the significance of considering and utilizing symmetry
becomes evident, reinforcing the claim that it can positively impact the quality of the
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solution obtained. To illustrate the above statement, the following example is provided as
supporting evidence.

Example 4. Considering a five-job and two-operation instance with m1 = 3 and m2 = 2. The
processing and unloading times are include in Table 5.

Table 5. Processing and unloading times of Example 4.

j 1 2 3 4 5

S1 pr1,j 10 3 2 16 12
un1,j 5 5 8 3 5

S2 pr2,j 15 19 6 2 8
un2,j 1 19 6 12 17

By utilizing the initial solution procedure, we have obtained the following feasible
schedule.

• In stage 1 (S1),

� In machine M1,1 the scheduled jobs are 2 and 1.
� In machine M1,2 the scheduled jobs are 5 and 3.
� In machine M1,3 the scheduled job is 4.

• In stage 2 (S2),

� In machine M2,1 the scheduled jobs are 2 and 1.
� In machine M2,2 the scheduled jobs are 5, 4, and 3.

The makespan of this schedule is 68.
Applying the same procedure (initial solution) for the symmetric problem, we have

obtained the following feasible solution:

• In stage 1
(
SB

1
)
,

� In machine MB
1,1 the scheduled jobs are 2 and 1.

� In machine MB
1,2 the scheduled jobs are 5 and 3.

• In stage 2
(
SB

2
)
,

� In machine MB
2,1 the scheduled jobs are 2 and 1.

� In machine MB
2,2 the scheduled jobs are 5, 4, and 3.

� In machine MB
2,3 the scheduled jobs are 5, 4, and 3.

The makespan of this schedule is 62.
Hence, exploring the symmetric problem in this example leads to the attainment of a

better solution.

4.2. The Improvement Phase

The obtained feasible schedule γ in Phase 1 serves as the input for a sequence of
iterative improvements. To stop the process, a convergence criterion needs to be met.
In more precise terms, the improvement phase involves iteratively fixing the existing
schedules in all stages except one (Sh). Rescheduling in this latter stage Sh requires solving
a Pmh

∣∣rj, uj
∣∣Lmax problem. In the latter problem, the release dates rj are set as the completion

unloading times rj = UNh−1,j in the previous stage Sh−1. Moreover, the jobs’ due dates
are defined as the latest starting times in the subsequent stage Sh+1. To obtain the latest
starting times, all jobs from SK down to Sh+1 are right-shifted iteratively. After that and
using the ADAU heuristic, the problem Pmh

∣∣rj, uj
∣∣Lmax is solved. Subsequently, two cases

must be taken into account:



Symmetry 2023, 15, 2005 19 of 28

• Case 1: Lh
max < 0 : in this case, a new improved solution is found in stage Sh with

makespan := UB+ Lh
max. The new schedule is obtained by left-shifting all the jobs to

downstream stages (from Sh down to SK) by Lh
max unites of time.

• Case 2: Lh
max ≥ 0: in this case, no improvement is detected.

Remark 1. There is no maximum lateness associated with the input schedule γ due to its zero-
maximum lateness. Therefore, the optimal solution of the Pmh

∣∣rj, uj
∣∣Lmax problem satisfies

Lh
max ≤ 0.

Algorithm 2 presents a pseudo-code for the improvement phase based on stage Sh as
a starting one.

More precisely, an initial stage Sh is selected, and a problem Pmh

∣∣rj, uj
∣∣Lmax is con-

structed following Step 1. The latter problem is solved using the ADAU heuristic (Step 2).
The solution may result in a rescheduling of stage Sh if an improvement is detected (Step 3).
Similarly, the upstream stages Sh−1, Sh−2,. . . , S1 are successively rescheduled according to
the same procedure (Step 4). Once the first stage is reached (Step 3.2), the improvement pro-
cess is iteratively performed for the downstream stages S2, S3,. . . , SK (Steps 5–8). Reaching
this step, the upstream stages are revisited and rescheduled following the same procedure
(Step 7.2). If 2K− 2 consecutive problems are solved without any improvement, the process
is halted (Step 9).

The obtained schedule γ in Phase 1 is considered to be input for the improvement Phase.
The proposed improvement phase could start from any starting stage Sh ( h = 1, . . . , K). In
the presented improvement phase, each time a different stage is considered to be a starting
stage, thus K feasible schedules are obtained, and the best one is selected and denoted γ∗.

Algorithm 2: Improvement phase

Step 0: Initialization, Set = h, q = 0.

