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Abstract: To illustrate data uncertainty, intuitionistic fuzzy sets simply use membership and non-
membership degrees. However, in some cases, a more complex strategy is required to deal with
imprecise data. One of these techniques is generalized intuitionistic fuzzy sets (GIFSs), which provide
a comprehensive framework by adding extra factors that provide a more realistic explanation for
uncertainty. GIFSs contain generalized membership, non-membership, and hesitation degrees for
establishing symmetry around a reference point. In this paper, we applied a generalized intuitionistic
fuzzy set approach to investigate ambiguity in the parameter of the Lomax life distribution, seeking
a more symmetric assessment of the reliability measurements. Several reliability measurements
and associated cut sets for a novel L-R type fuzzy sets are derived after establishing the scale
parameter as a generalized intuitionistic fuzzy number. Additionally, the study includes a range of
reliability measurements, such as odds, hazards, reliability functions, etc., that are designed for the
Lomax distribution within the framework of generalized intuitionistic fuzzy sets. These reliability
measurements are an essential tool for evaluating the reliability characteristics of various types of
complex systems. For the purpose of interpretation and application, the results are visually displayed
and compared across different cut set values using a numerical example.

Keywords: generalized intuitionistic fuzzy sets; L-R type (α, β)–cut sets; generalized intuitionistic
fuzzy reliability function; generalized intuitionistic fuzzy hazard function; Lomax life distribution

1. Introduction

The reliability or survival analysis over time has been determined to be the most
effective and efficient way for investigating lifetime data. Traditional reliability analysis,
which is based on exact data, lacks the symmetry required to deal with uncertain contexts
that include ambiguity, vagueness, and other forms of uncertainty. To deal with these
ambiguous and uncertain data, the reliability assessment approach must be customized
to the fuzzy lifetime. For this purpose, Zadeh [1] initially conceived of fuzzy sets theory
to cope with ambiguity or fuzziness in data. The components of a fuzzy set are specified
by their membership degree, which reflects the chance of an event occurring in order to
determine the imprecision. Many extensions of fuzzy have been produced as a consequence
of successful research, including rough fuzzy, type 1 fuzzy, type 2, interval valued fuzzy,
and Atanassov’s intuitionistic fuzzy sets (IFSs). Fuzzy life data are more precisely modeled
by intuitionistic fuzzy sets because they include the degree of hesitation margin in addition
to membership and non-membership degree. Due to the fact that all real-world data
involve vagueness and ambiguity, which conventional reliability theory cannot handle,
fuzzy theory has shown to be a helpful tool in reliability. The field of fuzzy lifetime
has experienced significant developments from several writers. The most significant
of them is Atanassov’s [2] work, which transforms notions from intuitionistic fuzzy to
type 1 fuzzy sets theory and offers several novel operations. To explore the sum of the
support of classic intuitionistic fuzzy sets, Yager, R.R. [3] introduces q-rung orthopair

Symmetry 2023, 15, 2054. https://doi.org/10.3390/sym15112054 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15112054
https://doi.org/10.3390/sym15112054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0009-0005-9193-2165
https://doi.org/10.3390/sym15112054
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15112054?type=check_update&version=1


Symmetry 2023, 15, 2054 2 of 15

fuzzy sets which were further explored as complemental fuzzy sets by Alcantud, J.C.R. [4].
Varghese and Rosario [5] then presented a variety of novel fuzzy sets, including Pendant
and Octant fuzzy numbers as well as the α–cuts. The idea of fuzzy sets is extended to
include intuitionistic fuzzy sets (IFSs), and Mahapatra and Roy [6] presented the notion of
a triangular intuitionistic fuzzy number using this approach. The concept of IFSs has been
utilized in many fields of reliability [7–9] and decision making [10–12]. Further advances
are achieved by Feng [13] through the use of Minkowski score functions of intuitionistic
fuzzy values and geometric ranking in a decision-making problem.

In addition, fuzzy set theory has also drawn a lot of interest in the field of system
reliability analysis. For instance, Kumar, A. [14] used triangular hesitant fuzzy sets and
a Markov process to verify the system’s reliability for the Weibull parameters. In a sub-
sequent study, expanding on his previous work, Kumar, A. [15] used hesitant and dual
hesitant fuzzy sets to assess fuzzy reliability. Reliability analysis of a parallel system with
maximum operating and repair periods was studied by Malik and Rathee [16]. In order to
develop the membership and non-membership functions, Garg, H. [17] handles the fuzzy
system reliability analysis by taking into account the various intuitionistic fuzzy failure
rates. The notion of a probabilistic dual hesitant fuzzy set was suggested by Hao et al. [18]
in order to take additional information into consideration and explain the aleatory and
epistemic ambiguity within a single framework. In addition, Refs. [19–21] used intuitionis-
tic fuzzy sets to assess multi-state system and time-dependent system reliabilities. Other
complex systems, including power supply distribution and data integration systems using
simulation-based techniques, can be seen in [22–24].

