
Citation: Farid, M.; Lim, H.S.; Lee,

C.P.; Latip, R. Scheduling Scientific

Workflow in Multi-Cloud: A

Multi-Objective Minimum Weight

Optimization Decision-Making

Approach. Symmetry 2023, 15, 2047.

https://doi.org/10.3390/

sym15112047

Academic Editor: José Carlos

R. Alcantud

Received: 1 September 2023

Revised: 16 September 2023

Accepted: 1 November 2023

Published: 10 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Scheduling Scientific Workflow in Multi-Cloud:
A Multi-Objective Minimum Weight Optimization
Decision-Making Approach
Mazen Farid 1,2, Heng Siong Lim 1,*, Chin Poo Lee 3 and Rohaya Latip 4

1 Faculty of Engineering and Technology, Multimedia University, Melaka 75450, Malaysia;
ramadhan.mazen@mmu.edu.my

2 Faculty of Education, Department of Computer Science, Lahij University, Lahij P.O. Box 6312, Yemen
3 Faculty of Information Science and Technology, Multimedia University, Melaka 75450, Malaysia;

cplee@mmu.edu.my
4 Department of Communication Technology and Networks, University Putra Malaysia (UPM),

Serdang 43400, Malaysia; rohayalt@upm.edu.my
* Correspondence: hslim@mmu.edu.my

Abstract: One of the most difficult aspects of scheduling operations on virtual machines in a multi-cloud
environment is determining a near-optimal permutation. This task requires assigning various computing
jobs with competing objectives to a collection of virtual machines. A significant number of NP-hard
problem optimization methods employ multi-objective algorithms. As a result, one of the most successful
criteria for discovering the best Pareto solutions is Pareto dominance. In this study, the Pareto front is
calculated using a novel multi-objective minimum weight approach. In particular, we use particle swarm
optimization (PSO) to expand the FR-MOS multi-objective scheduling algorithm by using fuzzy resource
management to maximize variety and obtain optimal Pareto convergence. The competing objectives
include reliability, cost, utilization of resources, risk probability, and time makespan. Most of the previous
studies provide numerous symmetry or equivalent solutions as trade-offs for different objectives, and
selecting the optimum solution remains an issue. We propose a novel decision-making strategy named
minimum weight optimization (MWO). Multi-objective algorithms use this method to select a set of
permutations that provide the best trade-off between competing objectives. MWO is a suitable choice for
attaining all optimal solutions, where both the needs of consumers and the interests of service providers
are taken into consideration. (MWO) aims to find the best solution by comparing alternative weights,
narrowing the search for an optimal solution through iterative refinement. We compare our proposed
method to five distinct decision-making procedures using common scientific workflows with competing
objectives: Pareto dominance, multi-criteria decision-making (MCDM), linear normalization I, linear
normalization II, and weighted aggregated sum product assessment (WASPAS). MWO outperforms
these strategies according to the results of this study.

Keywords: workflow scheduling; multi-objective optimization; multi-cloud environment; multi-criteria
decision-making (MCDM); pareto optimization; scientific workflow; optimization; quality of service

1. Introduction

The cloud environment offers a platform that enables shared access to servers in a data
center when clients make service requests. [1]. The three main elements of cloud computing
architecture are infrastructure as a service (IaaS), software as a service (SaaS), and platform
as a service (PaaS). SaaS makes it possible for customers, software vendors, and cloud
service providers to work together. A multi-cloud system is created via the cooperation
of many cloud infrastructure providers who customize their computing needs utilizing a
variety of cloud-based IaaS (such as Microsoft Azure, 2018, Amazon EC2, 2018, and Google
Compute Engine, 2018). As one of the most appreciated methods of resource sharing

Symmetry 2023, 15, 2047. https://doi.org/10.3390/sym15112047 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15112047
https://doi.org/10.3390/sym15112047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-3679-8977
https://orcid.org/0000-0002-6462-1944
https://doi.org/10.3390/sym15112047
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15112047?type=check_update&version=1

Symmetry 2023, 15, 2047 2 of 28

between cloud providers, they charge a fee for their virtual machines (VMs), utilizing the
“pay as you go” concept [2,3].

Most recent potential solutions take into account only one quality of service (QoS)
requirement. For instance, when examining the makespan, the workflow completion
time is taken into account. Other important QoS-related factors are cost, cloud security,
reliability, and performance. Multiple QoS requirements must therefore be balanced via
a task scheduling algorithm; this procedure is known as multi-objective task scheduling.
Utilizing Pareto optimum algorithms, which enable users to select the best result from a
collection of feasible alternatives, is one way to achieve this balance.

A Pareto optimum solution concurrently optimizes competing goals. When there are
numerous candidates for the ideal solution, the group of solutions is known as the Pareto
front. The Pareto front does not have a dominant solution. Given that heuristic algorithms
are produced, it is challenging for service providers to select the right permutation [4].

The authors of [5] used weighted aggregated sum product assessment (WASPAS),
one of the most well-known decision-making strategies. With the help of this strategy,
service providers can articulate their requirements and provide particular weight to objec-
tives in line with customer preferences. In response to a specified priority, it chooses the
optimal solution from the ideal Pareto set. In this article, we present the FR-MOS-MWO
algorithm, a multi-objective workflow scheduling algorithm that uses fuzzy resource uti-
lization. A Pareto front is used to show all possible options and determine which is the
best. Both the service provider’s and the client’s needs can be satisfied in this manner. The
newly introduced algorithm complies with the following five requirements by using the
MWO method:

1. Reducing workflow time (makespan);
2. Reducing cost;
3. Maximizing resource utilization;
4. Increasing the workflow reliability for the customer;
5. Reducing the risk probability of the workflow.

Prior research has proposed several symmetrical or comparable alternatives as trade-
offs for various objectives; finding the best solution remains a challenge. Real-time appli-
cation customers can be concerned about makespan decrease in some cases or the cost
of running VMs in others. Other consumers could be worried about the high workflow
reliability in the meantime. Contrary to the concerns of these users, VM providers strive to
increase resource efficiency and decrease risk. In order to find an almost optimal trade-off
between these competing objectives and satisfy them all at once, a multi-objective method
of optimization is required.

The FR-MOS-MWO algorithm concept focuses on choosing the best option among
available solutions. It entails a comparison of the weights of each option to identify the one
with the lowest weight. This approach streamlines the search, enabling ongoing iterations
to attain a progressively superior solution.

The main contributions of this article are the following:

1. By designing a fitness function to reduce makespan, cost, and risk probability and
maximize resource utilization and reliability, service providers and users’ interests are
taken into account simultaneously.

2. A feasible solution is chosen and demonstrated through using the Pareto front’s
optimal set utilizing a novel decision-making technique called minimum weight
optimization (MWO), which takes into account user preferences.

3. The performance of the MWO-based multi-objective algorithm is contrasted to that of
five other conventional workflow scheduling decision-making techniques, such as
Pareto optimum and WASPAS.

The remainder of this essay is organized as follows: Section 2 provides a summary of
the connected works. The definition of the scheduling model, the problem formulation,
and the network model are all included in Section 3. Section 4 covers the various methods

Symmetry 2023, 15, 2047 3 of 28

for multi-objective optimization. The proposed algorithms are provided, and Section 5
describes how to put them into practice. In Section 6, the experimental findings are
described, and in Section 7, the paper’s conclusion and recommendations for further study
are presented.

2. Related Work

Finding the best workflow scheduling solution is an NP-hard problem. A workflow
scheduling method typically aims to accomplish one particular goal or a number of goals. It
strikes a balance between the trade-offs of competing goals. The aggregation method is one
of these multi-objective scheduling strategies. In this approach, a multi-objective scheduling
issue is solved by reducing it to a single goal. Each objective’s weight is considered,
and the number of weighted objectives is optimized. Cost-conscious scheduling (CCSH)
was used in [6] to reduce a multi-objective problem to a single-objective problem. The
system was created to maximize efficiency and cut costs. Using the aggregation method,
Dongarra et al. [7] proposed a scheduling strategy that improves performance and reliability.
The dynamic level scheduling (DLS) algorithm was used to enhance the proposed reliable
dynamic level scheduling (RDLS) algorithms. The task scheduling system introduced in [8]
allows for task priority changes during runtime. Bi-objective dynamic level scheduling
(BDLS) was proposed by Dogan et al. [9] after a genetic algorithm was used to improve the
bi-objective DLS method.

In contrast to the aggregation approach, the Pareto approach forces trade-offs between
desired objectives that should be maximized and undesirable objectives that should be
minimized (for example, cost). The algorithms that are not using Pareto front method can
get better solutions than those that use Pareto front dominance method. One of the aggrega-
tion approaches was used by Bligaiyan et al. [10] to introduce the Cat Swarm Improvement
algorithm for cloud workflow scheduling. The algorithm decreases the amount of time,
money, and idle time spent on the processor. The proposed algorithm outperformed the
multi-objective particle swarm optimization (MOPSO) algorithm according to the authors’
comparison of the two methods.

Udomkasemsub et al. [11] proposed a multi-objective scheduling approach that com-
bines the Pareto optimizer algorithm with the artificial bee colony (ABC) algorithm to
reduce cost and makespan. An RDPSO algorithm was put forth by Wu et al. [12] for
managing workflows in the cloud to cut down on costs or time. A new gray-wolf-based
multi-objective scheduling method with an emphasis on cost, makespan, and resource
efficiency was introduced in [13]. Yassa et al. [14] suggested another multi-objective strat-
egy using the MODPSO algorithm to cut costs, energy use, and manufacturing time. The
cost was reduced by using dynamic voltage and frequency scaling or DVFS. The hetero-
geneous earliest finish time (HEFT) algorithm and the suggested scheduling algorithm
were contrasted.

A multi-objective Pareto-based heuristic black hole algorithm was used in [15] to
account for more than two significant scheduling factors. In order to cut costs, shorten lead
times, and maximize resource effectiveness, this study suggested an appropriate method
for analyzing the cloud scheduling problem. When scheduling workflows, Kaur et al. [16]
proposed an incremented frog slipping algorithm to lower the execution cost while still
completing the task by a deadline. The proposed scheme outperformed the PSO-based
approach in terms of minimizing the overall cost of workflow execution, according to the
simulation performed using WorkflowSim. Khalili et al. [13] developed a multi-objective
scheduling algorithm using the gray wolf optimizer (GWO) and Pareto optimizer to reduce
makespan, time, and cost for satisfying the QoS requirement for service providers. The
algorithm improved throughput when compared to the strength Pareto evolutionary 2
(SPEA2) algorithm, which is a fundamental service requirement.

Zhang et al. [17] suggested an adaptive multi-objective scheduling approach for
workflow mapping at the IaaS level. While meeting the workflow’s deadline constraint,
their objectives were to balance the loads on VMs and reduce the cost of user resources. To

Symmetry 2023, 15, 2047 4 of 28

achieve Pareto-front and search diversity, the non-dominated sorting genetic algorithm-II
(NSGA2) extension, which employs mutation and crossover operators, was used. The
authors calculated the diversity and convergence of a group of Pareto solutions using
inverted generational distance (IGD), which measures the minimum Euclidean distance.
Singh et al. [18] proposed a new method for workflow scheduling in an effort to decrease
costs, makespan time, and cloud energy use associated with the workload deadline. The
authors used machine learning to classify the users, where policies based on time, money,
and negotiations were taken into account. The proposed strategy’s performance was
consistent with other approaches in relation to the three objectives under consideration,
according to the simulation results from CloudSim.

In order to schedule multi-purpose workflows with budget and deadline constraints,
Verma et al. [19] proposed a hybrid PSO (HPSO), which includes the budget and deadline-
constrained heterogeneous earliest finish time algorithm (BDHEFT). During the scheduling
process, MOPSO is used to cut costs and streamline the workflow. BDHEFT and other
randomly chosen initial solutions can be used to generate the original solution. The Pareto
front is maintained as a set of optimal (non-dominated) solutions throughout the MOPSO
implementation cycle. The ultimate Pareto set is the solution. By combining control point,
replication, and PTE algorithms, Dharwadkar et al. [20] introduced a novel programming
approach called horizontal reduction (HR) to reduce failure, execution costs, scheduling
overhead, and makespan. The results showed that the suggested strategy performed better
than other strategies in terms of the three objectives examined.

In order to minimize cost and workflow makespan, Xu et al. [21] implemented a multi-
objective scheduling method that trades off cost and time. The downside of this strategy
is the probability that a server may fail during scheduling. Zhou et al. [22] suggested a
multi-objective scheduling approach for hybrid cloud with the aim of reducing cost and
makespan. Beegom et al. [23] introduced a non-dominance sorting-based multi-objective
scheduling approach that was used with the PSO algorithm to reduce time and cost for
cloud workflows. Crowding distance was also used to evaluate its performance. Results
indicated that the suggested approach yielded the best solution when compared to the
NSGA2 and NSGA3 algorithms. Alazzam et al. [24] also proposed a hybrid scheduling
strategy using harmony search algorithm (HSA) and tabu search to optimize efficiency
while reducing total cost and makespan.

