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Abstract: The main aim of the proposed paper is to investigate the lifts of Kenmotsu manifolds that
admit NSNMC in the tangent bundle. We investigate several properties of the lifts of the curvature
tensor, the conformal curvature tensor, and the conharmonic curvature tensor of Kenmotsu manifolds
that admit NSNMC in the tangent bundle. We also study and discover that the lift of the Kenmotsu
manifold that admit NSNMC is regular in the tangent bundle. Additionally, we find that the data
provided by the lift of Ricci soliton on the lift of Ricci semi-symmetric Kenmotsu manifold that admits
NSNMC in the tangent bundle are expanding.

Keywords: Kenmotsu manifolds; non-symmetric non-metric connection; vertical and complete lifts;
tangent bundle; partial differential equations; curvature tensor; Ricci semi-symmetric manifolds;
mathematical operators; Einstein manifolds; Ricci soliton

MSC: 58A30; 53C05; 53C15; 53C25; 53D10

1. Introduction

The geometry of tangent bundles has been an important domain in differential geome-
try because the theory provides many new problems in the study of modern differential
geometry. Using the lift function, it is convenient to generalize to differentiable structures
on any manifold M to its tangent bundle. In the field of differential geometry, numerous
geometers, such as Yano and Kobayashi [1], Yano and Ishihara [2], Tani [3], Pandey and
Chaturvedi [4], have explored the tangent bundle of differential geometry. The vertical,
complete, and horizontal lifts of tensors as well as the connection from the manifold to its
tangent bundle were developed by Yano and Ishihara [2]. The tangent bundles on differ-
ent manifolds and their submanifolds with different connections and partial differential
equations were studied by Khan in [5–8].

On the other hand, Kenmotsu [9] in 1971 introduced a new class of almost-contact
manifold which became known as the Kenmotsu manifold. Since then, many geometers,
such as Sinha and Pandey [10], Cihan and De [11], and others, have studied the properties of
the Kenmotsu manifold. In the early 1930s, Friedman and Schouten [12] and Hayden [13]
started the study of semi-symmetric metric and linear connections on the differential
manifolds. If the torsion tensor T̈ of the connection ∇̈ is zero, it is called a symmetric and
torsion-free connection, otherwise it is called a non-symmetric connection when the torsion
tensor T̈ is not zero. In an n-dimensional manifold Mn, if the torsion tensor T̈ of the linear
connection ∇̆ satisfies T̆(X0, Y0) = 2g(ΦX0, Y0), it is called a non-symmetric connection
for all vector fields X0, Y0 on Mn and, additionally, if the Riemannian metric g is such that
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∇̈g = 0, then it is called a metric connection, and it is called non-metric if ∇̈g 6= 0. Different
geometers have studied and defined different types of connections, which can be seen
in [14–30].

We start this paper with the introduction in Section 1. Section 2 is about the prelimi-
naries. In Section 3, we obtain the lifts of the Kenmotsu manifolds in the tangent bundle.
Section 4 deals with the lifts of NSNMC on Kenmotsu manifolds to the tangent bundle.
In Sections 5 and 6, we study the lifts of the curvature tensors of NSNMC on Kenmotsu
manifolds and the Ricci semi-symmetric Kenmotsu manifold in the tangent bundle, and
some proposed theorems are also proved. Section 7 provides the conclusions and results
that we obtained. Lastly, an example of the lifts of three-dimensional Kenmotsu manifolds
in the tangent bundle is shown in Section 8.

2. Preliminaries

Let M be a differentiable manifold and T0M =
⋃

p∈M T0p M be the tangent bundle,
where T0p M is the tangent space at point p ∈ M, and π : T0M→ M is the natural bundle
structure of T0M over M. For any coordinate system (Q, xh) in M, where (xh) is the local
coordinate system in the neighborhood Q, then (π−1(Q), xh, yh) is the coordinate system
in T0M, where (xh, yh) is the induced coordinate system in π−1(Q) from (xh) [2].

2.1. Vertical and Complete Lifts

Let f0 be a function, X0 a vector field, ω0 a 1-form, a tensor field F0 of type (1, 1), and
∇ an affine connection in M. The vertical and complete lifts of a function f0, a vector field
X0, a 1-form ω0, a tensor field F0 of type (1, 1), and ∇ an affine connection are given by
f v
0 , Xv

0 , ωv
0 , Fv

0 ,∇v and f c
0 , Xc

0, ωc
0, Fc

0 ,∇c, respectively. The following formulas for complete
and vertical lifts are defined by [2]

( f0X0)
v = f v

0 Xv
0 , ( f0X0)

c = f c
0 Xv

0 + f v
0 Xc

0, (1)

Xv
0 f v

0 = 0, Xv
0 f c

0 = Xc
0 f v

0 = (X0 f0)
v, Xc

0 f c
0 = (X0 f0)

c, (2)

ω0( f v
0 ) = 0, ωv

0(Xc
0) = ωc

0(Xv
0) = ω0(X0)

v, ωc
0(Xc

0) = ω0(X0)
c, (3)

Fv
0 Xc

0 = (F0X0)
v, Fc

0 Xc
0 = (F0X0)

c, (4)

[X0, Y0]
v = [Xc

0, Yv
0 ] = [Xv

0 , Yc
0 ], [X0, Y0]

c = [Xc
0, Yc

0 ], (5)

∇c
Xc

0
Yc

0 = (∇X0Y0)
c, ∇c

Xc
0
Yv

0 = (∇X0Y0)
v. (6)

2.2. Kenmotsu Manifolds

Let M be a (2n + 1)-dimensional, almost-contact metric manifold with an almost-
contact metric structure (Φ, A, α, g) consisting of a (1, 1) tensor field Φ, a vector field A, a
1-form α, and Riemannian metric g on M satisfying