Step 1: Set q := q + 1, for the problem Pmk

∣∣∣rj, uj

∣∣∣Lmax

assign a release date rj = CUk−1,j,
a processing time pj = pk,j, an unloading time uj = unk,j,
and a due date dj = Tk+1,j, j ∈ J.

Step 2: Solve the problem Pmk

∣∣∣rj, uj

∣∣∣Lmax given in Step 1 using ADAU.
Let Tk,j and CUk,j denote the start and completion
unloading times of j (j ∈ J), respectively.

Step 3: Step 3.1: If Lk
max < 0, Set UB := UB + Lk

max
(an improvement is detected), Set q = 0.
Step 3.2: If k = 1 go to Step 5.

Step 4: Set k := k− 1, If q ≤ 2K− 1 go to Step 1, Else go to Step 9.

Step 5: Set q := q + 1, for the problem Pmk

∣∣∣rj, uj

∣∣∣Lmax

assign a release date rj = CUk−1,j,
a processing time pj = pk,j, an unloading time uj = unk,j

and a due date dj = Tk+1,j(j ∈ J)
(

dj = UB if k = K).

Step 6: Solve the defined problem Pmk

∣∣∣rj, uj

∣∣∣Lmax in Step 5 using ADAU.

Step 7: Step 7.1: If Lk
max < 0, Set UB := UB + Lk

max
(an improvement is detected), Set q = 0.
Step 7.2: If k = K go to Step 4.
Step 8: Set k := k + 1, If q ≤ 2K− 1 go to Step 5.

Step 9: Store the obtained schedule γh and the corresponding makespan UB.

Remark 2. To take advantage of the FFSPU’s symmetry propriety, the previous two-phase heuristic
is systematically applied to the symmetric problem (as defined in Definition 1). By doing so, it is
possible to have better solutions.
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5. Computational Results
5.1. Test Problems

Test problems are generated similarly to those in [77]. Essentially, we consider
K ∈ {2, 4, 6, 8, 10} and n ∈ {10, 20, 40, 80}. Table 6 displays the configurations of stage-
machines.

Table 6. The configurations of stages and machines ([77]).

Configuration 2 Stages 4 Stages 6 Stages 8 Stages 10 Stages

1 2-2 2-2-2-2 2-2-2-2-2-2 2-2-2-2-2-2-2-2 2-2-2-2-2-2-2-2-2-2

2 1-2 2-4-4-6 1-2-3-4-5-6 1-1-2-2-3-3-4-4 1-1-2-2-3-3-4-4-5-5

3 1-4 2-4-2-4 1-2-3-1-2-3 1-3-1-3-1-3-1-3- 1-2-3-4-5-1-2-3-4-5

4 3-5 2-3-4-2 1-2-4-4-2-1 1-2-3-4-1-2-3-4 2-2-3-3-4-4-3-3-2-2

5 3-1-2-3 5-5-1-1-5-5 1-2-3-4-4-3-2-1 5-4-3-2-1-1-2-3-4-5

6 4-2-1-1-2-4 5-4-3-2-2-3-4-5 1-2-4-2-1-3-4-4-2-2

7 1-3-2-3-1-4-2-3 5-4-3-2-3-4-5-2-3-5

8 1-3-2-4-1-3-2-4-1-4

The patterns are categorized into the following groups:

• All-equal patterns: like 2-2-2-2
• Increasing patterns: like 1-2-3-4-5-6
• Top patterns: like 1-2-3-4-4-3-2-1
• Valley patterns: like 4-2-1-1-2-4
• Random patterns: like 1-3-2-3-1-4-2-3.

It is important to note that the numbers in the pattern represent the number of ma-
chines in the corresponding stage. For instance, Pattern 3–5 indicates that there are three
identical parallel machines in the first stage and five identical parallel machines in the
second stage.

The processing times are generated uniformly from [1, 20].
The following are the patterns used to generate unloading times:

• Type 1: The unloading time is generated uniformly from [1, 10].
• Type 2: The unloading time is generated uniformly from [1, 20].
• Type 3: The unloading time is generated uniformly from [1, 40].

The three types indicate the importance of unloading time relative to processing time.
For example, unloading time is less significant than processing time in the first type (Type 1).
In addition, based on the number of jobs, the processing time, the type of unloading time,
and the configuration of the stage machine, five instances were generated for each. This
totaled 1800 instances. This testbed is highly diversified due to its combination of a variety
of different problem sizes, varying machine distribution patterns, and varying processing
and unloading times. Hence, we provide a way to evaluate the performance of the proposed
procedures based on an unbiased experiment.