The black hole detection algorithm was expanded upon in a brand-new multi-objective
hyper-volume algorithm that was put forth in [15]. The algorithm employs a dominant
strategy that boosts its adaptability and accelerates its convergence to the Pareto optimal
solution. Resource cost, makespan (completion time), and resource utilization are the
competing objectives that are optimized. A list-based multi-objective workflow scheduling
algorithm was presented by Durillo et al. [25]. In this algorithm, the resource utilization
cost and makespan are reduced using a single-objective Pareto optimizer. Multi-objective
HEFT (MOHEFT) [25] is a new multi-objective scheduling method that was also introduced.
The study in [26] improved the Pareto multi-objective list scheduling heuristic (PMLSH) as
an enhancement of the study in [27] for estimating solutions when ranking in HEFT. To
achieve a variety of goals, the crowding distance (CD) consistency metric was used. The
solutions were examined in relation to a certain population of solutions as a test. One can
select closer-to-optimal solutions in each algorithm iteration. The proposed algorithm was
put to the test using hypervolume as a benchmark.

A multi-objective differential evolution scheduling algorithm was proposed by Tal-
lukderi [28] for grid environments. This algorithm was intended to reduce the cost of
resource utilization and makespan of the workflow. The author differentiated the new ap-
proach from the Pareto archived evaluative strategy (PAES) based on changes in objectives
and hypervolume values. Tasia [29] also designed a system for scheduling and distributing
cloud resources to reduce time and cost using the improved differential evolution algorithm
(IDEA). In the same manner, Zhu et al. [30] developed a new meta-heuristic approach for
multi-objective cloud IaaS workflow scheduling. They designed the initial population

Symmetry 2023, 15, 2047 5 of 28

using various techniques and introduced a new coding method as well as genetic factors to
reduce the search area. The NSGA2 coding system was used to implement the evolutionary
multi-objective scheduling for cloud (EMS-C) algorithm. The results showed that EMS-C
increased hypervolume compared to MODE differential, Pareto evolutionary algorithm,
MOHEFT, and PSO (NSPSO).

A multi-objective evolutionary algorithm (MOEA) was used by Yu et al. [31] to resolve
workflow planning problems. The tactic was used to resolve two competing problems:
reducing the time required for implementation and the costs associated with using services.
The authors also established objective functions that were in line with the restrictions. In a
similar vein, Kalra et al. [32] presented a workflow scheduling technique that combined
intelligent water drop and genetic algorithm (IWD-GA). The method provides a variety
of solutions for reliability and time constraints while reducing makespan and execution
costs. IWD-GA assists customers in making flexible solution choices in accordance with
their needs.

The cloud federation can be tailored according to certain server constraints, such as
the restricted number of simultaneous resources and the hourly billing intervals. Thus,
Zhou et al. [22] suggested a cloud-based scheduling approach for reducing cash costs
for cloud-based service infrastructures. The proposed fuzzy-dominance-sort-based HEFT
(FDHEFT) algorithm combines fuzzy dominance sort with a HEFT scheduling list. The
authors demonstrated the effectiveness of their method using actual workflows and real-
world parameters. Yao et al. [33] implemented a multi-objective cloud scheduling strategy
that uses multi-swarm multi-objective optimization (MSMO) to reduce cost, workflow
makespan, and energy consumption. The best swarms are used for the modification of
particle velocity and PSO parameter values, i.e., the best personal (Pbest) and the best
global (Gbest) values. In this approach, the velocity of the particle, in addition to the local
information, can be adjusted using the particle’s information in other swarms. Their results
showed an improvement in hypervolume compared to MOHEFT.

It is evident that multi-objective workflow scheduling algorithms take a variety of
objectives into account to produce efficient scheduling. In this regard, it is necessary to make
an accurate choice (of objectives) in order to assign tasks to the VMs in an efficient manner.
Therefore, using the minimum weight optimization process, this paper introduces a new
multi-objective algorithm (FR-MOS-MWO) for scheduling scientific workflow in a multi-
cloud environment. Regarding reliability constraints, this study aims to maximize reliability
and resource utilization while lowering workflow costs, risk probability, and makespan.

3. Scheduling Scenario

By specifically focusing on reliability, makespan, cost, workflow model, multi-cloud
model, resource utilization, risk probability, and problem formulation, this section discusses
the workflow scheduling model, metrics, and aspects. Five QoS requirements are taken into
consideration in the proposed FR-MOS-MWO algorithm: cost, risk probability, makespan,
resource utilization, and reliability. The scheduling model is shown in Figure 1, and the
notations used in this study are described in Table 1 of the cited reference [34].

Designing the framework for a cloud user workflow application is part of the first
phase. The distribution of workflows to a suitable cloud infrastructure should satisfy the
VM types and workflow requirements. Each cloud service provider has a task queue,
and tasks are carried out in accordance with the workflow hierarchy. Due to the infinite
number of VM resources that cloud users have access to, simultaneous services are offered
for running tasks based on dependency relationships. It is critical to understand that
each cloud service provider in a multi-cloud environment has its own performance and
pricing trends.

Symmetry 2023, 15, 2047 6 of 28Symmetry 2023, 15, x FOR PEER REVIEW 6 of 28

Figure 1. Scheduling model.

Designing the framework for a cloud user workflow application is part of the first
phase. The distribution of workflows to a suitable cloud infrastructure should satisfy the
VM types and workflow requirements. Each cloud service provider has a task queue, and
tasks are carried out in accordance with the workflow hierarchy. Due to the infinite num-
ber of VM resources that cloud users have access to, simultaneous services are offered for
running tasks based on dependency relationships. It is critical to understand that each
cloud service provider in a multi-cloud environment has its own performance and pricing
trends.

3.1. Workflow Model
To accomplish a certain goal, a workflow—a collection of scheduled activities—must

be followed in any order. Workflows are collections of simple steps created to handle more
complicated issues [35]. These processes must follow a consistent pattern in order to en-
sure coherence and increase efficiency in carrying out the desired activities. The purpose
of a workflow is to specify the configuration, execution, and monitoring of several activi-
ties.

Workflow can be seen as a node-and-edge direct acyclic graph (DAG). W = (T, E) can
be used to represent it, where T = {t0, t1,…,ti,…,tn−1} is the task set . The task dependencies
are represented by a series of arcs E = {(ti,tj)|ti,tj ϵ T}. Tentry is the entry task in each work-
flow, and Texit is the exit task. Furthermore, each task has a pre(ti) and a successor set
succ(ti). Each task is carried out following the execution of its predecessor. Task ti has an
assigned weight W(ti), which measures the workload in terms of compute units (CUs).

Figure 1. Scheduling model.

3.1. Workflow Model

To accomplish a certain goal, a workflow—a collection of scheduled activities—must
be followed in any order. Workflows are collections of simple steps created to handle more
complicated issues [35]. These processes must follow a consistent pattern in order to ensure
coherence and increase efficiency in carrying out the desired activities. The purpose of a
workflow is to specify the configuration, execution, and monitoring of several activities.

Workflow can be seen as a node-and-edge direct acyclic graph (DAG). W = (T, E) can be
used to represent it, where T = {t0, t1,. . ., ti,. . ., tn−1} is the task set. The task dependencies
are represented by a series of arcs E = {(ti,tj)|ti,tj ε T}. Tentry is the entry task in each
workflow, and Texit is the exit task. Furthermore, each task has a pre(ti) and a successor
set succ(ti). Each task is carried out following the execution of its predecessor. Task ti has
an assigned weight W(ti), which measures the workload in terms of compute units (CUs).
The output data size of task ti that needs to be transmitted to task tj is denoted by the
symbol D(ti,tj).

3.2. Multi-Cloud Architecture

Google Compute Engine, Amazon EC2, and Microsoft Azure are the three cloud
service providers that are the focus of this study. In this section, we will examine the
multi-cloud architecture, which enables users to access virtual machines (VMs) from many
cloud providers with various price structures. For instance, Amazon EC2’s cost in 2018
varied depending on the service’s availability. Every incomplete clock eventually advances
to full hours. Similarly, Azure subscribers in 2018 were paid per minute. After the first ten
minutes of VM instance startup, Google Compute Engine prices were per minute in 2018.
Reference [36] provides a comprehensive list of VM types across Tables 2 to 4.

In a multi-cloud context, various IaaS platforms can be made available for a collection
of VMs, where VM(m) = {VM(m, 1),. . ., VM(m, k),. . ., VM(m, ks)} and m = 1, 2,. . ., M. Let
(m|m = 1, 2, and 3), where m stands for the different IaaS cloud providers (i.e., Amazon,
Microsoft, and Google). The virtual machine instance that IaaS cloud provider m has

Symmetry 2023, 15, 2047 7 of 28

specified is VM(m, k). Hourly costs are indicated by C(m, k), and CU refers to the VM
CPU compute capacity. P(m, k) represents its processing power. We take for granted that
the various cloud service providers can provide customers a limitless number of virtual
machines. The bandwidth of cloud platform m is denoted by Bm, and the bandwidth
between cloud platforms m and m′ is denoted by Bmm ′ .

3.3. Makespan Computation

Workflows and tasks on several IaaS platforms can be assigned and executed through
a multi-cloud environment. Additionally, other VMs must wait before receiving tasks anew.
This process results from VMs frequently sending their output to other VMs. The order of
the tasks determines how the receiver output will be laid out. The grouping procedure of
the workflow tasks within set A is described by Equation (1).

A = ∑
tj∈pre(ti)

succ
(
tj
)
. (1)

In the same manner as set A, the tasks in partial set B are completed. In the event
where A = {t1, t3, t4, t2}, then B = {t1, t3} if ti = t4. In Equation (2), Tstart(ti) and Tend(ti)are
used to denote the task’s start and end times, respectively.

Tstart(ti) = maxtj∈pre(ti)

{
Tend

(
tj
)
+ Twait

(
tj, ti

)}
, (2)

Twait(tj,ti) is the time it takes for task ti to receive input data from task tj. This wait
time is shown as follows:

Twait
(
tj, ti

)
= ∑

tz∈B
Ttrans

(
tj, tz

)
. (3)

Observe that if ti = tentry, then Tstart(ti) = 0.
The transmission time has been calculated using the following equation:

Ttrans(ti) = maxtj∈pre(ti)

{
Tend

(
tj
)
+ Twait

(
tj, ti

)}
+ Ttrans

(
tj, ti

)
, (4)

where Ttrans(tj, ti) is the transmission time between ti and tj.

Ttrans =

{
D
(
tj, ti

)
/Bm,

D
(
tj, ti

)
/Bmm′, m 6= m′ (5)

Task ti therefore has a receiving time provided by

Trece(ti) = Ttrans(ti)− Tstart(ti). (6)

The size of data for each task ti determines how long it takes to execute [30,37].
The execution time for various tasks on various VMs(m, k) can be calculated using the
Equation below.

Texec(ti, VM(m, k)) =
W(ti)

P(m, k)
. (7)

For the completion time of each task, The VM(m,k) in CU’s processing capacity can be
utilized. Therefore,

Tend(ti) = Tstart(ti) + Trece(ti) + Texec(ti, VM(m, k)). (8)

Then,
makespan = Tend(texit). (9)

The deadline is the amount of time needed to complete the scheduling using VMs
with the bare minimal processing capacity.

Symmetry 2023, 15, 2047 8 of 28

3.4. Cost Computation

IaaS platforms employ the multi-cloud model in their own pricing models. The time
that passes between the start time and the finish time is used by the existing workflow
algorithms to determine how long the VM will be rented for [30,36–38]. The VM terminates
after the task is done, and the output is passed to the task’s successor. The priority of
data transfer is impacted by the order of tasks. You can specify the sending time of task ti
as follows:

Tsend(ti) = ∑
tj∈succ(ti)

Ttrans
(
ti, tj

)
. (10)

Equation (11) specifies the rental time of task ti for the VM executing on VM(m, k).

Trent(ti, VM(m, k)) = Trece(ti) + Texec(ti, VM(m, k)) + Tsend(ti). (11)

Following that, the VM renting cost for task ti on each IaaS platform is determined.
Equation (12) expresses the cost of task ti on VM(1,k) for Amazon EC2, which charges

per hour.
cost(ti, VM(1, k)) = dTrent(ti, VM(1, k))/Tminutee . C(1, k), (12)

where Tminute = 60.
Due to Microsoft Azure’s per-minute pricing, the cost of task ti’s execution on VM(2,k)

is as shown in Equation (13).

cost(ti, VM(2, K)) = Trent(ti, VM(2, k)).C(2, k)/Tminute. (13)

After the first ten minutes, Google charges by the instance per minute. In Equation
(14), these costs are shown as the task cost on VM(3,k), where Tten = 10.

cost(ti, VM(3, k)) =

{
Tten.C(3, k)/Tminute, i f Trent(ti, VM(3, K)) ≤ Tten

Trent(ti, VM(3, k)).C(3, k)/Tminute, otherwise
(14)

Using Equation (15), the cost of the workflow can be determined.

cost = ∑
ti∈T

cost(ti, VM(m, k)). (15)

The highest priced VMs in the critical path can be used to identify the budget constraint
when scheduling workflows.