α(A) = 1, ΦA = 0, α
(

Φ(X0)
)
= 0, g(X0, A) = α(X0), (7)

Φ2(X0) = −X0 + α(X0)A, g(X0, ΦY0) = −g(ΦX0, Y0), (8)

g(ΦX0, ΦY0) = g(X0, Y0)− α(X0)α(Y0). (9)

An almost-contact metric structure (Φ, A, α, g) is said to be a Kenmotsu manifold if
and only if

(∇̈X0 Φ)Y0 = g(ΦX0, Y0)A− α(Y0)ΦX0. (10)
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From now on, we use the notation M to represent the Kenmotsu manifolds of dimen-
sion (2n + 1). Using the above relations, we have some properties as given below:

∇̈X0 A = X0 − α(X0)A, (11)

(∇̈X0 α)Y0 = g(X0, Y0)− α(X0)α(Y0) = g(ΦX0, ΦY0), (12)

R̈(X0, Y0)A = α(X0)Y0 − α(Y0)X0, (13)

R̈(A, X0)Y0 = α(Y0)X0 − g(X0, Y0)A, (14)

R̈(A, X0)A = X0 − α(X0)A, (15)

α
(

R̈(X0, Y0)Z0
)
= g(X0, Z0)α(Y0)− g(Y0, Z0)α(X0), (16)

S̈(ΦX0, ΦY0) = S̈(X0, Y0) + 2nα(X0)α(Y0), (17)

S̈(X0, A) = −2nα(X0), (18)

S̈(X0, Y0) = g(Q̈0, Y0), (19)

where R̈, S̈, and Q̈0 are the curvature tensor, the Ricci tensor, and the Ricci operator associ-
ated with the Levi-Civita connection.

Definition 1. An almost-contact metric manifold M is said to be an η-Einstein manifold if there
exists the real valued functions λ1, λ2 such that [31,32]

S̈(X0, Y0) = λ1g(X0, Y0) + λ2α(X0)α(Y0). (20)

For λ2 = 0, the manifold M is an Einstein manifold.

Definition 2. A Ricci soliton (g, V0, λ0) on a Riemannian manifold is defined by [32]

L̈V0 g + 2S̈ + 2λ0g = 0, (21)

where LV0 g is a Lie derivative of Riemannian metric g associated with vector field V0 and real constant
λ0. It is known to be shrinking, steady, and expanding if λ0 < 0, λ0 = 0, and λ0 > 0 accordingly.

3. Kenmotsu Manifolds in the Tangent Bundle

Suppose T0M is the tangent bundle, and X0 = Xi
0

∂
∂xi is a local vector field on M; then,

its vertical and complete lifts in terms of partial differential equations are

Xv
0 = Xi

0
∂

∂yi , (22)

Xc
0 = Xi

0
∂

∂xi +
∂Xi

0
∂xj yj ∂

∂yi . (23)

Let T0M be the tangent bundle on the Kenmotsu manifolds M; operating the complete
lifts from Equations (7)–(21), we have

αc(Ac) = 1, (ΦA)c = 0, αc
((

Φ(X0)
)c
)
= 0, gc(Xc

0, Ac) = αc(Xc
0), (24)(

Φ2(X0)
)c

= −Xc
0 + αc(Xc

0)Av + αv(Xc
0)Ac, (25)

gc
(

Xc
0, (ΦY0)

c
)
= −gc

(
(ΦX0)

c, Yc
0

)
, (26)

gc
(
(ΦX0)

c, (ΦY0)
c
)
= gc(Xc

0, Yc
0)− αc(Xc

0)α
v(Yc

0)− αv(Xc
0)α

c(Yc
0), (27)

(∇̈c
Xc

0
Φc)Yc

0 = gc
(
(ΦX0)

c, Yc
0

)
Av + gc

(
(ΦX0)

v, Yc
0

)
Ac − αc(Yc

0)(ΦX0)
v

− αv(Yc
0)(ΦX0)

c,
(28)
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∇̈c
Xc

0
Ac = Xc

0 − αc(Xc
0)Av − αv(Xc

0)Ac, (29)

(∇̈c
Xc

0
αc)Yc

0 = gc(Xc
0, Yc

0)− αc(Xc
0)α

v(Yc
0)− αv(Xc

0)α
c(Yc

0)

= gc
(
(ΦX0)

c, (ΦY0)
c
)

,
(30)

R̈c(Xc
0, Yc

0)Ac = αc(Xc
0)Y

v
0 + αv(Xc

0)Y
c
0 − αc(Yc

0)Xv
0

− αv(Yc
0)Xc

0,
(31)

R̈c(Ac, Xc
0)Y

c
0 = αc(Yc

0)Xv
0 + αv(Yc

0)Xc
0 − gc(Xc

0, Yc
0)Av

− gc(Xv
0 , Yc

0)Ac,
(32)

R̈c(Ac, Xc
0)Ac = Xc

0 − αc(Xc
0)Av − αv(Xc

0)Ac, (33)

αc(R̈c(Xc
0, Yc

0)Zc
0
)
= gc(Xc

0, Zc
0)α

v(Yc
0) + gc(Xv

0 , Zc
0)α

c(Yc
0)

− gc(Yc
0 , Zc

0)α
v(X0)− gc(Yv

0 , Zc
0)α

c(X0),
(34)

S̈c
(
(ΦX0)

c, (ΦY0)
c
)
= S̈c(Xc

0, Yc
0) + 2nαc(Xc

0)α
v(Yc

0)

+ 2nαv(Xc
0)α

c(Yc
0),

(35)

