
Citation: Yang, S.; Chen, L.; Wang, J.;

Jin, W.; Yu, Y. A Novel Lightweight

Object Detection Network with

Attention Modules and Hierarchical

Feature Pyramid. Symmetry 2023, 15,

2080. https://doi.org/10.3390/

sym15112080

Academic Editors: João Ruivo Paulo,

Cristina P. Santos and Gabriel Pires

Received: 10 October 2023

Revised: 12 November 2023

Accepted: 14 November 2023

Published: 17 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Novel Lightweight Object Detection Network with Attention
Modules and Hierarchical Feature Pyramid
Shengying Yang 1,2,* , Linfeng Chen 2, Junxia Wang 2, Wuyin Jin 1 and Yunxiang Yu 3

1 School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Information and Electronic Engineering, Zhejiang University of Science and Technology,

Hangzhou 310023, China
3 Zhejiang Dingli Industry Co., Ltd., Lishui 321400, China
* Correspondence: syyang@zust.edu.cn

Abstract: Object detection methods based on deep learning typically require devices with ample
computing capabilities, which limits their deployment in restricted environments such as those with
embedded devices. To address this challenge, we propose Mini-YOLOv4, a lightweight real-time
object detection network that achieves an excellent trade-off between speed and accuracy. Based on
CSPDarknet-Tiny as the backbone network, we enhance the detection performance of the network
in three ways. We use a multibranch structure embedded in an attention module for simultaneous
spatial and channel attention calibration. We design a group self-attention block with a symmetric
structure consisting of a pair of complementary self-attention modules to mine contextual information,
thereby ensuring that the detection accuracy is improved without increasing the computational cost.
Finally, we introduce a hierarchical feature pyramid network to fully exploit multiscale feature maps
and promote the extraction of fine-grained features. The experimental results demonstrate that
Mini-YOLOv4 requires only 4.7 M parameters and has a billion floating point operations (BFLOPs)
value of 3.1. Compared with YOLOv4-Tiny, our approach achieves a 3.2% improvement in mean
accuracy precision (mAP) for the PASCAL VOC dataset and obtains a significant improvement of
3.5% in overall detection accuracy for the MS COCO dataset. In testing with an embedded platform,
Mini-YOLOv4 achieves a real-time detection speed of 25.6 FPS on the NVIDIA Jetson Nano, thus
meeting the demand for real-time detection in computationally limited devices.

Keywords: object detection; embedded platform; attention model; feature pyramid; real-time performance

1. Introduction

AS one of the fundamental tasks in computer vision, object detection is widely used
in face detection, object tracking, image segmentation, and autonomous driving [1]. The
objective is to localize and classify specific objects in an image, accurately find all the
objects of interest, and locate the position with a rectangular bounding box [2,3]. In recent
years, in the field of computer vision, there has been a growing focus on designing deeper
networks to extract valuable feature information, resulting in improved performance [4–8].
However, due to the vast number of parameters in these models, they often consume
a significant amount of computational resources. For example, Khan [9] proposed an
end-to-end scale-invariant head detection framework by modeling a set of specialized
scale-specific convolutional neural networks with different receptive fields to handle scale
variations. Wang [10] introduced a pyramid structure into the transformer framework,
using a progressive shrinking strategy to control the scale of feature maps. While these
models demonstrate outstanding detection accuracy, they heavily rely on powerful GPUs to
achieve rapid detection speed [11]. This poses a significant challenge in achieving a balance
between accuracy and inference speed on mobile devices with limited computational
resources [12–14]. Currently, detection models based on deep learning often use complex

Symmetry 2023, 15, 2080. https://doi.org/10.3390/sym15112080 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15112080
https://doi.org/10.3390/sym15112080
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-3010-1622
https://doi.org/10.3390/sym15112080
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15112080?type=check_update&version=1

Symmetry 2023, 15, 2080 2 of 22

network architectures to extract valuable feature information. Although such models have
a high detection accuracy, they usually rely on powerful graphics processing units (GPUs)
to achieve a fast detection speed [15]. With the rapid development of technologies such as
smartphones, drones, and unmanned vehicles, implementing neural networks in parallel
on devices with limited storage and computing power is becoming an urgent need. Under
computing power and storage space constraints, lightweight real-time networks have
become popular research topics related to the application of deep learning in embedded
applications [16].

Recently, some researchers have reduced the number of parameters and model size
of the network by optimizing the network structure, such as SqueezeNet, MobileNetv1-
v3 [17–19], ShuffleNetv1-v2 [20,21], Xception [22], MixNet [23], EfficientNet [24], etc. The
MobileNet series methods replace the traditional convolution by using depth-wise sep-
arable convolutions, thus achieving a result similar to that of standard convolution but
greatly reducing the number of model calculations and parameters. The ShuffleNet series
networks use group convolution to reduce the number of model parameters and apply
channel shuffling to reorganize the feature maps generated by group convolution. Other
researchers have proposed regression-based one-stage object detectors, such as SSD [25],
YOLOv1-v4 [26–29], RetinaNet [30], MimicDet [31], etc. Instead of taking two shots, as in
the RCNN series, one-stage detectors predict the target location and category information
directly from a network without region propositions. Based on the regression concept of
YOLOv1, SSD uses predefined boxes of different scales and aspect ratios for prediction and
extracts feature maps of different scales for detection. Although the SSD accuracy is better
than that of YOLOv1, SSD does not perform well in small object detection. YOLOv3 uses
the Darknet backbone network to mine high-level semantic information, which greatly
improves the classification performance. A similar feature pyramid network is used for
feature fusion to enhance the accuracy of small target detection. Since a large number of
easily classified negative samples in the training phase can lead to model degradation,
RetinaNet proposes focal loss based on standard cross-entropy loss to eliminate category
imbalance effectively, similar to a kind of hard sample mining. To improve the accuracy of
the one-stage detector, MimicDet uses the features generated by a two-stage detector to
train the one-stage detector in the training phase. However, in the inference phase.

MimicDet uses a one-stage method directly for prediction to ensure that the detection
speed is relatively fast. The YOLO series methods achieve an excellent balance between
accuracy and speed and have become widely used for target detection in actual scenarios.
Nevertheless, YOLO models have a complex network structure and a large number of
network parameters, so they require vast computing resources and considerable storage
space when used in embedded devices. However, the high computational cost limits the
ability of YOLO models to perform multiple tasks that require real-time performance on
computationally limited platforms [32]. To reduce the occupation of computing resources,
lightweight YOLO methods require fewer parameters and improve the detection speed
by applying a smaller feature extraction network, such as the latest YOLOv4-Tiny [33].
Therefore, when performing object detection on embedded devices, improving the detection
accuracy while achieving real-time performance is a significant problem to be solved.

This is because YOLO has a faster processing speed compared to Xception, making it
more suitable for real-time applications, and the widespread use of Yolov4 and its excellent
performance in many object detection-related tasks. After a comprehensive literature review
to identify popular methods and the existing limitations in the field of object detection, we
decided to exploit multiscale feature maps to promote the extraction of fine-grained features
because they can improve the detection of small and medium-sized objects. In addition, we
also considered how to achieve spatial and channel attention calibration through structural
optimization and applied other strategies to improve detection accuracy without increasing
computational costs. To obtain an efficient object detection model that can be applied in
constrained environments originating from YOLOv4-Tiny, Mini-YOLOv4 is proposed in
this paper to achieve an excellent trade-off between speed and accuracy. Compared with

Symmetry 2023, 15, 2080 3 of 22

YOLOv4-Tiny, Mini-YOLOv4 not only improves the detection accuracy but also effectively
reduces the number of model calculations and number of parameters from 5.9 M to 4.7 M,
which means it can achieve efficient object detection in embedded devices. And compared
to YOLOv3, YOLOv3-Tiny, YOLOv4-CSP, YOLOv4-Tiny, and YOLOv5s, Mini-YOLOv4
achieves fewer parameter sizes. To evaluate the effectiveness of our method for lightweight
object detection in embedded systems, we conducted experiments on benchmark datasets,
such as PASCAL VOC and MS COCO, and compared our method with other models. We
also considered various metrics (e.g., parameters, BFLOPs, FPS, mAP, AP50, AP75, etc.) to
measure the computational cost and detection performance of our method. We chose the
NVIDIA Jetson Nano, a widely used low-cost deep learning platform, as the experimental
test environment.

The main contributions of this paper are as follows:
(1) To reduce the number of parameters while achieving improved detection accuracy,

we built a multibranch feature aggregation module (MFBlock) to replace the last 3 × 3
convolutional block in the backbone network. In MFBlock, we embed a new attention
mechanism called the complete attention module (CAM) that directly explores spatial and
channel clues. CAM uses the spatial structure information ignored by SENet and provides
a significant increase in accuracy at a low computational cost.

(2) To exploit long-range dependencies, we design a group self-attention block (GS-
Block) to replace the 3 × 3 convolutional block in the prediction head, consisting of a
spatial group attention module (SGAM) and channel group attention module (CGAM).
SGAM focuses on capturing the spatial association among feature maps, and CGAM aims
to aggregate channel-wise feature information. We use SGAM and CGAM jointly to obtain
comprehensive feature representations.

(3) To improve the regression accuracy for small and medium targets, we introduce
a hierarchical feature pyramid network (H-FPN). In H-FPN, we use upsampling and
downsampling to resize the feature maps of different stages in the network. Then, we fuse
the high-level semantic features with the low-level feature representations in a hierarchical
manner to obtain fine-grained features.

(4) Extensive experiments on PASCAL VOC and MS COCO datasets verify the effec-
tiveness of each component. Moreover, we compare Mini-YOLOv4 with state-of-the-art
object detection algorithms and other lightweight models. Mini-YOLOv4 achieves compara-
ble results for mAP, lower BFLOPs value, and a real-time detection speed on an embedded
platform NVIDIA Jetson Nano.

2. Related Work
2.1. Attention Mechanism

In recent years, attention mechanisms have been widely used in various fields of
computer vision to enhance important features and suppress irrelevant noise. These mech-
anisms provide excellent performance in improving model accuracy, such as SENet [34],
CBAM [35], No-local [36], SKNet [37], GCNet [38], NAM [39], ECANet [40], SA-Net [41],
SimAM [42], GAM [43], etc. SENet explicitly models the correlation between feature
channels and automatically learns the channel-wise weights for feature selection. CBAM
focuses on spatial and channel attention information and concatenates the feature maps
after average and maximum pooling operations to reduce feature loss, thus making the
model focus on the target itself rather than the background. SKNet uses convolution kernels
of different sizes to extract semantic features and dynamically adjusts the receptive field by
aggregating feature information from multiple branches. Based on SENet and No-local,
GCNet proposes a simple global context modeling framework to mine long-distance de-
pendencies and reduce computational pressure. NAM applies a weight sparsity penalty
to the attention module, thereby improving computational efficiency while maintaining
similar performance. ECANet has mainly made some improvements to the SENet module,
proposing a non-dimensional reduction local cross-channel interaction strategy and an
adaptive method for selecting the size of one-dimensional convolutional kernels, thereby

Symmetry 2023, 15, 2080 4 of 22

achieving performance improvement. Although CBAM brings performance improvements,
it increases the computational complexity to a certain extent. SA-Net introduces the channel
shuffle method, which parallelizes the use of spatial and channel attention mechanisms in
blocks, enabling efficient integration of the two types of attention mechanisms. Different
from the common channel and spatial attention modules, SimAM introduces an attention
mechanism without any trainable parameters, proposed based on neuroscience theory
and the linear separability principle. GAM proposes a global attention mechanism that
introduces channel attention and multi-layer perceptrons to reduce information diffusion
and amplify global interactive representations, thereby improving the performance of deep
neural networks. The attention mechanism we propose is different from those in previous
methods in some aspects. First, Mini-YOLOv4 introduces the CAM to combine spatial
and channel attention calibration, which overcomes the limitations of performing spatial
or channel attention alone with a low computational cost. Second, our two self-attention
modules make full use of group convolutions, thereby creating a lightweight model.