5.2. Performance of the Two-Phase Heuristic
5.2.1. Empirical Analysis of the Two-Phase Heuristic

We have coded the two-phase heuristic and used it to solve 1800 instances in the
testbed to assess its performance. The global results are included in Table 7. The detailed
results according to the type, number of jobs n, and the number of stages K are presented
in Table 8. In addition, the relative gap for each instance is calculated as follows:

rg = 100× UB− LB
LB

(12)
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with UB representing the makespan obtained with the heuristic and LB being the corre-
sponding general lower bound. For each class of instances, the average relative gap MG is
also computed. Therefore, the three following performance measures are reported.

Table 7. Types Heuristic global results.

MT MG MaxG

Type 1 8.00 2.71 25.89

Type 2 9.36 2.72 20.36

Type 3 12.40 2.96 21.23

All types 9.92 2.80 25.89

Table 8. Detailed results for Phase 1 (PH1) and Phase 2 (PH2).

K = 2 K = 4 K = 6 K = 8 K = 10

n MT MG MaxG MT MG MaxG MT MG MaxG MT MG MaxG MT MG MaxG

Type 1

10
PH1 0.31 0.80 6.41 0.02 0.00 0.00 0.03 0.26 3.28 2.69 2.60 15.00 1.84 3.49 25.89

PH2 0.50 0.80 6.41 0.02 0.00 0.00 0.20 0.21 3.28 4.75 2.14 12.90 2.70 2.82 25.89

20
PH1 1.96 0.89 3.64 3.37 5.57 21.19 6.93 1.35 8.73 0.91 1.85 13.48 0.30 0.75 5.83

PH2 2.65 0.60 3.64 5.51 4.56 19.21 12.25 1.20 8.73 0.94 1.66 13.48 0.33 0.72 5.83

40
PH1 22.28 11.98 22.51 3.46 1.90 15.23 0.30 2.84 9.41 1.40 2.79 17.74 4.22 5.51 29.50

PH2 37.47 10.84 21.26 3.50 1.68 11.72 0.32 2.58 9.41 1.49 2.04 14.52 4.69 4.78 24.50

80
PH1 37.68 7.10 19.86 8.97 2.37 12.17 12.38 7.68 21.32 3.12 1.37 8.42 4.54 4.82 17.65

PH2 66.62 5.73 18.95 9.09 2.03 12.17 21.14 6.34 16.67 3.26 1.22 8.42 12.77 4.28 15.44

Type 2

10
PH1 0.65 0.89 5.08 0.04 0.00 0.00 0.06 0.24 2.60 1.90 3.01 13.38 1.96 3.30 14.67

PH2 0.79 0.70 4.24 0.04 0.00 0.00 0.19 0.21 2.60 3.36 2.78 13.38 2.90 2.72 13.33

20
PH1 1.22 0.73 3.64 3.69 6.75 21.54 8.81 1.39 7.46 0.75 1.69 9.69 0.51 0.71 4.14

PH2 1.77 0.45 2.43 6.68 5.90 19.49 12.49 1.25 7.46 0.78 1.45 9.38 0.55 0.70 4.14

40
PH1 28.87 11.74 20.80 5.89 1.94 13.29 0.54 2.47 12.30 1.89 2.20 7.67 4.60 5.07 22.55

PH2 55.11 10.12 17.74 5.95 1.90 13.29 0.57 2.08 11.72 1.97 1.86 7.67 5.46 4.34 20.36

80
PH1 43.78 7.07 18.73 9.46 1.91 10.29 13.94 7.62 21.64 3.34 1.46 8.29 5.61 5.30 15.63

PH2 75.90 5.92 15.32 9.62 1.64 7.94 23.81 6.35 16.71 3.45 1.36 8.01 14.56 4.60 13.82

Type 3

10
PH1 0.76 0.11 1.02 0.19 0.16 4.00 0.12 0.24 2.22 3.52 3.34 20.76 2.94 3.40 17.94

PH2 1.31 0.09 0.88 0.20 0.16 4.00 0.22 0.24 2.22 7.64 3.07 20.76 4.65 2.82 16.14

20
PH1 1.63 0.87 6.67 5.37 6.57 15.47 9.76 1.63 8.02 1.32 2.01 12.68 0.89 1.01 6.59

PH2 2.59 0.66 5.87 7.97 5.77 13.85 19.15 1.41 7.08 1.35 1.63 12.68 0.92 1.01 6.59

40
PH1 33.72 12.54 19.17 5.78 1.71 11.16 0.98 3.42 10.29 2.85 2.75 18.15 6.24 6.44 24.58

PH2 62.34 10.45 17.98 5.85 1.57 11.16 1.01 3.01 9.86 2.98 2.41 14.23 9.74 5.70 21.23

80
PH1 51.10 6.73 19.98 13.25 1.80 7.76 18.43 8.68 19.73 4.63 1.78 9.26 7.87 5.23 14.33

PH2 91.27 5.77 17.95 13.39 1.65 6.96 33.97 7.02 15.52 4.83 1.48 7.00 19.35 4.39 12.80

• MT: the average CPU time in seconds.
• MG : the average relative gap.