S̈c(Xc
0, Ac) = −2nαc(Xc

0), (36)

S̈c(Xc
0, Yc

0) = gc
(
(Q̈0X0)

c, Yc
0

)
, (37)

S̈c(Xc
0, Yc

0) = λ1gc(Xc
0, Yc

0) + λ2αc(Xc
0)α

v(Yc
0) + λ2αv(Xc

0)α
c(Yc

0), (38)

(L̈V0 g)c + 2S̈c + 2λ0gc = 0. (39)

4. Lifts of NSNMC on Kenmotsu Manifolds in the Tangent Bundle

In a Kenmotsu manifolds M, let the linear connection be given by [32]

∇̆X0Y0 = ∇̈X0Y0 + g(ΦX0, Y0)A, (40)

satisfying the torsion tensor

T̆(X0, Y0) = 2g(ΦX0, Y0)A, (41)

and
(∇̆X0 g)(Y0, Z0) = −α(Z0)g(ΦX0, Y0)− α(Y0)g(ΦX0, Z0), (42)

for arbitrary vector fields X0, Y0, Z0; this is called an NSNMC. Now, let us take the complete
lifts of Equations (40)–(42) by mathematical operators; we have

∇̆c
Xc

0
Yc

0 = ∇̈c
Xc

0
Yc

0 + gc
(
(ΦX0)

c, Yc
0

)
Av + gc

(
(ΦX0)

v, Yc
0

)
Ac, (43)
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T̆c(Xc
0, Yc

0) = 2gc
(
(ΦX0)

c, Yc
0

)
Av + 2gc

(
(ΦX0)

v, Yc
0

)
Ac. (44)

(∇̆c
Xc

0
gc)(Yc

0 , Zc
0) = −αc(Zc

0)gc
(
(ΦX0)

v, Yc
0

)
− αv(Zc

0)gc
(
(ΦX0)

c, Yc
0

)
− αc(Yc

0)gc
(
(ΦX0)

v, Zc
0

)
− αv(Yc

0)gc
(
(ΦX0)

c, Zc
0

)
.

(45)

We also have

(∇̆c
Xc

0
Φc)(Yc

0) = (∇̈c
Xc

0
Φc)(Yc

0) + gc
(
(ΦX0)

c, (ΦY0)
c
)

Av

+ gc
(
(ΦX0)

v, (ΦY0)
c
)

Ac,
(46)

(∇̆c
Xc

0
αc)(Yc

0) = (∇̈c
Xc

0
αc)(Yc

0)− gc
(
(ΦX0)

c, (Y0)
c
)

, (47)

(∇̆c
Xc

0
gc)
(
(ΦY0)

c, Zc
0

)
= −αc(Zc

0)gc
(
(ΦX0)

v, (ΦY0)
c
)

− αv(Zc
0)gc

(
(ΦX0)

c, (ΦY0)
c
)

.
(48)

Replacing Yc
0 with Ac in Equation (43), we obtain

(∇̆c
Xc

0
Ac) = ∇̈Xc

0
Ac. (49)

Again, putting Xc
0 = Ac in Equation (42), we obtain

(∇̆c
Ac gc)(Yc

0 , ZC
0 ) = 0. (50)

Hence, we can propose the following proposition.

Proposition 1. The complete lift of vector field Ac in the tangent bundle T0M is invariant with respect
to the lift of the Levi-Civita connection ∇̈c and the lift of NSNMC ∇̆c in the tangent bundle T0M.

Proposition 2. The complete lift of the co-variant differentiation of Riemannian metric gc associated
with the lift of contra-variant vector field Ac vanishes identically in a contact metric manifold
admitting the lift of NSNMC ∇̆c in the tangent bundle T0M.

5. Lifts of Curvature Tensor of NSNMC on Kenmotsu Manifolds in the Tangent
Bundle

The curvature tensor R̆ of NSNMC ∇̆ is given by [32]

R̆(X0, Y0)Z0 = ∇̆X0∇̆Y0 Z0 − ∇̆Y0∇̆X0 Z0 − ∇̆[X0,Y0]
Z0. (51)

Taking a complete lift by mathematical operators on Equation (51), we obtain

R̆c(Xc
0, Yc

0)Zc
0 = ∇̆c

Xc
0
∇̆c

Yc
0
Zc

0 − ∇̆c
Yc

0
∇̆c

Xc
0
Zc

0 − ∇̆c
[Xc

0,Yc
0 ]

Zc
0 (52)
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for all X0, Y0, Z0 ∈ T0M. By using Equation (43), we obtain

R̆c(Xc
0, Yc

0)Zc
0 = R̈c(Xc

0, Yc
0)Zc

0 + gc
((

(∇̈X0 Φ)Y0
)c, Zc

0

)
Av

+ gc
((

(∇̈X0 Φ)Y0
)v, Zc

0

)
Ac − gc

((
(∇̈Y0 Φ)X0

)c, Zc
0

)
Av

− gc
((

(∇̈Y0 Φ)X0
)v, Zc

0

)
Ac + gc

(
(ΦY0)

c, Zc
0

)
(∇̈X0 A)v

+ gc
(
(ΦY0)

v, Zc
0

)
(∇̈X0 A)c − gc

(
(ΦX0)

c, Zc
0

)
(∇̈Y0 A)v

− gc
(
(ΦX0)

v, Zc
0

)
(∇̈Y0 A)c,

(53)

where R̈c(Xc
0, Yc

0)Zc
0 is the complete lift of the Riemannian curvature tensor of the Levi-

Civita connection in the tangent bundle such that

R̈c(Xc
0, Yc

0)Zc
0 = ∇̈c

Xc
0
∇̈c

Yc
0
Zc

0 − ∇̈c
Yc

0
∇̈c

Xc
0
Zc

0 − ∇̈c
[Xc

0,Yc
0 ]

Zc
0. (54)

Proposition 3. The relation between the complete lifts of R̆c associated with the lift of NSNMC
∇̆c and R̈c associated with the lift of the Levi-Civita connection ∇̈ is given by Equation (53).

