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Abstract: This manuscript delineates an innovative artificial intelligence-based methodology for
forecasting the displacement of retaining walls due to extensive deep excavation processes. In our se-
lection of 17 training cases, we strategically chose a wall configuration that was not influenced by the
corner effects. This careful selection was conducted with the intention of ensuring that each deep exca-
vation instance included in our study was supported symmetrically, thereby streamlining the analysis
in the ensuing phases. Our proposed multilayer functional-link network demonstrates superior
performance over the traditional backpropagation neural network (BPNN), excelling in the precise
prediction of displacements at predetermined observation points, peak wall displacements, and their
respective locations. Notably, the predictive accuracy of our advanced model surpassed that of the
conventional BPNN and RIDO assessment tools by a substantial 5%. The network process model
formulated through this research offers a valuable reference for future implementations in diverse
geographical settings. Furthermore, by utilizing local datasets for the training, testing, and validation
phases, our system ensures the effective and accurate execution of displacement predictions.

Keywords: deep excavation; artificial intelligence; wall displacement; multilayer functional-link
network

1. Introduction
1.1. Background

The complexity and data uncertainty associated with deep excavations often lead to
collapse failures, which can result in damage to surrounding buildings and infrastructure.
Controlling the deformation of retaining walls and preserving the stability of support
systems are, thus, of paramount importance in the field of civil engineering. Numerical
analysis has been widely used for predicting geotechnical engineering problems. Programs
such as RIDO, TORSA, FLAC, PLAXIS, BEOO, GEO5 Sheeting check, GGU Retain, ZSOIL,
GEO5 FEM, Midas GTS, and ExcWall can be used to forecast wall displacements, stress on
retaining walls, preloading of support systems, and surface settlements around excavations.
Deep excavation involves complex soil–structure interactions, which can be simplified using
one-dimensional elastic beam theory or two- and even three-dimensional finite-element
analysis. The finite-element method is widely used in geotechnical engineering, structural
analysis, and materials science, with numerous research papers and engineering case
studies validating the efficacy of these methods.

Geotechnical engineering involves highly complex interactions among soil parameters
and environmental factors. Regardless of the analysis program, the selection of parameters
is crucial to the precision and accuracy of wall displacement predictions. This has prompted
research into the use of artificial intelligence to deal with the engineering issues related
to excavation wall displacements. Artificial intelligence utilizes mathematical models to
conduct analysis based on accumulated experience or data, allowing it to learn and extract
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knowledge automatically via learning algorithms. The objective of this study was to utilize
a neural network to develop an improved model for the prediction of wall displacements
prior to excavation.

1.2. The Literature Review

• Factors affecting retaining wall deformation in deep excavation

The deformation of the retaining wall is influenced by the mechanical properties of
soil and ground subsidence and other factors. Numerical analyses and case studies indicate
that a large number of factors can affect wall deformation [1–15]. The following studies
have investigated the factors influencing excavation integrity:

In 1972, Palmer and Kenney [1] used finite-element analysis to identify six parameters
affecting support excavation behavior. These parameters were (1) soil elastic modulus,
(2) soil shear strength, (3) in situ initial stress, (4) friction force between soil and retaining
wall, (5) retaining wall stiffness, and (6) support stiffness;

In 1981, Mana and Clough [2] used finite-element analysis and case studies to identify
five factors affecting deep excavation behavior. These factors were (1) safety factor to
prevent heaving (related to the penetration depth of the wall and soil strength), (2) soil
strength, (3) safety stiffness of the support system (associated with the stiffness of the wall
and support), (4) pre-stress applied to the support, and (5) geometry of the excavation face;

In 1981, O’Rourke [3] reported that pre-construction operations and construction
methods could affect ground deformation, claiming that lateral displacements in retaining
walls could be attributed to differences in the excavation procedures used in forward and
reverse construction methods;

In 1987, Chen [4] listed six factors that could affect deep excavation ground deforma-
tion. These parameters were (1) size (area) and depth of the excavation scope, (2) type
of soil, (3) type of retaining system, (4) excavation procedure, installation of retaining
systems, and worker skill level, (5) duration for which the excavation face is left open, and
(6) groundwater removal;

In 1989, Wong and Broms [5] used finite-element analysis to identify five factors
affecting deep excavation variables, such as the undrained shear strength, the width and
depth of excavation, the wall stiffness, the penetration depth, and the depth of the hard
stratum beneath the bottom of the excavation;

In 1990, Clough and O’Rourke [6] used case studies to illustrate the movement of
retaining walls due to excavation, resulting in the identification of eight influential factors.
These factors were (1) soil conditions, (2) groundwater level conditions, (3) variations in
groundwater level, (4) depth and shape of the excavation site, (5) stiffness, support, and
types of retaining walls, (6) construction methods of retaining walls, (7) equipment and
overloading conditions surrounding the excavation, and (8) exposure duration of retaining
walls during excavation;

In 1992, Hu [7] identified 17 factors affecting deep excavation deformation and classi-
fied them into three categories, as listed below:

I. Inherent conditions: soil layer characteristics; groundwater pressure distribution; envi-
ronmental conditions of the excavation area; surrounding buildings and traffic conditions;

