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Abstract: To solve the fractional gas dynamic equation, this paper presents an effective algorithm
using the collocation method and Müntz-Legendre (M-L) polynomials. The approach chooses a
solution of a finite-dimensional space that satisfies the desired equation at a set of collocation points.
The collocation points in this study are selected to be uniformly spaced meshes or the roots of shifted
Legendre and Chebyshev polynomials. Müntz-Legendre polynomials have the interesting property
that their fractional derivative is also a Müntz-Legendre polynomial. This property ensures that these
bases do not face the problems associated with using the classical orthogonal polynomials when
solving fractional equations using the collocation method. The numerical simulations illustrate the
method’s effectiveness and accuracy.

Keywords: fractional partial differential equations; gas dynamic equation; Müntz–Legendre polynomials;
collocation method

1. Introduction

Our goal is to use fractional M-L polynomials to numerically solve the fractional gas
dynamic equation (FGDE)

∂αw
∂tα

+ w
∂w
∂x
− w(1− w) = g(x, t), α ∈ (0, 1], (1)

subjected to conditions
w(x, 0) = f1(x), x ∈ [0, 1], (2)

w(0, t) = f2(t), w(1, t) = f3(t), t ∈ [0, 1], (3)

where g : [0, 1] × [0, 1] → R is assumed to be continuous, and α indicates the order of
the fractional derivative in the Caputo sense. We assume that the unknown solution
w(x, t) is a sufficiently smooth function. It is obvious that when α = 1, then the desired
equation turns into the classical gas dynamic equation. Also, it is worth mentioning that
the dimensionless form of the equation is considered, and we can extend the presented
method to any desired interval.

Positive integer derivatives have been a fundamental component of modeling partial
differential equations (PDEs) for many years. In recent years, there has been a growing
tendency to use fractional derivatives in modeling physical phenomena. This approach
offers many advantages, such as improved accuracy and the ability to model a wider range
of systems with greater flexibility. In fact, fractional differential equations are the generaliza-
tion of differential equations of integer order. On the other hand, these equations describe
nonlocal relationships in space and time using power-law memory kernels. According
to the definition of a fractional derivative, it is worth noting that the fractional derivative
at a point depends on all values of the function. Thus, it is expected that the fractional
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derivative operation involves some sort of boundary conditions, involving information
on the function further out [1]. As we know, when the fractional order approaches an
integer, the fractional derivative converges to the ordinary derivative. So, we can conclude
that the fractional differential equations are close to the real modeling of phenomena,
and the differential equations of integer order are the limits of them. Meanwhile, we
can mention some applications of these equations, such as anomalous transport [2], solid
mechanics [3], colored noise [4], economics [5], continuum and statistical mechanics [6],
earthquakes [7], fluid-dynamic traffic model [8], bioengineering [9–11], and continuum and
statistical mechanics [6]. There are several analytical methods available to solve these types
of equations, such as [12–14]. When dealing with more complicated equations, analytical
methods become impractical. In such cases, numerical approaches can be used to address
this shortcoming. We mention some of these methods, including the finite difference
method [15], the collocation method [16–19], the Galerkin method [20,21], the finite element
method [22], the Tau method [23], etc.

There are differences between classical Newtonian derivatives and fractional deriva-
tives. Fractional derivatives have multiple definitions, which can result in different out-
comes, even for smooth functions. Some of these definitions can be expressed through
a fractional integral. Due to the incompatibility of these definitions, it is important to
specify which definition is being used. Here, we can mention some famous fractional
derivatives, including the Riemann–Liouville, Caputo, and Grünwald–Letnikov fractional
derivatives. The Caputo and Riemann–Liouville derivatives are the main derivatives used
in the study of fractional differential equations. The two have the advantage of being equal
when it comes to the study of Dirichlet problems on a finite interval. It follows that the
theory from either area can be used in the other during an investigation, thus allowing for
more generality. In contrast to the Riemann–Liouville fractional derivative, when solving
differential equations using Caputo’s definition, it is not necessary to define the fractional
order initial conditions. In other words, the main advantage of the Caputo approach is that
the initial and boundary conditions for differential equations with the Caputo fractional
derivative are analogous to the case of integer order differential equations. So, they can be
interpreted in the same way. Therefore, it is often used in practical applications [24–27].