The Lomax distribution, also known as the Pareto II distribution, developed by
Lomax [25] has recently gained prominence in the area of life testing because of its ap-
plications in the fitting of data on business failure. This has been shown to be the best
alternative to the exponential, Weibull, or gamma distributions for modeling a heavy-tailed
distribution with a high decreasing failure rate [26]. The Lomax distribution has been
explored in a variety of applications throughout scientific research. As an example, Pak,
A. [27] estimated the parameters of Lomax distribution with fuzzy observations. Afterward,
Al-Noor, N.H. [28] described the composite trapezoidal rule-based fuzzy reliability estimate
for the Lomax distribution. As for the other life distribution, Baloui Jamkhaneh [29] and
Kumar, P. [30] analyzed different life distributions such as Rayleigh and Weibull and gave
fuzzy reliability and hazard function formulae, as well as their α–cut set. Apart from
these, Cramer, E. [31] presented a vast review on life distribution to explore the different
censoring schemes with the help of ordered statistics to explore the incomplete data for
different reliability models.

The concept of generalized intuitionistic fuzzy sets (GIFSs) was first developed by
Mondal and Samanta [32]. Baloui Jamkhaneh and Shabani [33,34] then developed a new
type of generalized intuitionistic fuzzy set, which has since become a well-known method
in the field of fuzzy life distribution. They used this new type of GIFS to create reliability
characteristics such as reliability and hazard functions for various life distributions such as
exponential, Rayleigh, and so on. In their most recent work, Roohanizadeh, Z. and Baloui
Jamkhaneh [35,36] presented different reliability characteristics specially designed for a
two-parameter Pareto distribution using generalized intuitionistic fuzzy sets. The available
literature makes it abundantly evident that understanding fuzzy reliability for fuzzy life
distribution is critical from both a theoretical and a real-world perspective.

For this purpose, we considered the Lomax distribution, which exhibits uncertainty in
the scale parameter, and we fuzzified this parameter into a generalized intuitionistic fuzzy
number. The main objective of this article is to introduce a novel L-R type fuzzy approach
and the corresponding cut sets, which can effectively elucidate the vagueness inherent
in various generalized intuitionistic fuzzy reliability measures. The goal of developing
this new methodology is to improve reliability evaluations and understanding of complex
systems, especially when uncertainty and imprecision are significant factors.
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The rest of the paper is organized as follows: Section 2 introduces the fundamental
concepts of generalized intuitionistic fuzzy set theory. In Section 3, generalized intuitionistic
fuzzy parameters are used to discuss the major reliability features such as reliability, hazard,
and odds functions for Lomax life distribution. Finally, a numerical example and its graphic
representation to support the theoretical aspects are discussed in Section 4.

2. Definitions
2.1. Generalized Intuitionistic Fuzzy Set (GIFS)

A more sophisticated form of the intuitionistic fuzzy set [37], referred to as the gen-
eralized intuitionistic fuzzy set (GIFS), was developed by Baloui Jamkhaneh and Nadara-
jah. [33]. According to them, a GIFS B in non-empty set X is defined as

B =
{〈

x, µB(x), γB(x) : x ∈ X
〉}

,

where the mappings µB : X → [0, 1] , γB : X → [0, 1] are defining the extent of mem-
bership and non-membership functions of X in B with some boundary conditions 0 ≤
µε

B(x) + γε
B(x) ≤ 1 and ε = n (or 1⁄n) for all x ∈ X & n = 1, 2, 3, . . . , N.

2.2. Generalized Intuitionistic Fuzzy Number (GIFN)

A generalized intuitionistic fuzzy number (GIFN) B based on the generalized intu-
itionistic fuzzy set (GIFS) in the form of a left and right basis is defined as [34]

µB(x) =


fL(x), x ∈ [a1, b1]
u, x ∈ [b1, c1]
fR(x), x ∈ [c1, d1]
0, o.w

, γB(x) =


gL(x), x ∈ [a′1, b1]
w, x ∈ [b1, c1]
gR(x), x ∈ [c1, d′1]
0, o.w

.

with the following membership µB(x) and non-membership degree γB(x) functions and
boundary conditions: a′1 ≤ a1 ≤ b1 ≤ c1 ≤ d1 ≤ d′1, 0 ≤ µε

B(x) + γε
B(x) ≤ 1, ∀ x ∈ X.

In a GIFN, symmetry in the left and right bases indicates that on both sides of the
central value, there is an equal distribution of non-membership and membership degrees.

2.3. Alpha–Beta Cut Sets of GIFN

Consider the fixed values α, β ∈ [0, 1] with the following conditions: 0 ≤ α ≤ µ1/ε, 0 ≤
β ≤ µ1/ε and 0 ≤ αε ≤ βε ≤ 1. Then, on the basis of an α–cut set of fuzzy set theory, the
(α, β)–cut for a GIFN B is as follows:

B [α, β, ε] =
{〈

x, µB(x) ≥ α, γB(x) ≤ β : x ∈ X
〉}

.

The α–cut set for membership degree function of a GIFN B on domain of real line R is
defined as

B [α, ε] =
{〈

x, µB(x) ≥ α : x ∈ X
〉}

= [L(α), U(α)]

where

L(α) = a1 +
(b1 − a1)α

ε

µ
, U(α) = d1 +

(d1 − c1)α
ε

µ
.

Similarly, the β–cut set for the non-membership degree function of a GIFN is

B [β, ε] =
{〈

x, µB(x) ≤ β : x ∈ X
〉}

= [L(β), U(β)]

where

L(β) = a′1 +
(b1 − a′1)(1− αε)

1− γ
, U(β) = d′1 +

(d′1 − c1)(1− βε)

1− γ
.
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Finally, a generalized intuitionistic fuzzy number (GIFN) based on the α–cut and β–cut
sets can be written as

B [α, β, ε] =
{〈

x, µB(x) ≥ α, 1− γB(x) ≥ 1− β : x ∈ X
〉}

Or
B [α, β, ε] =

{
Bµ[α, ε], Bγ[β, ε]

}
.