2.2. YOLOv4, YOLOv4-CSP and YOLOv4-Tiny Networks

YOLOv4 is an evolution from YOLOv3, and the purpose is to design a real-time object
detection network that can be applied in the actual working environment. YOLOv4 pro-
poses a CSPDarknet53 backbone network to reduce repeated gradient learning effectively
and improve the learning ability of the network. In terms of data augmentation, YOLOv4
uses a mosaic to combine four images into one, which is equivalent to increasing the
minibatch size and adds self-adversarial training (SAT), which allows the neural network
to update images in the reverse direction before normal training. In addition, YOLOv4
uses modules such as ASFF [44], ASPP [45], and RFB [46] to expand the receptive field
and introduce attention mechanisms to emphasize important features. Based on YOLOv4,
YOLOv4-CSP is compressed in terms of network width, network depth, and image res-
olution to achieve the optimal trade-off between speed and accuracy. Compared with
YOLOv4, YOLOv4-CSP converts the first CSP stage into the original Darknet residual
layer and modifies the PAN architecture in YOLOv4 according to the CSP approach. More-
over, YOLOv4-CSP inserts an SPP module in the middle position of the modified PAN
structure. To reduce the computational complexity for embedded devices, YOLOv4-Tiny
is a simplified structure of YOLOv4 and YOLOv4-CSP. YOLOv4-Tiny uses a lightweight
backbone network called CSPDarknet-Tiny while directly applying a feature pyramid
network (FPN) [47] instead of a path aggregation network (PANet) [48] to reduce com-
putational complexity. In the inference stage, multiscale feature maps are first fused via
the FPN. Then, the category scores and offsets of each predefined anchor are predicted
by a 1 × 1 convolution kernel, and the predicted bounding boxes are postprocessed us-
ing non-maximal suppression (NMS) [49] to obtain the final detection results. Although
YOLOv4-Tiny provides a certain accuracy rate and fast detection speed, the regression
accuracy for small and medium targets is relatively low, which will be improved in the
proposed Mini-YOLOv4 network.

3. Method

Figure 1 illustrates our proposed Mini-YOLOv4 framework, which mainly includes
three proposed modules: a multibranch feature aggregation block (MFBlock), a group
self-attention block (GSBlock), and a hierarchical feature pyramid network (H-FPN). MF-
Block introduces an attention module to capture spatial and channel clues directly and fuse
feature information from multiple branches to expand the receptive field. Next, GSBlock
explicitly models the point-to-point correlations among feature maps to mine long-range de-
pendencies and obtain rich global information, thereby ensuring that the detection accuracy
is improved without increasing the computational and parametric volume of the model.
Finally, to improve the detection accuracy for small and medium-sized targets, we optimize
the multiscale prediction process in YOLOv4-Tiny by fusing feature maps in different layers
of the network in a hierarchical manner to obtain fine-grained feature representations.

Symmetry 2023, 15, 2080 5 of 22

Symmetry 2023, 15, x FOR PEER REVIEW 5 of 23

explicitly models the point-to-point correlations among feature maps to mine long-range

dependencies and obtain rich global information, thereby ensuring that the detection ac-

curacy is improved without increasing the computational and parametric volume of the

model. Finally, to improve the detection accuracy for small and medium-sized targets, we

optimize the multiscale prediction process in YOLOv4-Tiny by fusing feature maps in dif-

ferent layers of the network in a hierarchical manner to obtain fine-grained feature repre-

sentations.

C
o
n

v
B

lo
c
k

C
o
n

v
B

lo
c
k

C
S

P
B

lo
c
k

M
ax

P
o
o

l

M
F

B
lo

c
k

C
o
n

v
B

lo
c
k

G
S

B
lo

ck

C
o
n

v
2

D

C
S

P
B

lo
c
k

M
ax

P
o
o

l

C
S

P
B

lo
c
k

M
ax

P
o
o

l

C
o
n

v
B

lo
c
k

U
p
S

am
p
le C

o
n

ca
t

G
S

B
lo

ck

C
o
n

v
2

D

C
o
n

v
B

lo
c
k

U
p
S

am
p
le

U
p

S
a
m

p
le

C
o
n

v
B

lo
c
k

D
o

w
n

S
am

p
le

C
o
n

v
B

lo
c
k

D
o

w
n

S
am

p
le

C
o
n

v
B

lo
c
k

C
o
n

ca
t

C
o
n

v
B

lo
c
k

C
o
n

ca
t

+

C
o
n

v
B

lo
c
k

Figure 1. Architecture of Mini-YOLOv4.

3.1. Multibranch Feature Aggregation Block

To improve the detection speed, the network structure of YOLOv4-Tiny is relatively

simple, so it is impossible to obtain fine-grained features. A multibranch feature aggrega-

tion block called MFBlock is designed to replace the last 3 × 3 convolution operation in the

backbone network of the original YOLOv4-Tiny. The objective is to reduce the computa-

tional complexity and parameter size of the network while improving the ability of net-

work feature extraction.

Recent studies have shown that channel attention (e.g., SENet) contributes to model

performance, but it ignores extremely important spatial structure information. In order to

generate fine-grained features with semantic information, we directly obtain channel and

spatial responses through 1 × 1 convolution and enlarge the receptive field by fusing mul-

tiscale features. As shown in Figure 2, the multibranch feature aggregation block consists

of three branches. The first and second branches are used to extract the feature maps of

different receptive fields, and the last branch is used for shortcut connections. Specifically,

the first branch performs channel reduction through 1 × 1 convolution and then extracts

semantic features through 3 × 3 convolution. After channel reduction, the second branch

learns the weights of each channel and spatial location for feature selection through the

CAM. As shown in Figure 3, in addition to calibrating the channel response of the feature

map, CAM considers the spatial location information and uses two 1 × 1 convolutions and

a Leaky Relu activation function instead of the fully connected layer used by SENet to

obtain an attention mask while performing identity connection to effectively uses previ-

ous feature information. Therefore, we can obtain an attention mask the same size as the

input feature map.

Figure 1. Architecture of Mini-YOLOv4.

3.1. Multibranch Feature Aggregation Block

To improve the detection speed, the network structure of YOLOv4-Tiny is relatively
simple, so it is impossible to obtain fine-grained features. A multibranch feature aggre-
gation block called MFBlock is designed to replace the last 3 × 3 convolution operation
in the backbone network of the original YOLOv4-Tiny. The objective is to reduce the
computational complexity and parameter size of the network while improving the ability
of network feature extraction.

Recent studies have shown that channel attention (e.g., SENet) contributes to model
performance, but it ignores extremely important spatial structure information. In order
to generate fine-grained features with semantic information, we directly obtain channel
and spatial responses through 1 × 1 convolution and enlarge the receptive field by fusing
multiscale features. As shown in Figure 2, the multibranch feature aggregation block
consists of three branches. The first and second branches are used to extract the feature
maps of different receptive fields, and the last branch is used for shortcut connections.
Specifically, the first branch performs channel reduction through 1 × 1 convolution and
then extracts semantic features through 3 × 3 convolution. After channel reduction, the
second branch learns the weights of each channel and spatial location for feature selection
through the CAM. As shown in Figure 3, in addition to calibrating the channel response
of the feature map, CAM considers the spatial location information and uses two 1 × 1
convolutions and a Leaky Relu activation function instead of the fully connected layer used
by SENet to obtain an attention mask while performing identity connection to effectively
uses previous feature information. Therefore, we can obtain an attention mask the same
size as the input feature map.

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 23

M
F

B
lo

c
k

=

C
o
n

v
B

lo
c
k

C
o
n

v
B

lo
c
k

C
o
n

v
B

lo
c
k

C
A

M

C
o
n

v
2
D

C
o
n

ca
t

C
o
n

v
B

lo
c
k

B
N +

L
e
ak

y
R

elu

Figure 2. Multibranch feature fusion block (MFBlock).

C
A

M =

C
o
n

v
2
D

C
o
n

v
2
D

S
ig

m
o

id

·+

C
o
n

v
B

lo
c
k

L
e
ak

y
R

elu

Identity

Figure 3. Complete attention module (CAM).

Given an input feature Fm, the attention map is calculated as:

𝐴𝑚 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐹𝑚 + 𝑊1(𝐿 𝑒𝑎𝑘𝑦𝑅𝑒 𝐿 𝑢(𝑊2(𝐹𝑚)))) (1)

where W1 and W2 are the parameter matrices of 1 × 1 convolution operation. The former

is used for excitation, and the latter is used for squeezing. After obtaining the attention

map Am, the output feature map of �̃�m is calculated as:

�̃�𝑚 = 𝐶𝑜𝑛𝑣𝐵𝑙𝑜𝑐𝑘(𝐹𝑚) ⊙ 𝐴𝑚 (2)

where ConvBlock contains a 1 × 1 convolution, batch normalization, and Leaky ReLu acti-

vation function. The operator ⊙ is implemented in an elementwise manner. Notably,

since CAM does not change the input feature-map size, CAM can be applied to any exist-

ing CNN network to emphasize discriminative features.

3.2. Group Self-Attention Block with Symmetric Structure

Although MFBlock emphasizes important features and mitigates the interference as-

sociated with redundant information, it is limited by the local receptive field and cannot

obtain rich global information. Specifically, the global information mentioned here refers

to obtaining the attention coefficient matrix through the attention mechanism, selecting

the original input features based on the attention coefficient matrix, and choosing im-

portant features from the rich semantic information. Therefore, to efficiently capture long-

range dependencies, we propose a GSBlock to replace the 3 × 3 convolutional block in the

prediction head. GSBlock consists of two parts: (1) a spatial group self-attention module

(SGAM) and (2) a channel group self-attention module (CGAM). Specifically, SGAM fo-

cuses on capturing the spatial association among feature maps. Since high-level channels

tend to be strongly correlated, CGAM aims to aggregate channel-wise feature infor-

mation. We jointly use SGAM and CGAM to mine contextual information and obtain a

comprehensive feature representation.

Spatial group self-attention module: To capture the semantic dependencies among

pixels in the spatial domain, we introduce a spatial attention module based on a self-at-

tention mechanism. The no-local approach first performs linear mapping of input features

Figure 2. Multibranch feature fusion block (MFBlock).

Symmetry 2023, 15, 2080 6 of 22

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 23

M
F

B
lo

c
k

=

C
o
n

v
B

lo
c
k

C
o
n

v
B

lo
c
k

C
o
n

v
B

lo
c
k

C
A

M

C
o
n

v
2
D

C
o
n

ca
t

C
o
n

v
B

lo
c
k

B
N +

L
e
ak

y
R

elu

Figure 2. Multibranch feature fusion block (MFBlock).

C
A

M =

C
o
n

v
2
D

C
o
n

v
2
D

S
ig

m
o

id

·+

C
o
n

v
B

lo
c
k

L
e
ak

y
R

elu

Identity

Figure 3. Complete attention module (CAM).