Several physical laws, including the conservation of energy, conservation of mass,
and conservation of momentum, are related mathematically to the gas dynamical equation.
To point out some applications of this equation, we can mention shock fronts and contact
discontinuities. Gas dynamics is a part of fluid mechanics that studies how gas flows and
how it affects basic structures. It uses the same ideas as continuum flow and hydrodynam-
ics [28]. Although one can find some analytical methods in the literature to investigate
the solution of this equation, their number is very limited. Here, we mention some of
them. Igbal et al. [29] utilized the homotopy perturbation transformation and iterative
transformation to obtain the analytical solution of the FGDE. In [30], the authors proposed a
differential transform scheme to find the analytical solution of the FGDE. Elzaki transform
homotopy perturbation has been used for solving the FGDE in [31]. Several other methods
exist to solve the FGDE, including the natural decomposition approach [32], the variational
iteration method [33,34], the Adomian decomposition method [35], the fractional homotopy
technique [36], and the q-homotopy analysis method [37]. Among the numerical methods
for solving the desired equation, we could only find the B-spline collocation method [38,39].
The available numerical methods for solving this equation are quite limited. For this reason,
we attempt to present a numerical method to solve this equation in this work.

In this paper, we use the collocation method with Müntz–Legendre polynomials to
solve the FGDE. The fundamental idea behind this method is to consider the unknown
solution w as a linear combination of basis functions. Then, we try to find a solution that
satisfies the desired equation at the collocation points. However, using orthogonal bases to
solve fractional equations, unlike equations with integer derivatives, can cause problems
in using the collocation method. The solutions to the fractional differential Equation (1)
may contain fractional-power terms, which cannot be represented by classical orthogonal
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polynomials. When this happens, using classical polynomial bases may lead to poor
convergence rates in numerical approximations. Also, when using a collocation method, it
is necessary for the trial function’s derivatives to be expressed in terms of the same trial
bases. However, classical polynomial fractional derivatives are not polynomials. Therefore,
we cannot approximate the fractional derivatives effectively using the classical orthogonal
polynomials [24]. As mentioned, the Müntz–Legendre polynomials, which were introduced
in [40], are utilized in this approach. These bases have a vital feature in solving fractional
differential equations: their fractional derivative is the Müntz–Legendre polynomial.

The rest of the paper is organized in the following way: a brief overview of Müntz–
Legendre polynomials is given in Section 2. Also, an evaluation of the fractional derivative
of these polynomials is presented in this section. In Section 3, the collocation method is
implemented for the FGDE. Section 4 contains results from various numerical experiments.
Finally, we complete this work with a conclusion in Section 5.

2. Müntz–Legendre Polynomials

Considering L = {0 = η0 < η1 < . . .} as an increasing sequence, we introduce the
space SM(L) such that it is spanned by

SM(L) = span{xηm , m = 0, 1, . . . M}.

Assume that ηm := mα, where α ∈ R. With this assumption, the fractional M–L
polynomials can be denoted as [41]

Lm,α(x) =
m

∑
i=0

lm,ixηi , x ∈ [0, 1], m = 0, 1, . . . M, (4)

in which the coefficients lm,i (i = 0, 1, . . . , m) are calculated by

lm,i :=
∏i−1

j=0(ηm + ηj + 1)

∏i
j=0,j 6=m(ηm − ηj)

. (5)

It is worth noting that there is another representation for fractional M-L polynomials,
as follows.

Lm,α(x) =
m

∑
i=0

l̂m,ixηi , x ∈ [0, 1], m = 0, 1, . . . M, (6)

with coefficients

l̂m,i =
(−1)m−iΓ( 1

α + m + i)
i!(m− i)!Γ( 1

α + i)
. (7)

We can encounter issues when expressing fractional M-L polynomials in the forms
mentioned above. These issues have been addressed in [42]. However, we can use the rela-
tionship between M-L and Jacobi polynomials to establish a recurrence formula, which we
present below. Before expressing the recurrence formula, let us briefly review Jacobi poly-
nomials.