2.4. Some Operations on GIFN

Consider two GIFNs B1 [α, β, ε] and B2[α, β, ε].

1. B1 [α, β, ε]⊕ B2[α, β, ε] =
{

B1µ[α, ε] ⊕ B2µ[β, ε], B1γ[α, ε] ⊕ B2γ[β, ε]
}

,
2. k⊗ B [α, β, ε]⊕ b1 =

{
k⊗ Bµ[α, ε]⊕ b1, k⊗ Bγ[β, ε]⊕ b1

}
,

3. B1[α, β, ε] = B2[α, β, ε] i f f B1µ[α, ε] = B2µ[α, ε] and B1γ[β, ε] = B2γ[β, ε] ,
4. B1[α, β, ε] = B2[α, β, ε] i f f B1µ[α, ε] = B2µ[α, ε] and B1γ[β, ε] = B2γ[β, ε] .

3. Model Description
3.1. Generalized Intuitionistic Fuzzy (GIF) Reliability Characteristics

If the lifetime of a unit is defined as random variable X with density function f (x, θ),
the vectors of the parameters θ are fuzzified as a generalized intuitionistic fuzzy number
(GIFN). Then, the α–cut of membership and β–cut set of non-membership functions for any
GIF reliability measure g(t) are denoted by

gi(t) [j, ε] = [g(t)|θ ∈ θi[j, ε], (i, j) = (1, µ), (2, γ)]
=
[
gL

i (t) [j], gU
i (t) [j]

]
,

where
gL

i (t)[j] = infθ∈θj [α, ε]g(t),
gL

i (t)[j] = supθ∈θj [α, ε]g(t).

with constraint 0 ≤ α ≤ µ
1
ε , γ

1
ε ≤ β ≤ 1, 0 ≤ αε + βε ≤ 1 and t > 0.

The function g(t) can be considered as any reliability characteristic such as reliability,
hazard, or odds functions. The rationale behind constructing GIF reliability analysis is, for
every special value of α and β, the shapes of gi(t) [α, j] behave like bands which are nothing
but the uncertainty in the parameter. Also, the GIF functions can be constructed for every
special time tc.

Ref. [35] shows that g [α, β, ε] =
{

gµ(t) [α, ε], gγ(t) [β, ε]
}

and he defined the (α, β)–cut
set of GIF characteristics as

g [α, β, ε] =
{

w|w ∈ gµ(t) [α, ε] ∩ gγ(t) [β, ε]
}

.

Remark 1: There are some important properties processed by reliability characteristic g(t), as follows.

1. If µ1 ≤ µ2 and γ1 ≤ γ2, then gµ1(t) [α, ε] ⊂ gµ2(t) [α, ε] and gγ2(t) [β, ε] ⊂ gγ1(t) [β, ε],
2. If ε1 ≤ ε2, then gµ(t) [α, ε1] ⊂ gµ(t) [α, ε1] and gγ(t) [β, ε2] ⊂ gγ(t) [β, ε2].

3.2. GIF Reliability Function

In this section, the lifetime generalized intuitionistic fuzzy number (GIFN) parameter
is used to develop a notion of the generalized intuitionistic fuzzy reliability function,
represented as R(t).

The α–cut of membership and β–cut set of non-membership functions are

Ri(t) [j, ε] = [R(t)|θ ∈ θi[j, ε], (i, j) = (1, µ), (2, γ)]
=
[
RL

i (t) [j], RU
i (t) [j]

]
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where

RL
i (t)[j] = infθ∈θi [j, ε]R(t), RL

i (t)[j] = supθ∈θi [j, ε]R(t), ∀ 0 ≤ αε + βε ≤ 1.

The (α, β)–cut set of GIF reliability function is as follows:

R(t) [α, β, ε] =
[
w|w ∈ Rµ(t) [α, ε] ∩ Rγ(t) [β, ε]

]
.

More specifically, the Lomax distribution has been considered, and the relevant re-
liability characteristics are provided. Suppose a random variable X from the Lomax life
distribution with CDF

F(x) = 1− (1 + θx)−η , x, θ, η > 0,

and PDF
f (x, λ) = ηθ (1 + θx)−(η+1), x, θ, η > 0,

which has fixed shape parameter η and uncertainty in scale parameter θ that is well ex-
plained by fuzzifying the uncertain parameter into a GIFN. Hence, the GIF scale parameter
for fuzzification is taken as

θ = (a′1, a1, b1, c1, d1, d′1, µ, γ, ε)

now, the cut set of the generalized intuitionistic fuzzy reliability function can be obtained
as reliability bands

Ri(t)[j, ε] = [(1 + θt)−η |θ ∈ θi[j, ε], (i, j) = (1, α), (2, β)].

Since the function (1 + θt)−η is monotonically decreasing with respect to θ, the cut
sets for reliability bands are given as

Rµ(t)[α, ε] =
[
{1 + (U(α))t}−η , {1 + (L(α))t}−η

]
′

Rγ(t)[β, ε] =
[
{1 + (U(β))t}−η , {1 + (L(β))t}−η

]
.