• MaxG : the maximal value of the relative gap.

In the subsequent sections, the term “All types” used in the relevant tables refers to
the average value obtained by combining the data from the three types: Type 1, Type 2, and
Type 3.

Based on Table 7, we observe that the proposed two-phase heuristic consistently
produces high-quality solutions, which makes it highly effective. Indeed, the average
required CPU time does not exceed 10 s, and the average relative gap is only 2.80%. We
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found, in particular, that for Types 1 and 2, the average relative gaps are 2.71% and 2.72%,
respectively. However, the average relative gap and the average CPU time are more
important in Type 3, and they are 2.96% and 12.40 s, respectively. Thus, Type 3 instances
are harder to solve than the ones of Type 1 and Type 2. Recall that Type 3 is characterized
by an important unloading time compared to the processing times.

The detailed performance of Phase 1 (PH1) and Phase 2 (PH2) are presented in Table 8.
Based on these more detailed results (presented in Table 8), we observe that the maximum
average relative gap (MG) is reached at n = 40 and K = 2, with a value of 10.84%. In
addition, for each number of stage K, the maximum MG is reached for the same number of
jobs n in each type. As an example, for K = 8, the maximum relative gaps for Types 1, 2,
and 3 are reached for n = 10 with respective values 2.14%, 2.78%, and 3.07%. Interestingly,
the same remark holds for the maximum gap MaxG. These instances are identified to be
the hardest ones to solve. The average CPU time MT almost reaches its maximum value
for n = 80 regardless of the configuration.

Furthermore, the required CPU time running the proposed methods is barely longer
than 1.5 min, even though it involves solving a set of hard parallel machine problems
(approximately).

Notably, when considering n = 40 and n = 80 with K = 2, the mean time MT is
observed to be the highest compared to other numbers of stages, namely K = 4, K = 6,
K = 8, and K = 10. This observation can be attributed to the specific characteristics of the
two-stage configuration. In the case where K = 2, implying only two stages, the proposed
procedures (ADAU), which are designed to handle release dates and delivery times when
they are all different from zero, face limitations. This limitation arises due to the specific
nature of the configuration. In the first stage, all release dates are equal to zero, while in
the second stage, all delivery times are equal to zero. As a result, the ADAU procedures
are unable to fully utilize their features and take advantage of the available information
due to the absence of variation in release dates and delivery times across the stages. This
limitation contributes to the higher mean time MT observed for n = 40 and n = 80 with
K = 2 compared to configurations with a higher number of stages. Overall, this observation
highlights the impact of the number of stages on the effectiveness of the ADAU procedures,
particularly in the cases where the release dates and delivery times lack variation across
the stages.

The impact of the configurations on the MT, MG, and MaxG is presented in Table 9.

Table 9. Configuration impact.