The Jacobi polynomials in the explicit form can be expressed as [43]

J(a,b)
m (x) :=

Γ(a + m + 1)
m!Γ(a + b + m + 1)

m

∑
i=0

(
m
i

)
Γ(a + b + m + i + 1)

Γ(a + i + 1)

(
x− 1

2

)i
.

As we know, the Jacobi polynomials are orthogonal with respect to the weight function
ω = (1− x)a(1+ x)b on [−1, 1]. Among the famous functions of this family of polynomials,
one can mention the Chebyshev and Legendre functions by selecting a = b = −1/2 and
a = b = 0, respectively. There is also a recurrence relation that is used to determine the
Jacobi polynomials, viz.,
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J(a,b)
0 (x) := 1,

J(a,b)
1 (x) :=

1
2
((a− b) + (a + b + 2)x),

J(a,b)
m+1(x) := c(a,b)

1,m J(a,b)
m (x)− c(a,b)

2,m J(a,b)
m−1(x), m = 1, . . . , M− 1, (8)

in which the coefficients c1,m and c2,m can be obtained as follows:

c(a,b)
1,m :=

(2m + a + b + 1)
(
(2m + a + b)(2m + a + b + 2)x + a2 − b2)

2(m + 1)(m + a + b + 1)(2m + a + b)
,

c(a,b)
2,m :=

(m + a)(m + b)(2m + a + b + 2)
(m + 1)(m + a + b + 1)(2m + a + b)

.

Considering the aforementioned expression of Jacobi polynomials, there is an explicit
relation between the M-L and Jacobi polynomials as follows [41].

Lm,α(x) = J0,1/α−1
m (2xα − 1). (9)

Using the relation between M-L and Jacobi polynomials (Equation (9)) and Equa-
tion (8), we can obtain the following recurrence relation, viz.,

L0,α(x) := 1,

L1,α(x) :=
(

1
α
+ 1
)

xα − 1
α

,

Lm+1,α(x) := c(0,1/α−1)
1,m (2xα − 1)Lm,α(x)− c(0,1/α−1)

2,m Lm−1,α(x), m = 1, . . . , M− 1. (10)

2.1. Caputo Fractional Derivative of Fractional M-L Polynomials

Before discussing the action of the Caputo fractional derivative (CFD) operator on
fractional M-L polynomials, let us first define some concepts and preliminary definitions of
fractional calculus.

Assume that ACα([0, 1]) is a space of functions such that

ACα[0, 1] = {w : [0, 1]→ C, & D(α−1)(w) ∈ AC[0, 1]},

in which D is the derivative operator. As we know, if w(x) ∈ ACα[0, 1], then the CFD

cDα
0 (w)(x) =

1
Γ(κ − α)

∫ x

0

w(κ)(t)dt
(x− t)α−κ+1 =: Iκ−α

0 Dκ(w)(x), κ = [α] + 1, (11)

exists for almost every x ∈ [0, 1] [44]. Here, Iα
0 indicates the fractional integral (FI) operator

that is determined in the following form.

Iα
0 (w)(x) :=

1
Γ(α)

∫ x

0
(x− ζ)α−1w(ζ)dζ, x ∈ [0, 1]. (12)

Lemma 1 ([44]). There is an estimation of the bound of the FI operator Iα
0 in Lq[0, 1], viz.,

‖Iβ
0 (w)‖q ≤

1
Γ(β + 1)

‖w‖q, 1 ≤ q ≤ ∞.