II. Design conditions: geometry of the excavation area; excavation depth; retaining
structures; support systems; support pre-stress; excavation procedures and methods
at various stages; methods for constructing permanent structures;

III. Construction conditions: construction sequence and dewatering control; water tight-
ness of retaining walls; timing and control of excavation; timing of applying pre-stress;
construction techniques of the support structure system timing of support removal;
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In 1993, Lin and Lee [8] identified seven factors affecting deep excavation deformation.
These factors were (1) lateral deformation of retaining walls, (2) construction dewatering,
(3) retaining wall construction, (4) leakage or sand egress at the seams of retaining walls
during dewatering, (5) heaving, (6) removal of retaining walls or old foundations, and
(7) creep behavior of soil;

In 1994, Masuda at el. [9] examined 52 case studies of deep excavation ground defor-
mation. They listed 11 factors divided into two categories, as listed below:

I. Soil stiffness: type of soil in the excavation area; properties of soil in the excavation
area (such as undrained shear strength, elastic modulus, etc.); ground improvement
measures; and groundwater conditions;

II. Construction conditions: stiffness of the retaining wall; spacing and quantity of sup-
ports; pre-stress in supports; excavation methods (such as top–down or bottom–up
methods); length of the retaining wall; scale of excavation (such as depth and width of
excavation); and other construction conditions;

In 1998, Lao and Zheng [10] examined disaster cases involving wall deformation. They
listed ten influential factors, as listed below: (1) soil type in the excavation area; (2) retaining
wall stiffness; (3) support system integrity; (4) construction dewatering; (5) safety factor
against heave; (6) uplift and sand boiling; (7) construction load configuration; (8) excavation
elevation; (9) worksite layout; and (10) excavation method;

In 2000, Lee et al. [11] examined disasters related to deep excavation to find four
influential factors. These factors were (1) retaining wall failure, (2) heave failure at the
excavation face, (3) leakage pipe erosion failure in the retaining wall, and (4) sand boiling
failure at the excavation face;

In 2002, Ou [12] categorized eight factors affecting wall deformation. These fac-
tors were (1) safety factor for stability, (2) excavation face width, (3) excavation depth,
(4) penetration depth of the retaining wall, (5) stiffness of the retaining wall, (6) support
stiffness, (7) support spacing, and (8) support pre-stress;

In 2017, Goh et al. [13] used the hardening soil model to investigate the influences of
soil properties, wall stiffness, excavation length, excavation depth, and clay thickness at
the base of the excavation and wall embedment depth on the maximum wall deflection
induced by braced excavation;

In 2020, Zhang et al. [14] conducted a finite-element analysis considering the anisotropy
of undrained shear strength to examine the impact of total stress-based anisotropic model
NGI-ADP parameters on the base stability of deep-braced excavations in clays;

In 2021, Zhang et al. [15] conducted a case study involving a deep foundation pit
project adjacent to the shield tunnel of Hangzhou Metro Line 2. They analyzed the changes
in confining pressure distribution around the neighboring shield tunnel caused by the
excavation of the foundation pit. Additionally, they developed a simplified finite-element
model to calculate the internal forces acting on the segment ring structure.

The results of these studies are integrated in Table 1, where the factors affecting wall
deformation can be broadly classified into five categories: environmental; planning and
design; construction; time; and other. Among construction factors, some are not inherent to
the activity but rather to quality control. In the current study, we focused exclusively on
factors associated with construction methods. The other category includes heavy rainfall
and a corresponding rapid increase in groundwater level, which can affect the mechanical
properties of the soil and affect the equilibrium relationship. It also includes repeated
loading from earthquakes, which can cause soil liquefaction and the loosening of support
systems [16].
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Table 1. The literature review of the factors affecting retaining wall deformation.

Influence Type Influence Condition Influence Factor

I Environmental

1. Type and properties of excavation soil;
2. Distribution of groundwater pressure;
3. Configuration of construction loads;
4. Surrounding buildings and traffic conditions.

II Design and Planning

1. Excavation face geometry;
2. Excavation depth;
3. Ground improvement (Yes/No);
4. Stiffness of retaining structure;
5. Penetration depth of retaining wall;
6. Support system (stiffness and spacing);
7. Preloading of support system;
8. Excavation sequence and construction method

for each stage;
9. Construction method for permanent structures.

III Construction

1. Construction sequence and dewatering control;
2. Water tightness of retaining wall;
3. Timing and control of excavation;
4. Timing of applying preload;
5. Timing of support installation and removal and

construction techniques.

IV Time 1. Duration of excavation face exposure;
2. Soil creep behavior.

V Other 1. Heavy rainfall;
2. Earthquake.

• Research Materials

Ou [12] has classified deformation characteristics due to excavation into 11 categories.
Clough and O’Rourke [6] identified three types of deformation (shapes) pertaining to
retaining walls, including cantilever displacement, deep-seated inward displacement,
and the combination of the cantilever and deep-seated inward displacements. Note that
deep excavation initially induces cantilever displacement followed by deep-seated inward
displacement. Thus, most of the deformations observed following the completion of an
excavation fall into the category of combined displacement [17].