3.5. Resource Utilization Computation

The effective allocation of resources for cloud operations depends on scheduling. In
many scheduling systems, tasks are assigned to achieve a balance between cost-effectiveness,
resource utilization, and makespan [39]. When compared to expensive resources, cheaper
ones require more time to execute tasks, indicating that the CPU of a VM maximizes re-
source utilization at the expense of cost. A requested VM’s total capacity is determined by
using the equation

VMsrequestedMIPS = ∑ P(m, k). (16)

Each workflow’s percentage of workflow utilization can be calculated using Equation (17).

utilization =
VMsrequestedMIPS

VMsavailableMIPS
× 100. (17)

Because customers often expect to deal with a service provider that offers high-resource
utilization, the value of max.utilization in Equation (33) is set to 100%.

Symmetry 2023, 15, 2047 9 of 28

3.6. Reliability Computation

Cloud computing failures are inevitable. Failures might be internal (such as software
bugs, hardware problems, power issues, etc.) [40,41], or external (such as hazardous online
attacks) [42,43]. Failure during task workflow can also result from short-term failures. The
Poisson distribution can be used as the basis for a failure case [7,44,45]. It is calculated by
finding the reliability exponent such that task ti is successfully completed in VM(m, k):

rel(ti) = exp(−λm.Trent(ti, VM(m, k))), (18)

where the failure rate of the cloud service provider fulfills λm > 0 (m = 1, 2, 3).
Multi-cloud failure coefficients differ between IaaS platforms. Any issue that arises

within the rental period will result in the task’s failure. The reliability of the workflow can
be assessed using Equation (19), provided that the failures are independent.

reliability = ∏
ti∈T

rel(ti). (19)

If the maximum failure coefficient is specified as λmax = max{λm|m = 1, 2, 3} and the
minimum failure coefficient is specified as λmin = min{λm|m = 1, 2, 3}, then the resulting
scheduling workflow for reliability might be either maximum (relmax) or minimal (relmin).
Additionally, based on the task scheduling procedure, various workflow results are pro-
duced in various clouds. Therefore, cloud users need to set relc ε [relmin, relmax] as the
appropriate reliability constraint for a scientific workflow application.

3.7. Workflow Risk Probability

Because there are hazards to employing workflow applications in a cloud computing
environment, security awareness is critical for quantitative service evaluation. During the
workflow, the risk analysis model determines the risk rate [42]. The risk distribution is
based on the Poisson probability distribution for each defined time, and the model assumes
that the probability of risks is governed by the level of security. As shown in this section,
an exponential distribution can be utilized to define the risk likelihood of the task for the
last security service [46,47]

The three main cloud threats are snooping, modification, and spoofing. To safeguard
scientific workflow applications, three security services—namely, authentication, integrity,
and confidentiality are used [48]. Users can achieve an effective protection against different
risks and attacks by dynamically integrating these security services. According to the
proposed model, a typical activity will include three different types of security services
with varying user-defined security rates. The collection of security requirements sri for
task ti, for instance, can be expressed as a q-tuple sri =

[
sr1

i , sr2
i , . . . , srl

i , . . . , srq
i

]
, where

srl
i denotes the needed security level of the lth security service and q = 3.

P
(

ti, sll
i

)
=

{
0, i f srl

i ≤ sll
i

1− exp
(
−λl

(
srl

i − sll
i

))
, otherwise, l ∈ {a, g, c} (20)

The authentication, integrity, and confidentiality services are each represented by a, g,
and c, respectively.

For various cloud environments, the risk coefficient λl varies. For instance, at the data
center, 3 snooping attacks, 2.5 changes, and 1.8 spoofing attacks may be conducted in a
given period of time. The negative exponent demonstrates that as the difference between
srl

i and sll
i increases, the probability of failure rises. The risk can arise from massive network

Symmetry 2023, 15, 2047 10 of 28

attacks or inaccessible security challenges. As a result, taking into consideration all security
services, the risk probability for task ti is as follows:

P(ti) = 1− ∏
l∈{a,g,c}

(
1− P

(
ti, sll

i

))
. (21)

The workflow risk probability P(T) with task set T can be calculated according to
Equation (22).

P(T) = 1− ∏
ti∈T

(1− P(ti)). (22)

This workflow risk probability will be used as a QoS constraint for problem formu-
lation in Section 4. The algorithms for confidentiality, accessibility, and data integrity can
be located in Tables 1 to 3, as outlined in reference [48,49]. Each algorithm is assigned a
security rating ranging from 0.08 to 1 based on its cryptographic algorithm efficiency. Let
sli =

[
sl1

i , sl2
i , . . . , sll

i , . . . , slq
i

]
represent the levels of security services for task ti, and sll

i

represent the level of the lth security service task ti has received.

3.8. Fuzzy Logic

In 1965, Lutfy Zadeh established the concept of fuzzy logic [50]. The principle provides
a modern statistical paradigm for formalizing and evaluating collections of functions. The
fuzzy logic naturally extends the common language and interprets human conduct [51].

Definition 1. Let X be the absolute reference for an associate. Features of a typical X and its subset

A, µA: X→ {0,1} are as follows defined: µA(x) =

{
1 : x ∈ A
0 : x /∈ A

for each x ∈ X, µA(x) Only one

of the values from the sets 0 and 1 will be used.

Definition 2. Each element of X is connected with a function that is assigned to a number that is
within the range of [0,1] if set µA is made up of two integers [0,1] that are mapped to a range between
[1,0]. A is a fuzzy set as a result. If µA(x) ∈ {0, 1}, then set A’s membership is ambiguous. As
a result, we provide a multi-objective algorithm for scheduling scientific workflows using a fuzzy
approach where the reliability constraints are determined by resource utilization.

3.9. Problem Description

This study seeks to optimize resource reliability while reducing risk probability,
makespan, and cost. So, WF = (T,E) is used to represent the workflow. Thus, the workflow
is represented as WF = (T,E). The main objective is scheduling Γ = (Loc, Ord, R), where
Loc = {loc(t0), loc(t1). . ., loc(tn−1)} is the task in the workflow to be executed, Ord = {ord(t0),
ord(t1),. . ., ord(tn−1)} the task’s waiting time (the task’s order must also represent depen-
dence relations) is mostly determined by the order in which the data are transferred, and
R = {R0, R1,. . ., Ri,. . ., Rn−1} is a group of resources that support the entire workflow with
Ri = (ti, VM(m; k), Tstart(ti), Tend(ti)).

We then formally outline the multi-objective optimization problem.

Minimize : F(Γ) = (makespan, cost, risk probability). (23)

Maximize : F′(Γ) = (resource utilization, total reliability). (24)

Subject to : reliability ≥ relc . (25)

Previous studies have designed task execution scheduling algorithms [30,37,42] but no
priority has been given to the transmission order of the data, despite it being particularly

Symmetry 2023, 15, 2047 11 of 28

important when developing a scheduling strategy. Therefore, we take into account the
importance of data transmission.

4. Multi-Objective Optimization Methods

In this section, different approaches for obtaining the Pareto optimum set are proposed,
and the effectiveness of these multi-objective optimization methods is compared. According
to [36], the Pareto optimal solutions must be exact and uniformly distributed. Thus, three
common efficacy metrics (distance distribution, coverage ratio, and maximum distribution
ratio) are used to evaluate archive collections (Pareto front) in the suggested algorithms
and additional derived algorithms.

4.1. Particle Swarm Optimization (PSO)

PSO, a computational method based on swarm intelligence and an evolutionary con-
cept, was created by Kennedy and Eberhart in 1995 [52]. PSO, a computational method
based on swarm intelligence and an evolutionary concept, was created by Kennedy and
Eberhart in 1995 [52]. PSO simulates a bird’s hunting strategy. To address problems involv-
ing single-objective optimization, the PSO algorithm was initially designed. The exploration
of its usage to solve a multi-objective issue solution was motivated by its superior search
capabilities [53–55]. One of the intriguing heuristic algorithms utilized in various plans to
address various issues, including cloud computing task/workflow scheduling issues, is
PSO. An ideal value was discovered after generations of updates in PSO’s initial population
of random solutions. Regular PSO does not use evolutionary operators like crossover
and mutation, unlike some other meta-heuristic algorithms [56]. Regarding its capacity
for rapid convergence, PSO has an edge over evolutionary algorithms. Furthermore, by
changing some of the formulas and properties of PSO or by combining PSO with other
metaheuristic algorithms, certain flaws in PSO, such as local optima, can be fixed [57]. The
core element of PSO is the particle that travels through the search region. The direction
and velocity of the particles determine how they move. The best historical locations are
combined with random disturbances to create velocity. The velocity and position update
functions are represented by Equations (26) and (27), respectively.

⇀
v i ← w ·⇀v i + ϕ1 · rd1 ·

(
⇀
p i −

⇀
x i

)
+ ϕ2 · rd2 ·

(
⇀
g i −

⇀
x i

)
(26)

⇀
x i ←

⇀
x i +

⇀
v i, (27)

If rd1 and rd2 ε [0,1] are made up values based on the random uniform distribution, w is
the inertia weight and ϕ1 and ϕ2 are positive integers [58]. The best local position

⇀
p i, current

position
⇀
x i, and velocity

⇀
v i of each PSO particle are represented by a three-dimensional

vector. A PSO algorithm-determined filter solution is indicated by position
⇀
xi. Every time

the fitness value for the current position
⇀
x i is higher than the fitness value for the previous

position, the current position is put in the vector
⇀
p i. Eventually, the communication between

the particles determines the best global position
⇀
g i for all particles [59].

4.2. Multi-Objective Pareto Optimal Approach

Multi-objective optimization issues are frequently solved using the Pareto optimality
approach. This approach gives every objective the same weight and simultaneously op-
timizes them. the Pareto optimality principle states that solution X prevails over another
solution Y if both of these conditions are true:

• In all objectives, solution X is not worse than solution Y.
• X is simply superior to Y in at least one objective.

Thus, the transition from Y to X optimizes all objectives without affecting others.
The optimal or ideal Pareto reflects the best balance between objectives. These solutions

Symmetry 2023, 15, 2047 12 of 28

(representing the Pareto frontier) are also defined as non-dominant because there is no
existing alternative that improves objective achievement without hindering other objectives.
The downside of this strategy is that it does not give an optimum solution, but it proffers
an equally effective set of configurations. Although the final decision appears to have been
taken, the relation between the optimization objectives can be analyzed without including
highly inefficient configurations. This step can be achieved by identifying the optimum
solution in the Pareto front [60].

Pareto Optimality Method

Harmonizing competing objectives is a key component of multi-objective optimization.
This process is mathematically expressed in Equation (28).

Minimize:
F
(
⇀
x
)

=
(

f1

(
⇀
x
)

, f2

(
⇀
x
)

, . . . , fk

(
⇀
x
))

, (28)

where k represents the number of objectives,
⇀
x ∈ X is the decision variables’ vector, and X

is the decision space. Multi-objective optimization typically leads to many solutions, but
researchers find the Pareto optimal solution during analysis.

For
⇀
x 1,

⇀
x 2 ∈ X,

⇀
x 1 is considered to dominate

⇀
x 2 only if

∀i : fi

(
⇀
x 1

)
≤ fi

(
⇀
x 2

)
∧ ∃j : f j

(
⇀
x 1

)
< f j

(
⇀
x 2

)
. (29)

If another solution
⇀
x
∗

does not outperform it, then it meets the criteria for being a
Pareto optimum solution in this study. The Pareto front set is used to display the optimal
results of workflow scheduling in a multi-cloud environment within the addressed objective
space. Γ* schedule dominates Γ if (a) cost, makespan, and risk probabilities (or at least
one of them) are less than those in Γ, and (b) if both reliability and resource utilization
(or at least one of them) are more than those in Γ. Workflow scheduling problems are
NP-complete problems. As such, an approach that converges to sub-optimal solutions is
considered. However, evolutionary algorithms (EAs) [30,34,53,54,61–65] have shown to be
effective in resolving these issues.

4.3. Weighted Sum Function

Using weighted sum factors, the weighted sum function approach is used to aggregate
the features of a multi-objective issue into a single feature. The weighted sum approach is
more efficient and easier to use than Pareto optimality. Prior knowledge of the connections
between the derived objectives, however, is essential. Furthermore, this strategy does not
define how the variable affects certain design objectives.

4.3.1. Minimum Weight Optimization (MWO) Method

The proposed method can yield results indicating a variety of cost-makespan trade-offs
and reliability-resource utilization relationships from which cloud clients can select. As the
first stage, the weighting of each possibility is decided. If xij is considered to be a beneficial
metric, we apply Equation (30) to normalize the values of each attribute, and if it is not, we
use Equation (31). The concept of MWO revolves around selecting the optimal alternative
from a pool of solutions. This is achieved by comparing the weights of all alternatives and
identifying the one with the minimum weight. This process effectively narrows down the
search, allowing for continuous iterations in pursuit of an increasingly superior solution.

xij = 1−
xij

Maxxij
(30)

xij =
xij

Maxxij
(31)

Symmetry 2023, 15, 2047 13 of 28

The weighted sum model (WSM) is calculated using Equation (32) for all alternatives.