Given an input feature Fm, the attention map is calculated as:

𝐴𝑚 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐹𝑚 + 𝑊1(𝐿 𝑒𝑎𝑘𝑦𝑅𝑒 𝐿 𝑢(𝑊2(𝐹𝑚)))) (1)

where W1 and W2 are the parameter matrices of 1 × 1 convolution operation. The former

is used for excitation, and the latter is used for squeezing. After obtaining the attention

map Am, the output feature map of �̃�m is calculated as:

�̃�𝑚 = 𝐶𝑜𝑛𝑣𝐵𝑙𝑜𝑐𝑘(𝐹𝑚) ⊙ 𝐴𝑚 (2)

where ConvBlock contains a 1 × 1 convolution, batch normalization, and Leaky ReLu acti-

vation function. The operator ⊙ is implemented in an elementwise manner. Notably,

since CAM does not change the input feature-map size, CAM can be applied to any exist-

ing CNN network to emphasize discriminative features.

3.2. Group Self-Attention Block with Symmetric Structure

Although MFBlock emphasizes important features and mitigates the interference as-

sociated with redundant information, it is limited by the local receptive field and cannot

obtain rich global information. Specifically, the global information mentioned here refers

to obtaining the attention coefficient matrix through the attention mechanism, selecting

the original input features based on the attention coefficient matrix, and choosing im-

portant features from the rich semantic information. Therefore, to efficiently capture long-

range dependencies, we propose a GSBlock to replace the 3 × 3 convolutional block in the

prediction head. GSBlock consists of two parts: (1) a spatial group self-attention module

(SGAM) and (2) a channel group self-attention module (CGAM). Specifically, SGAM fo-

cuses on capturing the spatial association among feature maps. Since high-level channels

tend to be strongly correlated, CGAM aims to aggregate channel-wise feature infor-

mation. We jointly use SGAM and CGAM to mine contextual information and obtain a

comprehensive feature representation.

Spatial group self-attention module: To capture the semantic dependencies among

pixels in the spatial domain, we introduce a spatial attention module based on a self-at-

tention mechanism. The no-local approach first performs linear mapping of input features

Figure 3. Complete attention module (CAM).

Given an input feature Fm, the attention map is calculated as:

Am = Sigmoid(Fm + W1(LeakyReLu(W2(Fm)))) (1)

where W1 and W2 are the parameter matrices of 1 × 1 convolution operation. The former
is used for excitation, and the latter is used for squeezing. After obtaining the attention
map Am, the output feature map of F̃m is calculated as:

F̃m = ConvBlock(Fm)� Am (2)

where ConvBlock contains a 1 × 1 convolution, batch normalization, and Leaky ReLu
activation function. The operator � is implemented in an elementwise manner. Notably,
since CAM does not change the input feature-map size, CAM can be applied to any existing
CNN network to emphasize discriminative features.

3.2. Group Self-Attention Block with Symmetric Structure

Although MFBlock emphasizes important features and mitigates the interference
associated with redundant information, it is limited by the local receptive field and cannot
obtain rich global information. Specifically, the global information mentioned here refers to
obtaining the attention coefficient matrix through the attention mechanism, selecting the
original input features based on the attention coefficient matrix, and choosing important
features from the rich semantic information. Therefore, to efficiently capture long-range
dependencies, we propose a GSBlock to replace the 3 × 3 convolutional block in the
prediction head. GSBlock consists of two parts: (1) a spatial group self-attention module
(SGAM) and (2) a channel group self-attention module (CGAM). Specifically, SGAM focuses
on capturing the spatial association among feature maps. Since high-level channels tend
to be strongly correlated, CGAM aims to aggregate channel-wise feature information. We
jointly use SGAM and CGAM to mine contextual information and obtain a comprehensive
feature representation.

Spatial group self-attention module: To capture the semantic dependencies among
pixels in the spatial domain, we introduce a spatial attention module based on a self-
attention mechanism. The no-local approach first performs linear mapping of input features
to obtain query and key feature maps for calculating the similarity weights. Then, the
attention information of the original features is corrected based on these weights. Finally,
the feature channel for residual operation is expanded, but this whole process is relatively
inefficient. Unlike the no-local method, our approach considers contextual information
by partitioning a feature map into two symmetric groups through group convolution and
computes the pairwise relations to form an affinity matrix. Then, the feature map groups
are aggregated through weighted summation with the affinity matrix. The purpose of this
design is to promote cross-group interactions to gain rich global information and efficiently
reduce the number of self-attention calculations to achieve a lightweight network structure.

Symmetry 2023, 15, 2080 7 of 22

As shown in Figure 4, given the feature map Fs∈R C×H×W, the pairwise feature maps
Fs_1 and Fs_2 are computed as:

[Fs_1, Fs_2] = W3((W4(Fs))) (3)

where Fs_i∈R C
′×H×W and C

′
= C/2. W3 and W4 are the parameter matrices of 1 × 1

convolution and 3 × 3 group convolution, respectively. Then, we resize Fs_1 and Fs_2 to
R C ′×N, where N = H ×W. The spatial affinity matrix As∈R 1×H×W, as shown below:

As = So f tmax(FT
s_1Fs_2) (4)

Symmetry 2023, 15, x FOR PEER REVIEW 7 of 23

to obtain query and key feature maps for calculating the similarity weights. Then, the at-
tention information of the original features is corrected based on these weights. Finally,
the feature channel for residual operation is expanded, but this whole process is relatively
inefficient. Unlike the no-local method, our approach considers contextual information by
partitioning a feature map into two symmetric groups through group convolution and
computes the pairwise relations to form an affinity matrix. Then, the feature map groups
are aggregated through weighted summation with the affinity matrix. The purpose of this
design is to promote cross-group interactions to gain rich global information and effi-
ciently reduce the number of self-attention calculations to achieve a lightweight network
structure.

As shown in Figure 4, given the feature map Fs∈ℝ C×H×W, the pairwise feature maps Fs_1
and Fs_2 are computed as:

Figure 4. Spatial group self-attention module (SGAM).

[𝐹௦_ଵ, 𝐹௦_ଶ] = 𝑊ଷ((𝑊ସ(𝐹௦))) (3)

where Fs_i∈ℝ C’×H×W and C´ = C/2. W3 and W4 are the parameter matrices of 1 × 1 convolution
and 3 × 3 group convolution, respectively. Then, we resize Fs_1 and Fs_2 to ℝ C´×N, where N =
H × W. The spatial affinity matrix As∈ℝ 1×H×W, as shown below: 𝐴௦ = 𝑆𝑜𝑓𝑡 𝑚𝑎𝑥(𝐹௦_ଵ் 𝐹௦_ଶ) (4)

Finally, we superimpose the attentional information on Fs_1 and Fs_2. The final output
feature map Es is obtained with the following equation: 𝐸௦ = 𝐴௦் 𝐹௦_ଵ + 𝐴௦் 𝐹௦_ଶ (5)

Channel group self-attention module: Since high-level channels tend to be strongly
correlated, some channels share similar semantic information. To mine semantically re-
lated channels, we designed a new attention module called the CGAM.

Similar to the SGAM, the CGAM uses group convolution to generate query-specific
attention weights. We use the output feature Es of the SGAM module as the input features
of the CGAM, and the pairwise feature maps Fc_1 and Fc_2 are calculated with the following
equation: [𝐹_ଵ, 𝐹_ଶ] = 𝑊ହ(𝐸௦) (6)

where Fc_1, Fc_2∈ℝC´×H×W. W5 is the parameter matrice of 1 × 1 group convolution. Then, we
resize Fc_1 and Fc_2 to ℝC´×N and the channel affinity matrix Ac∈ℝ1×H×W is computed as: 𝐴 = 𝑆𝑜𝑓𝑡 𝑚𝑎𝑥(𝐹_ଵ் 𝐹_ଶ) (7)

Then, the feature map with channel cues Ec is obtained based on the following equa-
tion: 𝐸 = 𝐴் 𝐹_ଵ + 𝐴் 𝐹_ଶ (8)

Figure 4. Spatial group self-attention module (SGAM).

Finally, we superimpose the attentional information on Fs_1 and Fs_2. The final output
feature map Es is obtained with the following equation:

Es = AT
s Fs_1 + AT

s Fs_2 (5)

Channel group self-attention module: Since high-level channels tend to be strongly
correlated, some channels share similar semantic information. To mine semantically related
channels, we designed a new attention module called the CGAM.

Similar to the SGAM, the CGAM uses group convolution to generate query-specific
attention weights. We use the output feature Es of the SGAM module as the input fea-
tures of the CGAM, and the pairwise feature maps Fc_1 and Fc_2 are calculated with the
following equation:

[Fc_1, Fc_2] = W5(Es) (6)

where Fc_1, Fc_2∈RC
′×H×W. W5 is the parameter matrice of 1 × 1 group convolution.

Then, we resize Fc_1 and Fc_2 to RC
′×N and the channel affinity matrix Ac∈R1×H×W is

computed as:
Ac = So f tmax(FT

c_1Fc_2) (7)

Then, the feature map with channel cues Ec is obtained based on the following equation:

Ec = AT
c Fc_1 + AT

c Fc_2 (8)

Finally, the output feature representation Fout is obtained through a shortcut operation as

Fout = LeakyReLu(BN(W6(Ec) + ConvBlock(Fs)) (9)

where Fout∈RC×H×W. W6 is the parameter matrix of 1 × 1 convolution.

3.3. Hierarchical Feature Pyramid Network

The feature pyramid network (FPN) improves the accuracy of object detection algo-
rithms by fusing multiscale features. As shown in Figure 5, YOLOv4-Tiny first generates
feature maps in various stages {C2, C3, C4, C5}. Then, the FPN obtains P5 from C5 through
a 1 × 1 convolution operation and uses top-down upsampling and horizontal connec-
tion operations to generate the fusion feature P4. However, P4 fails to effectively utilize
low-level feature information, leading to low accuracy in detecting small targets. To solve

Symmetry 2023, 15, 2080 8 of 22

this problem, we propose a new feature fusion network. Beyond the previous works, we
argue that maximum pooling gathers important clues about distinct object features, and
average pooling helps mitigate the loss of feature information as the network deepens.
Thus, instead of using maximum pooling alone, such as in the FPN, we apply average
pooling and maximum pooling operations simultaneously in downsampling to extract
semantic features. Based on the multiscale prediction, we fuse high-level semantic features
with low-level features in a hierarchical manner to use multiscale feature maps fully. As
demonstrated in Figure 6, we concatenate the fourfold downsampling results of C2 and
the twofold downsampling results of C3 to generate an efficient feature descriptor and
then perform channel reduction through a 1 × 1 convolution operation to obtain a fea-
ture map M2. We concatenate the upsampling result of C5 with C4 and then reduce the
feature dimension to generate a feature map M4. Finally, we perform channel reduction
based on M2 and M4 to obtain a feature map {P4, P5} with detailed information. This
structure combines low-resolution but semantically rich features with high-resolution but
poor semantic features through a top-down path and hierarchical feature fusion. Without
significantly increasing the computational complexity, this method further enriches the
semantic information of the feature maps.

Symmetry 2023, 15, x FOR PEER REVIEW 8 of 23

Finally, the output feature representation Fout is obtained through a shortcut opera-

tion as

𝐹𝑜𝑢𝑡=LeakyReLu(BN(𝑊6(𝐸𝑐) + 𝐶𝑜𝑛𝑣𝐵𝑙𝑜𝑐𝑘(𝐹𝑠)) (9)

where Fout∈ℝC×H×W. W6 is the parameter matrix of 1 × 1 convolution.