Based on field observation data from numerous deep excavation projects in the Taipei
Basin, Ou et al. [18] reported that the maximum lateral displacement of the retaining wall
generally occurred near the final excavation level. The one exception is the occurrence of
maximum displacement at the top due to cantilever displacement in the initial stage of
excavation. Based on monitoring data from Taipei Metro projects, Wu et al. [19] categorized
the deformation curves of diaphragm walls into four types: standard; rotational; multiple
fold; and cantilever;

• Effects of contemporary wall design

1. Relationship between penetration depth and excavation depth

Penetration depth refers to the depth at which a diaphragm wall penetrates the soil
layer, which is calculated by subtracting the final excavation depth from the total length of
the wall. Insufficient penetration depth can result in heaving and squeezing. Our analysis
of previous work on penetration depth and excavation depth revealed that the D/Hf values
obtained from the Taipei Basin were higher than those from the Kaohsiung area [20–23].
This can be explained by the distribution of weak clay layers, which is wider in the Taipei
Basin than in the Kaohsiung area. In the design of retaining structures in weak clay layers,
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it is often advantageous to increase the penetration depth of a wall to minimize the risk of
heaving and squeezing;

2. Relationship between maximum wall displacement and excavation depth

Some research revealed that when using bottom–up construction, the maximum wall
deformation ranges from 0.05% to 0.64% of the excavation depth, with an average of
0.35% [18,20–24]. Under top–down construction, the maximum wall deformation ranges
from 0.12% to 0.62% of the excavation depth, with an average of 0.37%. The average wall
deformation is 0.36%;

• Predicting wall displacement of the deep excavation

Methods used in the analysis of deep excavation can be divided into six categories:
(1) assumed fixed-point; (2) elastic; (3) elastic–plastic; (4) plastic; (5) stress superposi-
tion; and (6) finite-element [25]. Most of these methods were initially performed on
paper; however, manual calculations have gradually been replaced by software solutions.
The computational methods most commonly used for deep excavation analysis are the
finite-element and elastic–plastic methods. In Taiwan, the one-dimensional RIDO and
TORSA 2.0 version programs are popular software tools for excavation prediction analysis;

• RIDO

The software program RIDO 3.07 version was developed by the French company
Robert Fages Logiciels in 1983. Based on the Winkler model and the theory of elastic–plastic
equilibrium, RIDO simulates the bending moment, shears, deformations, and support loads
experienced by retaining walls during various stages of excavation. That model considers
soil properties, wall stiffness, groundwater level changes, construction procedures, support
systems during the construction process, and preloading [26]; It is widely used in Taiwan
for the simulation of deep excavation projects, and has been shown to generate reasonable
soil parameter values [27–31].

• Artificial neural network

Researchers have been developing neural networks since 1957. At present, there
are 11 network models of four types. The most common approach to the prediction of
excavation-related wall displacements involves supervised learning models. Backpropaga-
tion neural networks (BPNN) have proven highly effective in these prediction scenarios,
as evidenced by a success rate from 77% to 83% [32,33]. Huang [26] studied ten cases of
inverse construction using a relatively complete database of the Taipei Basin. The relative
errors between the predicted maximum displacement and the actual maximum displace-
ment location accounted for over 85%, representing good prediction capability. Lin [16]
achieved good results in predicting wall displacements using evolutionary fuzzy neural
networks. Li [34] achieved similar results using an evolutionary support vector machine
inference system. By using the multilayer functional-link network (MFLN) prediction
model, Wu and Chen [35] achieved an average prediction error for the maximum wall
displacement in each excavation stage of 9.2%, far exceeding the results obtained using a
backpropagation neural network (13.1%) or the RIDO program (22.7%).

2. Methodology

The behavior of retaining wall deformation and its impact on the surrounding ground
surface in the context of deep excavation have been studied extensively. Note that when
using the finite-element method, accuracy in assessing wall deformation and surface
settlement relies on soil parameter values obtained from laboratory tests. Unfortunately, the
values obtained via laboratory testing seldom match the conditions at the construction site.
Numerous researchers have used feedback analysis for calibration in an effort to mitigate
the effects of soil parameters and construction activity [36–40], and the combined use of the
finite-element method with feedback analysis has proven somewhat effective in simulating
deformations. However, feedback analysis is limited by the selected soil parameters and
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soil models [41]. This has prompted the adoption of artificially intelligent methods to deal
with engineering problems related to excavation-induced wall displacements [16,41,42].

In neural networks, there is no need to explicitly define the mathematical relationships
among variables, as they can be learned from examples and feedback. In the current
study, we used a modified multilayer functional-link network (MFLN) model to enhance
accuracy in the prediction of retaining wall displacements under non-excavated conditions.
The model was trained and evaluated using data from 17 case studies, which included
2475 examples for learning and 141 examples for testing.

Neural Networks

As shown in Figure 1, neural networks comprise artificial neurons, which process input
signals and then output the results to other processing units. The relationship between
the input and output values of a given processing unit (neuron) in a neural network can
be represented by a weighted sum of the input values, followed by the application of an
activation function [43].
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where
Yj = Output signal (output), mimicking the output signal of a biological neuron.
f = Transfer function, which is a mathematical formula used to transform the weighted

sum of input values from other processing units into the output value of the processing unit.
Wij = Connection weight (weight), mimicking the synaptic strength of a biological neuron.
Xi = Input value (input), mimicking the input signal of a biological neuron.
θj = Threshold.