Due to Equation (11), it is easy to verify that

cDα
0 (xγ) =

Γ(γ + 1)
Γ(γ− α + 1)

xγ−α. (13)
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Now, everything is ready to obtain the CFD of fractional M-L polynomials. According
to Equation (13) and one of the definitions of fractional M-L polynomials that are specified
in Equations (4) and (6), one can write

cDα
0 (Lm,α)(x) =

m

∑
i=0

l′m,ixηi−α, x ∈ [0, 1], m = 0, 1, . . . M, (14)

where l′m,i := Γ(ηi+1)
Γ(ηi−α+1) lm,i or l′m,i := Γ(ηi+1)

Γ(ηi−α+1) l̂m,i. It is to be noted that both the functions
Lm,α and cDα

0 (Lm,α) belong to space SM(L). The critical issue that is addressed in [42]
(coefficients become large when m increases), occurs for cDα

0 (Lm,α) too. To avoid this
problem, a stable numerical evaluation of cDα

0 (Lm,α) can be introduced (refer to [41]). This
technique is started by the relation between the M-L and Jacobi polynomials (Equation (9))
and a well-known formula for the derivative of Jacobi polynomials, i.e.,

d
dx

J(a,b)
m (x) =

1
2
(m + a + b + 1)J(a+1,b+1)

m−1 (x). (15)

By performing a straightforward calculation, we can confirm that

cDα
0 (Lm,α) =

1 + mα

α!Γ(1− α)

∫ 1

0
(1− t1/α)−α J(1,1/α)

m−1 (2xαt− 1)dt. (16)

Motivated by [41], the Gaussian quadrature rule can be used to evaluate the integral
presented in Equation (16). To do this, the function (1− t1/α)−α is considered a weight
function, and using the Chebyshev algorithm [45] via moments µn := αB(αn + α, 1− α)
(n = 0, . . . , 2m− 1), where B states the beta function, the Gaussian quadrature weights ωi
and roots xi can be calculated. By these assumptions, the CFD of fractional M-L polynomials
can be computed as

cDα
0 (Lm,α) =

1 + mα

α!Γ(1− α)

m

∑
i=1

ωi J
(1,1/α)
m−1 (2xαxi − 1). (17)

2.2. Function Approximation

The fractional M-L polynomials are not orthonormal. However, we have an orthogo-
nality relation for these polynomials as follows.

〈Lm,α, Lm′ ,α〉 =
∫ 1

0
Lm,α(x)Lm′ ,α(x)dx =

1
2mα + 1

δm,m′ , (18)

in which δ indicates the Kronecker function, and 〈., .〉 states the inner product. Therefore,
any function w(x) ∈ C([0, 1]) can be approximated by

w(x) ≈ wM(x) =
M

∑
m=1

wmLm,α(x), (19)

where the coefficient wm is calculated by

wm = (2mα + 1)〈w, Lm,α〉. (20)

Theorem 1 (cf. Theorem 1 [41]). Given α ∈ (0, 1), assume that cDmα
0 ∈ C[0, 1] for m =

0, . . . , M. Then, the error of approximation (Equation (20)) can be bounded as

‖w(x)− wM(x)‖2 ≤
C

Γ(Mα + 1)
√

2Mα + 1
,

with maxx∈[0,1] |cDMα
0 (x)| ≤ C.



Symmetry 2023, 15, 2076 6 of 14

In the sequel, the fractional M-L polynomials are extended to two dimensions on
domain [0, 1]× [0, 1]. Assume that w(x, t) ∈ L1([0, 1]× [0, 1]); then, it is easy to expand it
based on fractional M-L polynomials as

w(x, t) ≈ wM(x, t) =
M

∑
m=1

M

∑
m′=1

wm,m′Lm,α(x)Lm′ ,α(x), (21)

in which the coefficient wm,m′ is obtained by

wm,m′ = (2mα + 1)(2m′α + 1)〈w, Lm,αLm′ ,α〉

= (2mα + 1)(2m′α + 1)
∫ 1

0

∫ 1

0
w(x, t)Lm,α(x)Lm′ ,α(t)dtdx. (22)

3. Collocation Method

The collocation method is one of the spectral methods that is used widely to solve a
variety of equations. The candidate solutions are chosen to be in a finite-dimensional space,
which in our study is the space SM(L). Considering a number of points, known as collocation
points, the chosen solution must satisfy the given equation at these collocation points [46].