3.3. Hierarchical Feature Pyramid Network

The feature pyramid network (FPN) improves the accuracy of object detection algo-

rithms by fusing multiscale features. As shown in Figure 5, YOLOv4-Tiny first generates

feature maps in various stages {C2, C3, C4, C5}. Then, the FPN obtains P5 from C5 through

a 1 × 1 convolution operation and uses top-down upsampling and horizontal connection

operations to generate the fusion feature P4. However, P4 fails to effectively utilize low-

level feature information, leading to low accuracy in detecting small targets. To solve this

problem, we propose a new feature fusion network. Beyond the previous works, we argue

that maximum pooling gathers important clues about distinct object features, and average

pooling helps mitigate the loss of feature information as the network deepens. Thus, in-

stead of using maximum pooling alone, such as in the FPN, we apply average pooling and

maximum pooling operations simultaneously in downsampling to extract semantic fea-

tures. Based on the multiscale prediction, we fuse high-level semantic features with low-

level features in a hierarchical manner to use multiscale feature maps fully. As demon-

strated in Figure 6, we concatenate the fourfold downsampling results of C2 and the two-

fold downsampling results of C3 to generate an efficient feature descriptor and then per-

form channel reduction through a 1 × 1 convolution operation to obtain a feature map M2.

We concatenate the upsampling result of C5 with C4 and then reduce the feature dimen-

sion to generate a feature map M4. Finally, we perform channel reduction based on M2

and M4 to obtain a feature map {P4, P5} with detailed information. This structure com-

bines low-resolution but semantically rich features with high-resolution but poor seman-

tic features through a top-down path and hierarchical feature fusion. Without significantly

increasing the computational complexity, this method further enriches the semantic infor-

mation of the feature maps.

predict

predict

C2

C3

C4

C5

P5

P4

Figure 5. Feature pyramid network (FPN).

predict

predict

C3

C4

C5

P5

P4

M4

M2

Figure 6. Hierarchical feature pyramid network (H-FPN).

Figure 5. Feature pyramid network (FPN).

Symmetry 2023, 15, x FOR PEER REVIEW 8 of 23

Finally, the output feature representation Fout is obtained through a shortcut opera-

tion as

𝐹𝑜𝑢𝑡=LeakyReLu(BN(𝑊6(𝐸𝑐) + 𝐶𝑜𝑛𝑣𝐵𝑙𝑜𝑐𝑘(𝐹𝑠)) (9)

where Fout∈ℝC×H×W. W6 is the parameter matrix of 1 × 1 convolution.

3.3. Hierarchical Feature Pyramid Network

The feature pyramid network (FPN) improves the accuracy of object detection algo-

rithms by fusing multiscale features. As shown in Figure 5, YOLOv4-Tiny first generates

feature maps in various stages {C2, C3, C4, C5}. Then, the FPN obtains P5 from C5 through

a 1 × 1 convolution operation and uses top-down upsampling and horizontal connection

operations to generate the fusion feature P4. However, P4 fails to effectively utilize low-

level feature information, leading to low accuracy in detecting small targets. To solve this

problem, we propose a new feature fusion network. Beyond the previous works, we argue

that maximum pooling gathers important clues about distinct object features, and average

pooling helps mitigate the loss of feature information as the network deepens. Thus, in-

stead of using maximum pooling alone, such as in the FPN, we apply average pooling and

maximum pooling operations simultaneously in downsampling to extract semantic fea-

tures. Based on the multiscale prediction, we fuse high-level semantic features with low-

level features in a hierarchical manner to use multiscale feature maps fully. As demon-

strated in Figure 6, we concatenate the fourfold downsampling results of C2 and the two-

fold downsampling results of C3 to generate an efficient feature descriptor and then per-

form channel reduction through a 1 × 1 convolution operation to obtain a feature map M2.

We concatenate the upsampling result of C5 with C4 and then reduce the feature dimen-

sion to generate a feature map M4. Finally, we perform channel reduction based on M2

and M4 to obtain a feature map {P4, P5} with detailed information. This structure com-

bines low-resolution but semantically rich features with high-resolution but poor seman-

tic features through a top-down path and hierarchical feature fusion. Without significantly

increasing the computational complexity, this method further enriches the semantic infor-

mation of the feature maps.

predict

predict

C2

C3

C4

C5

P5

P4

Figure 5. Feature pyramid network (FPN).

predict

predict

C3

C4

C5

P5

P4

M4

M2

Figure 6. Hierarchical feature pyramid network (H-FPN). Figure 6. Hierarchical feature pyramid network (H-FPN).

3.4. Loss Function

The multitask loss function used to evaluate model performance is defined as follows:

Loss = Lcoord + Lcon f + Lcls (10)

CIOU (Complete-IOU) [50] is used to describe the coordinate loss. CIOU considers
three critical geometric measures, i.e., overlap area, central point distance, and aspect ratio,
which make the predicted box regression stable. In this paper, CIOU is used to measure the
performance of the predicted box, which is defined as follows:

Lcoord = 1− IOU +
ρ2(B, Bgt)

c2 + αv (11)

where IOU is the overlap ratio between the predicted box B and the ground truth box Bgt,
ρ(·) is the Euclidean distance, c is the diagonal distance for the minimum outer rectangle

Symmetry 2023, 15, 2080 9 of 22

between the predicted box and ground-truth box, and αv is used to monitor the aspect ratio
of the predicted box.

BCE (BinaryCrossEntropyLoss) is used to describe the confidence loss and is defined
as follows:

Lcon f = −
S2

∑
i=0

B

∑
j=0

Iobj
ij l
(

Cj
i , Ĉj

i

)
−

S2

∑
i=0

B

∑
j=0

Inoobj
ij l

(
Cj

i , Ĉj
i

)
(12)

where S2 is the number of cells and B is the number of predicted boxes per cell. Iobj
ij and

Inoobj
ij indicate whether the j-th anchor in the i-th cell is responsible for predicting. Ĉj

i is the

object confidence of the ground truth box, and Cj
i is the object confidence of the predicted

box. The binary cross-entropy loss l(Cj
i , Ĉj

i) is defined as follows:

l
(

Cj
i , Ĉj

i

)
= Ĉj

i l̂nC
j
i +
(

1− Ĉj
i

)
ln(1− Cj

i) (13)

CE (CrossEntropyLoss) is used to describe the classification loss, as described below:

Lcls = −
S2

∑
i=0

B

∑
j=0

Iobj
ij

(
log

Pj
i (ĉ)

∑c∈classes Pj
i (c)

)
(14)

where Pj
i (ĉ) is the probability of the true target; Pj

i (c) is the probability of other targets.

4. Experiment

In this paper, we use mAP, BFLOPs, FPS, and parameter size as performance metrics
for the proposed model. The mean average precision (mAP) evaluates the detection effect
of multicategory objects by calculating the area under the PR curve. This paper uses the
mAP formula proposed in VOC2012. The AP is calculated by the following equation:

AP =
1

∑
r=0

(rn+1 − rn) max
r′≥rn+1

(Pr′) (15)

where Pr is the precision at recall level r. The mAP is the average of the AP values for each
category of samples and is defined as follows:

mAP =
∑M

k=1 AP(k)
M

(16)

where M is the number of classes in the test set.
BFLOPs (Billion Floating Point Operations) is used to measure the computational

complexity of a model. FPS (frames per second) is used to evaluate the inference time of
the model to process each image and analyze real-time performance. Parameter size is used
to reflect the size of the model and determines the model occupies in memory.

4.1. Datasets

The PASCAL VOC [51] and MS COCO [52] datasets are used to evaluate the perfor-
mance of the proposed model. These two datasets are authoritative datasets widely used
in the fields of image classification, object detection, and semantic segmentation. Detailed
information on the two datasets is shown in Table 1. We believe that using mainstream
PASCAL VOC and MS COCO as training and testing sets to compare evaluation indicators
with advanced models can fairly reflect the quality of the model.

The PASCAL VOC datasets consist of 20 categories of objects, including PASCAL VOC
2007 and 2012. We use the mixed dataset composed of PASCAL VOC 2007 and 2012 for
training and testing. The training set consisted of 16,511 images, and the test set consisted
of 4592 images. The MS COCO dataset contains 80 categories of objects with 118,287 images

Symmetry 2023, 15, 2080 10 of 22

in the training set. There are 40,670 images in the MS COCO test dataset. Compared with
the PASCAL VOC dataset, the MS COCO dataset mainly involves complex daily scenes,
more ground truth boxes, and small targets in a single image. The main evaluation criterion
is the average of 10 values of IOU from 0.5 to 0.95, which can comprehensively reflect the
performance of the algorithm.

Table 1. Detailed comparison between PASCAL VOC and MS COCO.

Dataset Training Images Testing Images

PASCAL VOC 16,551 4952

MS COCO 118,287 40,670

4.2. Implementation Details

We use the public PyTorch framework to implement our approach and utilize transfer
learning in our experiments to improve performance. In the experiment, we use the
same parameter configuration for the Pascal VOC and COCO datasets. We repeat each
experiment three times and calculate the average value as the result. The batch size is set to
16, and the Adam gradient optimizer is used. Data enhancement methods include angle
rotation, saturation change, exposure change, and hue change. We use a two-stage transfer
learning algorithm to train the network parameters. First, we freeze the backbone weights
and train other network parameters with an initial learning rate of 0.001 and decay 10 times
in the 60th epoch for a total of 150 epochs of training. Then, we train the entire network for
another 350 epochs with an initial learning rate of 0.0001 and decay 10 times in the 210th
epoch until the end of the training period is reached. We train and verify the proposed
model on a desktop PC. In addition, NVIDIA Jetson Nano [53] is used as an embedded
device for performance testing. The configuration details of the intelligent devices are
reported in Table 2.

Table 2. Hardware environment configuration information.

Platform CPU GPU Memory

Desktop PC Intel Core i9-9900 KF 3.60 GHz NVIDIA TITAN RTX 16 GB

Jetson Nano Quad-Core ARM Cortex-A57 MPCore 128-Core Maxwell 4 GB

5. Discussions

To evaluate the performance of the proposed network compared to that of other YOLO
methods, Mini-YOLOv4 is compared with YOLOv3, YOLOv3-Tiny, YOLOv4-CSP, and
YOLOv4-Tiny. The PASCAL VOC dataset introduced in Section 4 is used.

As shown in Table 3, YOLOv4-CSP achieves the best detection accuracy but requires
the largest number of parameters and has a slow detection speed. In contrast, Mini-YOLOv4
requires fewer parameters and computations than YOLOv4-CSP and is able to obtain
suboptimal detection results compared to those of YOLOv3. Mini-YOLOv4 achieves the
mAP of 79.0%, which is 17.8% and 3.2% higher than those of YOLOv3-Tiny and YOLOv4-
Tiny, respectively. Such results imply that Mini-YOLOv4 provides higher classification
accuracy for multicategory objects. Compared with the original model YOLOv4-CSP with a
BFLOPs value of 29.9, the BFLOPs value of Mini-YOLOv4 is approximately 10 times smaller.
In terms of the parameter size, Mini-YOLOv4 requires only 4.7 M parameters, which is
15 times fewer than that of YOLOv3 and YOLOv4-CSP. In addition, compared to YOLOv4-
Tiny, MiniYOLOv4 requires 20.3% fewer parameters. The FPS of our network is 172.6, which
is 3.1 times as many as obtained with YOLOv4-CSP. Compared to YOLOv4-Tiny, the real-
time performance of Mini-YOLOv4 is reduced by 16.1%. Figure 7 shows some qualitative
examples of object detection results for different detection models on the PASCAL VOC
2007 test dataset. Each rectangular bounding box shown in the image contains information

Symmetry 2023, 15, 2080 11 of 22

about the predicted category as well as the confidence score. Obviously, our detection model
can find objects of interest more comprehensively and locate positions more accurately than
YOLOv4-Tiny. That is because MFBlock and GSBlock in the proposed network increase
the amount of contextual information by expanding the receptive field. Moreover, with
hierarchical feature fusion in the H-FPN, the proposed network can accurately locate small
and medium-sized targets. This is because MFBlock replaces the last 3 × 3 convolutional
layer and focuses the network’s attention on regions of interest, capturing important
features through attention mechanisms and enhancing the expression ability of features.
Next is the group attention module, which proposes a spatial group attention module
and a channel group attention module, focusing on calculating the semantic correlation
of the spatial domain and channel domain to capture rich global information and obtain
comprehensive feature representations. Finally, the improved H-FPN focuses on the fusion
of high-level semantic features and low-level semantic features, compensating for the
accumulation of lost feature information in the downsampling stage and enhancing target
detection capabilities. The experimental results on PASCAL VOC show that Mini-YOLOv4
has excellent feature extraction capability and effectively reduces the number of model
parameters and the number of calculations.