• Neural networks perform two main processes:

1. Learning: The network acquires knowledge via a learning algorithm, which
iteratively refines the weights of its connections. Learning algorithms fall into
three primary categories: supervised learning; unsupervised learning; and asso-
ciative learning. Each algorithm is based on an energy function, which serves as
a metric for evaluating the learning performance of the network. The learning
process is essentially a process of minimizing the energy function;

2. Recall: The network employs a recall algorithm to process input data and gener-
ate an output.

(1) Backpropagation neural network

The most common learning model is the backpropagation neural network (BPNN),
which leverages the gradient descent method to iteratively minimize the error function
with the aim of minimizing the disparity between the desired target output values and
predicted output values generated by output units. The BPNN architecture comprises
the following three levels shown in Figure 2, including the input layer, hidden layer, and
output layer.
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where
Xn: Input variable.
Yn: Output variable.
Tn: Expected inference value.
BPNNs enable high learning accuracy and fast recall speeds; however, they are affected

by an inefficient learning design and the risk of converging to local minima;

(2) Multilayer functional-link network (MFLN)

The MFLN was adopted in this study, which is essentially a BPNN network with
“logarithmic” and “exponential” input and output units in the input and output layers (as
shown in Figure 3) [43]. The network learning algorithm also uses the “Generalized Delta
Rule” to enhance learning capabilities.
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The MFLN utilizes hidden units to transform independent variables received from the
input units and transformed variables provided by the logarithmic and exponential input
units into nonlinear functions, which are organized into a nonlinear function at the output
units. This design overcomes many of the drawbacks of backpropagation networks, such as
insufficient hidden units and an extended learning process for highly nonlinear problems.

The key difference between backpropagation networks and the MFLN is the fact
that the former uses one regular neuron to represent a variable, while the latter uses
three neurons (regular, logarithmic, and exponential neurons) to represent a variable. The
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sensitivity of the logarithmic neuron to the lower value range of the variable and the
sensitivity of the exponential neuron to the higher value range enhance the accuracy of
the MFLN. Note that the logarithmic and exponential neurons can be considered hidden
processing units located in the input layer.

3. Case Analysis and Prediction Model Development

This study collected data from 17 deep excavation sites in the Taipei Basin (Wu and
Chen [44]). We considered each excavation stage as an independent case, which resulted
in a database of 82 stages. All of these cases involved continuous underground walls
constructed using top–down excavation methods. Supplementary Table S1 lists the basic
information of the cases, and Figure 4 presents a map showing the spatial distribution of the
sites. From among these 17 cases, we selected one monitoring point (on a wall unaffected
by corner effects; the purpose of this was to ensure that the chosen deep excavation cases all
featured symmetrical supports and wall bodies, facilitating simplified half-type analysis in
subsequent stages) for training the neural network. From among the cases with relatively
complete data, we selected another monitoring point on a wall as a reference for subsequent
simulations and predictions. Table S2 lists basic information on the monitoring points;
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• Network Construction

The flowchart for the prediction model established in this study is as follows in
Figure 5:

Ji et al. [33] reported that wall deformation behavior following the initial excavation
stage is of the cantilever type; however, the observed phenomena are greatly influenced
by unknown factors, such as environmental and material stress properties. Note that
displacements occurring during the second stage of excavation are influenced by deforma-
tions accumulated in the previous stage. Taken together, we concluded that displacement
data from Stage 1 and Stage 2 were of limited value for training, testing, and validating
the neural network. We, therefore, excluded 34 of the 82 stages, which left 48 stages for
training and testing. Note that in training and testing the neural network, the displacement
data at each observation point were treated as an individual data point, which resulted in
2475 records for training and 141 records for testing.

As mentioned in the previous section, the deformation of deep excavation walls can
be affected by a wide range of factors. The inclusion of all possible factors would result
in a prediction network that is too complex for practical applications. Thus, we selected
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a subset of key influential factors based on our literature review and the experience of
the authors [16,26,33]. The proposed network comprised a total of 12 input variables; the
definitions are shown in Figure 6.
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1. Depth ratio of penetration to final excavation depth (D/Hf);
2. Depth ratio of penetration to excavation depth (D/H);
3. Excavation depth (H);
4. Wall thickness (t);
5. Distance from support to excavation face (h);
6. Soil SPT-N values (NLi, i = 1~3);
7. Wall displacement at the previous stage for observed point (∆i, i = 1~3);
8. Depth of observation point (R).

Note that the 12 variables include three related to soil properties (NLi), which represent
the equivalent SPT-N values of the soil in the following ranges: NL1 (from 0 to 1/3L);
NL2 (from 1/3L to 2/3L); and NL3 (from 2/3L to L), where L indicates the depth of the
wall. The 12 variables also include three related to accumulated wall displacement (∆i)
at a given monitoring point in the three previous stages (i = 1~3). For example, in the
prediction of Stage-5 displacements, input variable ∆1 corresponds to that point in Stage 4;
∆2 corresponds to that point in Stage 3, and ∆3 corresponds to that point in Stage 2. The
output variable is the predicted horizontal displacement at a specific observation point.