Or

Rµ(t)[α, ε] =

[{
1 +

(
d1 −

(d1 − c1)α
ε

µ

)
t
}−η

,
{

1 +
(

a1 +
(b1 − a1)α

ε

µ

)
t
}−η

]
′

Rγ(t)[β, ε] =

[{
1 +

(
d′1 −

(d′1 − c1)(1− βε)

1− γ

)
t
}−η

,
{

1 +
(

a′1 +
(b1 − a′1)(1− βε)

1− γ

)
t
}−η

]
.

For every specific value of α and β, reliability bands must satisfy the following properties:

1. Ri(0) [j, ε] = [1, 1],
2. Ri(∞) [j, ε] = [0, 0],
3. Ri(t1) ≥ Ri(t2) i f f t1 ≤ t2.
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Since Ri(t) [j, ε] varies with time t, then for every special set of (α, β) and time t = tc,
its membership µR(tc)(x) and non-membership γR(tc)(x) functions are given as

µR(tc)(x) =




(

d1− x−1/η−1
tc

)
µ

d1−c1

1/ε

, x ∈
[
(1 + d1tc)

−η , (1 + c1tc)
−η
]

µ1/ε, x ∈
[
(1 + c1tc)

−η , (1 + b1tc)
−η
]


(

x−1/η−1
tc −a1

)
µ

b1−a1

1/ε

, x ∈
[
(1 + b1tc)

−η , (1 + a1tc)
−η
]

0 , o.w

,

γR(tc)(x) =



 d′
1
−c1−(1−γ)

(
x−1/η−1

tc −d′1

)
d′

1
−c1

1/ε

, x ∈
[
(1 + d′1tc)

−η , (1 + c1tc)
−η
]

γ1/ε, x ∈
[
(1 + c1tc)

−η , (1 + b1tc)
−η
]

 b1−a′1+(1−γ)

(
a′1−

x−1/η−1
tc

)
b1−a′1

1/ε

, x ∈
[
(1 + b1tc)

−η , (1 + a′1tc)
−η
]

1, o.w

with constraint µ + γ ≤ 1, µR(tc)(x) and 1− γR(tc)(x) are fuzzy numbers.

3.3. GIF Conditional Reliability Function

The likelihood that an object will survive at time t, assuming that it has survived
up to that point (T), is known as conditional reliability. Here, we apply the generalized
intuitionistic fuzzy idea to expand the conditional reliability measure to the ambiguous
case. The α–cut and β–cut sets for GIF conditional reliability functions are given by the
following expression:

Ri(t|T) [j, ε] = [R(t|T)|θ ∈ θi[j, ε], (i, j) = (1, µ), (2, γ)]
=
[
RL

i (t|T) [j], RU
i (t|T) [j]

]
where

RL
i (t|T)[j] = infθ∈θi [j, ε]R(t|T), RL

i (t|T)[j] = supθ∈θi [j, ε]R(t|T)

and the (α, β)–cut set of the GIF conditional reliability function is derived as

R (t|T)[α, β, ε] =
[
w|w ∈ Rµ(t|T) [α, ε] ∩ Rγ(t|T) [β, ε]

]
.

The GIF conditional reliability function for the Lomax distribution can be modified as

Ri(t|T) [j, ε] =

[(
1 +

θ T
1 + θ t

)−η

|θ ∈ θi[j, ε], (i, j) = (1, µ), (2, γ)

]
.

Function
(

1 + θ T
1+θ T

)−η
is monotonically decreasing with respect to θ which leads to

the following expression for GIF conditional reliability bands:

Rµ(t|T) [j, ε] =


1 +

(
d1 − (d1−c1)α

ε

µ

)
T

1 +
(

d1 − (d1−c1)αε

µ

)
t


−η

,

1 +

(
a1 +

(b1−a1)α
ε

µ

)
T

1 +
(

a1 +
(b1−a1)αε

µ

)
t


−η
 ,
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Rγ(t|T) [j, ε] =


1 +

(
d′1 −

(d′1−c1)(1−βε)
1−γ

ε)
T

1 +
(

d′1 −
(d′1−c1)(1−βε)

1−γ

)
t


−η

,

1 +

(
a′1 +

(b1−a′1)(1−βε)
1−γ

)
T

1 +
(

a′1 +
(b1−a′1)(1−βε)

1−γ

)
t


−η
.

3.4. GIF Hazard Function

The hazard function, often known as the instant failure rate, is another important part
of the lifespan distribution. This function indicates the rate of failure at which a component
is projected to fail after a specific time of service. The α and β cut sets of GIF hazard
functions are

hi(t) [j, ε] = [h(t)|θ ∈ θi[j, ε], (i, j) = (1, µ), (2, γ)]
=
[
hL

i (t) [j], hU
i (t) [j]

]
where

hL
i (t)[j] = infθ∈θi [j, ε]h(t), hL

i (t)[j] = supθ∈θi [j, ε]h(t)

And the (α, β)–cut set for the GIF hazard function is derived as

h(t)[α, β, ε] =
[
w|w ∈ hµ(t) [α, ε] ∩ hγ(t) [β, ε]

]
.

For the Lomax distribution, the above GIF hazard function can be modified as

hi(t) [j, ε] =

[ (
θ η

1 + θ t

)
|θ ∈ θi[j, ε], (i, j) = (1, µ), (2, γ)

]
.