First, let us approximate the unknown solution w(x, t) of the FGDE as a finite sum

w(x, t) ≈ wM(x, t) =
M

∑
m=1

M

∑
m′=1

wm,m′Lm,α(x)Lm′ ,α(t), (23)

where the unknown coefficients wm,m′ for m, m′ = 1, . . . , M must be specified. Substituting
this approximation into Equation (1) and using Equations (15) and (17), we can introduce
the residual

r(x, t) :=
∂αwM

∂tα
+ wM

∂wM
∂x
− wM(1− wM)− g(x, t) = 0, (24)

where

∂αwM
∂tα

=
M

∑
m=1

M

∑
m′=1

wm,m′Lm,α(x)cDα
0 (Lm′ ,α)(t)

=
M

∑
m=1

M

∑
m′=1

wm,m′Lm,α(x)
1 + m′α

α!Γ(1− α)

m′

∑
i=1

ωi J
(1,1/α)
m′−1 (2tαxi − 1),

and

∂wM
∂x

=
M

∑
m=1

M

∑
m′=1

wm,m′Lm′ ,α(t)D(Lm,α)(x)

=
M

∑
m=1

M

∑
m′=1

wm,m′(mα + 1)xα−1Lm′ ,α(t)J(1,1/α)
m (2xα − 1).

Our goal is to minimize the residual function r(x, t) to zero. We generate a system of
nonlinear algebraic equations R(w) = 0 by selecting the collocation points {τi}M

i=1 ∈ [0, 1]
that satisfy r(τi, τj) = 0. We replace some entries of this system with

[R(w)]1,j = f1(τj, 0),

[R(w)]i,1 = f2(0, τj),

[R(w)]i,M = f3(1, τj), j = 1, . . . , M,
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We can determine the unknown coefficients wi,j after solving this system using the
Newton method. The collocation points in our study are uniformly spaced meshes
{ i

M+1}M
i=1 or the roots of shifted Chebyshev and Legendre polynomials [47]. As mentioned

above, to solve the aforementioned nonlinear system, we use the Newton method. It is
worth noting that Newton’s method is implemented with a starting point w = O (null
vector), and the termination criterion is selected to be the absolute residual, which is less
than the given tolerance 10−16.

In a more abstract form, there is a projection operator QM such that it maps C([0, 1]×
[0, 1]) onto SM(L × L′). On the other hand, given w ∈ C([0, 1] × [0, 1]), the projection
QM(w) is an element of SM(L × L′) that interpolates w at the points {(τi, τj)}M

i,j=1 ∈
[0, 1]× [0, 1]. Note that QMr = 0, if and only if r(τi, τj) = 0 for {(τi, τj)}M

i,j=1 ∈ [0, 1]× [0, 1].
Considering this preface, the condition r(τi, τj) = 0 can be written as

QMr = 0.

Equivalently, we have

QM

(
∂αwM

∂tα
+ wM

∂wM
∂x
− wM(1− wM)

)
= QM(g). (25)

We summarize the method algorithmically in the following seven steps:

(1) Choose M;
(2) Construct the Müntz–Legendre polynomials of order M (refer to Equation (10));
(3) Compute the CFD of fractional M-L polynomials cDα

0 (Lm,α) (refer to Equation (17));
(4) Approximate w(x, t) using wM(x, t) (refer to Equation (19));
(5) Put wn(x, t) back into (1), and compute the residual r(x, t) (refer to Equation (24));
(6) Obtain the nonlinear system R(w) = 0 using the collocation points xj (j = 1, . . . , M);
(7) Solve the nonlinear system using the Newton method.

4. Numerical Simulations and Results

Some illustrative examples are provided in this section to show the effectiveness and
accuracy of the method.

All examples are carried out with the combined use of Maple and Matlab software
with an Intel(R) Core(TM) i7-7700k CPU 4.20 GHz (RAM 32 GB).

Example 1. In this example, using the presented method, we focus on solving the following
equation [30].