3.1. Establishing an Optimal Model

The 12 input variables were assembled into six network model combinations for
use in training and testing the BPNN and MFLN. The training and testing results were
then used to elucidate the effects of each input variable on the network with the aim of
identifying those that should be included in the final network (as shown in Table 2). To
ensure comparability, we employed consistent learning parameters, including the number
of hidden layers, the number of hidden layer nodes, the number of learning iterations, the
learning rate, and the inertia.

Table 2. List of input variable combinations.

Network Architecture Input Variable Number of Variable

B-1 D/H, H, t, h, NL1, NL2, NL3, ∆1, ∆2, ∆3, R 11
B-2 D/Hf, H, t, h, NL1, NL2, NL3, ∆1, ∆2, ∆3, R 11
B-3 D/H, H, t, h, NL1, NL2, NL3, R 8
B-4 D/H, H, t, h, ∆1, ∆2, ∆3, R 8
B-5 D/H, H, t, h, R 5
B-6 D/Hf, H, t, h, R 5

Table 3 summarizes the errors obtained using the various networks. Learning perfor-
mance is indicated by the root mean square error (RMSE), where a smaller value indicates
superior learning performance. Table 4 lists the sensitivity of each input variable to the
output variable, where a positive higher value indicates a stronger positive correlation,
whereas a higher negative value indicates a stronger negative correlation.

Table 3. Training and testing results of the BPNN and MFLN.

Network
Architecture

BPNN MFLN

Training
RMS

Testing
RMS Coef. RMSE Training

RMS
Testing

RMS Coef. RMSE

B-1 0.0236 0.0262 0.9005 0.2281 0.0139 0.0240 0.8976 0.2092
B-2 0.0237 0.0311 0.8441 0.2710 0.0136 0.0259 0.8923 0.2255
B-3 0.0328 0.0263 0.8576 0.2293 0.0184 0.0303 0.7997 0.2646
B-4 0.0288 00272 0.8936 0.2371 0.0195 0.0311 0.8973 0.2707
B-5 0.0613 0.0442 0.8698 0.3858 0.0345 0.0365 0.7589 0.3184
B-6 0.0487 0.0611 0.8369 0.5330 0.0317 0.0251 0.9118 0.2187
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Table 4. Sensitivity analysis summary table for the network.

Input Variable Item D/H H t h NL1 NL2 NL3 41 42 43 R

BPN

Ranking 2 10 9 4 5 8 3 1 11 7 6

Sensitivity
value 0.67 −1.474 −1.107 0.11 −0.066 −0.94 0.31 4.57 −2.098 −0.218 −0.183

MLFN

Ranking 7 8 5 10 11 1 2 4 6 9 3

Sensitivity
value −0.325 −0.354 −0.2 −0.404 −0.578 0.05 0.00 −0.183 −0.315 −0.375 −0.034

Model B-1 outperformed the other models in terms of training and testing performance,
as evidenced by the RMSE and sensitivity results. We, therefore, selected the input variables
used in the B-1 network model as input variables for the network proposed in this study.

From the literature reviews, six network configuration parameters can significantly
affect training and testing results; those six parameters are the number of units in the
first hidden layer, the number of logarithmic processing units, the number of exponential
processing units, the number of learning cycles, the learning rate, and the inertia factor.
In this study, the optimal values for these six parameters were obtained via trial and
error. The optimization network training process is shown in Figure 7 and Table A1, and
the results are summarized in Appendix A (Table A2). The optimal parameter values
were used to establish new network models for training and testing, after which the
network output values were rescaled to obtain test values (predictions). The predicted
values were compared with values obtained via on-site monitoring to create the prediction
vs. monitoring displacement maps for each stage of the excavation process (shown in
Appendix B, Figures A1–A3). In comparing the performance of the two networks, the
preliminary evaluation criterion was prediction accuracy for the maximum displacement
and the depth of maximum displacement after each stage of the excavation. Note that these
indicators are of particular interest to construction managers.
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The relative errors between actual and predicted maximum displacements were calcu-
lated for each stage, the results of which are summarized in Table 5. In terms of maximum
displacement error, the MFLN outperformed the BPNN, except in the third-stage excava-
tion, in which the error of MFLN (24.4%) significantly exceeded that of the BPNN (10.6%).
In terms of maximum displacement location, the predictions of the MFLN and BPNN were
close to the actual values in the first two stages; however, the predictions of the MFLN
for the third-stage excavation had a significantly larger error (nine nodes compared to the
five nodes of the BPNN, where each node represented a 0.5 m interval).

Table 5. The comparison of the monitoring and predicted displacements.