Since
(

θ η
1+θ t

)
is monotonically increasing with parameter θ, the hazard bands are

given as

hµ(t) [j, ε] =


(

a1 +
(b1−a1)α

ε

µ

)
η

1 +
(

a1 +
(b1−a1)αε

µ

)
t

,


(

d1 − (d1−c1)α
ε

µ

)
η

1 +
(

d1 − (d1−c1)αε

µ

)
t


 ,

hγ(t) [j, ε] =


(

a′1 +
(b1−a′1)(1−βε)

1−γ

)
η

1 +
(

a′1 +
(b1−a′1)(1−βε)

1−γ

)
t

,


(

d′1 −
(d′1−c1)(1−βε)

1−γ

)
η

1 +
(

d′1 −
(d′1−c1)(1−βε)

1−γ

)
t


.

Corollary 1: Let us consider the two lifetime random variables T1 and T2 having generalized
intuitionistic fuzzy density function f1

(
x, θ, η

)
and f2

(
x, θ, η

)
, respectively. For every t > 0, if the

conditions h1(t) ≥ h2(t) and R1(t) = R2(t) hold, it can be proven that R1(t|T) ≤ R2(t|T).

Theorem 1: The function R(x|t) must be increasing for f
(

x, θ, η
)

to belong to a class of decreasing
failure rate distribution, which is a necessary and sufficient condition.

Proof: As discussed,

R(x|t1) ≤ R(x|t2), ∀ t1 < t2 and R(x|t1) [α, β, ε] ≤ R(x|t2) [α, β, ε],

So,
R1µ(x|t1) [α, ε], R1γ(x|t2) [β, ε] ≤ R2µ(x|t2) [α, ε], R2γ(x|t2) [β, ε],

Or

R1µ(x|t1) [α, ε] ≤ R2µ(x|t2) [α, ε] and R1γ(x|t1) [β, ε] ≤ R2γ(x|t2) [β, ε].
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Taking lower band = upper band = b, then, for every b,

Rb
γ(x|t1) [α, ε] ≤ Rb

γ(x|t2) [α, ε] and Rb
γ(x|t1) [β, ε] ≤ Rb

γ(x|t2) [β, ε].

which indicates that Rb
µ and Rb

γ are increasing functions.
Now, using the definition of the GIF conditional survival function for (i, j) = (1, µ), (2, γ),

Rb
i (x|t) [j, ε] =

Rb
i (x + t) [j, ε]

Rb
i (t) [j, ε]

,

d Rb
i (x|t) [j, ε]

d t
=
− f b

i (x + t) [j, ε]Rb
i (t) [j, ε] + f b

i (t) [j, ε]Rb
i (x + t) [j, ε]

Rb
i (t) [j, ε]2

.

Since Rb
i has increasing shape, so the function d Rb

i (x|t) [j,ε]
d t ≥ 0 and

f b
i (x + t) [j, ε]Rb

i (t) [j, ε] ≤ f b
i (t) [j, ε]Rb

i (x + t) [j, ε],

hence,
hb

i (t) [j, ε] ≥ hb
i (x + t) [j, ε],

Or
hb

µ(t) [j, ε] ≥ hb
µ(x + t) [j, ε] and hb

γ(t) [j, ε] ≥ hb
γ(x + t) [j, ε],

Finally, it can be concluded that h(t) ≥ h(x + t). �

3.5. GIF Odds Function

The odds function is a reliability method for modeling a data set with a non-monotone
hazard rate, defined as the ratio of the CDF to the reliability function. As the hazard
function of the Lomax distribution is often a non-monotone function, the cut set of the GIF
odds function is

Oi(t) [j, ε] = [O(t)|θ ∈ θi[j, ε], (i, j) = (1, µ), (2, γ)]
=
[
OL

i (t) [j], OU
i (t) [j]

]
where

OL
i (t) [j] = infθ∈θi [j, ε]O(t), OL

i (t)[j] = supθ∈θi [j, ε]O(t)

Therefore,

Oi(t) [j, ε] =
[

Fi(t)[j,ε]
Si(t)[j,ε]

|θ ∈ θi[j, ε], (i, j) = (1, µ), (2, γ)
]

=
[
(1 + θ t)−η − 1|θ ∈ θi[j, ε], (i, j) = (1, µ), (2, γ)

] ,

which can be modified for the Lomax distribution as

Oµ(t) [j, ε] =

[{(
1 +

(
a1 +

(b1 − a1)α
ε

µ

)
t
)η

− 1
}

,
{(

1 + (d1 −
(d1 − c1)α

ε

µ
)t
)η

− 1
}]

,

Oγ(t) [j, ε] =

[{(
1 +

(
a′1 +

(b1 − a′1)(1− βε)

1− γ

)
t
)η

− 1

}
,

{(
1 +

(
d′1 −

(d′1 − c1)(1− βε)

1− γ

)
t
)η

− 1

}]
.

4. Numerical Illustration

The Lomax distribution could be considered to model long-duration failure devices,
for instance, network switches that can fail due to various reasons such as power supply,
extreme temperature, aging, or manufacturing issues. Let us consider the lifetime of
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network switches that are modelled by a Lomax distribution with generalized intuitionistic
fuzzy scale parameter θ = (0.45, 0.5, 0.6, 0.8, 0.9, 0.95, 1, 0, 2) and shape parameter η = 1.