W =
n

∑
j = 1

xij (32)

The W-values indicate that the potential alternatives are weighed. Among the group
members, a higher priority is given to the member with the lowest W-value. In contrast
to the multi-criteria decision-making (MCDM) method, MWO does not require users
or experts to assign a weight to each attribute. The makespan, cost, utilization of re-
sources, reliability, and risk probability can all be normalized using Equation (33). We
normalize the execution cost by (cost/budget), the makespan by (makespan/deadline),
the resource utilization by (1—utilization/maximum utilization), the reliability by (1—
reliability/maximum reliability), and the risk probability by (risk probability/maximum
risk probability) for the case with different constraints. After normalization, if all values
meet their individual constraints, they should not all be bigger than one. The alternate
particle or schedule can then be simply determined using the optimal solution.

W =
cost

budget
+

makespan
deadline

+
risk.prob

max.risk.prob
+

(
1− utilization

max.utilization

)
+

(
1− reliability

max.reliability

)
(33)

Let budget, deadline, max.risk.prob, max.utilization, and max.reliability denote the
budget, deadline, maximum risk probability, maximum utilization, and maximum reli-
ability constraints, respectively. The constraints (cost, espan, risk.prob, utilization, and
reliability) are characterized as scheduling objectives. If and only if the workflow fits the
following criteria, it is considered to be a feasible schedule:

cost ≤ budget ∧makespan ≤ deadline ∧ risk.prob ≤ max.risk.prob ∧ utilization
≤ max.utilization ∧ totalreliability ≤ max.reliability

(34)

PSO multi-cloud workflow scheduling difficulties are solved by the FR-MOS algorithm.
As a result, we compare our proposed method to other decision-making methods that
employ multi-objective scheduling algorithms. (such as MCDM, WASPAS, and linear
normalization I & II) in a multi-cloud environment. Comparatively, the MWO method
outperforms other methods with respect to optimizing scheduling processes with the
FR-MOS algorithm.

4.3.2. Weighted Aggregated Sum Product Assessment (WASPAS) Method

WASPAS’s primary processes are the identification of attributes and alternatives, the
estimation of attribute weights, decision-making, and the selection of the final solution [5].

• Decision-Making and Selecting a Definitive Solution

The ranking of each possibility for making decisions is necessary for the WASPAS’s
final steps. The normalizer function is applied to determine the rank of each alternative
mapped to the values of each attribute according to Equation (35) if the maximum xij is
preferable or Equation (36) if otherwise.

xij =
xij

Maxxij
. (35)

xij =
Minxij

xij
(36)

Symmetry 2023, 15, 2047 14 of 28

The WASPAS method combines two famous MCDM approaches. The first optimal
criterion (i.e., Equation (37)) calculates the weighted sum model (WSM) of all alternatives,
while the other (Equation (38)) is a WPM (weighted product model).

Q1 =
n

∑
j = 1

xij × wj (37)

Q2 =
n

∏
j = 1

(
xij
)wj (38)

where wj is the weight of the jth attribute. The degree of importance of the attributes deter-
mined by wj is defined by the user. Equation (39) constitutes the final step used in WASPAS.

Qi = 0.5Q1 + 0.5Q2 (39)

Now that the candidate options have been ranked by Q-values, the group member
with the greatest Q-value is given top priority.

4.3.3. Multi-Criteria Decision-Making (MCDM) Method

A strategy for multi-objective problems is the multi-criteria decision-making approach.
It has been developed and applied widely to resolve complex decision-making prob-
lems [66]. Many approaches and theories to solve decision-making problems with multiple
criteria have been developed over the years [67]. Through an analysis of numerous criteria,
MCDM approaches can assist in identifying the best among a number of possibilities. This
identification is accomplished by weighing the advantages and disadvantages of various
adaption possibilities [68]. There are many MCDM methods, such as COPRAS, WSM,
TOPSIS, AHP, and VIKOR. In our study, we use WSM because it is more stable when
compared to COPRAS [69] and is an intuitive decision-making process; The calculating
process is very simple, this approach combines the weights and values of the variables
into a single magnitude. Normalized evaluation values help in visually calculating the
differences between alternatives. This approach is ideal for evaluating one alternative [70].
According to Chakravarthi et al. (2020), when combined with other criteria, TOPSIS is par-
ticularly tough to weigh and preserves consistency of judgment. Furthermore, Euclidean
distance implementation does not consider attribute correlation [71].

The normalizer function will be used to transform the value of each attribute in the
initial step of determining the rank of each alternative according to Equation (35) if xij is a
required metric or Equation (36) if otherwise. For all alternatives, MCDM uses WSM, as
expressed in Equation (40).

W =
n

∑
j = 1

xij × wj (40)

where wj is the weight of the jth attribute.
This characteristic is one of the cons of MCDM. In our experiment, we use an equal weight

for all attributes. The alternative candidates are classified according to the W-values, and
among the group members, the individual with the highest W-value is given a higher priority.

4.3.4. Linear Normalization

We apply the normalizer to each attribute in linear normalization in accordance with
Equation (35) if xij is beneficial or Equation (41) if it is not.

xij = 1−
xij

Maxxij
(41)

Symmetry 2023, 15, 2047 15 of 28

The normalizer function and WSM (Equation (42)) are applied to each alternative.

W =
n

∑
j = 1

xij (42)

The W-values are used to rank the candidate alternatives, and the group member
with the greatest W-value is given priority over the others. This study adopts linear
normalization II. We use Equation (43) instead of Equation (41), and the difference between
their results is detailed in the Results section.

xij =
Minxij

xij
(43)

5. The Proposed Algorithms

In this article, we propose two PSO-based methods for scheduling optimization with
multi-attribute consideration. The first algorithm combines our previous FR-MOS al-
gorithm with a novel method of decision-making called MWO to produce a superior
collection of Pareto front solutions. The second algorithm creates a multi-objective Pareto
optimization by combining the FR-MOS algorithm and the Pareto optimization method.

5.1. The Five-Objective Case Study

We explore a situation with five crucial real-life objectives: cost, makespan, resource
utilization, reliability, and risk probability. The resource provider is concerned with re-
source utilization and risk probability, whereas the users are concerned with the remaining
objectives. Regarding numerous crucial classification criteria, these objectives are differ-
ent [72,73], as summarized in Table 1.

Table 1. Classification of objective functions.

Objective Aggregation Direction

Makespan Additive Min

Cost Additive Min

Resource Utilization Additive Max

Reliability Multiplicative Max

Risk Probability Multiplicative Min

5.2. Determining Attributes and Alternatives

The following decision matrix is used to start any decision-making problem with
various criteria:

A =

x11 x12 . . . x1n
x21 x22 . . . x2n
x31 x32 . . . x3n
xm1 xm2 . . . xmn

,

where n is the number of attributes that should be optimized and m is the number of
candidate alternatives (in this study, the members of the Pareto front set) from which one
should be chosen (for example, in our case, we have five objectives: cost, makespan, risk
probability, reliability, and utilization).

5.3. FR-MOS-MWO Algorithm

For multi-cloud applications, a PSO-based FR-MOS-MWO algorithm has been proposed
(detailed in Algorithm 1). The initialization process begins with initializing the PSO and
scheduling parameters (lines 1–6). The output parameter evaluation occurs during workflow
scheduling (lines 17–28). In order to choose the feasible solution, there are then two reliability
restrictions [62]. According to the following description, (1) the best solution (lines 31–34) is

Symmetry 2023, 15, 2047 16 of 28

one of the alternatives and (2) the most suitable selection with the lowest reliability constraint
shall be selected if all possible solutions are not feasible [74]. Therefore, only solutions that
are feasible (lines 38–43) are saved. In order to identify several optimal solutions for multi-
objective issues, the method that is selected is utilized to assess the optimal location (line 46).
The algorithm continues to execute until the final criteria is fulfilled (line 7).

Algorithm 1: FR-MOS-MWO

BEGIN

1: Set the number o f particles Np;
2: Set A = ∅; //initially empty archive, record non− dominated solution

3: initialize
{

⇀
v i ,

→
x i ,

→
p i ,

→
g i

} N

i = 1
; //random location and velocity

4: initialize {reliability = makespan = cost = utilization = 0};

5: Set
{→

p i =
→
x i ,

→
g i = ,

→
x i

}N

i = 1
;

6: calculate {pi , gi}N
i = 1;

7: While idx < NIT //NIT is the number o f iteration time
8: for each particle i to NP

9:
→
v i ← w.

→
v i + ϕ1. rd1 .

(→
p i −

→
x i

)
+ ϕ2.rd2.

(→
g i −

→
x i

)
; //update velocity

10:
→
x i ←

→
x i +

→
v i ; //update position

11: for task ti in Ord //traverse tasks in order
12: if ti = t0 //entry task
13: Set Tstart(ti) = 0; //this is also the start time o f work f low
14: else
15: Set Tstart(ti) according to Equation (2);
16: end if
17: Compute Trece(ti) based on Equation (6);
18: Compute Texec(ti) based on Equation (7);
19: Compute Tend(ti) based on Equation (8);
20: Compute Task risk probability P(ti)based on Equation (21)
21: Compute the rel(ti) based on Equation (18);
22: end for
23: Calculate makespan according to Equation (9);
24: Calculate cost according to Equation (15);
25: Calculate resource utilization according to Equation (17);
26: Calculate work f low risk probability according to Equation (22);
27: Set reliability coe f f icient ρ according to Equation (47);
28: Calculate reliability according to Equation (19);
29: Calculate work f low weight according to Equation (33);

30: De f ine θ
(→

x i

)
= max(0 , relc − reliability)

31: If θ
(→

x i

)
= = 0 ∧ θ

(→
p i

)
= = 0 //

→
x i and

→
p i are all f easible solutions

32: If W→
x i

< W→
p i

//update personal
→
p i

33: Set
→
p i =

→
x i ;

34: end if
35: else

36: Set
→
p i =

→
x
′
= argmin

{
θ
(→

x i

)
, θ
(→

p i

)}
;

37: end if

38: If θ
(→

x i

)
= = 0 //only the f easible solution will be added to A

39: for ∀ →x ∈ A ∧ W→
x i

< W→
x

//update A

40: A =
{ →

x ∈ A
∣∣∣W→

x
> W→

x i

}
; //remove points f rom A

41: A = A ∪→x i ; //add
→
x i to A

42: end for
43: end if
44: idx ++
45: end for

46: Randomly select global optimal position
→
g i ;

47: end while

END

Symmetry 2023, 15, 2047 17 of 28

The fitness of each particle is estimated via the FR-MOS-MWO scheduling algorithm.
The particle location Γc is converted into the workflow Γ by this estimation. The makespan
for each task must be determined using the start time (lines 12–16). Following that, the
calculation of the data receiving time Trece(ti), task execution time Texec(ti), and end time
Tend(ti) is done (lines 17–19). The task’s reliability and risk probability are then determined
(lines 20–21). Finally, the cost, reliability, utilization of resources, risk probability, and
makespan of workflow scheduling are determined (lines 23–28) [34].

5.4. FR-MOS-PARETO Algorithm

PSO is also used in the proposed FR-MOS-PARETO algorithm (detailed in Algorithm
2) for a multi-cloud scenario. First, the scheduling and PSO settings are initialized (lines
1–6). The performance characteristics are then evaluated as part of the workflow scheduling
procedure (lines 17–28). For selecting a feasible solution, two reliability restrictions are
considered [62]: (a) The most suitable solution is chosen from a set of feasible alternatives
(lines 30–33). (b) Unless all alternatives are feasible, the best solution with the lowest
violations of the restriction is chosen [40]. Only feasible solutions (lines 37–42) are saved.
(Line 45) describes how the selection approach is utilized to determine the best position
for an optimal multi-objective problem solution. (Line 7) indicates that the algorithm will
continue until the final condition is met.

Algorithm 2: FR-MOS-PARETO

BEGIN

1: Set the number o f particles Np;
2: Set A = ∅; // initially empty archive, record non− dominated solution

3: initialize
{

⇀
v i ,

→
x i ,

→
p i ,

→
g i

} N

i = 1
; //random location and velocity

4: initialize {reliability = makespan = cost = utilization = 0};

5: Set
{→

p i =
→
x i ,

→
g i = ,

→
x i

}N

i = 1
;

6: calculate {pi , gi}N
i = 1;

7: While idx < NIT // NIT is the number o f iteration time
8: for each particle i to NP

9:
→
v i ← w.

→
v i + ϕ1. rd1 .

(→
p i −

→
x i

)
+ ϕ2.rd2.