Monitoring Value BPNN MFLN

Max. Dis-
placement

(cm)

Occurrence
Location

(m)

Max. Predicted
Displacement

(cm)

Error
(%)

Occurrence
Location

(m)

Error
(%)

Max. Predicted
Displacement

(cm)

Error
(%)

Occurrence
Location

(m)

Error
(%)

The 3rd-stage
excavation 0.19 −13.81 0.21 10.6% −11.31 −2.50 0.24 24.4% −9.31 −4.50

The 4th-stage
excavation 0.89 −11.81 0.69 22.5% −12.31 0.50 0.75 15.7% −12.81 1.00

The 5th-stage
excavation 1.4 −13.31 1.09 22.1% −13.31 0.00 1.38 1.5% −13.31 0.00

3.2. Criteria Used in Evaluating Prediction Performance

This study adopted the evaluation criteria proposed by previous scholars to assess
the accuracy of the proposed system in the prediction of wall displacements. Note that the
standards were adjusted according to the objectives of this study. The evaluation criteria
and standards are outlined below:

1. Displacement at each monitoring point:

Performance in predicting wall displacement at each monitoring point was assessed
in terms of relative error, as follows: (1) successful (relative error = 0–20%); (2) accept-
able (relative error = 20–30%); (3) poor (relative error = 30–40%); and (4) failure (relative
error ≥ 40%);

2. Maximum wall displacement in each stage of excavation:

Performance in predicting maximum displacement in each stage of excavation was
assessed in terms of relative error, as follows: (1) excellent (relative error = 0–10%); (2) poor
(relative error = 10–20%); and (3) unacceptable (relative error ≥ 20%);

3. Location of maximum wall displacement:

Performance in predicting the location of maximum wall displacement was assessed
in terms of deviation from actual values, as follows: (1) successful (0–2 m); (2) acceptable
(2–4 m); (3) poor (4–6 m); and (4) failure (>6 m).

3.3. Case Study Verification

The predictive capability of the optimal network was assessed using validation data
from a monitoring pipe (Case No. 15, Monitoring Pipe SI-03) that were not included in the
training or testing datasets. From the displacement data, we derived 168 validation data
points. The predictive accuracy of the BPNN and MFLN were compared with that of RIDO.
Note that when using RIDO, the selection of geological parameters is crucial. In the current
study, we adopted the soil parameters recommended by Chen and Ji [45], as follows: clay
(0.3; from 50 m−1 to 200 m−1); and sand (50 t/m3 to 200 t/m3).

Out of the 168 available observed displacements for validation, the predicted and mon-
itored displacement maps were created for each excavation stage, as shown in Figures A4–A6.
Additionally, the level statistics for each observation point in each excavation stage were
summarized in Tables A3–A5. It can be seen that the MFLN network achieved a success rate
of approximately 67.9% in the third excavation stage, 51.8% in the fourth excavation stage,
and 91.1% in the fifth excavation stage. Comparatively, the BPNN achieved a success rate
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of approximately 58.9% in the third excavation stage, 42.9% in the fourth excavation stage,
and 82.1% in the fifth excavation stage. These results indicate that the MFLN network can
improve the accuracy of wall displacement prediction. Furthermore, from the displacement
maps, it can be observed that both the BPNN and MFLN networks outperformed the RIDO
program in terms of predictive capability.

Table 6 lists the predicted maximum displacements and corresponding level classi-
fications for each stage of the excavation. The performance of the MFLN in predicting
wall displacements was assessed in terms of relative error; the results are as follows: the
third-stage excavation and the fourth-stage excavation (10%; excellent); the fifth-stage
excavation (14.6%; poor). The performance of the BPNN in predicting wall displacements
was as follows: the third-stage excavation (7%; excellent). The performance of RIDO in
predicting wall displacements was as follows: the third-stage excavation (unacceptable);
the fourth-stage excavation (poor); and the fifth-stage excavation (excellent).

Table 6. The predicted maximum displacements and corresponding level classifications for each
stage of the excavation.

Monitoring
Value BPNN MFLN RIDO

Max.
Displacement

(cm)

Max. Predicted
Displacement

(cm)

Error
(%) Grade

Max. Predicted
Displacement

(cm)

Error
(%) Grade

Max. Predicted
Displacement

(cm)

Error
(%) Grade

The 3rd-stage
excavation 2.1 1.95 7.0% Excellent 2.18 3.8% Excellent 1.07 48.9% Unqualified

The 4th-stage
excavation 1.9 2.26 18.9% Poor 2.08 9.2% Excellent 1.68 11.3% Poor

The 5th-stage
excavation 2.34 2.02 13.5% Poor 2.00 14.6% Poor 2.53 8.0% Excellent

Table 7 lists the results for the predicted maximum displacement occurrence locations
and corresponding level classifications in each stage of the excavation. All three methods
achieved good prediction results for the location of maximum wall displacement, with
errors of less than 2 m above or below the surface of the completed excavation.

Table 7. The predicted maximum displacement occurrence locations and corresponding level classifi-
cations in each stage of the excavation.

Monitoring
Value BPNN MFLN RIDO

Occurrence
Location GL

(m)

Occurrence
Location GL

(m)

Error
(%) Grade

Occurrence
Location GL

(m)

Error
(%) Grade

Occurrence
Location GL

(m)

Error
(%) Grade

The 3rd-stage
excavation −7.93 −6.93 1.00 Successful −7.93 0.00 Successful −8.60 0.67 Successful

The 4th-stage
excavation −11.43 −9.43 2.00 Successful −9.43 2.00 Successful −11.80 0.37 Successful

The 5th-stage
excavation −13.43 −13.93 0.50 Successful −11.93 1.50 Successful −13.88 0.45 Successful

3.4. Application of Prediction Model

The applicability of the proposed prediction model for excavation cases was assessed
using a case study, which is the Yongfengyu project located in Xinyi District, Taipei, Taiwan.
This study also compared the results of the prediction model with those of the inverse
analysis obtained by Chen and Ji [45] using RIDO 3.07 version.
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In this project, the excavation depth for the foundation was 12.25 m; the wall depth
was 21.5 m, and the wall thickness was 60 cm. The excavation was divided into five stages.
Based on previous reports on geological analysis, construction procedures, and monitoring
data, the compilation of input variables resulted in 57 data points for validation.