Table 3. Performance comparison of different models on the PASCAL VOC dataset.

Method Backbone Size mAP (%) BFLOPs FPS Parameter Size (M)

YOLOv3 Darknet53 416 79.2 33.0 53.8 61.9

YOLOv3-Tiny Darknet19 416 61.2 2.8 277.7 8.8

YOLOv4-CSP CSPDarknet-53s 416 85.7 29.9 58.2 64.0

YOLOv4-Tiny CSPDarknet-Tiny 416 75.8 3.4 205.8 5.9

PPYOLO-Tiny [54] MobileNetv3 416 76.2 0.29 467.4 1.3

YOLOv5s [55] CSPDarknet-Tiny 416 78.7 3.5 106.7 7.1

YOLOX-Tiny [56] CSPDarknet-Tiny 416 79.4 3.2 150.3 5.0

Mini-YOLOv4 CSPDarknet-Tiny 416 79.0 3.1 172.6 4.7

In order to further evaluate the superiority of Mini-YOLOv4 compared to other
lightweight object detection network architectures, we take MobileNetv1-YOLOv4,
MobileNetv2-YOLOv4, MobileNetv3-YOLOv4, ShuffleNetv1-YOLOv4, and ShuffleNetv2-
YOLOv4 into comparison. All models are trained on the PASCAL VOC 2007 + 2012 training
dataset and tested on the PASCAL VOC 2007 test dataset.

Table 3 summarizes the comparative results for the models. Compared to the other
lightweight YOLOv4 methods, since Mini-YOLOv4 uses only two feature map scales for
prediction, it requires fewer parameters and calculations and provides a faster detection
speed. PPYOLO-Tiny uses MobileNetv3 as the backbone network, benefiting from the
use of depthwise separable convolution instead of traditional convolution operations and
post-quantization strategy. The FPS value and BLOPs results of the model are excellent.
However, due to the pursuit of extreme speed optimization, it reduces feature extraction
ability, and the mAP value is 2.8% lower than MiniYOLOv4. It is worth noting that
YOLOv5s, which is also based on CSPDarknet-Tiny as the backbone network, uses three
prediction heads for detection. Compared to our proposed MiniYOLOv4, which uses two
prediction heads for detection, YOLOv5s requires more inference time and post-processing
time to generate the final detection results. Therefore, it has almost half the FPS value and
double the BLOPs compared to the model proposed in this paper.

Symmetry 2023, 15, 2080 12 of 22Symmetry 2023, 15, x FOR PEER REVIEW 12 of 23

Figure 7. Comparison of different algorithms on PASCAL VOC 2007 test dataset. (a) YOLOv4-Tiny.
(b) Mini-YOLOv4.

In order to further evaluate the superiority of Mini-YOLOv4 compared to other light-
weight object detection network architectures, we take MobileNetv1-YOLOv4, Mo-
bileNetv2-YOLOv4, MobileNetv3-YOLOv4, ShuffleNetv1-YOLOv4, and ShuffleNetv2-
YOLOv4 into comparison. All models are trained on the PASCAL VOC 2007 + 2012 train-
ing dataset and tested on the PASCAL VOC 2007 test dataset.

Table 3 summarizes the comparative results for the models. Compared to the other
lightweight YOLOv4 methods, since Mini-YOLOv4 uses only two feature map scales for
prediction, it requires fewer parameters and calculations and provides a faster detection
speed. PPYOLO-Tiny uses MobileNetv3 as the backbone network, benefiting from the use
of depthwise separable convolution instead of traditional convolution operations and
post-quantization strategy. The FPS value and BLOPs results of the model are excellent.
However, due to the pursuit of extreme speed optimization, it reduces feature extraction
ability, and the mAP value is 2.8% lower than MiniYOLOv4. It is worth noting that

Figure 7. Comparison of different algorithms on PASCAL VOC 2007 test dataset. (a) YOLOv4-Tiny.
(b) Mini-YOLOv4.

As shown in Table 4, MobileNetv3-YOLOv4 outperforms Mini-YOLOv4 by 1.4% mAP
due to the complex feature extraction network, but Mini-YOLOv4 achieves better results
in terms of BFLOPs, FPS, and parameter size. Compared with MobileNetv2-YOLOv4,
Mini-YOLOv4 has similar accuracy, but the BFLOPs value and parameter size are re-
duced by 38.0% and 64.7%, respectively. For real-time performance, MobileNetv1-YOLOv4
achieves 77.6 FPS, ShuffleNetv1-YOLOv4 achieves 89.6 FPS, and ShuffleNetv2-YOLOv4
achieves 120.3 FPS. Compared to these three models, Mini-YOLOv4 improves the real-
time performance by 122.4%, 92.6%, and 43.5%, respectively. In terms of parameter size,
Mini-YOLOv4 requires approximately 3 times fewer parameters than the other models,
and the number of parameters is reduced by 57.3% and 54.4% compared to those required
by ShuffleNetv1-YOLOv4 and ShuffleNetv2-YOLOv4. It can be seen that although we
use group convolution to reduce the amount of calculation like the ShuffleNet series of
networks, our model creatively combines it with the attention mechanism to reduce the

Symmetry 2023, 15, 2080 13 of 22

model size while improving the feature extraction capability of the model. According to the
experimental results, it can be concluded that Mini-YOLOv4 achieves an excellent trade-off
between accuracy and speed.

Table 4. Performance comparison of lightweight models on PASCAL VOC dataset.

Method Backbone Size mAP (%) BFLOPs FPS Parameter Size (M)

MobileNetv1-YOLOv4 MobileNetv1-1.0 416 79.6 5.0 97.9 13.3

MobileNetv2-YOLOv4 MobileNetv2-1.0 416 80.1 3.8 77.6 12.1

MobileNetv3-YOLOv4 MobileNetv3-large 416 80.4 3.6 65.5 14.0

ShuffleNetv1-YOLOv4 ShuffleNetv1-1.0 416 77.6 3.5 89.6 11.0

ShuffleNetv2-YOLOv4 ShuffleNetv2-1.0 416 78.8 3.4 120.3 10.3

Mini-YOLOv4 CSPDarknet-Tiny 416 79.0 3.1 172.6 4.7

We compare Mini-YOLOv4 with state-of-the-art object detection networks on the
MS-COCO test-dev dataset. As shown in Table 5, most object detectors achieve excellent
real-time performance and high detection accuracy. Notably, our proposed model enlarges
the receptive field and enhances the feature extraction capability of the network, yielding
significant improvements of 10.2% and 3.5% in the overall detection accuracy relative to that
of YOLOv3-Tiny and YOLOv4-Tiny, respectively. Mini-YOLOv4 facilitates the interaction of
low-level feature maps with high-level feature maps and enriches the semantic information
of different scales. Compared to YOLOv4-Tiny, Mini-YOLOv4 achieves notable increases of
4.9% and 1.4% in detecting medium and small objects, respectively. It can be found that
ASFF provides the highest overall detection accuracy of 38.1 but achieves poor real-time
performance for an input size of 320 × 320. In comparison, our method is 4.2 times faster
and achieves a slightly lower detection accuracy. For 512 × 512 input size, YOLOv4-CSP
provides the best detection results and achieves real-time detection speed. In contrast, our
method, with better accuracy than YOLOv4-Tiny, is 3.1 times faster than YOLOv4-CSP.
Compared to PPYOLO-Tiny, Mini-YOLOv4 achieves improvements of 3.7%, 2.9%, and
3.4% in overall detection accuracy at the three different resolutions, respectively. Although
YOLOX-Tiny outperforms Mini-YOLOv4 in terms of detection accuracy, Mini-YOLOv4’s
rapid inference capability allows it to handle more deep learning tasks compared to YOLOX-
Tiny. These results emphasize the robust performance and versatility of Mini-YOLOv4 as
an efficient object detection model for various resolution settings and real-time applications.

Table 5. Comparison with state-of-the-art object detection algorithms on COCO test-dev.

Method Backbone Size FPS AP AP50 AP75 APS APM APL

SSD [25] VGG-16 300 64.5 25.1 43.1 25.8 6.6 25.9 41.4

DSSD [57] ResNet-101 320 13.8 28.0 46.1 29.2 7.4 28.1 47.6

RefineDet [58] VGG-16 320 55.1 29.4 49.2 31.3 10.0 32.0 44.4

RFBNet [45] VGG-16 300 84.6 30.3 49.3 31.8 11.8 31.9 45.9

M2det [59] VGG-16 320 52.8 33.5 52.4 35.6 14.4 37.6 47.6

ASFF [44] Darknet-53 320 42.6 38.1 57.4 42.1 16.1 41.6 53.6

LRF [60] VGG-16 320 92.7 32.0 51.5 33.8 12.6 34.9 47.0

YOLOv4-Tiny CSPDarknet-Tiny 320 218.3 20.5 38.5 20.5 7.0 24.1 28.4

PPYOLO-Tiny MobileNetv3 320 486.8 20.6 39.0 21.2 8.2 25.7 29.3

YOLOv5s CSPDarknet-Tiny 320 115.4 27.2 45.6 28.1 10.1 32.4 36.2

Mini-YOLOv4 CSPDarknet-Tiny 320 181.4 24.3 43.4 24.1 8.5 29.4 33.8

Symmetry 2023, 15, 2080 14 of 22

Table 5. Cont.