Then, the α and β cut sets of membership and non-membership for generalized intu-
itionistic fuzzy reliability functions for t = 2 can be derived as

Rµ(t)[α, 2] =
[

1
1 + (0.9− 0.1 α2)t

,
1

1 + (0.5 + 0.1 α2)t

]
,

Rγ(t)[β, 2] =
[

1
1 + (0.8 + 0.15β2)t

,
1

1 + (0.6− 0.15 β2)t

]
.

The above reliability functions behave as lower and upper bands, and the value of the
bandwidth depends on the value of (α, β).

The GIF reliability bands with their corresponding lower and upper reliability bands
for different sets of (α, β) values are shown in Table 1, where Rµ(t) [α, 2] is the α–cut
of membership functions, Rγ(t) [β, 2] is the β–cut as of non-membership functions, and
R(t) [α, β, 2] indicates their intersection as a (α, β)–cut sets.

Table 1. The (α, β)–cut sets for GIF reliability bands.

(α,β) Rµ(t) [α,2] Rγ(t) [β,2] R(t) [α,β,2]

(0, 1) 1
1+0.9t , 1

1+0.5t
1

1+0.95t , 1
1+0.45t

1
1+0.9t , 1

1+0.5t
(0.2, 0.8) 1

1+0.896t , 1
1+0.504t

1
1+0.896t , 1

1+0.504t
1

1+0.896t , 1
1+0.504t

(0.4, 0.6) 1
1+0.884t , 1

1+0.516t
1

1+0.854t , 1
1+0.546t

1
1+0.854t , 1

1+0.546t
(0.6, 0.4) 1

1+0.864t , 1
1+0.536t

1
1+0.824t , 1

1+0.576t
1

1+0.824t , 1
1+0.576t

(0.8, 0.2) 1
1+0.836t , 1

1+0.564t
1

1+0.806t , 1
1+0.594t

1
1+0.806t , 1

1+0.594t
(1, 0) 1

1+0.8t , 1
1+0.6t

1
1+0.8t , 1

1+0.6t
1

1+0.8t , 1
1+0.6t

The membership and non-membership functions for GIF reliability bands at t = 2 and
(α = 0, β = 1) are shown in Figure 1a. And Figure 1b indicates the GIF reliabilities bands
are decreasing with respect to time t for (α = 0, β = 1).
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Figure 1. (a) The MF and NMF of GIF reliability function; (b) The GIF reliability bands for
(α = 0, β = 1).

For a more precise view, Figure 2a–c display a few more sets of (α, β) values, which
clearly indicate that increasing α and decreasing β simultaneously reduce the bandwidth
(fuzziness) of both membership and non-membership functions.
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Figure 2. (a) Reliability bands for (α = 0, β = 1); (b) Reliability bands for (α = 0.4, β = 0.6);
(c) Reliability bands for (α = 0.8, β = 0.2).

As mentioned earlier, the reliability function must show its GIF nature for every special
set of (α, β) and time t. Hence, the membership and non-membership functions for GIF
reliability bands at t = 2 can be found and are shown in Figure 1a.

µR(2)(x) =



(
0.8−x−1

0.2

)0.5
, x ∈ [0.3571, 0.3846]

1, x ∈ [0.3846, 0.4545](
x−1−2

0.2

)0.5
, x ∈ [0.4545, 0.5000]

0, o.w

,

γR(2)(x) =



(
3.05−x−1

0.3

)0.5
, x ∈ [0.3448, 0.4545]

0, x ∈ [0.4545, 0.3846](
2.05−x−1

0.3

)0.5
, x ∈ [0.3846, 0.5263]

1, o.w

.

Similarly, the cut sets for generalized intuitionistic fuzzy conditional reliability bands
are given by the following formulas and calculated in Table 2 for various sets of values.

Rµ(t|T) [α, 2] =

{1 +

(
0.9− 0.1 α2)T

1 + (0.9− 0.1 α2)t

}−1

,

{
1 +

(
0.5 + 0.1 α2)T

1 + (0.5 + 0.1 α2)t

}−1
 ,

Rγ(t|T) [β, 2] =

{1 +

(
0.8 + 0.15β2)T

1 + (0.8 + 0.15β2)t

}−1

,

{
1 +

(
0.6− 0.15 β2)T

1 + (0.6− 0.15 β2)t

}−1
.

Furthermore, the membership and non-membership functions for GIF conditional
reliability bands for (α = 0, β = 1) and t = 2 can be seen in Figure 3a and there is also a
decreasing trend of GIF conditional reliability bands with time t in Figure 3b.
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Table 2. The (α, β)–cut sets for GIF conditional reliability bands.

(α,β) Rµ(t|T) [α,2] Rγ(t|T) [β,2] R(t|T) [α,β,2]