(→
g i −

→
x i

)
; //update velocity

10:
→
x i ←

→
x i +

→
v i ; //update position

11: for task ti in Ord // traverse tasks in order
12: if ti = t0 // entry task
13: Set Tstart(ti) = 0; // this is also the start time o f work f low
14: else
15: Set Tstart(ti) according to Equation (2);
16: end if
17: Compute Trece(ti) based on Equation (6);
18: Compute Texec(ti) based on Equation (7);
19: Compute Tend(ti) based on Equation (8);
20: Compute Task risk probability P(ti) based on Equation (21)
21: Compute the rel(ti) based on Equation (18);
22: end for
23: Calculate makespan according to Equation (9);
24: Calculate cost according to Equation (15);
25: Calculate resource utilization according to Equation (17);
26: Calculate work f low risk probability according to Equation (22);
27: Set reliability coe f f icient ρ according to Equation (47);
28: Calculate reliability according to Equation (19);

29: De f ine θ
(→

x i

)
= max(0 , relc − reliability)

30: If θ
(→

x i

)
= = 0 ∧ θ

(→
p i

)
= = 0 //

→
x i and

→
p i are all f easible solutions

Symmetry 2023, 15, 2047 18 of 28

Algorithm 2 Cont.

31: If
→
x i 4

→
p i ∨

(→
x i ⊀

→
p i ∧

→
p i ⊀

→
x i

)
//update personal

→
p i

32: Set
→
p i =

→
x i ;

33: end if
34: else

35: Set
→
p i =

→
x
′
= argmin

{
θ
(→

x i

)
, θ
(→

p i

)}
;

36: end if

37: If θ
(→

x i

)
= = 0 //only the f easible solution will be added to A

38: for ∀ →x ∈ A ∧ →x i ⊀
→
x //update A

39: A =
{ →

x ∈ A
∣∣∣ →x ⊀ →x i

}
; //remove points dominated by

→
x i

40: A = A ∪→x i ; // add
→
x i to A

41: end for
42: end if
43: idx ++
44: end for

45: Randomly select global optimal position
→
g i ;

46: end while

END

5.5. Coding Strategy

In Equation (44), the coding strategy is shown. The multi-objective scheduling problem
is resolved by deciding the order of each task and allocating each task to the location that will
transmit data most effectively. The three IaaS platforms taken into consideration in this study
are listed in Table 5 in [36] along with their respective search spaces for various VM types.

Γc = (loc(t0), loc(t1), . . . , loc(tn−1), ord(t0), ord(t1), . . . , ord(tn−1)). (44)

The number of parameters in Γc in Equation (44) illustrates the particle’s dimension,
i.e., Ω = 2·n. The 0 to n − 1 positions specify the types of VMs assigned to the tasks. For
each task, loc(ti) considers the VM type and the execution location. The waiting time of
tasks is affected by the order of tasks ord(ti). Figure 2 depicts the workflow encoding plan.

Symmetry 2023, 15, x FOR PEER REVIEW 18 of 28

16: end if
17: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑇(𝑡) 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6);
18: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑇௫(𝑡) 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (7);
19: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑇ௗ(𝑡) 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (8);
20: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑇𝑎𝑠𝑘 𝑟𝑖𝑠𝑘 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃(𝑡) 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (21)
21: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑟𝑒𝑙(𝑡) 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (18);
22: end for
23: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (9);
24: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑐𝑜𝑠𝑡 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (15);
25: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (17);
26: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑟𝑖𝑠𝑘 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (22);
27: 𝑆𝑒𝑡 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝜌 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (47);
28: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (19);
29: 𝐷𝑒𝑓𝑖𝑛𝑒 𝜃(�⃗�) = 𝑚𝑎𝑥 (0 , 𝑟𝑒𝑙 − 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)
30: If 𝜃(�⃗�) == 0 ∧ 𝜃(�⃗�) == 0 //�⃗� 𝑎𝑛𝑑 �⃗� 𝑎𝑟𝑒 𝑎𝑙𝑙 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠
31: If �⃗� ≼ �⃗� ∨ (�⃗� ⊀ �⃗� ∧ �⃗� ⊀ �⃗�) //𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 �⃗�
32: 𝑆𝑒𝑡 �⃗� = �⃗�;
33: end if
34: else
35: 𝑆𝑒𝑡 �⃗� = �⃗�ᇱ = 𝑎𝑟𝑔𝑚𝑖𝑛{𝜃(�⃗�), 𝜃(�⃗�)};
36: end if
37: If 𝜃(�⃗�) == 0 //𝑜𝑛𝑙𝑦 𝑡ℎ𝑒 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑎𝑑𝑑𝑒𝑑 𝑡𝑜 𝐴
38: for ∀ �⃗� ∈ 𝐴 ∧ �⃗� ⊀ �⃗� //update A
39: 𝐴 = { �⃗� ∈ 𝐴| �⃗� ⊀ �⃗�}; //𝑟𝑒𝑚𝑜𝑣𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑏𝑦 �⃗�
40: 𝐴 = 𝐴 ∪ �⃗�; //𝑎𝑑𝑑 �⃗� 𝑡𝑜 𝐴
41: end for
42: end if
43: 𝑖𝑑𝑥 + +
44: end for
45: 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑒𝑙𝑒𝑐𝑡 𝑔𝑙𝑜𝑏𝑎𝑙 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 �⃗�;
46: end while 𝐄𝐍𝐃

5.5. Coding Strategy
In Equation (44), the coding strategy is shown. The multi-objective scheduling prob-

lem is resolved by deciding the order of each task and allocating each task to the location
that will transmit data most effectively. The three IaaS platforms taken into consideration
in this study are listed in Table 5 in [36] along with their respective search spaces for var-
ious VM types. 𝛤 = ൫𝑙𝑜𝑐(𝑡), 𝑙𝑜𝑐(𝑡ଵ), … , 𝑙𝑜𝑐(𝑡ିଵ), 𝑜𝑟𝑑(𝑡), 𝑜𝑟𝑑(𝑡ଵ), … , 𝑜𝑟𝑑(𝑡ିଵ)൯. (44)

The number of parameters in Γc in Equation (44) illustrates the particle’s dimension,
i.e., Ω = 2⋅n. The 0 to n − 1 positions specify the types of VMs assigned to the tasks. For
each task, loc(ti) considers the VM type and the execution location. The waiting time of
tasks is affected by the order of tasks ord(ti). Figure 2 depicts the workflow encoding plan.

Figure 2. Encoding approach for the workflow. Figure 2. Encoding approach for the workflow.

Since task t1 must be completed before task t2 if it comes before task t2 in the string Ord,
Algorithm 3 determines the tasks’ order based on their dependencies. The scheduled tasks
are first initialized, i.e., α= {t0} (line 2). Two groups of scheduled tasks are designated as γ
and β in line 3. The flag (line 4) captures the position of the search area, and waiting tasks
are configured to be empty. Line 5 uses space = [0, 0] to denote an unaltered entering task
location. In lines 11 through 15, the Euclidean distance is utilized, and in line 16 the ideal
answer is chosen from the search space. Finally, the tasks are evaluated and assigned to the
schedulable set α (lines 20–24). To guarantee a more constrained search space for each task
in the current schedulable task α, the search space is updated sequentially (line 26). Our
suggested method provides a better trade-off than FR-MOS-PARETO, which is viewed as
an innovative approach to adopting the PSO coding strategy for workflow management. To
provide nearly optimum multi-objective solutions, Algorithms 1 and 3 are integrated.

Symmetry 2023, 15, 2047 19 of 28

Algorithm 3: Order tasks

BEGIN

1. Initialize
2. α = {ti}; // schedulable entry task t0
3. γ = β = ∅; // the set o f scheduled tasks and temporary tasks
4. f lag = 0; //record location in search space
5. space = [0, 0] // search space
6. end Initialize
7. while α 6= ∅
8. f lag = f lag + |α|;
9. for ti in α
10. Put all successors o f task ti into β;

11.
→
v i ← w.

→
v i + ϕ1. rd1 .

(→
p i −

→
x i

)
+ ϕ2.rd2.

(→
g i −

→
x i

)
;

12.
→
x i ←

→
x i +

→
v i ;

13. if xi /∈ space
14. xi =

(
x′i : min

(∣∣x′i − xi
∣∣, xi space

)
15. end if
16. space = space− {xi};
17. γ = γ + {ti}; // add task to the set o f scheduled tasks
18. α = α− {ti};//remove task f rom α
19. end for
20. for ti inβ
21. if pre(ti) ∈ γ
22. α = α + {ti}; // add new task to α
23. end if
24. end for
25. Clear β;
26. space = [f lag, f lag + |α| − 1]; //update the search space
27. end while

END

6. Experimental Setup and Simulation Results

The structures of the scientific workflows are shown in Figure 3. A 16 GB RAM processor
with an i7 6-core was used for the experiments. SIPHT, Montage, LIGO, and CyberShake are
four real-world scientific workflows that were used in WorkflowSim 1.0 to apply the suggested
methodology. With [1,32] compute units, a uniform distribution was used to generate random
values for rd1 and rd2. The cloud failure coefficients for Amazon EC2, Google Compute
Engine, and Microsoft Azure were λ1 = 0.001, λ2 = 0.003, and λ3 = 0.002, respectively. The
bandwidth was set to 0.1 G/s if the VMs were in the same cloud and to 0.05 G/s if they were
in different clouds. In the multi-objective problem, the reliability of the workflow should be
equal to or greater than the reliability constraint, according to Equation (25). For determining
the highest reliability, Equation (19) was employed.

n

∏
i = 1

relmax(ti) = relmax. (45)

Particle number NP = 50, w = 0.5, and ϕ1 = ϕ2 = 2.05 in FR-MOS-MWO. The FR-
MOS-MWO method had 10 repeat programming, NIT = 1000 repeat times, and NS = 15
compensation solutions. We measured the minimal workflow reliability (relmin) in addi-
tion to the maximum workflow reliability to ensure adequate reliability. The workflow’s
reliability can be set by users as follows:

relc = relmin + ρ.
(

relmax − relmin
)

(46)

where ρ ε [0,1].

Symmetry 2023, 15, 2047 20 of 28

Symmetry 2023, 15, x FOR PEER REVIEW 20 of 28

ෑ 𝑟𝑒𝑙௫(𝑡) = 𝑟𝑒𝑙௫.
ୀଵ (45)

Figure 3. Structures of scientific workflows.

Particle number NP = 50, w = 0.5, and φ1 = φ2 = 2.05 in FR-MOS-MWO. The FR-MOS-
MWO method had 10 repeat programming, NIT = 1000 repeat times, and NS = 15 compen-
sation solutions. We measured the minimal workflow reliability (relmin) in addition to the
maximum workflow reliability to ensure adequate reliability. The workflow’s reliability
can be set by users as follows: 𝑟𝑒𝑙 = 𝑟𝑒𝑙 + 𝜌. (𝑟𝑒𝑙௫ − 𝑟𝑒𝑙) (46)

where ρ ϵ [0,1].
In our proposed algorithm, Equation (47) shows the reliability constraint coefficient

obtained after the result of the resource utilization is done via fuzzy logic [36,75].

𝜌 = ൞ 0 𝑖𝑓(𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ≤ 50) 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 − 5010 𝑖𝑓(𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 > 50 && 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 < 60)1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (47)

The reliability constraints have to be within the proper range [relmin, relmax] according
to Equation (46). We discovered that the non-consistency between 50 and 60 gave a better
makespan-cost trade-off than MOS when we evaluated the performance of the FR-MOS-
MWO method for workflow scheduling. The relationship between utilization of resources
and the reliability constraint (ρ) coefficient is shown in Figure 4.

Figure 3. Structures of scientific workflows.

In our proposed algorithm, Equation (47) shows the reliability constraint coefficient
obtained after the result of the resource utilization is done via fuzzy logic [36,75].

ρ =

0 i f (utilization ≤ 50)

utilization−50
10 i f (utilization > 50 && utilization < 60)

1 otherwise
(47)

The reliability constraints have to be within the proper range [relmin, relmax] according
to Equation (46). We discovered that the non-consistency between 50 and 60 gave a better
makespan-cost trade-off than MOS when we evaluated the performance of the FR-MOS-
MWO method for workflow scheduling. The relationship between utilization of resources
and the reliability constraint (ρ) coefficient is shown in Figure 4.

Symmetry 2023, 15, x FOR PEER REVIEW 21 of 28

Figure 4. The correlation between reliability constraint coefficient and resource utilization (ρ).

6.1. Simulation Results
The findings of the experiments are described in this section. Figure 5 displays the

outcomes of various decision-making techniques used to optimize the FR-MOS algorithm
for various scientific workflows. Results from the Montage workflow (Figure 5a) demon-
strate that when compared to the other approaches, the FR-MOS-MWO algorithm pro-
duced the best makespan-cost trade-off. Additionally, Figure 5b demonstrates that for the
makespan-cost trade-off on LIGO, FR-MOS-MWO generated the best set of alternatives.
Figure 5c’s comparison of the various approaches used on CyberShake reveals that FR-
MOS-MWO created solutions with the best makespan-cost trade-off. The FR-MOS-PA-
RETO algorithm generated the second-best outcomes. The SIPHT workflow’s graphs (Fig-
ure 5d), which show similar results, can also be observed. Deductively, FR-MOS-MWO
and FR-MOS-PARETO outperformed the other methods that applied the Pareto front.