Method Backbone Size FPS AP AP50 AP75 APS APM APL

RetinaNet [30] ResNet-101 400 17.3 31.9 49.5 34.1 11.6 35.8 48.5

YOLOv3 [28] Darknet-53 416 53.8 31.0 55.3 32.3 15.2 33.2 42.8

YOLOv3-Tiny [28] Darknet-19 416 277.8 15.3 33.1 12.4 4.4 15.2 25.1

ASFF [44] CSPDarknet-Tiny 416 37.4 40.6 60.6 45.1 20.3 44.2 54.1

YOLOv4 [29] CSPDarknet-53 416 57.2 41.2 62.8 44.3 20.4 44.4 56.0

YOLOv4-Tiny [33] CSPDarknet-Tiny 416 205.8 22.0 40.2 21.7 8.4 26.3 29.2

PPYOLO-Tiny MobileNetv3 416 467.4 22.6 41.2 23.1 8.9 28.8 31.4

YOLOv5s CSPDarknet-Tiny 416 106.7 28.1 46.8 30.4 11.4 34.1 38.7

Mini-YOLOv4 CSPDarknet-Tiny 416 172.6 25.5 44.9 25.2 9.8 31.2 34.1

CornerNet [61] Hourglass 512 6.9 40.5 57.8 45.3 20.8 44.8 56.7

PFPNet-R [62] VGG-16 512 32.8 35.2 57.6 37.9 18.7 38.6 45.9

HSD [63] VGG-16 512 30.8 38.8 58.2 42.5 21.8 41.9 50.2

EFGRNet [64] VGG-16 512 33.5 37.5 58.8 40.4 19.7 41.6 49.4

EfficientDet-D0 [65] EfficientDet-B0 512 45.6 33.8 52.2 35.8 12.0 38.3 51.2

YOLOv4 [29] CSPDarknet-53 512 50.3 43.0 64.9 46.5 24.3 46.1 55.2

YOLOv4-CSP CSPDarknet-53s 512 52.6 46.2 64.8 50.2 24.6 50.4 61.9

YOLOv4-Tiny CSPDarknet-Tiny 512 190.2 23.5 43.0 23.5 10.1 28.4 29.9

PPYOLO-Tiny MobileNetv3 512 431.7 23.9 44.1 24.2 10.4 30.2 31.3

YOLOv5s CSPDarknet-Tiny 512 94.6 30.6 48.7 32.4 13.2 36.4 40.3

Mini-YOLOv4 CSPDarknet-Tiny 512 163.3 27.3 47.8 27.1 11.6 33.7 34.8

To illustrate why the proposed model can improve detection accuracy, we use Grad-
CAM [66] as an attention extraction tool to visualize YOLOv3-Tiny, YOLOv4-Tiny, and
Mini-YOLOv4 on the MS COCO test dataset. In Figure 8, we select output feature maps
with sizes of 13 × 13 and 26 × 26 for the comparison of attention maps. For the 13 × 13
size, the attention map generated by Mini-YOLOv4 can locate large target objects more
accurately and does not include much of the background area. For the size of 26 × 26, Mini-
YOLOv4 effectively confines attention to the semantic area of small and medium targets. It
is clear that our proposed network can locate foreground objects more accurately than the
other networks, regardless of the size and shape. This is because MFBlock enhances the
expression ability of features through attention mechanism and feature fusion, providing
a solid foundation for subsequent feature extraction operations. In addition, before the
final convolution operation generates feature vectors, a spatial group self-attention module
and a channel group self-attention module are inserted, which are used to model feature
correlations in the spatial domain and channel domain. Based on the above method, the
attention module effectively suppresses redundant information and captures rich global
information to enhance feature representation capabilities. Finally, the proposed H-FPN
utilizes the fusion of high-level semantic features and low-level semantic features for pre-
diction, further enhancing the interaction of low-level semantic information, compensating
for the accumulation of lost feature information in the downsampling stage, and enhancing
target detection capabilities. This result indicates that the proposed model further enhances
the detection accuracy for small and medium targets.

Symmetry 2023, 15, 2080 15 of 22

Symmetry 2023, 15, x FOR PEER REVIEW 15 of 23

accurately and does not include much of the background area. For the size of 26 × 26, Mini-
YOLOv4 effectively confines attention to the semantic area of small and medium targets.
It is clear that our proposed network can locate foreground objects more accurately than
the other networks, regardless of the size and shape. This is because MFBlock enhances
the expression ability of features through attention mechanism and feature fusion, provid-
ing a solid foundation for subsequent feature extraction operations. In addition, before
the final convolution operation generates feature vectors, a spatial group self-attention
module and a channel group self-attention module are inserted, which are used to model
feature correlations in the spatial domain and channel domain. Based on the above
method, the attention module effectively suppresses redundant information and captures
rich global information to enhance feature representation capabilities. Finally, the pro-
posed H-FPN utilizes the fusion of high-level semantic features and low-level semantic
features for prediction, further enhancing the interaction of low-level semantic infor-
mation, compensating for the accumulation of lost feature information in the downsam-
pling stage, and enhancing target detection capabilities. This result indicates that the pro-
posed model further enhances the detection accuracy for small and medium targets.

Y
O

LO
v4

-T
in

y
Y

O
LO

v3
-T

in
y

M
in

i-Y
O

LO
v4

13×13 26×26

oven donut persongiraffe
Figure 8. Visualization of attention maps.

In order to solve the problems of poor model framework compatibility and slow
model running speed, the model reasoning deployment framework comes into being. It
unifies the model format and greatly accelerates the inference speed. TensorRT is one of
the mainstream model deployment frameworks, and it performs well on NVIDIA Jetson
series devices. This TensorRT deployment adopts a two-stage process. In the first stage,
the Pytorch model is converted into an FP32-precision ONNX model file using the Pytorch
API. In the second stage, the ONNX file is parsed through the TensorRT API, the TensorRT
engine with FP16 precision is built, and the final deployment is completed. Compared
with directly deploying the original model, this process solves the compatibility problem
of the Pytorch model on the Jetson device and also reduces the model accuracy from FP32
to FP16, accelerating the inference speed. Through the introduction of the deployment
framework, model training and deployment are decoupled, and the performance of the
model is optimized, providing a guarantee for wide use in practical application scenarios.

To verify the detection speed of the proposed model on embedded platforms, we use
the above method to compare Mini-YOLOv4 with YOLOv4-CSP and YOLOv4-Tiny on a
Jetson Nano device [53]. We believe that the Jetson Nano device is currently the main-
stream embedded device, and it is reasonable to use for speed standard measurement.
The comparison results are shown in Table 6. Limited by the computing power of the em-
bedded platform, YOLOv4-CSP, with high detection accuracy, can only achieve a maxi-
mum detection speed of 3.7 FPS on the Jetson Nano. The proposed Mini-YOLOv4 achieves
detection speeds of 13.7 FPS, 16.4 FPS, and 25.6 FPS for the three input sizes considered.

Figure 8. Visualization of attention maps.

In order to solve the problems of poor model framework compatibility and slow
model running speed, the model reasoning deployment framework comes into being. It
unifies the model format and greatly accelerates the inference speed. TensorRT is one of
the mainstream model deployment frameworks, and it performs well on NVIDIA Jetson
series devices. This TensorRT deployment adopts a two-stage process. In the first stage,
the Pytorch model is converted into an FP32-precision ONNX model file using the Pytorch
API. In the second stage, the ONNX file is parsed through the TensorRT API, the TensorRT
engine with FP16 precision is built, and the final deployment is completed. Compared
with directly deploying the original model, this process solves the compatibility problem
of the Pytorch model on the Jetson device and also reduces the model accuracy from FP32
to FP16, accelerating the inference speed. Through the introduction of the deployment
framework, model training and deployment are decoupled, and the performance of the
model is optimized, providing a guarantee for wide use in practical application scenarios.

To verify the detection speed of the proposed model on embedded platforms, we
use the above method to compare Mini-YOLOv4 with YOLOv4-CSP and YOLOv4-Tiny
on a Jetson Nano device [53]. We believe that the Jetson Nano device is currently the
mainstream embedded device, and it is reasonable to use for speed standard measure-
ment. The comparison results are shown in Table 6. Limited by the computing power of
the embedded platform, YOLOv4-CSP, with high detection accuracy, can only achieve a
maximum detection speed of 3.7 FPS on the Jetson Nano. The proposed Mini-YOLOv4
achieves detection speeds of 13.7 FPS, 16.4 FPS, and 25.6 FPS for the three input sizes con-
sidered. In order to improve the detection accuracy, we optimize the original YOLOv4-Tiny
network structure so that the detection speed of Mini-YOLOv4 is slightly inferior to that
of YOLOv4-Tiny, but it still achieves a real-time detection speed. The experiments show
that Mini-YOLOv4 can achieve real-time performance on the embedded device, and the
detection accuracy is greatly improved compared with that of YOLOv4-Tiny. This finding
suggests that Mini-YOLOv4 is suitable for target detection on embedded devices.

The performance of these three algorithms is also measured in terms of resource usage,
such as GPU and memory usage on the Jetson Nano. We monitor for 60 min, of which the
machine is idle for the first 30 min (only background tasks are running), and the detection
task is executed in the last 30 min. Figure 9 shows the comparison result of memory
usage. Notably, the initial memory usage of the Jetson Nano is approximately 32%. At
about 30 min, the memory usage of YOLOv4-CSP jumps to 88%, the memory usage of
YOLOv4-Tiny jumps to 51%, and the memory usage of Mini-YOLOv4 jumps to 45%. This
phenomenon is mainly due to the small number of parameters in the proposed network,
which is extremely lightweight. In Figure 10, when the detection model starts to work, the
GPU usage rate of YOLOv4-CSP far exceeds that of the other two models, remaining at

Symmetry 2023, 15, 2080 16 of 22

around 88%. Compared with YOLOv4-Tiny, the proposed model has a similar usage rate.
This is because the number of model calculations is reduced in the proposed approach
while the detection accuracy is greatly enhanced.

Table 6. Performance comparison of different network architectures on Jetson Nano.

Model Size FPS

YOLOv4-CSP 320 3.7

YOLOv4-Tiny 320 28.4

Mini-YOLOv4 320 25.6

YOLOv4-CSP 416 2.4

YOLOv4-Tiny 416 17.8

Mini-YOLOv4 416 16.4

YOLOv4-CSP 512 1.3

YOLOv4-Tiny 512 14.5

Mini-YOLOv4 512 13.7

Symmetry 2023, 15, x FOR PEER REVIEW 16 of 23

In order to improve the detection accuracy, we optimize the original YOLOv4-Tiny net-
work structure so that the detection speed of Mini-YOLOv4 is slightly inferior to that of
YOLOv4-Tiny, but it still achieves a real-time detection speed. The experiments show that
Mini-YOLOv4 can achieve real-time performance on the embedded device, and the detec-
tion accuracy is greatly improved compared with that of YOLOv4-Tiny. This finding sug-
gests that Mini-YOLOv4 is suitable for target detection on embedded devices.

Table 6. Performance comparison of different network architectures on Jetson Nano.

Model Size FPS
YOLOv4-CSP 320 3.7
YOLOv4-Tiny 320 28.4
Mini-YOLOv4 320 25.6
YOLOv4-CSP 416 2.4
YOLOv4-Tiny 416 17.8
Mini-YOLOv4 416 16.4
YOLOv4-CSP 512 1.3
YOLOv4-Tiny 512 14.5
Mini-YOLOv4 512 13.7

The performance of these three algorithms is also measured in terms of resource us-
age, such as GPU and memory usage on the Jetson Nano. We monitor for 60 min, of which
the machine is idle for the first 30 min (only background tasks are running), and the de-
tection task is executed in the last 30 min. Figure 9 shows the comparison result of memory
usage. Notably, the initial memory usage of the Jetson Nano is approximately 32%. At
about 30 min, the memory usage of YOLOv4-CSP jumps to 88%, the memory usage of
YOLOv4-Tiny jumps to 51%, and the memory usage of Mini-YOLOv4 jumps to 45%. This
phenomenon is mainly due to the small number of parameters in the proposed network,
which is extremely lightweight. In Figure 10, when the detection model starts to work, the
GPU usage rate of YOLOv4-CSP far exceeds that of the other two models, remaining at
around 88%. Compared with YOLOv4-Tiny, the proposed model has a similar usage rate.
This is because the number of model calculations is reduced in the proposed approach
while the detection accuracy is greatly enhanced.

Figure 9. Memory usage vs execution time. Figure 9. Memory usage vs execution time.

Symmetry 2023, 15, x FOR PEER REVIEW 17 of 23

Figure 10. GPU usage vs execution time.