The monitored vs. predicted displacements of different excavation stages are shown in
Figure 8a–c, and the level statistics for each observation point in each excavation stage are
summarized in Table 8. The performance of the MFLN was as follows: the third-stage exca-
vation (47.4%; success); the fourth-stage excavation (63.2%; acceptable); and the fifth-stage
excavation (89.5%; success). Overall, more than 70% of the cases presented low relative
errors (i.e., below 40%), far exceeding the inverse analysis results obtained by using RIDO.
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Table 8. Statistics table of predicted excavation observation point levels.

Mode MFLN RIDO (Inverse Analysis Program)

Grade

Excavation Stage
The 3rd-Stage

Excavation
The 4th-Stage

Excavation
The 5th-Stage

Excavation
The 3rd-Stage

Excavation
The 4th-Stage

Excavation
The 5th-Stage

Excavation

Success
(0~20%)

Number 5 4 14 2 12 3

Proportion 26.3% 21.1% 73.7% 10.5% 63.2% 15.8%

Satisfactory
(20~30%)

Number 4 8 3 1 2 3

Proportion 21.1% 42.1% 15.8% 5.3% 10.5% 15.8%

Fair
(30~40%)

Number 4 3 2 3 1 9

Proportion 21.1% 15.8% 10.5% 15.8% 5.3% 47.4%

Failure
(40% and above)

Number 6 4 0 13 4 4

Proportion 31.6% 21.1% 0.0% 68.4% 21.1% 21.1%

Table 9 lists the predicted maximum displacements and the corresponding level classi-
fications for each stage of excavation. The performance of the MFLN was as follows: the
third-stage excavation (<10%; excellent); the fourth-stage excavation (24.9%; unacceptable);



Symmetry 2023, 15, 2093 16 of 27

and the fifth-stage excavation (18.4%; poor). Nonetheless, the overall errors were below
30%, far exceeding the inverse analysis results obtained using RIDO.

Table 9. Statistics table of relative error and level for maximum displacement and location.

Method Actual Monitoring Value MFLN

Item
Max.

Displacement
(cm)

Occurrence
Location (m)

Max. Predicted
Displacement

(cm)
Error (%) Grade

Occurrence
Location
GL(m)

Error (m) Grade

The 3rd-Stage
Excavation 1.75 −4.8 1.60 8.1% Excellent −1.20 3.60 Satisfactory

The 4th-Stage
Excavation 2.81 −9.6 2.11 24.9% Unqualified −10.80 1.20 Successful

The 5th-Stage
Excavation 4.57 −10.8 3.73 18.4% Poor −12.00 1.20 Successful

Method RIDO (Inverse analysis program)

Item
Max. Predicted
Displacement

(cm)
Error (%) Grade

Occurrence
Location
GL(m)

Error (m) Grade

The 3rd-stage
excavation 2.74 36.3% Unqualified −8.40 −3.60 Ok

The 4th-stage
excavation 3.07 8.4% Excellent −9.60 0.00 Successful

The 5th-stage
excavation 2.99 52.9% Unqualified −10.80 0.00 Successful

Table 9 also lists the predicted maximum displacement locations and the corresponding
level classifications for each stage of excavation. The performance of MFLN was as follows:
the third-stage excavation (2–4 m; successful); the fourth-stage and fifth-stage excavations
(<2 m; successful). These results are comparable to the inverse analysis results obtained
using RIDO. Overall, the MFLN network demonstrated good predictive capabilities.

4. Conclusions and Recommendations
4.1. Conclusions

From the above analysis results, the following conclusions can be drawn:

1. Twelve input variables were categorized into six network model combinations based
on their attributes, characteristics, and interrelationships. In this study, model B-1
with 11 input variables was selected, and the prediction accuracy could be improved
by including more input variables that corresponded to the output variable;

2. In the prediction of displacement for each observation point, the multilayer functional-
link network (MFLN) prediction model achieved a success rate of 70%, while the back-
propagation neural network (BPNN) prediction achieved only 61%. This demonstrates
that utilizing the enhanced type of neural network for predicting wall displacement
can yield superior outcomes;

3. In the prediction of the maximum wall displacement in each stage of the excavation,
the MFLN prediction model outperformed the others, boosting an average prediction
error of 9.2%. This was notably lower than the 13.1% error rate of the BPNN and
significantly better than the 22.7% error rate of RIDO (a specific model or method,
assuming an acronym based on your context). Overall, the application of MFLN
resulted in at least a 5% enhancement in prediction accuracy. This underscores the
efficacy of the MFLN network in augmenting the precision of predictions;