Figure 4. The correlation between reliability constraint coefficient and resource utilization (ρ).

Symmetry 2023, 15, 2047 21 of 28

6.1. Simulation Results

The findings of the experiments are described in this section. Figure 5 displays the out-
comes of various decision-making techniques used to optimize the FR-MOS algorithm for
various scientific workflows. Results from the Montage workflow (Figure 5a) demonstrate
that when compared to the other approaches, the FR-MOS-MWO algorithm produced the
best makespan-cost trade-off. Additionally, Figure 5b demonstrates that for the makespan-
cost trade-off on LIGO, FR-MOS-MWO generated the best set of alternatives. Figure 5c’s
comparison of the various approaches used on CyberShake reveals that FR-MOS-MWO
created solutions with the best makespan-cost trade-off. The FR-MOS-PARETO algorithm
generated the second-best outcomes. The SIPHT workflow’s graphs (Figure 5d), which
show similar results, can also be observed. Deductively, FR-MOS-MWO and FR-MOS-
PARETO outperformed the other methods that applied the Pareto front.

Symmetry 2023, 15, x FOR PEER REVIEW 21 of 28

Figure 4. The correlation between reliability constraint coefficient and resource utilization (ρ).

6.1. Simulation Results
The findings of the experiments are described in this section. Figure 5 displays the

outcomes of various decision-making techniques used to optimize the FR-MOS algorithm
for various scientific workflows. Results from the Montage workflow (Figure 5a) demon-
strate that when compared to the other approaches, the FR-MOS-MWO algorithm pro-
duced the best makespan-cost trade-off. Additionally, Figure 5b demonstrates that for the
makespan-cost trade-off on LIGO, FR-MOS-MWO generated the best set of alternatives.
Figure 5c’s comparison of the various approaches used on CyberShake reveals that FR-
MOS-MWO created solutions with the best makespan-cost trade-off. The FR-MOS-PA-
RETO algorithm generated the second-best outcomes. The SIPHT workflow’s graphs (Fig-
ure 5d), which show similar results, can also be observed. Deductively, FR-MOS-MWO
and FR-MOS-PARETO outperformed the other methods that applied the Pareto front.

Figure 5. Real-world scientific Workflows and the makespan-cost trade-off. (a) Montage; (b) LIGO;
(c) CyberShake; (d) SIPHT.

The relation between resource utilization and reliability is depicted in Figure 6. The
FR-MOS algorithm was employed with a variety of decision-making techniques in diverse
scientific workflows. Similar to Figure 5, the results demonstrate that when compared
to the other approaches, the FR-MOS-MWO achieved the best performance (i.e., high
resource utilization and reliability). These outcomes show how effective our new method
for decision-making is. The reliability of the workflow is determined as the product of the
exponentially distributed task reliabilities, which leads to a smaller workflow reliability,
according to Equation (19). For this reason, the workflow dependability was represented by
the mean reliability of each workflow. Table 2 displays the outcomes of the various decision-
making techniques examined in this article. In light of the competing attributes (makespan,
cost, risk probability, reliability, and resource utilization), the table demonstrates that
when using the Montage workflow, FR-MOS-MWO produced the best results in terms of
makespan, resource utilization, and reliability; however, it had the same risk probability
and high cost as FR-MOS-PARETO. FR-MOS-MWO outperformed the other algorithms for
the remaining three workflows (CyberShake, LIGO, and Sipht) across all attributes. When
compared to the other FR-MOS-based algorithms investigated, FR-MOS-MWO produced
the best result.

Symmetry 2023, 15, 2047 22 of 28

Symmetry 2023, 15, x FOR PEER REVIEW 22 of 28

Figure 5. Real-world scientific Workflows and the makespan-cost trade-off. (a) Montage; (b) LIGO;
(c) CyberShake; (d) SIPHT.

The relation between resource utilization and reliability is depicted in Figure 6. The
FR-MOS algorithm was employed with a variety of decision-making techniques in diverse
scientific workflows. Similar to Figure 5, the results demonstrate that when compared to
the other approaches, the FR-MOS-MWO achieved the best performance (i.e., high re-
source utilization and reliability). These outcomes show how effective our new method
for decision-making is. The reliability of the workflow is determined as the product of the
exponentially distributed task reliabilities, which leads to a smaller workflow reliability,
according to Equation (19). For this reason, the workflow dependability was represented
by the mean reliability of each workflow. Table 2 displays the outcomes of the various
decision-making techniques examined in this article. In light of the competing attributes
(makespan, cost, risk probability, reliability, and resource utilization), the table demon-
strates that when using the Montage workflow, FR-MOS-MWO produced the best results
in terms of makespan, resource utilization, and reliability; however, it had the same risk
probability and high cost as FR-MOS-PARETO. FR-MOS-MWO outperformed the other
algorithms for the remaining three workflows (CyberShake, LIGO, and Sipht) across all
attributes. When compared to the other FR-MOS-based algorithms investigated, FR-MOS-
MWO produced the best result.

Figure 6. The relation between resource utilization and reliability. (a) Montage; (b) LIGO; (c) Cyber-
Shake; (d) SIPHT.

Table 2. The scheduling results of different objectives.

Workflow Methods Makespan (H) Cost ($) Resource Utilization % Reliability % Risk Probability %

Montage

MWO 20.10096 18.16248 98.41 94.39949675 0
MCDM 25.28155 19.07311 74.958 73.40873522 3.68121 × 10−18

NORMALIZATION1 24.53447 17.74348 77.902 78.49092802 1.2674 × 10−128
NORMALIZATION2 28.57465 20.19869 67.804 64.99937426 3.67288 × 10−48

WASPAS 36.61334 18.17652 74.189 73.70053177 6.27629 × 10−60

Figure 6. The relation between resource utilization and reliability. (a) Montage; (b) LIGO; (c) Cyber-
Shake; (d) SIPHT.

Table 2. The scheduling results of different objectives.

Workflow Methods Makespan (H) Cost ($) Resource
Utilization % Reliability % Risk

Probability %

Montage

MWO 20.10096 18.16248 98.41 94.39949675 0

MCDM 25.28155 19.07311 74.958 73.40873522 3.68121 × 10−18

NORMALIZATION1 24.53447 17.74348 77.902 78.49092802 1.2674 × 10−128

NORMALIZATION2 28.57465 20.19869 67.804 64.99937426 3.67288 × 10−48

WASPAS 36.61334 18.17652 74.189 73.70053177 6.27629 × 10−60

PARETO 27.20506 18.12757 89.439 86.92925785 0

CyberShake

MWO 13.41054064 18.15663683 97.50642857 94.0787519 0

MCDM 42.10671 20.40252 71.40428571 94.3438238 0.005376047

NORMALIZATION1 25.03879 25.24809 57.87071429 93.0850308 0

NORMALIZATION2 20.89159132 18.427447 50.08142857 90.5211898 3.3656 × 10−229

WASPAS 45.4625 19.15031 64.28714286 95.869359 0.117599759

PARETO 22.14941565 20.74585587 77.915 93.7694293 2.4616 × 10−167

LIGO

MWO 18.62719 19.31839 88.51 90.98273739 0

MCDM 34.33421 22.35154 79.558 83.59184932 4.21224 × 10−79

NORMALIZATION1 51.65373 21.31771 56.254 85.39737027 0

NORMALIZATION2 70.20769 14.59921 63.872 87.23663633 8.716 × 10−238

WASPAS 33.1888 21.82187 68.448 86.43662257 1.72212 × 10−11

PARETO 45.40331 25.88293 79.322 86.90678744 0

Symmetry 2023, 15, 2047 23 of 28

Table 2. Cont.

Workflow Methods Makespan (H) Cost ($) Resource
Utilization % Reliability % Risk

Probability %

SIPHT

MWO 5.602056079 6.79905612 66.675 73.9875787 0

MCDM 11.24748374 11.45402866 44.59333333 71.3080864 0.471667852

NORMALIZATION1 19.30668 36.79846 40.76166667 73.4901905 8.3689 × 10−130

NORMALIZATION2 16.32143348 11.75497218 61.68916667 71.3719201 6.6051 × 10−126

WASPAS 30.47000992 12.64217567 52.97416667 71.7378019 6.4918 × 10−240

PARETO 16.05690635 13.80430791 58.17333333 73.5531058 7.61767 × 10−46

6.2. Performance Measurement

Considering just one of the efficiency aspects is unlikely to be sufficient to test multi-
purpose solutions, three metrics were used: Q-metric, S-metric, and FS-metric. Using
these metrics is important when evaluating the Pareto front quality produced by various
algorithms [54]. To assess the level of convergence of multi-objective algorithms A and B,
Q-metric can be used [76,77], as stated in Equation (48).

Q(A, B) = |Ψ|/|Y|. (48)

Y is the set of SA ∪ SB, and Ψ = Υ ∩ SA. SA and SB denote the two sets of Pareto
optimal solutions for the two multi-objective algorithms A and B. Only when Q(A, B) > Q(B,
A) or Q(A, B) > 0.5 is Algorithm A superior to Algorithm B. The FS measure determines the
Pareto front space size. It is calculated using Equation (49) [78].

FS =

√
m

∑
i = 1

min
(x0,x1)∈SA×SA

(fi(x0)− fi(x1))
2, (49)

Because fi(x0) and fi(x1) are two different values of the same objective function, ahigher
FS value indicates greater diversity in the Pareto front. To determine the amount of
uniformity of solutions, we use the S-metric as calculated in Equation (50) [36].

s =

√√√√ NP

∑
i = 1

(d′i − d′)
2
/NP, (50)

where NP is the number of Pareto solutions and d′i is the distance between the Pareto front
set members.

d′ = (
NP

∑
i = 1

d′i)/NP. (51)

While a larger value is preferable for the FS-metric and Q-metric, a smaller S-metric
indicates that the algorithm has discovered a uniform solution.

For all FR-MOS-based algorithms, the relation between reliability, resource usage, and
makespan-cost trade-offs is depicted in Figures 5 and 6. Notably, when compared to other
FR-MOS-based algorithms, the FR-MOS-MWO algorithm produced the best results for
all objectives taken into account. Table 3 provides an illustration of the multi-objective
performance metrics shown in Figures 5 and 6. The performance of FR-MOS-MWO is supe-
rior to other FR-MOS-based algorithms if the Q-metric is set to true. Table 3 demonstrates
that for all scientific workflows, the value of the Q-metric was true Q (FR-MOS-MWO,
FR-MOS-based). This result demonstrates that FR-MOS-MWO’s solutions are superior to
those of the other algorithms, proving that this algorithm offers the best multi-objective
convergence outcome. In terms of the Montage workflow, the FS-metric value for FR-
MOS-MWO was 1.38, which was higher than those of other algorithms, showing that

Symmetry 2023, 15, 2047 24 of 28

FR-MOS-MWO produces a better level of diversity in comparison to those other algorithms.
It can be shown that FR-MOS-MWO provides more uniformity in the Pareto front than
other FR-MOS-based algorithms because its S-metric, which was 0.08, was less than those
of the other algorithms. Regarding the LIGO workflow, FR-MOS-MWO’s FS-metric was
0.69, greater than that of the other algorithms, showing that it is more diverse than the
other algorithms. The uniformity in the Pareto front of FR-MOS-MWO is better than that
of the other algorithms, as evidenced by the S-metric of the algorithm being smaller for
FR-MOS-MWO (0.022) than for the other algorithms. Table 3 demonstrates that using FR-
MOS-MWO on SIPHT resulted in a better FS-metric value of 1.01 than FR-MOS-PARETO
and FR-MOS-MCDM. FR-MOS-LIN-NORM II, in contrast, generated an FS-metric value of
2.59, showing that it offers a greater diversity than the other FR-MOS-based algorithms.
The best uniformity was achieved by FR-MOS-MWO, as evidenced by the algorithm’s
S-metric of 0.07, which was lower than that of the other algorithms.

Table 3. Multi-objective performance metrics.

Workflow Q-Metric FR-MOS-
MWO

FR-MOS-
PARETO

FR-MOS-
MCDM

FR-MOS-
WASPAS

FR-MOS-LIN-
NORM

I

FR-MOS-LIN-
NORM

II

Montage

FR-MOS-
MWO - True True True True True

FS-metric 1.38 0.3 0.4 0.6 0.2 0.5

S-metric 0.08 0.23 0.17 0.074 0.26 0.13

LIGO

FR-MOS-
MWO - True True True True True

FS-metric 0.69 0.26 0.064 0.127 0.003 0.38

S-metric 0.022 0.107 0.153 0.119 0.121 0.038

SIPHT

FR-MOS-
MWO - True True True True True

FS-metric 1.01 0.839 1.0 1.84 1.72 2.59

S-metric 0.07 0.16 0.24 0.32 0.11 0.84

CyberShake

FR-MOS-
MWO - True True True True True

FS-metric 0.244 0.063 0.0001 0.2 0.19 0.385

S-metric 0.073 0.214 0.170 0.22 0.16 0.084

FR-MOS-MWO’s FS-metric was 0.244, which was better than all other FR-MOS-based
algorithms when compared to FR-MOS-LIN-NORM II’s FS-metric of 0.385, according to
the CyberShake results. This result implies that FR-MOS-LIN-NORM II produced a better
diversity compared to all other algorithms. FR-MOS-MWO’s S-metric value was 0.073,
which was lower than that of other algorithms. As a result, when compared to other
algorithms, FR-MOS-MWO generates the best uniformity. Our investigation showed that,
in some instances, (MCDM) strategies outperformed the WASPAS strategy in terms of
results. For instance, different MCDM techniques showed more efficacy than WASPAS in
the context of the SIPHT workflow. Notably, our proposed method, MWO, consistently
delivered the best results. This success can be attributed to its approach of narrowing down
the research process through the use of the minimum weight criterion. Additionally, some
other MCDM methods produced multiple equivalent results, which can complicate the
selection of the optimum solution or leave the choice up to users, as seen with the Pareto
method in prior research. To aid researchers in selecting the most suitable method for their
work, we have included all equations for each method in our article.