Ablation Study
To verify the impact of the proposed modules on the final performance, we per-

formed ablation experiments by gradually adding MFBlock, GSBlock, and H-FPN to the
baseline YOLOv4-Tiny. Table 7 shows the detection performance results for each model
on the MS COCO test-dev dataset. In the case of tests under IOU = 0.5 and IOU from 0.50
to 0.95, the mAP values improve by 1.8% and 1.3% after adding MFBlock. GSBlock makes
a significant contribution to improving detection accuracy by effectively mining contex-
tual information. Additionally, SGAM improves overall performance by 0.9%, and CGAM
improves overall performance by 1.2%. When these two modules are jointly integrated
into the baseline, the overall detection accuracy is significantly improved by 1.8%. Based
on the introduction of MFBlock and GSBlock, the H-FPN can further improve the detec-
tion performance for small and medium targets by 0.5% and 0.6%, respectively. It is evi-
dent that the H-FPN enriches the semantic information by effectively fusing multiscale
features. As demonstrated in Section 3.1, we learn from the idea of squeezing and activat-
ing to achieve attention calibration, which has proven to be useful for improving feature
representation. Here, we study how the channel reduction rate in the CAM affects detec-
tion performance. In Table 8, we conduct experiments involving a series of channel reduc-
tion rates. It can be seen that a smaller ratio slightly increases the number of parameters
of the model, but it does not bring about a performance improvement. As the reduction
rate increases, the trend of the mAP value is to gradually increase and then decrease. Par-
ticularly, when the channel reduction rate is set to 8, the mAP value is 79.0%, which can
achieve a superior balance between accuracy and complexity. In addition, we find that
taking the feature representations before the cross-channel interaction as residuals by add-
ing an identity connection, as shown in Figure 3, can further improve the detection accu-
racy. When the extra identity connection is removed, the detection accuracy of the model
drops by 0.3%.

Table 7. Ablation experiments on MS COCO test-dev.

Module
AP AP50 AP75 APS APM APL

MFBlock
GSBlock

H-FPN
SGAM CGAM

 22.0 40.4 21.7 8.4 26.3 29.2
√ 23.3 42.2 23.1 8.8 27.8 30.9
√ √ 24.2 43.4 24.0 9.0 29.2 32.2
√ √ 24.5 43.6 24.2 9.2 29.5 32.8
√ √ √ 25.1 44.3 24.9 9.3 30.6 33.8
√ √ √ √ 25.5 44.9 25.2 9.8 31.2 34.1
 22.0 40.4 21.7 8.4 26.3 29.2
√ 23.3 42.2 23.1 8.8 27.8 30.9

Figure 10. GPU usage vs execution time.

Ablation Study

To verify the impact of the proposed modules on the final performance, we performed
ablation experiments by gradually adding MFBlock, GSBlock, and H-FPN to the baseline
YOLOv4-Tiny. Table 7 shows the detection performance results for each model on the
MS COCO test-dev dataset. In the case of tests under IOU = 0.5 and IOU from 0.50 to
0.95, the mAP values improve by 1.8% and 1.3% after adding MFBlock. GSBlock makes a
significant contribution to improving detection accuracy by effectively mining contextual
information. Additionally, SGAM improves overall performance by 0.9%, and CGAM
improves overall performance by 1.2%. When these two modules are jointly integrated into
the baseline, the overall detection accuracy is significantly improved by 1.8%. Based on

Symmetry 2023, 15, 2080 17 of 22

the introduction of MFBlock and GSBlock, the H-FPN can further improve the detection
performance for small and medium targets by 0.5% and 0.6%, respectively. It is evident that
the H-FPN enriches the semantic information by effectively fusing multiscale features. As
demonstrated in Section 3.1, we learn from the idea of squeezing and activating to achieve
attention calibration, which has proven to be useful for improving feature representation.
Here, we study how the channel reduction rate in the CAM affects detection performance.
In Table 8, we conduct experiments involving a series of channel reduction rates. It can
be seen that a smaller ratio slightly increases the number of parameters of the model, but
it does not bring about a performance improvement. As the reduction rate increases, the
trend of the mAP value is to gradually increase and then decrease. Particularly, when the
channel reduction rate is set to 8, the mAP value is 79.0%, which can achieve a superior
balance between accuracy and complexity. In addition, we find that taking the feature
representations before the cross-channel interaction as residuals by adding an identity
connection, as shown in Figure 3, can further improve the detection accuracy. When the
extra identity connection is removed, the detection accuracy of the model drops by 0.3%.

Table 7. Ablation experiments on MS COCO test-dev.

Module

AP AP50 AP75 APS APM APL
MFBlock

GSBlock
H-FPN

SGAM CGAM

22.0 40.4 21.7 8.4 26.3 29.2
√

23.3 42.2 23.1 8.8 27.8 30.9
√ √

24.2 43.4 24.0 9.0 29.2 32.2
√ √

24.5 43.6 24.2 9.2 29.5 32.8
√ √ √

25.1 44.3 24.9 9.3 30.6 33.8
√ √ √ √

25.5 44.9 25.2 9.8 31.2 34.1

22.0 40.4 21.7 8.4 26.3 29.2
√

23.3 42.2 23.1 8.8 27.8 30.9
√ √

24.2 43.4 24.0 9.0 29.2 32.2
√ √

24.5 43.6 24.2 9.2 29.5 32.8

Table 8. Ablation experiments about the design choices of CAM on the PASCAL VOC dataset. ‘CR
Rate’ is the channel reduction rate. ‘Identity’ refers to the corresponding component with the same
name as in Figure 3.

Model CR Rate Identity BFLOPs Parameter Size (M) mAP (%)

Mini-YOLOv4 2
√

3.16 4.83 78.7

Mini-YOLOv4 4
√

3.15 4.80 78.8

Mini-YOLOv4 8 × 3.15 4.78 78.7

Mini-YOLOv4 8
√

3.15 4.78 79.0

Mini-YOLOv4 16
√

3.15 4.77 78.8

Mini-YOLOv4 32
√

3.15 4.77 78.5

To demonstrate the advantages of the proposed CAM over other powerful attention
modules, we investigate the performance of various attention modules, including SENet,
CBAM, and SKNet. In the experiments, we replaced SENet, CBAM, and SKNet with the
CAM in our network to verify its efficiency. The metrics of BFLOPs, FPS, parameter size,
and mAP on the PASCAL VOC dataset are shown in Table 9. Compared with SENet,

Symmetry 2023, 15, 2080 18 of 22

CAM focuses on both channel and spatial attention information, which improves the
mAP by 0.3%. CBAM calibrates the feature distribution by considering soft attention
mechanisms in the sequential channel-spatial structure, but it does not perform well on this
dataset. The mAP value of Mini-YOLOv4-CBAM is 78.1%, which is lower than that of Mini-
YOLOv4-CAM by 0.9%. SKNet obtains the features of different receptive fields through
various convolution kernels of different sizes and aggregates information from multiple
paths to obtain a global and comprehensive representation. In terms of BFLOPs, FPS, and
parameter size, Mini-YOLOv4-CAM obviously outperforms Mini-YOLOv4-SKNet. These
results demonstrate that CAM has powerful feature extraction capabilities and excellent
calculation efficiency.

Table 9. Performance comparison of attention modules on the PASCAL VOC dataset.

Model BFLOPs FPS Parameter Size (M) mAP (%)

Mini-YOLOv4-SENet 3.12 184.2 4.64 78.6

Mini-YOLOv4-CBAM 3.12 179.1 4.64 78.1

Mini-YOLOv4-SKNet 3.17 160.4 5.01 79.2

Mini-YOLOv4-CAM 3.15 172.6 4.78 79.0

To further explore the impact of the network structure of the SGAM and CGAM on
detection accuracy, we investigate different combinations of the SGAM and CGAM to
achieve optimal performance. We study three ways of combinations: parallel with a fu-
sion (Mini-YOLOv4-S//C), sequential spatial-channel (Mini-YOLOv4-SC), and sequential
channel-spatial (Mini-YOLOv4-CS). Table 10 shows that Mini-YOLOv4-SC achieves the
best performance, with an overall detection accuracy 0.9% and 0.3% higher than that of
Mini-YOLOv4-S//C and Mini-YOLOv4-CS, respectively, on MS COCO. In the case of
the test under IOU = 0.5, Mini-YOLOv4-SC gains 1.4% and 0.3% accuracy improvement
over the other two combinations. Sequential architecture first generates refined features
through the previous attention module and then allows the latter modules to learn attention
information, which promotes optimization.

Table 10. Performance comparison of combinations of self-attention modules on MS COCO dataset.

Model AP AP50 AP75

Mini-YOLOv4-S//C 24.6 43.5 24.3

Mini-YOLOv4-CS 25.2 44.6 25.0

Mini-YOLOv4-SC 25.5 44.9 25.2

In addition to the above ablation experiments, the influence of different downsampling
methods in H-FPN is assessed, and a comparison of the results is given in Table 11. We
resize the feature maps of different layers in the network to the same scale by downsampling
and then perform a fusion operation to obtain a comprehensive feature representation.
In our experiments, we use different combinations of average pooling and maximum
pooling for downsampling and observe the corresponding performance differences. As
shown in Table 11, GAP + GMP provides the best detection results for the AP, AP50, and
AP75 metrics, which significantly outperforms GAP or GMP alone. This result is because,
potentially, using both pooling methods together not only extracts key features but also
establishes connections among locations within the entire pooling window, allowing for
local contextual information to be effectively captured.

Symmetry 2023, 15, 2080 19 of 22

Table 11. Performance comparison of different pooling methods on MS COCO dataset.

Pooling Method
AP AP50 AP75

GAP GMP
√

24.5 43.3 24.3
√

25.3 44.5 25.0
√ √

25.5 44.9 25.2

6. Conclusions

In this paper, we propose a lightweight real-time object detection method called
Mini-YOLOv4. First, we propose a multibranch feature aggregation block to enlarge the
receptive field and enhance the network feature extraction capability. Second, we design
a group self-attention block (GSBlock) to capture long-range dependencies and explore
contextual information. In the GSBlock, the spatial group self-attention module and the
channel group self-attention module focus on capturing semantically relevant feature
information. To improve the model detection accuracy for small and medium targets, a
hierarchical feature pyramid network is proposed to fully exploit multiscale feature maps
and fuse high-level semantic features with low-level feature representations in a hierarchical
manner. Experiments conducted on the PASCAL VOC and MS COCO datasets indicate
that Mini-YOLOv4 yields a higher detection accuracy than YOLOv4-Tiny. Specifically on
the PASCAL VOC dataset, the mAP of Mini-YOLOv4 reaches 79.0%, which is 3.2% higher
than YOLOv4-Tiny. Compared with other lightweight models (e.g., MobileNet-YOLOv4
series and ShuffleNet-YOLOv4 series), Mini-YOLOv4 achieves comparable results in mAP
with lower BFLOPs and a real-time detection speed on the embedded platform NVIDIA
Jetson Nano. Moreover, although MobileNetv3-YOLOv4 outperforms Mini-YOLOv4 by
1.4% mAP, Mini-YOLOv4 achieves better results in terms of BFLOPs, FPS, and parameter
size. And it achieves 79.0% mAP, which is 0.2% higher than ShuffleNetv2-YOLOv4. Our
model achieves a marvelous trade-off between accuracy and speed, enabling excellent
performance in resource-constrained environments.

Author Contributions: Conceptualization, S.Y. and L.C.; methodology, S.Y., J.W. and L.C.; software,
L.C., W.J. and Y.Y.; validation, J.W. and Y.Y.; resources, S.Y. and W.J.; Investigation, L.C., J.W. and W.J.;
data curation, S.Y., L.C. and W.J.; writing—original draft preparation, S.Y. and L.C.; writing—review
and editing, S.Y., L.C. and Y.Y.; Supervision, W.J. and Y.Y.; project administration, J.W. and Y.Y.;
funding acquisition, W.J. and S.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No. 12062009)
and the Scientific Research Fund of Zhejiang Provincial Education Department (No. Y202352263).

Data Availability Statement: The data are available upon request.

Acknowledgments: We would like to give thanks to Wanfa Sun for his help in this paper.

Conflicts of Interest: The authors declare that they have no conflict of interest to report regarding
the present study.