Type 1 Type 2 Type 3 All Types

Configuration MT MG MaxG MT MG MaxG MT MG MaxG MT MG MaxG

1 27.34 6.98 24.50 32.52 7.15 20.36 40.75 7.56 21.23 33.54 7.23 24.50

2 4.01 0.29 3.17 4.84 0.35 8.42 6.28 0.28 4.00 5.05 0.31 8.42

3 1.13 2.03 12.17 1.27 1.80 13.29 2.00 1.98 11.16 1.47 1.94 13.29

4 7.18 3.40 25.89 7.84 3.23 16.71 11.14 3.67 16.14 8.72 3.43 25.89

5 1.36 0.88 14.52 1.61 0.79 7.67 2.30 1.12 13.77 1.76 0.93 14.52

6 3.38 1.44 8.42 3.80 1.47 8.01 7.18 1.64 14.23 4.78 1.52 14.23

7 12.76 2.71 11.07 14.51 3.07 12.68 19.34 3.88 16.91 15.54 3.22 16.91

8 0.62 4.66 15.44 1.50 5.16 13.82 1.71 4.14 11.48 1.28 4.65 15.44

Based on Table 9, the most challenging configuration to solve is the first one, referred
to as configuration 1. This is evident from various metrics, such as the largest values
of MT and MG observed among all configurations. Specifically, the values of MT and
MG for configuration 1 are MT = 33.54 s and MG = 7.23%, respectively, indicating their
prominence compared to the other configurations. Furthermore, when considering the
maximum gap (MaxG), configuration 1 ranks among the highest, specifically in second
place, with a value of MaxG = 24.5%. This further emphasizes the complexity and difficulty
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associated with solving this particular configuration. An interesting observation is that
as the unloading times increase, both MT and MG also exhibit an increasing trend. This
correlation implies that the higher the unloading times, the more challenging the resolution
becomes. Configuration 1 is characterized by the presence of equal parallel machines (two
machines) across all stages. The difficulty encountered in solving the corresponding test
problems arises from the fact that configuration 1 features a uniform distribution of ma-
chines across all stages, leading to a balanced load among these stages. This characteristic,
while promoting fairness and equal utilization of resources, also presents a challenge in
finding an optimal solution.

Configuration 2 stands out as the configuration with the highest number of optimal
solutions, as indicated by the smallest mean relative gap (MG = 0.31). This particular
configuration demonstrates an increasing number of parallel machines as we move from
the first stage to the last stage. The flexibility provided by this progressive increase in
the number of parallel machines enhances the optimization process, ultimately leading
to a higher number of optimal solutions. On the other hand, configuration 8, which
represents a random pattern, exhibits the smallest mean computation time (MT) with a
value of MT = 1.28 s. This suggests that this configuration allows for faster computation
and processing of tasks compared to the other configurations. It is worth noting that as
the unloading time increases, MT shows an upward trend. For instance, configuration
4 exhibits the following MT values: MT = 7.18 s (Type 1), MT = 7.84 s (Type 2), and
MT = 11.14 s (Type 3). This increase in MT with higher unloading times is consistent across
all the remaining configurations.

5.2.2. The Second Phase PH2 Implementation Effect

Interestingly, from Table 10, we observe that Phase 2 very often achieves a significant
improvement over the solution delivered by Phase 1 in terms of quality and efficiency. A
pairwise comparison is conducted for each type of instance to gain a better understanding
of what Phase 2 accomplishes compared to Phase 1. These results are displayed in Table 10.
These results demonstrate the effectiveness of the improvement phase (Phase 2). As an
example, for Type 1, Phase 2 reduces MG and MaxG from 3.18% and 29.5% to 2.71% and
25.89%, respectively, within just 3 s.

Table 10. Comparison between PH1 and PH2 according to types.

MT MG MaxG

Type 1
PH1 4.92 3.18 29.50

PH2 8.00 2.71 25.89

Type 2
PH1 5.75 3.16 22.55

PH2 9.36 2.72 20.36

Type 3
PH1 7.31 3.45 24.58

PH2 12.40 2.96 21.23

All types PH1 5.99 3.26 29.5

All types PH2 9.92 2.80 25.89

A second pairwise comparison is conducted between PH1 and PH2 to compare:

• (PH2 < PH1): The percent of Time PH2 is strictly dominant over PH1.
• (PH2 = PH1): The percentage of Times PH2 and PH1 are the same.

The corresponding results are presented in Table 11. Based on this table, PH2 is strictly
dominating PH1 in 34.67% of instances. A slight advantage is observed for Type 3, with a
percentage of 36.17%.
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Table 11. Types pairwise comparison between PH1 and PH2.

PH2 < PH1 PH2 = PH1

Type 1 33.00 67.00

Type 2 34.83 65.17

Type 3 36.17 63.83

all types 34.67 65.33

It is important to note that PH2 is an iterative procedure that involves traversing all
stages multiple times in both backward and forward directions. This thorough exploration
significantly increases the execution time required by PH2. Furthermore, similar to PH1,
PH2 also experiences longer processing times when the number of stages, K, is set to 2.
This is attributed to the same underlying reason explained earlier for the longer time taken
by PH1 for K = 2.

5.2.3. Symmetric Problem Exploration Impact

A comparison study is performed between the forward problem of Phase 2 (PH2D)
and the symmetric problem of Phase 2 (PH2S) to assess the exploration of the symmetric
problem (as defined in Definition 1). The global results are reported in Tables 11 and 12.

Table 12. Global comparison between PH2S and PH2D according to types.