Symmetry 2023, 15, 2047 25 of 28

7. Conclusions

This study introduces a new metaheuristic algorithm that solves workflow scheduling
problems using a novel decision-making method. It takes into account the quality-of-service
requirements for both users and service providers in multi-cloud systems. A multi-objective
FR-MOS-MWO algorithm that combines FR-MOS and the minimum weight optimization
method is what we propose. The proposed method provides better solutions in comparison
to the expanded Pareto dominance and other decision-making methods that apply the
FR-MOS algorithm. MWO proffers optimal solutions from the Pareto front set according
to the particles’ weights. The comparison between MWO and other methods based on
FR-MOS shows that MWO outperforms the other methods. Future work can consider
working with more than five QoS parameters to optimize the workflow scheduling process.
To reduce energy consumption, we will extend our strategy to achieve fault tolerance while
scheduling the workflow in a hybrid environment.

Author Contributions: Writing original draft, M.F.; Writing review and editing, M.F.; Supervision
and review, H.S.L.; Review, C.P.L. and R.L. All authors have read and agreed to the published version
of the manuscript.

Funding: The APC was funded by Multimedia University.

Data Availability Statement: The different scientific workflows that we used in our experiments are
available at: (https://pegasus.isi.edu/workflow_gallery/) (accessed on 9 March 2023).

Acknowledgments: The authors would like to acknowledge the financial support and facilities
provided by Multimedia University for the execution, completion and publication of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ebadifard, F. Dynamic task scheduling in cloud computing based on Naïve Bayesian classifier. In Proceedings of the International

Conference for Young Researchers in Informatics, Mathematics, and Engineering, Kaunas, Lithuania, 28 April 2017; Volume 1852.
2. Lin, B.; Guo, W.; Chen, G.; Xiong, N.; Li, R. Cost-Driven Scheduling for Deadline-Constrained Workflow on Multi-clouds. In

Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW), Hyderabad,
India, 25–29 May 2015; pp. 1191–1198. [CrossRef]

3. Sooezi, N.; Abrishami, S.; Lotfian, M. Scheduling data-driven workflows in multi-cloud environment. In Proceedings of the
2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom), Vancouver, BC, Canada, 30
November–3 December 2015; pp. 163–167. [CrossRef]

4. Liu, L.; Zhang, M. Multi-objective optimization model with AHP decision-making for cloud service composition. KSII Trans.
Internet Inf. Syst. 2015, 9, 3293–3311. [CrossRef]

5. Ebadifard, F.; Babamir, S.M. A Multi-Objective Approach With WASPAS Decision-Making for Workflow Scheduling in Cloud
Environment. Int. J. Web Res. 2018, 1, 1–10.

6. Li, J.; Su, S.; Cheng, X.; Huang, Q.; Zhang, Z. Cost-conscious scheduling for large graph processing in the cloud. In Proceedings
of the 2011 IEEE International Conference on High Performance Computing and Communications, Banff, AB, Canada, 2–4
September 2011; pp. 808–813. [CrossRef]

7. Jeannot, E.; Saule, E.; Trystram, D. Optimizing performance and reliability on heterogeneous parallel systems: Approximation
algorithms and heuristics. J. Parallel Distrib. Comput. 2012, 72, 268–280. [CrossRef]

8. Sih, G.C.; Lee, E.A. A Compile-Time Scheduling Heuristic for Interconnection-Constrained Heterogeneous Processor Architectures.
IEEE Trans. Parallel Distrib. Syst. 1993, 4, 175–187. [CrossRef]

9. Doǧan, A.; Özgüner, F. Biobjective scheduling algorithms for execution time-reliability trade-off in heterogeneous computing
systems. Comput. J. 2005, 48, 300–314. [CrossRef]

10. Bilgaiyan, S.; Sagnika, S.; Das, M. A Multi-objective Cat Swarm Optimization Algorithm for Workflow Scheduling in Cloud
Computing Environment. Fortune 2015, 167, 62–66. [CrossRef]

11. Udomkasemsub, O.; Xiaorong, L.; Achalakul, T. A multiple-objective workflow scheduling framework for cloud data analytics.
In Proceedings of the 9th International Joint Conference on Computer Science and Software Engineering, Bangkok Thailand, 30
May–1 June 2012; pp. 391–398. [CrossRef]

12. Wu, Z.; Ni, Z.; Gu, L.; Liu, X. A revised discrete particle swarm optimization for cloud workflow scheduling. In Proceedings of the
2010 International Conference on Computational Intelligence and Security, Nanning, China, 11–14 December 2010; pp. 184–188.
[CrossRef]

https://pegasus.isi.edu/workflow_gallery/
https://doi.org/10.1109/IPDPSW.2015.56
https://doi.org/10.1109/CloudCom.2015.95
https://doi.org/10.3837/tiis.2015.09.002
https://doi.org/10.1109/HPCC.2011.147
https://doi.org/10.1016/j.jpdc.2011.11.003
https://doi.org/10.1109/71.207593
https://doi.org/10.1093/comjnl/bxh086
https://doi.org/10.1007/978-81-322-2012-1
https://doi.org/10.1109/JCSSE.2012.6261985
https://doi.org/10.1109/CIS.2010.46

Symmetry 2023, 15, 2047 26 of 28

13. Khalili, A.; Babamir, S.M. Optimal scheduling workflows in cloud computing environment using Pareto-based Grey Wolf
Optimizer. Concurr. Comput. 2017, 29, 1–11. [CrossRef]

14. Yassa, S.; Chelouah, R.; Kadima, H.; Granado, B. Multi-objective approach for energy-aware workflow scheduling in cloud
computing environments. Sci. World J. 2013, 2013, 350934. [CrossRef]

15. Ebadifard, F.; Babamir, S.M. Scheduling scientific workflows on virtual machines using a Pareto and hypervolume based black
hole optimization algorithm. J. Supercomput. 2020, 76, 7635–7688. [CrossRef]

16. Kaur, P.; Mehta, S. Resource provisioning and work flow scheduling in clouds using augmented Shuffled Frog Leaping Algorithm.
J. Parallel Distrib. Comput. 2017, 101, 41–50. [CrossRef]

17. Zhang, M.; Li, H.; Liu, L.; Buyya, R. An adaptive multi-objective evolutionary algorithm for constrained workflow scheduling in
Clouds. Distrib. Parallel Databases 2018, 36, 339–368. [CrossRef]

18. Singh, V.; Gupta, I.; Jana, P.K. An Energy Efficient Algorithm for Workflow Scheduling in IaaS Cloud. J. Grid Comput. 2019, 18,
357–376. [CrossRef]

19. Verma, A.; Kaushal, S. A hybrid multi-objective Particle Swarm Optimization for scientific workflow scheduling. Parallel Comput.
2017, 62, 1–19. [CrossRef]

20. Dharwadkar, N.V.; Poojara, S.R.; Kadam, P.M. Fault Tolerant and Optimal Task Clustering for Scientific Workflow in Cloud. Int. J.
Cloud Appl. Comput. 2018, 8, 1–19. [CrossRef]

21. Xu, H.; Yang, B.; Qi, W.; Ahene, E. A multi-objective optimization approach to workflow scheduling in clouds considering fault
recovery. KSII Trans. Internet Inf. Syst. 2016, 10, 976–995. [CrossRef]

22. Zhou, X.; Zhang, G.; Sun, J.; Zhou, J.; Wei, T.; Hu, S. Minimizing cost and makespan for workflow scheduling in cloud using
fuzzy dominance sort based HEFT. Futur. Gener. Comput. Syst. 2019, 93, 278–289. [CrossRef]

23. Ajeena Beegom, A.S.; Rajasree, M.S. Non-dominated sorting based PSO algorithm for workflow task scheduling in cloud
computing systems. J. Intell. Fuzzy Syst. 2019, 37, 6801–6813. [CrossRef]

24. Alazzam, H.; Alhenawi, E.; Al-Sayyed, R. A hybrid job scheduling algorithm based on Tabu and Harmony search algorithms.
J. Supercomput. 2019, 75, 7994–8011. [CrossRef]

25. Durillo, J.J.; Fard, H.M.; Prodan, R. MOHEFT: A multi-objective list-based method for workflow scheduling. In Proceedings
of the 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings (CloudCom 2012), Taipei,
Taiwan, 3–6 December 2012; pp. 185–192. [CrossRef]

26. Durillo, J.J.; Prodan, R. Multi-objective workflow scheduling in Amazon EC2. Cluster Comput. 2014, 17, 169–189. [CrossRef]
27. Durillo, J.J.; Prodan, R.; Barbosa, J.G. Pareto tradeoff scheduling of workflows on federated commercial Clouds. Simul. Model.

Pract. Theory 2015, 58, 95–111. [CrossRef]
28. Talukder, A.K.M.K.A.; Kirley, M.; Buyya, R. Multiobjective differential evolution for scheduling workflow applications on global

Grids. Concurr. Comput. Pract. Exp. 2009, 21, 1742–1756. [CrossRef]
29. Tsai, J.T.; Fang, J.C.; Chou, J.H. Optimized Task Scheduling and Resource Allocation on Cloud Computing Environment Using Improved

Differential Evolution Algorithm; Elsevier: Amsterdam, The Netherlands, 2013; Volume 40, ISBN 8868721503. [CrossRef]
30. Zhu, Z.; Zhang, G.; Li, M.; Liu, X. Evolutionary Multi-Objective Workflow Scheduling in Cloud. IEEE Trans. Parallel Distrib. Syst.

2016, 27, 1344–1357. [CrossRef]
31. Yu, J.; Buyya, R.; Ramamohanarao, K. Workflow scheduling algorithms for grid computing. Stud. Comput. Intell. 2008, 146,

173–214. [CrossRef]
32. Kalra, M.; Singh, S. Multi-criteria workflow scheduling on clouds under deadline and budget constraints. Concurr. Comput. 2019,

31, e5193. [CrossRef]
33. Yao, G.; Ding, Y.; Hao, K. Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization

algorithm. J. Cent. South Univ. 2017, 24, 1050–1062. [CrossRef]
34. Farid, M.; Latip, R.; Hussin, M.; Asilah Wati Abdul Hamid, N. Weighted-adaptive Inertia Strategy for Multi-objective Scheduling

in Multi-clouds. Comput. Mater. Contin. 2022, 72, 1529–1560. [CrossRef]
35. Casas, I.; Taheri, J.; Ranjan, R.; Zomaya, A.Y. PSO-DS: A scheduling engine for scientific workflow managers. J. Supercomput. 2017,

73, 3924–3947. [CrossRef]
36. Farid, M.; Latip, R.; Hussin, M.; Abdul Hamid, N.A.W. Scheduling scientific workflow using multi-objective algorithm with

fuzzy resource utilization in multi-cloud environment. IEEE Access 2020, 8, 24309–24322. [CrossRef]
37. Rodriguez, M.A.; Buyya, R. Deadline Based Resource Provisioning and Scheduling Algorithm for Scientific Workflows on Clouds.