Using Equations (25), (26), (28) and (29) in Equation (53), we obtain

R̆c(Xc
0, Yc

0)Zc
0 = R̈c(Xc

0, Yc
0)Zc

0 + 2αc(Zc
0)gc

(
(ΦX0)

c, Yc
0

)
Av

+ 2αc(Zc
0)gc

(
(ΦX0)

v, Yc
0

)
Ac + 2αv(Zc

0)gc
(
(ΦX0)

c, Yc
0

)
Ac

− gc
(
(ΦX0)

c, Zc
0

)
Yv

0 − gc
(
(ΦX0)

v, Zc
0

)
Yc

0

+ gc
(
(ΦY0)

c, Zc
0

)
Xv

0 + gc
(
(ΦY0)

v, Zc
0

)
Xc

0.

(55)

Taking the contraction of Equation (55) with respect to X0, we obtain

S̆c(Yc
0 , Zc

0) = S̈c(Yc
0 , Zc

0) + 2ngc
(
(ΦY0)

c, Zc
0

)
. (56)

Putting Equation (37) into Equation (56), we obtain

Q̆0
c
(Yc

0) = Q̈0
c
(Yc

0) + 2n(ΦY0)
c. (57)

Again, from Equation (56), by taking the contraction, it follows that

r̆c = r̈c, (58)

where S̆c, S̈c, Q̆0
c, Q̈0

c, r̆c, and r̈c are the complete lifts of the Ricci tensors, Ricci operators,
and scalar curvatures of the lifts of NSNMC ∇̆c and Levi-Civita connection ∇̈c, respectively.

By interchanging Zc
0 with Ac in Equation (55), and inputting Equations (25) and (26), we

obtain

R̆c(Ac, Yc
0)Zc

0 = Rc(Ac, Yc
0)Zc

0 + gc
(
(ΦY0)

c, Zc
0

)
Av + gc

(
(ΦY0)

v, Zc
0

)
Ac. (59)

From Equations (32) and (59), we obtain

R̆c(Ac, Yc
0)Zc

0 = αc(Zc
0)Y

v
0 + αv(Zc

0)Y
c
0

− gc(Yc
0 , Zc

0)Av − gc(Yv
0 , Zc

0)Ac

+ gc
(
(ΦY0)

c, Zc
0

)
Av + gc

(
(ΦY0)

v, Zc
0

)
Ac.

(60)
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Again, interchanging Zc
0 with Ac in Equation (55) and inputting Equations (25), (27)

and (31), we obtain

R̆c(Xc
0, Yc

0)Ac = R̈c(Xc
0, Yc

0)Ac + 2gc
(
(ΦY0)

c, Zc
0

)
Av

+ 2gc
(
(ΦY0)

v, Zc
0

)
Ac

= αc(Xc
0)Y

v
0 + αv(Xc

0)Y
c
0

− αc(Yc
0)Xv

0 − αv(Yc
0)Xc

0

+ 2gc
(
(ΦY0)

c, Zc
0

)
Av + 2gc

(
(ΦY0)

v, Zc
0

)
Ac

6= 0.

(61)

Thus, we state the following theorem.

Theorem 1. Every (2n + 1)-dimensional Kenmotsu manifold associated with the lift of the
NSNMC ∇̆c in the tangent bundle is regular with respect to ∇̆c.

Let us operate α on both sides of Equation (55) and, inputting Equation (25), we obtain

αc
(

R̆c(Xc
0, Yc

0)Zc
0

)
= 2gc

(
(ΦX0)

c, Yc
0

)
αv(Zc

0) + 2gc
(
(ΦX0)

v, Yc
0

)
αc(Zc

0)

+ αc(Yc
0)gc(Xv

0 , Zc
0) + αv(Yc

0)gc(Xc
0, Zc

0)

− αc(Xc
0)gc(Yv

0 , Zc
0)− αv(Xc

0)gc(Yc
0 , Zc

0)

+ gc
(
(ΦY0)

c, Zc
0

)
αv(Xc

0) + gc
(
(ΦY0)

v, Zc
0

)
αc(Xc

0)

− gc
(
(ΦX0)

c, Zc
0

)
αv(Yc

0)− gc
(
(ΦX0)

v, Zc
0

)
αc(Yc

0).

(62)

Now, taking the contraction of Equation (61) with respect to Xc
0, we obtain

S̆c(Yc
0 , Ac) = −2nαc(Yc

0). (63)

Putting R̆c(Xc
0, Yc

0)Zc
0 = 0 into Equation (55), we obtain

R̈c(Xc
0, Yc

0)Zc
0 = gc

(
(ΦX0)

c, Zc
0

)
Yv

0 + gc
(
(ΦX0)

v, Zc
0

)
Yc

0

− gc
(
(ΦY0)

c, Zc
0

)
Xv

0 − gc
(
(ΦY0)

v, Zc
0

)
Xc

0

− 2gc
(
(ΦX0)

c, Yc
0

)
αc(Zc

0)Av − 2gc
(
(ΦX0)

c, Yc
0

)
αv(Zc

0)Ac

− 2gc
(
(ΦX0)

v, Yc
0

)
αc(Zc

0)Ac.