∂αw
∂tα

+ w
∂w
∂x
− w(1− w) = 0, α ∈ (0, 1],

with conditions

w(x, 0) = e−x, w(0, t) = Eα(0), and w(1, t) = Eα(1), (x, t) ∈ [0, 1]× [0, 1],

where Eα(t) denotes the Mittag–Leffler function and is specified by

Eα(t) =
∞

∑
k=0

tk

Γ(1 + kα)
.

The exact solution is w(x, t) = e−xEα(tα) [30]. Note that to compare the approximate solution
with the exact solution, 100 terms of the aforementioned expansion are considered in this paper.

Tables 1–3 are tabulated to demonstrate the L2-error at various times and using different values
of m. In these tables, L2-errors are made for different choices of collocation points. The tables show
compatibility between the analytical and numerical solutions. It is evident that increasing the values
of m leads to more accurate numerical results. The decreasing values of the L2-errors indicate that
we can easily understand this situation. In Tables 4 and 5, a comparison between our method and
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those in [38,39] is shown. Our method achieves higher accuracy. To illustrate the influence of the
parameter m on L-errors, Figure 1 is plotted. This figure is further evidence of the effectiveness
and accuracy of the presented method. In this figure, we also see the effect of choosing different
collocation points.

As we know, the Caputo fractional derivative of a function w tends to integer derivative as
α→ κ, viz.

limα→κ
cDα

0 w(x) = w(η)(x),

limα→κ−1
cDα

0 w(x) = w(κ−1)(x)− w(κ−1)(0).

Our results illustrated in Figure 2, obviously, demonstrate this effect. We can see that when
α→ κ, the approximate solution with increasing α tends to the results for κ.

The approximate solution and absolute error with different choices of collocation points are
demonstrated in Figures 3 and 4 for α = 0.7 and α = 1, respectively. We can see that when the
derivative order is aninteger, the use of Chebyshev nodes provides better results, and when the order
of the derivative is a non-integer, uniform nodes have better results.

Table 1. The L2 errors for Example 1 at various times using Chebyshev collocation points when
α = 0.5.

t\M 7 8 9 10 11 12

0.1 4.00× 10−3 3.17× 10−4 1.93× 10−4 1.44× 10−4 1.40× 10−6 8.85× 10−7

0.3 1.20× 10−3 1.55× 10−5 6.08× 10−6 5.71× 10−6 4.31× 10−7 2.83× 10−7

0.5 2.43× 10−3 2.16× 10−5 6.57× 10−6 1.20× 10−7 4.94× 10−8 2.74× 10−8

0.7 7.16× 10−4 9.92× 10−6 4.28× 10−6 1.77× 10−7 1.26× 10−7 7.95× 10−9

0.9 8.92× 10−4 1.43× 10−5 3.01× 10−6 2.29× 10−7 8.13× 10−8 5.11× 10−9

CPU time 4.157 9.734 18.859 36.891 68.000 120.875

Table 2. The L2 errors for Example 1 at various times using Legendre collocation points when α = 0.5.

t\M 7 8 9 10 11 12

0.1 5.56× 10−4 3.01× 10−5 1.84× 10−5 9.72× 10−7 2.50× 10−7 3.27× 10−8

0.3 6.30× 10−4 9.63× 10−6 1.14× 10−6 2.10× 10−7 3.74× 10−8 1.33× 10−9

0.5 3.72× 10−4 2.69× 10−6 9.22× 10−7 1.52× 10−7 3.42× 10−8 8.25× 10−10

0.7 1.93× 10−4 8.07× 10−6 4.99× 10−6 1.32× 10−7 3.33× 10−8 1.52× 10−9

0.9 3.45× 10−4 2.69× 10−5 7.00× 10−6 2.72× 10−7 4.05× 10−8 2.43× 10−9

CPU time 3.797 8.609 18.203 35.609 65.578 118.703

Table 3. The L2 errors for Example 1 at various times using uniform collocation points when α = 0.5.