IEEE Trans. Cloud Comput. 2014, 2, 222–235. [CrossRef]
38. Li, Z.; Ge, J.; Hu, H.H.; Song, W.; Hu, H.H.; Luo, B. Cost and Energy Aware Scheduling Algorithm for Scientific Workflows with

Deadline Constraint in Clouds. IEEE Trans. Serv. Comput. 2015, 11, 713–726. [CrossRef]
39. Zhang, C.; Green, R.; Alam, M. Reliability and utilization evaluation of a cloud computing system allowing partial failures. In

Proceedings of the 2014 IEEE 7th International Conference on Cloud Computing, Anchorage, AK, USA, 27 June–2 July 2014;
pp. 936–937. [CrossRef]

40. Kianpisheh, S.; Charkari, N.M.; Kargahi, M. Reliability-driven scheduling of time/cost-constrained grid workflows. Futur. Gener.
Comput. Syst. 2016, 55, 1–16. [CrossRef]

41. Poola, D.; Ramamohanarao, K.; Buyya, R. Enhancing reliability of workflow execution using task replication and spot instances.
ACM Trans. Auton. Adapt. Syst. 2016, 10, 1–21. [CrossRef]

https://doi.org/10.1002/cpe.4044
https://doi.org/10.1155/2013/350934
https://doi.org/10.1007/s11227-020-03183-4
https://doi.org/10.1016/j.jpdc.2016.11.003
https://doi.org/10.1007/s10619-017-7215-z
https://doi.org/10.1007/s10723-019-09490-2
https://doi.org/10.1016/j.parco.2017.01.002
https://doi.org/10.4018/IJCAC.2018070101
https://doi.org/10.3837/tiis.2016.03.002
https://doi.org/10.1016/j.future.2018.10.046
https://doi.org/10.3233/JIFS-190355
https://doi.org/10.1007/s11227-019-02936-0
https://doi.org/10.1109/CloudCom.2012.6427573
https://doi.org/10.1007/s10586-013-0325-0
https://doi.org/10.1016/j.simpat.2015.07.001
https://doi.org/10.1002/cpe.1417
https://doi.org/10.1016/j.cor.2013.06.012
https://doi.org/10.1109/TPDS.2015.2446459
https://doi.org/10.1007/978-3-540-69277-5_7
https://doi.org/10.1002/cpe.5193
https://doi.org/10.1007/s11771-017-3508-7
https://doi.org/10.32604/cmc.2022.021410
https://doi.org/10.1007/s11227-017-1992-z
https://doi.org/10.1109/ACCESS.2020.2970475
https://doi.org/10.1109/TCC.2014.2314655
https://doi.org/10.1109/TSC.2015.2466545
https://doi.org/10.1109/CLOUD.2014.131
https://doi.org/10.1016/j.future.2015.07.014
https://doi.org/10.1145/2815624

Symmetry 2023, 15, 2047 27 of 28

42. Li, Z.; Ge, J.; Yang, H.; Huang, L.; Hu, H.; Hu, H.; Luo, B. A security and cost aware scheduling algorithm for heterogeneous tasks
of scientific workflow in clouds. Futur. Gener. Comput. Syst. 2016, 65, 140–152. [CrossRef]

43. Zeng, L.; Veeravalli, B.; Li, X. SABA: A security-aware and budget-aware workflow scheduling strategy in clouds. J. Parallel
Distrib. Comput. 2015, 75, 141–151. [CrossRef]

44. Fard, H.M.; Prodan, R.; Fahringer, T. Multi-objective list scheduling of workflow applications in distributed computing infrastruc-
tures. J. Parallel Distrib. Comput. 2014, 74, 2152–2165. [CrossRef]

45. Zhang, L.; Li, K.K.; Li, C.; Li, K.K. Bi-objective workflow scheduling of the energy consumption and reliability in heterogeneous
computing systems. Inf. Sci. 2017, 379, 241–256. [CrossRef]

46. Tang, X.; Li, K.; Zeng, Z.; Veeravalli, B. A novel security-driven scheduling algorithm for precedence-constrained tasks in
heterogeneous distributed systems. IEEE Trans. Comput. 2011, 60, 1017–1029. [CrossRef]

47. Xie, T.; Qin, X. Performance evaluation of a new scheduling algorithm for distributed systems with security heterogeneity. J.
Parallel Distrib. Comput. 2007, 67, 1067–1081. [CrossRef]

48. Xie, T.; Qin, X. Scheduling security-critical real-time applications on clusters. IEEE Trans. Comput. 2006, 55, 864–879. [CrossRef]
49. Wang, Y.; Guo, Y.; Guo, Z.; Liu, W.; Yang, C. Securing the Intermediate Data of Scientific Workflows in Clouds with ACISO. IEEE

Access 2019, 7, 126603–126617. [CrossRef]
50. Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [CrossRef]
51. Mendel, J.M. Fuzzy Logic Systems for Engineering: A Tutorial. Proc. IEEE 1995, 83, 345–377. [CrossRef]
52. Eberhart, R.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the Sixth International Symposium

on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [CrossRef]
53. Alvarez-Benitez, J.E.; Everson, R.M.; Fieldsend, J.E. A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts. In

Evolutionary Multi-Criterion Optimization; Springer: Berlin/Heidelberg, Germany, 2005; pp. 459–473. [CrossRef]
54. Wei, J.; Zhang, M. A memetic particle swarm optimization for constrained multi-objective optimization problems. In Proceedings

of the IEEE Congress on Evolutionary Computation, CEC 2011, New Orleans, LA, USA, 5–8 June 2011; pp. 1636–1643. [CrossRef]
55. Leong, W.F.; Yen, G.G. PSO-based multiobjective optimization with dynamic population size and adaptive local archives. IEEE

Trans. Syst. Man, Cybern. Part B Cybern. 2008, 38, 1270–1293. [CrossRef]
56. Masdari, M.; Salehi, F.; Jalali, M.; Bidaki, M. A Survey of PSO-Based Scheduling Algorithms in Cloud Computing. J. Netw. Syst.

Manag. 2017, 25, 122–158. [CrossRef]
57. Farid, M.; Latip, R.; Hussin, M.; Abdul Hamid, N.A.W. A Survey on QoS Requirements Based on Particle Swarm Optimization

Scheduling Techniques for Workflow Scheduling in Cloud Computing. Symmetry 2020, 12, 551. [CrossRef]
58. Dai, H.P.; Chen, D.D.; Zheng, Z.S. Effects of random values for particle swarm optimization algorithm. Algorithms 2018, 11, 23.

[CrossRef]
59. del Valle, Y.; Venayagamoorthy, G.K.; Mohagheghi, S.; Hernandez, J.-C.; Harley, R.G. Particle Swarm Optimization: Basic

Concepts, Variants and Applications in Power Systems. IEEE Trans. Evol. Comput. 2008, 12, 171–192. [CrossRef]
60. Cappelletti, F.; Penna, P.; Prada, A.; Gasparella, A. Development of algorithms for building retrofit. In Start-Up Creation Smart

Eco-Efficient Built Environ; Woodhead Publishing: Sawston, UK, 2016; pp. 349–373. [CrossRef]
61. Cafaro, M.; Aloisio, G.; Juve, G.; Deelman, E. Grids, Clouds and Virtualization; Springer: Berlin/Heidelberg, Germany, 2011;

pp. 71–91. [CrossRef]
62. Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 2000, 186, 311–338.

[CrossRef]
63. Li, H.; Zhang, Q. Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II. IEEE Trans. Evol.

Comput. 2009, 13, 284–302. [CrossRef]
64. Li, M.; Yang, S.; Liu, X. Shift-based density estimation for pareto-based algorithms in many-objective optimization. IEEE Trans.

Evol. Comput. 2014, 18, 348–365. [CrossRef]
65. Zhang, Z.; Cherkasova, L.; Loo, B.T. Optimizing cost and performance trade-offs for MapReduce job processing in the cloud.

In Proceedings of the 2014 IEEE Network Operations and Management Symposium (NOMS), Krakow, Poland, 5–9 May 2014.
[CrossRef]

66. Park, J.; Jeong, H.Y. The QoS-based MCDM system for SaaS ERP applications with Social Network. J. Supercomput. 2013, 66,
614–632. [CrossRef]

67. Liu, D.; Stewart, T.J. Integrated object-oriented framework for MCDM and DSS modelling. Decis. Support Syst. 2004, 38, 421–434.
[CrossRef]

68. Qin, X.S.; Huang, G.H.; Chakma, A.; Nie, X.H.; Lin, Q.G. A MCDM-based expert system for climate-change impact assessment
and adaptation planning—A case study for the Georgia Basin, Canada. Expert Syst. Appl. 2008, 34, 2164–2179. [CrossRef]

69. Kraujalienė, L. Comparative Analysis of Multicriteria Decision-Making Methods Evaluating the Efficiency of Technology Transfer.
Bus. Manag. Educ. 2019, 17, 72–93. [CrossRef]

70. Rauf, M.; Guan, Z.; Sarfraz, S.; Mumtaz, J.; Shehab, E.; Jahanzaib, M.; Hanif, M. A smart algorithm for multi-criteria optimization
of model sequencing problem in assembly lines. Robot. Comput. Integr. Manuf. 2020, 61, 101844. [CrossRef]

71. Chakravarthi, K.K.; Shyamala, L.; Vaidehi, V. TOPSIS inspired cost-efficient concurrent workflow scheduling algorithm in cloud.
J. King Saud Univ. Comput. Inf. Sci. 2020, 34, 2359–2369. [CrossRef]

https://doi.org/10.1016/j.future.2015.12.014
https://doi.org/10.1016/j.jpdc.2014.09.002
https://doi.org/10.1016/j.jpdc.2013.12.004
https://doi.org/10.1016/j.ins.2016.08.003
https://doi.org/10.1109/TC.2010.117
https://doi.org/10.1016/j.jpdc.2007.06.004
https://doi.org/10.1109/TC.2006.110
https://doi.org/10.1109/ACCESS.2019.2938823
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1109/5.364485
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1007/978-3-540-31880-4_32
https://doi.org/10.1109/CEC.2011.5949811
https://doi.org/10.1109/TSMCB.2008.925757
https://doi.org/10.1007/s10922-016-9385-9
https://doi.org/10.3390/sym12040551
https://doi.org/10.3390/a11020023
https://doi.org/10.1109/TEVC.2007.896686
https://doi.org/10.1016/B978-0-08-100546-0.00014-5
https://doi.org/10.1007/978-0-85729-049-6
https://doi.org/10.1016/S0045-7825(99)00389-8
https://doi.org/10.1109/TEVC.2008.925798
https://doi.org/10.1109/TEVC.2013.2262178
https://doi.org/10.1109/NOMS.2014.6838231
https://doi.org/10.1007/s11227-012-0832-4
https://doi.org/10.1016/j.dss.2003.09.001
https://doi.org/10.1016/j.eswa.2007.02.024
https://doi.org/10.3846/bme.2019.11014
https://doi.org/10.1016/j.rcim.2019.101844
https://doi.org/10.1016/j.jksuci.2020.02.006

Symmetry 2023, 15, 2047 28 of 28

72. Fard, H.M.; Prodan, R.; Barrionuevo, J.J.D.; Fahringer, T. A multi-objective approach for workflow scheduling in heterogeneous
environments. In Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid 2012), Ottawa, ON, Canada, 13–16 May 2012; pp. 300–309. [CrossRef]

73. Ambursa, F.U.; Latip, R.; Abdullah, A.; Subramaniam, S. A particle swarm optimization and min–max-based workflow scheduling
algorithm with QoS satisfaction for service-oriented grids. J. Supercomput. 2017, 73, 2018–2051. [CrossRef]

74. Hu, H.; Li, Z.; Hu, H.; Chen, J.; Ge, J.; Li, C.; Chang, V. Multi-objective scheduling for scientific workflow in multicloud
environment. J. Netw. Comput. Appl. 2018, 114, 108–122. [CrossRef]

75. Shayeghi, H.; Jalili, A.; Shayanfar, H.A. Multi-stage fuzzy load frequency control using PSO. Energy Convers. Manag. 2008, 49,
2570–2580. [CrossRef]

76. Jing, W.; Yongsheng, Z.; Haoxiong, Y.; Hao, Z. A Trade-off Pareto Solution Algorithm for Multi-objective Optimization. In
Proceedings of the 2012 Fifth International Joint Conference on Computational Sciences and Optimization, Harbin, China, 23–26
June 2012; pp. 123–126. [CrossRef]

77. Hartmanis, J.; Van Leeuwen, J. Advances in Natural Computation. In Proceedings of the First International Conference, ICNC
2005, Changsha, China, 27–29 August 2005; Volume 3. [CrossRef]

78. Garg, R.; Singh, A.K. Multi-objective workflow grid scheduling using ε -fuzzy dominance sort based discrete particle swarm
optimization. J. Supercomput. 2014, 68, 709–732. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/CCGrid.2012.114
https://doi.org/10.1007/s11227-016-1901-x
https://doi.org/10.1016/j.jnca.2018.03.028
https://doi.org/10.1016/j.enconman.2008.05.015
https://doi.org/10.1109/CSO.2012.34
https://doi.org/10.1016/j.arr.2010.02.003
https://doi.org/10.1007/s11227-013-1059-8

	Introduction
	Related Work
	Scheduling Scenario
	Workflow Model
	Multi-Cloud Architecture
	Makespan Computation
	Cost Computation
	Resource Utilization Computation
	Reliability Computation
	Workflow Risk Probability
	Fuzzy Logic
	Problem Description

	Multi-Objective Optimization Methods
	Particle Swarm Optimization (PSO)
	Multi-Objective Pareto Optimal Approach
	Weighted Sum Function
	Minimum Weight Optimization (MWO) Method
	Weighted Aggregated Sum Product Assessment (WASPAS) Method
	Multi-Criteria Decision-Making (MCDM) Method
	Linear Normalization

	The Proposed Algorithms
	The Five-Objective Case Study
	Determining Attributes and Alternatives
	FR-MOS-MWO Algorithm
	FR-MOS-PARETO Algorithm
	Coding Strategy

	Experimental Setup and Simulation Results
	Simulation Results
	Performance Measurement

	Conclusions
	References