(64)
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In view of ′R̈c(Xc
0, Yc

0 , Zc
0, W0) = gc

(
R̈c(Xc

0, Yc
0)Zc

0, Wc
0

)
and Equation (64), we get

′R̈c(Xc
0, Yc

0 , Zc
0, W0) = gc

(
(ΦX0)

c, Zc
0

)
gc(Yv

0 , Wc
0)

+ gc
(
(ΦX0)

v, Zc
0

)
gc(Yc

0 , Wc
0)

− gc
(
(ΦY0)

c, Zc
0

)
gc(Xv

0 , Wc
0)

− gc
(
(ΦY0)

v, Zc
0

)
gc(Xc

0, Wc
0)

− 2gc
(
(ΦX0)

c, Yc
0

)
αc(Zc

0)α
v(Wc

0)

− 2gc
(
(ΦX0)

c, Yc
0

)
αv(Zc

0)α
c(Wc

0)

− 2gc
(
(ΦX0)

v, Yc
0

)
αc(Zc

0)α
c(Wc

0).

(65)

Taking the contraction of Equation (65) with respect to Xc
0, we obtain

S̈c(Yc
0 , Zc

0) = −2ngc
(
(ΦY0)

c, Zc
0

)
. (66)

Putting Equation (37) into Equation (66), we obtain

Q̈0
c
(Yc

0) = −2n(ΦY0)
c. (67)

From Equation (66), it follows that

r̈c = 0. (68)

The conformal curvature tensor of ∇̆ is defined by [32]

C̆(X0, Y0)Z0 = R̆(X0, Y0)Z0 −
1

2n− 1

[
S̆(Y0, Z0)− S̆(X0, Z0)Y0

+ g(Y0, Z0)Q̆X0 − g(X0, Z0)Q̆Y0

]
+

r̆
2n(2n− 1)

[
g(Y0, Z0)X0 − g(X0, Z0)Y0

]
.

(69)

Taking a complete lift by mathematical operators on Equation (69), we obtain

C̆c(Xc
0, Yc

0)Zc
0 = R̆c(Xc

0, Yc
0)Zc

0 −
1

2n− 1

[
S̆c(Yc

0 , Zc
0)Xv

0 + S̆v(Yc
0 , Zc

0)Xc
0

− S̆c(X0, Z0)Yv
0 − S̆v(X0, Z0)Yc

0

+ gc(Yc
0 , Zc

0)(Q̆X0)
v + gc(Yv

0 , Zc
0)(Q̆X0)

c

− gc(Xc
0, Zc

0)(Q̆Y0)
v − gc(Xv

0 , Zc
0)(Q̆Y0)

c
]

+
r̆

2n(2n− 1)

[
gc(Yc

0 , Zc
0)Xv

0 + gc(Yv
0 , Zc

0)Xc
0

− gc(Xc
0, Zc

0)Y
v
0 − gc(Xv

0 , Zc
0)Y

c
0

]
.

(70)
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Putting Equations (55)–(57) into Equation (70), we obtain

C̆c(Xc
0, Yc

0)Zc
0 − C̈c(Xc

0, Yc
0)Zc

0 = 2gc
(
(ΦX0)

c, Yc
0

)
αc(Zc

0)Av

+ 2gc
(
(ΦX0)

c, Yc
0

)
αv(Zc

0)Ac

+ 2gc
(
(ΦX0)

v, Yc
0

)
αc(Zc

0)Ac

+ gc
(
(ΦY0)

c, Zc
0

)
Xv

0 + gc
(
(ΦY0)

v, Zc
0

)
Xc

0

− gc
(
(ΦX0)

c, Zc
0

)
Yv

0 − gc
(
(ΦX0)

v, Zc
0

)
Yc

0

− 2n
(2n− 1)

[
gc
(
(ΦY0)

c, Zc
0

)
Xv

0

+ gc
(
(ΦY0)

v, Zc
0

)
Xc

0 − gc
(
(ΦX0)

c, Zc
0

)
Yv

0

− gc
(
(ΦX0)

v, Zc
0

)
Yc

0 + gc(Yc
0 , Zc

0)(ΦX0)
v

+ gc(Yv
0 , Zc

0)(ΦX0)
c − gc(Xc

0, Zc
0)(ΦY0)

v

− gc(Xv
0 , Zc

0)(ΦY0)
c
]
,

(71)

where C̈c is the complete lift of the conformal curvature tensor associated with the lift of
the Levi-Civita connection ∇̈c in the tangent bundle as

C̈c(Xc
0, Yc

0)Zc
0 = R̈c(Xc

0, Yc
0)Zc

0 −
1

2n− 1

[
S̈c(Yc

0 , Zc
0)Xv

0 + S̈v(Yc
0 , Zc

0)Xc
0

− S̈c(X0, Z0)Yv
0 − S̈v(X0, Z0)Yc

0

+ gc(Yc
0 , Zc

0)(Q̈X0)
v + gc(Yv

0 , Zc
0)(Q̈X0)

c

− gc(Xc
0, Zc

0)(Q̈Y0)
v − gc(Xv

0 , Zc
0)(Q̈Y0)

c
]

+
r̈

2n(2n− 1)

[
gc(Yc

0 , Zc
0)Xv

0 + gc(Yv
0 , Zc

0)Xc
0

− gc(Xc
0, Zc

0)Y
v
0 − gc(Xv

0 , Zc
0)Y

c
0

]
.

(72)

The conharmonic curvature tensor of NSNMC ∇̆ is given by [32]

L̆(X0, Y0)Z0 = R̆(X0, Y0)Z0 −
1

(2n− 1)

[
S̆(Y0, Z0)X0

− S̆(X0, Z0)Y0 + g(Y0, Z0)Q̆0X0

− g(X0, Z0)Q̆0Y0

]
.