4. Based on the case study results, approximately 40.4% of the observation points were
predicted to belong to the “successful” category, while around 26.3% were categorized
as “acceptable”. The combined percentage for these two categories amounts to nearly
66.7%. In contrast, the RIDO program’s prediction for the combined percentage was
only 40.4%. Therefore, the neural network-based wall displacement prediction system
developed in this study demonstrates a high level of predictive accuracy when applied
to the Taipei Basin area;
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5. The retaining wall displacement prediction developed in this study is primarily
applicable to the geological conditions of the Taipei Basin area, utilizing the top–down
construction method with the diaphragm wall structures. Nevertheless, for regions
with different geological conditions and construction methods, the proposed network
can be adapted. It can be trained and tested using local case data, following the
network establishment procedures outlined in this study. Upon verification, the
adapted model can then be employed for predictive operations, extending the utility
of our initial model beyond its original context and ensuring its adaptability and
relevance in a variety of scenarios;

6. Through our research process, we discovered a correlation between the prediction
accuracy of the network and the number of training cases used during the model
establishment. The prediction error diminishes as the number of valid case studies
increases. In practical applications, we anticipate enhanced completeness and ap-
plicability of the optimally constructed prediction network system by continuously
incorporating additional engineering cases. Real-world monitoring data can serve as
training examples, contributing to the iterative retraining of the prediction network.
This ongoing refinement process, integrating new data and learning from them, is
expected to fine-tune the system’s performance, aligning it closely with the earlier
assertion that prediction accuracy is correlated to the volume of training cases.

4.2. Recommendations

1. The results of input variable selection in the MFLN indicate a higher number of input
variables corresponding to output variables, contributing to improved prediction
accuracy. In the sensitivity analysis of test results, NL2 exhibited the highest sensitivity,
with NL1 being the lowest. The marginal difference of approximately 0.63 between
the high and low values demonstrates that all variable items impact the network’s
prediction accuracy. By incorporating additional input variable items, such as changes
in support tonnage and groundwater level—which are easily obtainable monitoring
data—the network’s predictive accuracy should be enhanced;

2. This study revealed a correlation between network prediction accuracy and the vol-
ume of training cases used in model establishment. As the number of effective case
volumes increases, the prediction error of the established forecasting system dimin-
ishes. Future applications can benefit from the continuous inclusion of engineering
cases, utilizing actual monitoring data as training examples and feeding it back for
network retraining. This iterative process is expected to enhance the comprehensive-
ness and applicability of the optimally constructed predictive network system. While
the current MFLN displacement prediction is primarily targeted at the Taipei Basin
area and adopts the top–down construction method, other regions can adapt local
case data, follow the network establishment process outlined in this study for training
and testing, and implement prediction tasks following a verification procedure.
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Appendix A

Table A1. Optimal network performance comparison table.

Network
Architecture

BPNN
Network

Architecture

MFLN Network Performance
Improvement Rate

Training Testing Training Testing Training Testing

RMS RMS RMS RMS Training Testing

11-30-1

0.01272 0.01830

(11,11,11)-30-
(1,1,1)

0.00449 0.01613 64.7% 11.9%

0.01132 0.01946 0.00535 0.01930 52.7% 0.8%

0.01181 0.02319 0.00449 0.01613 62.0% 30.4%

0.01284 0.03033 0.00479 0.02136 62.7% 29.6%

0.01284 0.02515 0.00542 0.02140 57.8% 14.9%

Table A2. List of optimal network configuration parameter values.

Item

Mode
BPN MFLN

Normal input processing units 11 11

Number of hidden units in the second layer of
a normal neural network 30 30

Number of hidden units in the first layer of a
normal neural network 0 0

Normal output processing units. 1 1

Number of units in the logarithmic input
processing layer. - 11

Number of units in the logarithmic output
processing layer. - 1

Number of units in the exponential input
processing layer. - 11

Number of units in the exponential output
processing layer. - 1

Number of learning cycles 3000 4000

Initial learning rate. 1.0 1.0

Initial inertia factor. 0.8 0.5



Symmetry 2023, 15, 2093 19 of 27

Table A3. Statistics table of monitoring points for the third-stage excavation.

Grade (Displacement Relative Error)

Network Mode
BPN MFLN

Success
(0~20%)

Number 33 38

Proportion 58.9% 67.9%

Satisfactory
(20~30%)

Number 2 4

Proportion 3.6% 7.1%

Fair
(30~40%)

Number 2 1

Proportion 3.6% 1.8%

Failure
(40% and above)

Number 19 13

Proportion 33.9% 23.2%

Table A4. Statistics table of monitoring points for the fourth-stage excavation.

Grade (Displacement Relative Error)

Network Mode
BPN MFLN

Success
(0~20%)

Number 24 29

Proportion 42.9% 51.8%

Satisfactory
(20~30%)

Number 10 5

Proportion 17.9% 8.9%

Fair
(30~40%)

Number 6 5

Proportion 10.7% 8.9%

Failure
(40% and above)

Number 16 17

Proportion 28.6% 30.4%

Table A5. Statistics table of monitoring points for the fifth-stage excavation.

Grade (Displacement Relative Error)

Network Mode
BPN MFLN

Success
(0~20%)

Number 46 51

Proportion 82.1% 91.1%

Satisfactory
(20~30%)

Number 3 1

Proportion 5.4% 1.8%

Fair
(30~40%)

Number 3 1

Proportion 5.4% 1.8%

Failure
(40% and above)

Number 4 3

Proportion 7.1% 5.4%
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