(0, 1)
(

1 + 0.9T
1+0.9t

)−1
,
(

1 + 0.5T
1+0.5t

)−1 (
1 + 0.95T

1+0.95t

)−1
,
(

1 + 0.45T
1+0.45t

)−1 (
1 + 0.9T

1+0.9t

)−1
,
(

1 + 0.5T
1+0.5t

)−1

(0.2, 0.8)
(

1 + 0.896T
1+0.896t

)−1
,
(

1 + 0.504T
1+0.504t

)−1 (
1 + 0.896T

1+0.896t

)−1
,
(

1 + 0.504T
1+0.504t

)−1 (
1 + 0.896T

1+0.896t

)−1
,
(

1 + 0.504T
1+0.504t

)−1

(0.4, 0.6)
(

1 + 0.884T
1+0.884t

)−1
,
(

1 + 0.516T
1+0.516t

)−1 (
1 + 0.854T

1+0.854t

)−1
,
(

1 + 0.546T
1+0.546t

)−1 (
1 + 0.854T

1+0.854t

)−1
,
(

1 + 0.546T
1+0.546t

)−1

(0.6, 0.4)
(

1 + 0.864T
1+0.864t

)−1
,
(

1 + 0.536T
1+0.536t

)−1 (
1 + 0.824T

1+0.824t

)−1
,
(

1 + 0.576T
1+0.576t

)−1 (
1 + 0.824T

1+0.824t

)−1
,
(

1 + 0.576T
1+0.576t

)−1

(0.8, 0.2)
(

1 + 0.836T
1+0.836t

)−1
,
(

1 + 0.564T
1+0.564t

)−1 (
1 + 0.806T

1+0.806t

)−1
,
(

1 + 0.594T
1+0.594t

)−1 (
1 + 0.806T

1+0.806t

)−1
,
(

1 + 0.594T
1+0.594t

)−1

(1, 0)
(

1 + 0.8T
1+0.8t

)−1
,
(

1 + 0.6T
1+0.6t

)−1 (
1 + 0.8T

1+0.8t

)−1
,
(

1 + 0.6T
1+0.6t

)−1 (
1 + 0.8T

1+0.8t

)−1
,
(

1 + 0.6T
1+0.6t

)−1
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Figure 3. (a) The MF and NMF of GIF conditional reliability function; (b) The GIF conditional
reliability bands for (α = 0, β = 1).

The cut sets of generalized intuitionistic hazard bands are presented in Table 3 using
the formulae described below.

hµ(t) [j, ε] =

[{ (
0.5 + 0.1 α2)

1 + (0.5 + 0.1 α2)t

}
,

{ (
0.9− 0.1 α2)

1 + (0.9− 0.1 α2)t

}]
,

hγ(t) [j, ε] =

[
0.6− 0.15 β2

1 + (0.6− 0.15 β2)t
,

0.8 + 0.15β2

1 + (0.8 + 0.15β2)t

]
.

Table 3. The (α, β)–cut sets for GIF hazard bands.

(α,β) hµ(t) [α,2] hγ(t) [β,2] h(t) [α,β,2]

(0, 1)
(

0.5
1+0.5t

)−1
,
(

0.9
1+0.9t

)−1 (
0.45

1+0.45t

)−1
,
(

0.95
1+0.95t

)−1 (
0.45

1+0.45t

)−1
,
(

0.95
1+0.95t

)−1

(0.2, 0.8)
(

0.504
1+0.504t

)−1
,
(

0.896
1+0.896t

)−1 (
0.504

1+0.504t

)−1
,
(

0.896
1+0.896t

)−1 (
0.504

1+0.504t

)−1
,
(

0.896
1+0.896t

)−1

(0.4, 0.6)
(

0.516
1+0.516t

)−1
,
(

0.884
1+0.884t

)−1 (
0.546

1+0.546t

)−1
,
(

0.854
1+0.854t

)−1 (
0.516

1+0.516t

)−1
,
(

0.884
1+0.884t

)−1

(0.6, 0.4)
(

0.536
1+0.536t

)−1
,
(

0.864
1+0.864t

)−1 (
0.576

1+0.576t

)−1
,
(

0.824
1+0.824t

)−1 (
0.536

1+0.536t

)−1
,
(

0.864
1+0.864t

)−1

(0.8, 0.2)
(

0.564
1+0.564t

)−1
,
(

0.836
1+0.836t

)−1 (
0.594

1+0.594t

)−1
,
(

0.806
1+0.806t

)−1 (
0.564

1+0.564t

)−1
,
(

0.836
1+0.836t

)−1

(1, 0)
(

0.6
1+0.6t

)−1
,
(

0.8
1+0.8t

)−1 (
0.6

1+0.6t

)−1
,
(

0.8
1+0.8t

)−1 (
0.6

1+0.6t

)−1
,
(

0.8
1+0.8t

)−1
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In the same way, Figure 4a depicts the GIF curves for membership and non-membership
values of hazard bands. And Figure 4b indicates that the decreasing GIF hazard rate with
time t and least vagueness can be seen with the highest and lowest values of α and β,
respectively.
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Figure 4. (a) The MF and NMF of GIF hazard function; (b) The GIF hazard reliability bands for
(α = 0, β = 1).

Furthermore, the generalized intuitionistic fuzzy hazard functions, along with
their respective membership and non-membership degree functions at t = 2 and
α = 0 and β = 1, can be viewed as

µh(tc)(x) =



(
x−1−1.9

0.2

)0.5
, x ∈ [0.3333, 0.3750]

1, x ∈ [0.3750, 0.4444](
3.8−x−1

0.2

)0.5
, x ∈ [0.4444, 0.4736]

0 o.w

,

γh(tc)(x) =



(
2.2−x−1

0.3

)0.5
, x ∈ [0.3103, 0.3750]

0, x ∈ [0.3750, 0.4444](
x−1−2.6

0.3

)0.5
, x ∈ [0.4444, 0.4871]

1, o.w

.