(73)

Now, taking a complete lift by mathematical operators on Equation (73), we obtain

L̆c(Xc
0, Yc

0)Zc
0 = R̆c(Xc

0, Yc
0)Zc

0 −
1

(2n− 1)

[
S̆c(Yc

0 , Zc
0)Xv

0

+ S̆v(Yc
0 , Zc

0)Xc
0 − S̆c(Xc

0, Zc
0)Y

v
0

− S̆v(Xc
0, Zc

0)Y
c
0 + gc(Yc

0 , Zc
0)(Q̆0X0)

v

+ gc(Yv
0 , Zc

0)(Q̆0X0)
c − gc(Xc

0, Zc
0)(Q̆0Y0)

v

− gc(Xv
0 , Zc

0)(Q̆0Y0)
c
]
.

(74)
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Putting Equations (55)–(58) into Equation (74), we obtain

L̆c(Xc
0, Yc

0)Zc
0 − L̈c(Xc

0, Yc
0)Zc

0 = 2gc
(
(ΦX0)

c, Yc
0

)
αc(Zc

0)Av

+ 2gc
(
(ΦX0)

c, Yc
0

)
αv(Zc

0)Ac

+ 2gc
(
(ΦX0)

v, Yc
0

)
αc(Zc

0)Ac

+ gc
(
(ΦY0)

c, Zc
0

)
Xv

0 + gc
(
(ΦY0)

v, Zc
0

)
Xc

0

− gc
(
(ΦX0)

c, Zc
0

)
Yv

0 − gc
(
(ΦX0)

v, Zc
0

)
Yc

0

− 2n
(2n− 1)

[
gc
(
(ΦY0)

c, Zc
0

)
Xv

0

+ gc
(
(ΦY0)

v, Zc
0

)
Xc

0 − gc
(
(ΦX0)

c, Zc
0

)
Yv

0

− gc
(
(ΦX0)

v, Zc
0

)
Yc

0 + gc(Yc
0 , Zc

0)(ΦX0)
v

+ gc(Yv
0 , Zc

0)(ΦX0)
c − gc(Xc

0, Zc
0)(ΦY0)

v

− gc(Xv
0 , Zc

0)(ΦY0)
c
]
,

(75)

where L̈c is the complete lift of the conharmonic curvature tensor associated with the lift of
the Levi-Civita connection ∇̈c in the tangent bundle as

L̈c(Xc
0, Yc

0)Zc
0 = R̈c(Xc

0, Yc
0)Zc

0 −
1

(2n− 1)

[
S̈c(Yc

0 , Zc
0)Xv

0

+ S̈v(Yc
0 , Zc

0)Xc
0 − S̈c(Xc

0, Zc
0)Y

v
0

− S̈v(Xc
0, Zc

0)Y
c
0 + gc(Yc

0 , Zc
0)(Q̈0X0)

v

+ gc(Yv
0 , Zc

0)(Q̈0X0)
c − gc(Xc

0, Zc
0)(Q̈0Y0)

v

− gc(Xv
0 , Zc

0)(Q̈0Y0)
c
]
.

(76)

Hence, we can proposed the following.

Proposition 4. The relationship between the complete lift of the conformal curvature tensor C̆c

associated with the lift of NSNMC ∇̆c and the complete lift of the conformal curvature tensor C̈c

associated with the lift of the Levi-Civita connection ∇̈c is given by Equation (71).

Proposition 5. The relationship between the complete lift of the conharmonic curvature tensor L̆c

associated with the lift of NSNMC ∇̆c and the complete lift of the conharmonic curvature tensor L̈c

associated with the lift of the Levi-Civita connection ∇̈c is given by Equation (75).

Theorem 2. For a Kenmotsu manifold admitting an NSNMC ∇̆c, the necessary and sufficient condition
for a lift of the conformal curvature tensor associated with ∇̆c that coincides with ∇̈c is that the lift of the
conharmonic curvature tensor associated with ∇̆c is equal to that of ∇̈c in the tangent bundle.

The concircular curvature tensor of a Riemannian manifold is given by [32]

V̈(X0, Y0)Z0 = R̈(X0, Y0)Z0 +
r̈

2n(2n− 1)

[
g(Y0, Z0)X0

− g(X0, Z0)Y0

]
.

(77)
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Taking the complete lift by mathematical operators of Equation (77), we obtain

V̈c(Xc
0, Yc

0)Zc
0 = R̈c(Xc

0, Yc
0)Zc

0 +
r̈c

2n(2n− 1)

[
gc(Yc

0 , Zc
0)Xv

0

+ gc(Yv
0 , Zc

0)Xc
0 − gc(Xc

0, Zc
0)Y

v
0

− gc(Xv
0 , Zc

0)Y
c
0

]
.

(78)

Using Equations (58), (64), (68) and (78), we can state the following theorem.

Theorem 3. For a Kenmotsu manifold admitting an NSNMC ∇̆c, the necessary and sufficient
condition for a lift of the concircular curvature tensor that coincides with the lift of the curvature
tensor is the lift of a scalar curvature of ∇̆c that needs to be zero in the tangent bundle.