MT MG MaxG

Type 1
PH2D 4.29 3.48 33.93

PH2S 3.71 2.71 25.89

Type 2
PH2D 4.72 3.44 23.08

PH2S 4.64 2.72 20.36

Type 3
PH2D 6.21 3.79 24.11

PH2S 6.19 2.96 21.23

Table 12 shows that exploring the symmetric problem improves the quality of the
solution and reduces the average relative gap MG as well as the maximum relative gap
MaxG significantly.

Table 13 presents:

• (PH2D < PH2S): The percent of Time PH2D is strictly dominant over PH2S.
• (PH2D = PH2S): the percentage of Times PH2D and PH2S are the same.
• (PH2D > PH2S): the percentage of Times PH2S is strictly dominant over PH2D.

Table 13. Pairwise comparison between PH2D and PH2S.

PH2D > PH2S PH2D = PH2S PH2D < PH2S

Type 1 39.00 38.00 23.00

Type 2 39.00 35.50 25.50

Type 3 40.83 34.17 25.00

All types 39.61 35.89 24.50

In almost 40% of instances, the symmetric problem strictly improves the quality of
the solution, as shown in Table 13. In Type 3, the percentage of instances where the
symmetric problem improves the solution is 40.83%. This illustrates the benefits, including
the exploration of symmetric problems.
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6. Conclusions

In this paper, we have addressed the flexible flow shop scheduling problem with
unloading operations and proposed several lower bounds and a heuristic to tackle this
complex problem. Our approach involved deriving two types of lower bounds: one based
on the relaxation of capacities in all stages except one and the other utilizing the estimation
of minimum idle time in each stage determined by solving a polynomial parallel machine
problem in the previous stage. These lower bounds were then combined to form a strong
general lower bound. Additionally, we developed a two-phase heuristic that effectively
solves identical parallel machine-scheduling problems considering release dates, unloading
times, and delivery times. The problem’s symmetry is a significant characteristic that
merits attention. It is worth highlighting that the proposed procedures (lower bounds and
heuristic) autonomously investigate the symmetric problem, aiming to enhance the quality
of the final solution obtained.

To evaluate the performance of our proposed lower bounds and heuristic, we con-
ducted an extensive experimental study, and the utilized performance measures are the
mean computational time and the mean relative gap. The results obtained demonstrated
the effectiveness and efficiency of our procedures. We also observed that the problem
complexity increases when unloading time becomes more significant than processing time
(Type 3). Furthermore, the computational results provide compelling evidence of the effi-
ciency of the developed procedures. Within a reasonable computational time of less than
10 s, the procedures consistently generate solutions that exhibit a satisfactory mean relative
gap of 2.8%

Looking ahead, future research efforts should center on exploring alternative ap-
proaches to address the Flexible Flow Shop Scheduling Problem with Unloading (FFSPU).
One promising avenue is the investigation of metaheuristic algorithms, such as genetic
algorithms, particle swarm optimization, or differential evolution. These metaheuristics can
offer efficient and effective solutions within acceptable CPU time for FFSPU. Furthermore,
hybrid metaheuristic approaches that combine different optimization techniques, such
as integrating metaheuristics with mathematical programming or machine-learning algo-
rithms, hold great potential for further improving the performance of FFSPU algorithms.
These hybrid methods can leverage the strengths of different optimization paradigms to
achieve better solutions and overcome the limitations of individual approaches.

Additionally, it is worthwhile to explore variations of the FFSPU problem. One possi-
bility is to consider a restricted number of operators charged with the unloading operations,
which can introduce new constraints and complexities to the scheduling problem. Another
avenue is to incorporate setup times into the scheduling process, which would reflect the
practical reality of changing configurations and preparation requirements for different
jobs. By investigating these variations of the FFSPU problem, the scope of research can
be expanded, leading to a more comprehensive understanding of the challenges and po-
tential solutions in different contexts. Conducting further investigation is necessary to
explore these possibilities and advance the understanding of FFSPU, ultimately enabling
the development of more robust and flexible scheduling methodologies.

However, it is important to acknowledge the limitations of our study. The scala-
bility of our approaches to larger problem instances needs to be examined. Moreover,
the proposed heuristic could benefit from enhancements to improve its performance and
robustness in handling various problem variations, especially in the case of two stages,
where the proposed procedures face difficulties in finding near-optimal solutions in reason-
able computation time. Additionally, conducting real-life case studies and validating our
methodologies in practical settings would provide valuable insight and further support
their applicability.
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