The (α, β)–cut sets of generalized intuitionistic fuzzy odds bands with their respective
lower and upper bands are presented in Table 4 as:

Oµ(t) [j, ε] =
[(

0.5 + 0.1 α2
)

t ,
(

0.9− 0.1 α2
)

t
]

,

Oγ(t) [j, ε] =
[ (

0.6− 0.15 β2
)

t,
(

0.8 + 0.15β2
)

t
]
.

Table 4. The (α, β)–cut sets for GIF odds bands.

(α,β) Oµ(t) [α,2] Oγ(t) [β,2] O(t) [α,β,2]

(0, 1) 0.5t, 0.9t 0.45t, 0.95t 0.5t, 0.9t
(0.2, 0.8) 0.504t, 0.896t 0.504t, 0.896t 0.504t, 0.896t
(0.4, 0.6) 0.516t, 0.884t 0.546t, 0.854t 0.546t, 0.854t
(0.6, 0.4) 0.536t, 0.864t 0.576t, 0.824t 0.576t, 0.824t
(0.8, 0.2) 0.564t, 0.836t 0.594t, 0.806t 0.594t, 0.806t
(1, 0) 0.6t, 0.8t 0.6t, 0.8t 0.6t, 0.8t
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Analogously, the GIF curves for the odds band are displayed in Figure 5a, and the
rapid growth of the odds band with time reference can be observed in Figure 5b.
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5. Results and Discussion

This study presents a novel method for applying generalized intuitionistic fuzzy
approaches to the Lomax lifespan distribution. The primary goal of this work is to eval-
uate the degree of uncertainty inherent in various reliability factors. This is achieved by
quantifying the fuzziness in scale parameter θ : (a′1 = 0.45, a1 = 0.5, b1 = 0.6, c1 =
0.8, d1 = 0.9, d′1 = 0 .95) of the Lomax life distribution. In terms of the fuzzy approach,
we focused on a specific instance of the generalized intuitionistic fuzzy framework that
included specified values for µ = 1, γ = 0. In this case, we used ε = 2 and the cut set
method to compute the bands for different reliability measurements.

The (α, β)–cut bands of the GIF reliability function for different sets of (α, β) are
calculated in Table 1. Also, these reliability bands for three different sets of (α, β) are
graphically depicted in Figure 2. On the basis of Table 1 and Figure 2, the most reduced
bandwidths of membership and non-membership bands are seen at the greatest α and
lowest values of β, indicating that increasing α and reducing β lead to a decline in the
vagueness of reliability bands. As reliability characteristics also vary with time, Figure 1b
shows that the reliability bands are decreasing with respect to time t. Another reliability
characteristic is that conditional reliability bands for T = 1, as shown in Figure 3b, indicate
that an increase in time t results in an increase in bandwidth or fuzziness. Meanwhile,
Table 2 with respect to (α, β)–cut sets indicates that an increase in α and decrease in β lead
to reduced fuzziness in the conditional reliability function.

Apart from the bands, we also present the generalized intuitionistic fuzzy (GIF) mem-
bership and non-membership functions (MFs and NMFs) for every reliability measurement
in Figures 1–5.

For example, for the GIF hazard functions displayed in Figure 4a, a blue line indicates
membership functions and a red line non-membership function. Also, the GIF hazard bands
for the set of (α, β) are presented in Table 3 and graphically displayed for α = 0, β = 1
in Figure 4b, which shows that increasing t leads to more accurate bandwidth for GIF
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hazard functions. Similarly, the odds function, the last characteristic, is computed as the
ratio of two reliability features, as shown in the accompanying Figure 5b. It depicts a clear
and straightforward relationship, suggesting that uncertainty rises proportionally with the
passage of time t. Table 4 illustrates the fact that the ambiguity in the odds function can
only be reduced by simultaneously modifying and adjusting the values of (α, β).

Finally, Tables 1–4 show that increasing α and decreasing β lead to narrower and more
accurate bands for various reliability measures such as the reliability function, conditional
reliability function, hazard function, and odds function. Notably, all the reliability metrics
demonstrate a falling trend concerning t, except for the odds function. Exploring the
effects of these changes on system reliability as a future research direction could yield
significant insights.

6. Conclusions

In this paper, the notion of generalized intuitionistic fuzzy sets is used to assess
the reliability of the Lomax lifetime distribution. In order to derive various generalized
intuitionistic fuzzy reliability measures, the scale parameter of the Lomax distribution
is regarded as a generalized intuitionistic fuzzy number. The reliability measurements
are viewed as a band and their fuzziness is equal to the bandwidth for each unique
pair of cut set values. The findings show that the most exact bandwidths are obtained
when the cut set of membership functions is high and the cut set of non-membership
functions is low. Notably, this technique outperforms other fuzzy sets in terms of revealing
higher ambiguity. Future research on the subject of system reliability, particularly in the
context of series and parallel arrangements, will provide an opportunity to improve on
the current paradigm. Also, one can explore additional characteristics such as cumulative
hazard, reversed hazard, mean time to failure, and mean past lifetime functions within the
framework of the generalized intuitionistic fuzzy lifetime distribution. This investigation
may provide useful insights and a more complete understanding of system behaviour and
reliability in complicated network systems.

It is necessary to recognize some restrictions related to the application of the general-
ized intuitionistic fuzzy technique in reliability analysis. When working with generalized
intuitionistic fuzzy numbers, a significant limitation is the greater degree of difficulty in
modeling and computing, which can possibly cause issues in real-world applications. These
difficulties emphasize the importance of additional study to overcome these challenges in
real-world reliability analysis.
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