6. Lifts of the Ricci Semi-Symmetric Kenmotsu Manifold in the Tangent Bundle

A (2n + 1)-dimensional contact metric manifold with an NSNMC is said to be Ricci
semi-symmetric if [32] (

R̆(X0, Y0).S̆
)
(Z0, U0) = 0. (79)

Taking a complete lift of Equation (79), we obtain(
R̆c(Xc

0, Yc
0).S̆

c
)
(Zc

0, Uc
0) = 0; (80)

that is,
S̆c
(

R̆c(Xc
0, Yc

0)Zc
0, Uc

0

)
+ S̆c

(
Zc

0, R̆c(Xc
0, Yc

0)U
c
0

)
= 0. (81)

Interchanging Xc
0 with Ac, and using Equation (60) in Equation (81), we obtain

S̆c
(

R̆c(Ac, Yc
0)Zc

0, Uc
0

)
+ S̆c

(
Zc

0, R̆c(Ac, Yc
0)U

c
0

)
= 0, (82)

αc(Zc
0)S̆

v(Yc
0 , Uc

0) + αv(Zc
0)S̆

c(Yc
0 , Uc

0)− gc(Yc
0 , Zc

0)S̆
v(Ac, Uc

0)

− gc(Yv
0 , Zc

0)S̆
c(Ac, Uc

0) + gc
(
(ΦY0)

c, Zc
0

)
S̆v(Ac, Uc

0)

+ gc
(
(ΦY0)

v, Zc
0

)
S̆c(Ac, Uc

0) + αc(Uc
0)S̆

v(Zc
0, Yc

0)

+ αv(Uc
0)S̆

c(Zc
0, Yc

0)− gc(Yc
0 , Uc

0)S̆
v(Zc

0, Ac)

− gc(Yv
0 , Uc

0)S̆
c(Zc

0, Ac) + gc
(
(ΦY0)

c, Uc
0

)
S̆v(Zc

0, Ac)

+ gc
(
(ΦY0)

v, Uc
0

)
S̆c(Zc

0, Ac)

= 0.

(83)
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Using Equation (63), the above Equation (83) reduces to

αc(Zc
0)S̆

v(Yc
0 , Uc

0) + αv(Zc
0)S̆

c(Yc
0 , Uc

0) + 2ngc(Yc
0 , Zc

0)α
v(Uc

0)

+ 2ngc(Yv
0 , Zc

0)α
c(Uc

0)− 2ngc
(
(ΦY0)

c, Zc
0

)
αv(Uc

0)

− 2ngc
(
(ΦY0)

v, Zc
0

)
αc(Uc

0) + αc(Uc
0)S̆

v(Zc
0, Yc

0)

+ αv(Uc
0)S̆

c(Zc
0, Yc

0) + 2ngc(Yc
0 , Uc

0)α
v(Zc

0)

+ 2ngc(Yv
0 , Uc

0)α
c(Zc

0)− 2ngc
(
(ΦY0)

c, Uc
0

)
αv(Zc

0)

− 2ngc
(
(ΦY0)

v, Uc
0

)
αc(Zc

0)

= 0.

(84)

Interchanging Uc
0 = Ac in Equation (84) and using Equation (63), we obtain

S̆c(Yc
0 , Zc

0) = 2ngc
(
(ΦY0)

c, Zc
0

)
− 2ngc(Yc

0 , Zc
0). (85)

Putting Equation (56) into Equation (85), we obtain

S̈c(Yc
0 , Zc

0) = −2ngc(Yc
0 , Zc

0). (86)

Taking the contraction of Equation (86), we obtain

r̈c = −2n(2n + 1). (87)

Using Equation (87) in Equation (58), we obtain

r̆c = −2n(2n + 1). (88)

By using Equation (86), we can propose the following theorem.

Theorem 4. A Ricci semi-symmetric Kenmotsu manifold associated with the lift of an NSNMC
∇̆c is an Einstein manifold in the tangent bundle.

Equation (39) defined the data of the lift of the Ricci soliton (gc, Vc
0 , λ0) in the tangent

bundle, where gc is the lift of the Riemannian metric, Vc
0 is the lift of the vector field, and λ0

is a real constant. Here we obtain two conditions with respect to Vc
0 : Vc

0 ∈ span(Ac) and
Vc

0 ⊥ span(Ac). Let us concentrate on the first condition, which is Vc
0 : Vc

0 ∈ span(Ac). The
data of the lift of the Ricci soliton (gc, Vc

0 , λ0) of the Kenmotsu manifold associated with
the lift of NSNMC ∇̆c in the tangent bundle are defined as

(L̆Ag)c(Xc
0, Yc

0) + 2S̆c(Xc
0, Yc

0) + 2λgc(Xc
0, Yc

0) = 0 (89)

for all Xc
0, Yc

0 ∈ T0M, where (L̆Ag)c is the lift of the Lie-derivative of Riemannian metric gc

with respect to Ac containing a lift of NSNMC ∇̆c in the tangent bundle and is defined by

(L̆Ag)c(Xc
0, Yc

0) = Acgc(Xv
0 , Yc

0) + Avgc(Xc
0, Yc

0)

+ gc
(
(L̆AX0)

c, Yc
0

)
+ gc

(
Xc

0, (L̆AY0)
c
)

= Acgc(Xv
0 , Yc

0) + gc
(
(∇̆AX0)

c, Yc
0

)
+ gc

(
Xc

0, (∇̆AY0)
c
)
− gc

(
(∇̆X0 A)c, Yc

0

)
− gc

(
Xc

0, (∇̆Y0 A)c
)

.

(90)
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Hence,

(L̆Ag)c(Xc
0, Yc

0) = (∇̆Ag)c(Xc
0, Yc

0)− gc
(
(∇̆X0 A)c, Yc

0

)
− gc

(
Xc

0, (∇̆X0 A)c
)

.
(91)

Using Equations (25), (27), (29), (45) and (49) in Equation (91), we obtain

(L̆Ag)c(Xc
0, Yc

0) = −2gc
(
(ΦX0)

c, (ΦY0)
c
)

. (92)

Putting Equations (86) and (92) into Equation (89), we obtain

−gc
(
(ΦX0)

c, (ΦY0)
c
)
− 2ngc(Xc

0, Yc
0) + 2ngc

(
(ΦX0)

c, Yc
0

)
+ λ0gc(Xc

0, Yc
0)

= 0.