Abbreviations

YOLO You Only Look Once
MFBlock Multibranch Feature Aggregation Module
CAM Complete Attention Module
GSBlock Group Self-attention Block
SGAM Spatial Group Attention Module
CGAM Channel Group Attention Module

Symmetry 2023, 15, 2080 20 of 22

H-FPN Hierarchical Feature Pyramid Network
SENet Squeeze Excitation Networks
CBAM Convolutional Block Attention Module
SKNet Selective Kernel Networks
NAM Normalization-based Attention Module
ECA Efficient Channel Attention
SA-Net Shuffle Attention Networks
GAM Global Attention Mechanism
SAT Self-Adversarial Training
RFB Receptive Field Block
PANet Path Aggregation Network
FPN Feature Pyramid Network
NMS Non-Maximal Suppression
CIOU Complete-IOU
BFLOPs Billion Floating Point Operations
FPS Frames Per Second

References
1. Chen, R.; Liu, Y.; Zhang, M.; Liu, S.; Yu, B.; Tai, Y.-W. Dive deeper into box for object detection. In Proceedings of the 2020

European Conference on Computer Vision (ECCV): 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 412–428.
2. Wu, Y.; Chen, Y.; Yuan, L.; Liu, Z.; Wang, L.; Li, H.; Fu, Y. Rethinking classification and localization for object detection. In

Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19
June 2020; pp. 10186–10195.

3. Qiu, H.; Li, H.; Wu, Q.; Shi, H. Offset bin classification network for accurate object detection. In Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 13185–13194.

4. Shi, H.; Zhou, Q.; Ni, Y.; Wu, X.; Latecki, L.J. DPNET: Dual-path network for efficient object detection with Lightweight Self-
Attention. In Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October
2022; pp. 771–775.

5. Termritthikun, C.; Jamtsho, Y.; Ieamsaard, J.; Muneesawang, P.; Lee, I. EEEA-Net: An early exit evolutionary neural architecture
search. Eng. Appl. Artif. Intell. 2021, 104, 104397. [CrossRef]

6. Sun, Z.; Lin, M.; Sun, X.; Tan, Z.; Li, H.; Jin, R. MAE-DET: Revisiting maximum entropy principle in zero-shot nas for efficient
object detection. In Proceedings of the 39th International Conference on Machine Learning (PMLR), Virtual, 17–23 July 2022;
pp. 20810–20826.

7. Chen, T.; Saxena, S.; Li, L.; Fleet, D.J.; Hinton, G. Pix2seq: A language modeling framework for object detection. arXiv 2022,
arXiv:2109.10852.

8. Du, X.; Zoph, B.; Hung, W.-C.; Lin, T.-Y. Simple training strategies and model scaling for object detection. arXiv 2021,
arXiv:2107.00057.

9. Khan, S.D.; Basalamah, S. Disam: Density independent and scale aware model for crowd counting and localization. Vis. Comput.
2021, 37, 2127–2137. [CrossRef]

10. Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. PVT v2: Improved baselines with pyramid vision
transformer. Comput. Vis. Media 2022, 8, 415–424. [CrossRef]

11. Xin, Y.; Wang, G.; Mao, M.; Feng, Y.; Dang, Q.; Ma, Y.; Ding, E.; Han, S. PAFNet: An efficient anchor-free object detector guidance.
arXiv 2021, arXiv:2104.13534.

12. Yang, J.; Liu, J.; Han, R.; Wu, J. Generating and restoring private face images for internet of vehicles based on semantic features
and adversarial examples. IEEE Trans. Intell. Transp. Syst. 2022, 23, 16799–16809. [CrossRef]

13. Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 568–578.

14. Ke, W.; Zhang, T.; Huang, Z.; Ye, Q.; Liu, J.; Huang, D. Multiple anchor learning for visual object detection. In Proceedings
of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020;
pp. 10206–10215.

15. Wang, J.; Zhang, W.; Cao, Y.; Chen, K.; Pang, J.; Gong, T.; Shi, J.; Loy, C.C.; Lin, D. Side-Aware boundary localization for more
precise object detection. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28
August 2020; pp. 403–419.

16. Cao, J.; Cholakkal, H.; Anwer, R.M.; Khan, F.S.; Pang, Y.; Shao, L. D2Det: Towards high quality object detection and Instance
Segmentation. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle,
WA, USA, 14–19 June 2020; pp. 11485–11494.

17. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

https://doi.org/10.1016/j.engappai.2021.104397
https://doi.org/10.1007/s00371-020-01974-7
https://doi.org/10.1007/s41095-022-0274-8
https://doi.org/10.1109/TITS.2021.3102266

Symmetry 2023, 15, 2080 21 of 22

18. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted residuals and linear bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June
2018; pp. 4510–4520.

19. Howard, A.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; Le, Q.V.; Adam, H. Searching for
MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of
Korea, 27 October–2 November 2019; pp. 1314–1324.

20. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An extremely efficient Convolutional Neural Network for mobile devices. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June
2018; pp. 6848–6856.

21. Ma, N.; Zhang, X.; Zheng, H.-T.; Sun, J. ShuffleNet V2: Practical guidelines for efficient CNN architecture design. In Proceedings
of the 2018 European Conference on Computer Vision (ECCV): 15th European Conference, Munich, Germany, 8–14 September
2018; pp. 116–131.

22. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

23. Tan, M.; Le, Q.V. MixConv: Mixed depthwise convolutional kernels. arXiv 2019, arXiv:1907.09595.
24. Tan, M.; Le, Q. EfficientNet: Rethinking model scaling for Convolutional Neural Networks. arXiv 2019, arXiv:1905.11946.
25. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of

the 2016 European Conference on Computer Vision(ECCV): 14th European Conference, Amsterdam, The Netherlands, 11–14
October 2016; pp. 21–37.

26. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

27. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

28. Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:804.02767.
29. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal speed and accuracy of object detection. arXiv 2020,

arXiv:2004.10934.
30. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the 2017 IEEE

International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007.
31. Lu, X.; Li, Q.; Li, B.; Yan, J. MimicDet: Bridging the gap between one-stage and two-stage object detection. In Proceedings

of the 2020 European Conference on Computer Vision (ECCV): 16th European Conference, Glasgow, UK, 23–28 August 2020;
pp. 541–557.

32. Mao, Q.-C.; Sun, H.-M.; Liu, Y.-B.; Jia, R.-S. Mini-YOLOv3: Real-Time object detector for embedded applications. IEEE Access
2019, 7, 133529–133538. [CrossRef]

33. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. Scaled-YOLOv4: Scaling cross stage partial network. In Proceedings of the 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 13029–13038.

34. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

35. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the 2018 European
Conference on Computer Vision (ECCV): 15th European Conference, Munich, Germany, 8–14 September 2018; pp. 3–19.

36. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803.

37. Li, X.; Wang, W.; Hu, X.; Yang, J. Selective kernel networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 510–519.

38. Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. GCNet: Non-local networks meet squeeze-excitation networks and beyond. In Proceedings
of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28
October 2019; pp. 1971–1980.

39. Liu, Y.; Shao, Z.; Teng, Y.; Hoffmann, N. NAM: Normalization-based attention module. arXiv 2021, arXiv:2111.12419.
40. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In

Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19
June 2020; pp. 11531–11539.

41. Zhang, Q.-L.; Yang, Y.-B. SA-Net: Shuffle Attention for Deep Convolutional Neural Networks. In Proceedings of the 2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021;
pp. 2235–2239.

42. Yang, L.; Zhang, R.; Li, L.; Xie, X. SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks. In
Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 11863–11874.

43. Liu, Y.; Shao, Z. Hoffmann, Global attention mechanism: Retain information to enhance channel-spatial interactions. arXiv 2021,
arXiv:2112.05561.

44. Liu, S.; Huang, D.; Wang, Y. Learning spatial fusion for single-shot object detection. arXiv 2019, arXiv:1911.09516.

https://doi.org/10.1109/ACCESS.2019.2941547

Symmetry 2023, 15, 2080 22 of 22

45. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic image segmentation with deep con-
volutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848.
[CrossRef]

46. Liu, S.; Huang, D.; Wang, Y. Receptive field block net for accurate and fast object detection. In Proceedings of the 2018 European
Conference on Computer Vision (ECCV): 15th European Conference, Munich, Germany, 8–14 September 2018; pp. 385–400.

47. Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 936–944.

48. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for Instance segmentation. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8759–8768.

49. Huang, X.; Ge, Z.; Jie, Z.; Yoshie, O. NMS by representative region: Towards crowded pedestrian detection by proposal pairing.
In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19
June 2020; pp. 10750–10759.

50. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In
Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 12993–13000.

51. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The pascal visual object classes (VOC) challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

52. TLin, Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft COCO: Common objects in
context. In Proceedings of the 2014 European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September
2014; pp. 740–755.

53. Cass, S. Nvidia makes it easy to embed AI: The Jetson nano packs a lot of machine-learning power into DIY projects—[Hands on].
IEEE Spectr. 2020, 57, 14–16. [CrossRef]

54. Long, X.; Deng, K.; Wang, G.; Zhang, Y.; Dang, Q.; Gao, Y.; Shen, H.; Ren, J.; Han, S.; Ding, E.; et al. PP-YOLO: An effective and
efficient implementation of object detector. arXiv 2020, arXiv:2007.12099.

55. Couturier, R.; Noura, H.N.; Salman, O.; Sider, A. A deep learning object detection method for an efficient clusters initialization.
arXiv 2021, arXiv:2104.13634.

56. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430.
57. Fu, C.-Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. DSSD: Deconvolutional single shot detector. arXiv 2018, arXiv:1701.06659.
58. Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S.Z. Single-Shot Refinement Neural Network for Object Detection. In Proceedings of the

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018;
pp. 4203–4212.

59. Zhao, Q.; Sheng, T.; Wang, Y.; Tang, Z.; Chen, Y.; Cai, L.; Ling, H. M2det: A single-shot object detector based on multi-level feature
pyramid network. In Proceedings of the 2019 AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 29–31 January 2019;
pp. 9259–9266.

60. Wang, T.; Anwer, R.M.; Cholakkal, H.; Khan, F.S.; Pang, Y.; Shao, L. Learning rich features at high-speed for single-shot object
detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea,
27 October–2 November 2019; pp. 1971–1980.

61. Law, H.; Deng, J. CornerNet: Detecting objects as paired keypoints. Int. J. Comput. Vis. 2020, 128, 642–656. [CrossRef]
62. Kim, S.-W.; Kook, H.-K.; Sun, J.-Y.; Kang, M.-C.; Ko, S.-J. Parallel feature pyramid network for object detection. In Proceedings of

the European Conference on Computer Vision (ECCV): 15th European Conference, Munich, Germany, 8–14 September 2018;
pp. 234–250.

63. Cao, J.; Pang, Y.; Han, J.; Li, X. Hierarchical shot detector. In Proceedings of the 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9705–9714.

64. Nie, J.; Anwer, R.M.; Cholakkal, H.; Khan, F.S.; Pang, Y.; Shao, L. Enriched feature guided refinement network for object detection.
In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27
October–2 November 2019; pp. 9537–9546.

65. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and efficient object detection. In Proceedings of the 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 10781–10790.

66. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice,
Italy, 22–29 October 2017; pp. 618–626.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1109/MSPEC.2020.9126102
https://doi.org/10.1007/s11263-019-01204-1

	Introduction
	Related Work
	Attention Mechanism
	YOLOv4, YOLOv4-CSP and YOLOv4-Tiny Networks

	Method
	Multibranch Feature Aggregation Block
	Group Self-Attention Block with Symmetric Structure
	Hierarchical Feature Pyramid Network
	Loss Function

	Experiment
	Datasets
	Implementation Details

	Discussions
	Conclusions
	References