t\M 7 8 9 10 11 12

0.1 2.45× 10−4 4.98× 10−5 8.24× 10−6 1.78× 10−6 2.95× 10−7 8.44× 10−8

0.3 9.16× 10−5 2.08× 10−5 4.01× 10−6 1.18× 10−6 5.87× 10−8 4.73× 10−8

0.5 1.16× 10−4 2.78× 10−5 4.65× 10−6 1.46× 10−6 1.11× 10−7 6.93× 10−8

0.7 1.44× 10−4 3.52× 10−5 5.80× 10−6 1.84× 10−6 1.55× 10−7 9.08× 10−8

0.9 1.82× 10−4 4.73× 10−5 7.14× 10−6 2.30× 10−6 2.01× 10−7 1.15× 10−7

CPU time 3.375 8.578 17.703 35.032 63.265 117.781

Table 4. A comparison between the presented method and the cubic B-spline method [38] at t = 0.1
for Example 1.

Proposed Method CBCM [38]

L2-error 2.96× 10−10 1.06× 10−4

L∞-error 4.69× 10−10 1.94× 10−4
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Table 5. A comparison with other methods at different times for Example 1.

Proposed Method [38] [39]

t L2-Error L∞-Error L2-Error L∞-Error L2-Error L∞-Error

0.2 7.06× 10−11 1.21× 10−10 5.02× 10−3 8.71× 10−3 2.32× 10−4 3.87× 10−4

0.4 1.12× 10−11 5.49× 10−12 4.68× 10−3 7.56× 10−3 1.30× 10−4 2.07× 10−4

0.6 1.50× 10−12 1.71× 10−12 4.39× 10−3 7.00× 10−3 8.60× 10−5 1.27× 10−4

0.8 7.29× 10−13 3.73× 10−13 4.10× 10−3 6.52× 10−3 5.29× 10−5 7.75× 10−5

1.0 6.59× 10−13 4.35× 10−13 3.82× 10−3 6.07× 10−3 3.18× 10−5 4.63× 10−5
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Figure 1. The influence of the parameter M on L∞-errors for Example 1.
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Figure 2. Approximate solution at x = 1 (left) and t = 1 (right), taking different α for Example 1.

(a) Approximate solution (b) Uniform collocation points

(c) Legendre nodes (d) Chebyshev nodes

Figure 3. Approximate solution and absolute error with different choices of collocation points, taking
M = 15, α = 0.7 for Example 1.
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(a) Approximate solution (b) Chebyshev nodes

(c) Legendre nodes (d) Uniform meshes

Figure 4. Approximate solution and absolute error with different choices of collocation points, taking
M = 10, α = 1 for Example 1.

Example 2. We assign the second example to the non-homogeneous FGDE as

∂αw
∂tα

+ w
∂w
∂x
− w(1− w) =

Γ(3 + α)

2
t2e−x − t2+αe−2x − t2+αe−x + t4+2αe−2x, α ∈ (0, 1],

with conditions

w(x, 0) = 0, w(0, t) = t2+α, and w(1, t) =
1
e

t2+α, (x, t) ∈ [0, 1]× [0, 1].

The exact solution is w(x, t) = t2+αe−x.
Tables 6–8 are tabulated to demonstrate the L2-error at various times and using different

values of M. In these tables, L2-errors are made for different choices of collocation points. Similar to
Example 1, we observe that when the parameter m increases, the error reduces. To give evidence of
the effectiveness and accuracy of the presented method and the effect of choosing different collocation
points, Figure 5 is plotted. Figure 6 illustrates that when α→ κ, the approximate solutions tend
to the solution obtained by choosing α = κ. The approximate solution and absolute error with
different choices of collocation points are demonstrated in Figure 7 for α = 0.8. We can see that the
Chebyshev nodes provide better results.