(93)

Putting Xc
0 = Yc

0 = Ac in Equation (93) and using Equation (25), we obtain

λ0 = 2n > 0. (94)

Hence, we can state the following theorem.

Theorem 5. On a Ricci semi-symmetric Kenmotsu manifold associated with the lift of an NSNMC
∇̆c, the data of the Ricci soliton (gc, Ac, λ0) are expanding in the tangent bundle.

7. Example

Let M be a three-dimensional manifold defined as

M =
{
(y1, y2, y3) ∈ R3; y1 6= 0

}
, (95)

where R is the set of real numbers, and let y1, y2, y3 be given as

a1 = y1
∂

∂y3
, a2 = y1

∂

∂y2
, a3 = −y1

∂

∂y1
,

where {a1, a2, a3} constitute a linearly independent global frame on M. Let the 1-form α be
given by

α(X0) = g(X0, A).

The Riemannian metric g is defined by

g(ai, aj) =

{
1, i = j
0, otherwise.

Let Φ be the (1, 1) tensor field defined by

Φai =


a2, i = 1
a1, i = 2
0, i = 3.

Using the linearity of Φ and g, we acquire α(a3) = 1, φ2Y0 = −Y0 + α(Y0)a3, and
g(ΦX0, ΦY0) = g(X0, Y0)− α(X0)α(Y0). Thus, for a3 = A, the structure (Φ, A, α, g) is an
almost-contact metric structure on M, and M is called an almost-contact metric manifold.
In addition, M satisfies
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(∇̈X0 Φ)Y0 = g(ΦX0, Y0)a3 − α(Y0)ΦX0.

Here, for a3 = A, M is a Kenmotsu manifold. Let the complete and vertical lifts of
a1, a2, a3 be ac

1, ac
2, ac

3 and av
1, av

2, av
3, respectively, in the tangent bundle T0M of manifold M,

and let the complete lift of the Riemannian metric g be gc on T0M such that

gc(Xv
0 , ac

3) =
(

gc(X0, a3)
)v

=
(

α(X0)
)v

(96)

gc(Xc
0, ac

3) =
(

gc(X0, a3)
)c

=
(

α(X0)
)c

(97)

gc(ac
3, ac

3) = 1, gv(Xv
0 , ac

3) = 0, gv(av
3, ac

3) = 0, (98)

and so on. Let the complete and vertical lifts of the (1, 1) tensor field φ0 be φc
0 and φv

0 ,
respectively, and defined by

Φv(av
3) = Φc(ac

3) = 0, (99)

Φv(av
1) = av

2, Φc(ac
1) = ac

2, (100)

Φv(av
2) = −av

1, Φc(ac
2) = −ac

1. (101)

Using the linearity of Φ and g, we infer that

(Φ2X0)
c = −Xc

0 + αc(Xc
0)av

3 + αv(Xc
0)ac

3, (102)

gc
(
(Φa3)

c, (Φa2)
c
)
= gc(ac

3, ac
2)− αc(ac

3)α
v(ac

2)− αv(ac
3)α

c(ac
2). (103)

Thus, for a3 = A in Equations (96)–(98) and (102), the structure (Φc, Ac, αc, gc) is an
almost-contact metric structure on T0M and satisfies the relation

(∇c
ac

3
Φc)ac

2 = gc
(
(Φa3)

c, ac
2

)
Av + gc

(
(Φa3)

v, ac
2

)
Ac

− αc(ac
2)(Φa3)

v − αv(ac
2)(Φa3)

c.

Thus, (Φc, Ac, αc, gc, T0M) is a Kenmotsu manifold.

8. Conclusions

In the present paper, we study the lifts of Kenmotsu manifolds admitting an NSNMC
in the tangent bundle. Firstly, the relationship between the lifts of the Levi-Civita connec-
tion ∇̈c and the NSNMC ∇̆c from a Kenmotsu manifold to the tangent bundle is established.
We find that the complete lifts of vector field Ac are invariant with respect to the Levi-Civita
connection in the tangent bundle and that the complete lift of the co-variant differentiation
of Riemannian metric gc associated with the lift of contra-variant vector field Ac vanishes
identically in a contact metric manifold admitting NSNMC in the tangent bundle. Next,
we study the lifts of the curvature tensor of Kenmotsu manifolds associated with NSNMC
in the tangent bundle, and we derive the relationship between the complete lifts of curva-
ture tensors (conformal, conharmonic, concircular), the Ricci tensor, the scalar curvature
associated with the lifts of NSNMC, and the Levi-Civita connection in the tangent bundle.
We find that every (2n + 1)-dimensional Kenmotsu manifold associated with the lifts of
the NSNMC is regular with respect to NSNMC in the tangent bundle and, if the lift of the
conharmonic curvature tensor associated with NSNMC is equal to that of the Levi-Civita
connection, then the lift of the conformal curvature tensor associated with NSNMC coin-
cides with the Levi-Civita connection in the tangent bundle. We also provide the necessary
and sufficient condition where the lift of the concircular curvature tensor coincides with
the lift of the curvature tensor in the tangent bundle.

Lastly, the lifts of the Ricci semi-symmetric Kenmotsu manifold in the tangent bundle
are investigated, and we observe that a Ricci semi-symmetric Kenmotsu manifold associ-
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ated with the lift of an NSNMC is an Einstein manifold in the tangent bundle and that, in a
Ricci semi-symmetric Kenmotsu manifold associated with the lift of an NSNMC ∇̆c, the
data of the Ricci soliton (gc, Ac, λ0) are expanding in the tangent bundle. An example of
the lifts of Kenmotsu manifolds in the tangent bundle is also provided.
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