Table 6. The L2 errors for Example 2 at various times using Chebyshev collocation points when
α = 0.5.

t\M 7 8 9 10 11 12

0.1 4.66× 10−6 2.94× 10−7 3.52× 10−8 5.58× 10−9 2.79× 10−9 1.73× 10−10

0.3 1.61× 10−6 8.95× 10−7 1.38× 10−7 1.36× 10−8 6.04× 10−10 2.56× 10−10

0.5 2.15× 1005 1.03× 10−6 1.31× 10−7 2.05× 10−8 7.27× 10−9 2.76× 10−10

0.7 6.46× 10−5 1.63× 10−6 2.84× 10−7 4.02× 10−8 8.09× 10−9 4.00× 10−10

0.9 1.42× 10−4 3.02× 10−6 5.76× 10−7 7.42× 10−8 1.25× 10−8 7.29× 10−10

CPU time 3.875 8.859 18.422 36.109 66.719 118.156



Symmetry 2023, 15, 2076 11 of 14

Table 7. The L2 errors for Example 2 at various times using Legendre collocation points when α = 0.5.

t\M 7 8 9 10 11 12

0.1 1.01× 10−5 1.18× 10−06 3.72× 10−7 1.98× 10−8 3.13× 10−9 6.81× 10−11

0.3 3.33× 10−5 1.62× 10−6 3.88× 10−7 1.95× 10−8 2.93× 10−9 6.22× 10−11

0.5 1.11× 10−5 1.75× 10−6 7.39× 10−7 2.95× 10−8 3.49× 10−9 8.02× 10−11

0.7 2.09× 10−5 6.05× 10−6 1.08× 10−6 7.31× 10−8 5.20× 10−9 1.00× 10−10

0.9 5.71× 10−5 2.42× 10−5 1.56× 10−6 2.82× 10−7 7.92× 10−9 5.59× 10−10

CPU time 3.812 8.687 18.563 36.547 69.797 119.000

Table 8. The L2 errors for Example 2 at various times using uniform collocation points when α = 0.5.

t\M 7 8 9 10 11 12

0.1 2.22× 10−5 3.46× 10−6 1.69× 10−7 4.56× 10−8 4.05× 10−10 8.84× 10−10

0.3 1.86× 10−5 3.24× 10−6 1.25× 10−7 4.68× 10−8 1.87× 10−9 8.46× 10−10

0.5 2.00× 10−5 4.26× 10−6 2.63× 10−7 1.05× 10−7 7.82× 10−9 4.30× 10−9

0.7 2.51× 10−5 6.29× 10−6 6.27× 10−7 2.23× 10−7 1.85× 10−8 1.04× 10−8

0.9 3.59× 10−5 9.65× 10−6 1.21× 10−6 4.07× 10−7 3.49× 10−8 1.98× 10−8

CPU time 3.547 8.391 18.218 35.969 65.484 118.594
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Figure 5. The influence of the parameter M on L∞-errors for Example 2.
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Figure 6. Approximate solution at x = 1, taking different α for Example 2.
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(a) Approximate solution (b) Uniform collocation points

(c) Legendre nodes (d) Chebyshev nodes

Figure 7. Approximate solution and absolute error with different choices of collocation points, taking
M = 12, α = 0.8 for Example 2.

5. Conclusions

A numerical scheme utilizing the collocation method is applied to solve the well-
known gas dynamical equation with Caputo time-fractional derivatives. The bases used
in the implementation of the method are Müntz–Legendre polynomials, which we not
only introduce but also obtain their properties and the acting of derivative and fractional
derivative operators on them. The collocation points in this study are uniformly spaced
meshes or the roots of shifted Legendre and Chebyshev polynomials. The numerical
simulations illustrate the method’s effectiveness and accuracy. The proposed method offers
superior outcomes compared to some existing methods. The method proposed here has
the potential to solve both fractional and non-fractional equations with ease. Its simplicity
in implementation, combined with its high efficiency and significant accuracy, make it a
strong candidate for solving the same equations.

The presented method is one of the few fully discrete methods that have been used to
solve this type of equation and has provided high accuracy results. The previous methods
were mostly semi-analytical methods [28–35]. This method has also provided better results
compared to the B-spline collocation method [38,39], and this is due to the use of bases in
the form of power functions with fractional powers.
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