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Abstract: In a finite mathematical structure with a given partition, a substructure is said to be gre-
garious if either it meets each partition class or it shares at most one element with each partition
class. In this paper, we considered edge decompositions of graphs and hypergraphs into gregarious
subgraphs and subhypergraphs. We mostly dealt with “complete equipartite” graphs and hyper-
graphs, where the vertex classes have the same size and precisely those edges or hyperedges of a fixed
cardinality are present that do not contain more than one element from any class. Some related graph
classes generated by product operations were also considered. The generalization to hypergraphs
offers a wide open area for further research.
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1. Introduction

Decomposition techniques are of very high importance, in both theory and practice,
with an ever-growing number of applications. There is a huge literature on this approach in
many areas. At the time of writing this note, the citation database Google Scholar [1] returns
approximately 4,140,000 answers to the search of “decomposition”, and the repository
arXiv [2] offers 8566 manuscripts with this word in the title and 36,070 in the contents of
their archived scientific works, respectively, about 80.5% and 71% of them belonging to the
disciplines of mathematics and computer science.

In this paper, we present a study of discrete mathematical structures that enjoy a very
high degree of symmetry. Important classes of this kind are the complete equipartite graphs
and their generalization to uniform hypergraphs (set systems). We also dealt with more-
general structures, obtained via product operations, that inherit symmetry properties from
their components. Decompositions of these combinatorial objects into isomorphic edge-
disjoint sub(hyper)graphs were considered. In graphs, we concentrated on the case of
cycles, and in hypergraphs, we solved the first problem that arises in the area of gregarious
decompositions.

A very interesting account of the history of block designs was given in Chapter I.2
of [3], starting on page 12. The earliest publications mentioned there date back to the 1830s
and 1840s. Some of those results can equivalently be formulated as edge decompositions
of complete graphs into cycles of length three. Another root of graph decomposition
theory is the edge decomposition of complete graphs on n vertices into cycles of length
n, as accounted in [4]. Since then, a huge number of works have dealt with graph and
hypergraph decompositions.

In the particular type of “gregarious” decompositions of a graph, it is assumed that
a partition of the vertex set is given, and the subgraphs taken for the decomposition
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must intersect the partition classes in a prescribed way. We give the precise definitions in
Section 3. In Section 4, we present a detailed survey on the literature of this area.

Researchwise, our goal here was twofold. In one direction, we provide contributions
concerning a problem raised a decade ago by Cho, Park, and Sano ([5] p. 62), who asked for
“gregarious long cycle decompositions having some additional conditions such as resolvable
decompositions and circulant decompositions”. The corresponding new results of Section 5
give sufficient arithmetic conditions for the decomposability of graphs obtained by a
combination of two types of graph products and, also, for the resolvable decomposability of
complete equipartite graphs. For the constructed decompositions of complete multipartite
graphs, a well-described type of symmetry is guaranteed, as well. In another direction, we
introduce the analogous problem for hypergraphs, hence opening a new area for research
in the future. We prove the first result of this kind in Section 6, solving the most-natural
basic case.

The structure of the paper is as follows. The general notation and some graph product
operations are described in Section 2, and notions concerning the edge decompositions of
graphs are introduced in Section 3. In Section 4, the literature on gregarious decompositions
is surveyed. New results on the existence of resolvable gregarious decompositions of graphs
into cycles are proven in Section 5. Uniform hypergraphs are considered in Section 6, and
some concluding remarks are given in Section 7.

2. Some Basic Graphs and Product Operations

Standard graph-theoretic notation will be used; for terms not introduced here, we
refer to [6].

As usual, the vertex set and the edge set of a graph G will be denoted by V(G) and
E(G), respectively. For any positive integer n, we write Kn, Pn, and Cn for the complete
graph, the path, and the cycle on n vertices (assuming n ≥ 3 in case of cycles); the term
“n-cycle” is standard for Cn and will also be used in the sequel. Further, we write Sn for the
symmetric group formed by all the n! permutations of a set of n elements.

Definition 1. Let m, n be positive integers, n ≥ 2. The complete equipartite graph—also termed
“balanced complete multipartite graph”—is the graph that has n mutually disjoint vertex classes
V1, V2, . . . , Vn, with |V1| = . . . = |Vn| = m, where any two vertices in the same class are
nonadjacent and any two vertices belonging to distinct classes are adjacent. This graph will be
denoted by Kn∗m. (In several papers the notation Kn(m) is used for the same.)

Obviously, Kn∗m has mn vertices and en∗m := (n
2)m

2 = m2n(n−1)
2 edges. The case of

m = 1 just means the complete graph Kn; it is the most symmetric connected graph;
its automorphism group is the symmetric group, Aut(Kn) = Sn. More generally, in com-
plete equipartite graphs, one can take any permutation of the vertex classes and, also,
any permutation of the vertices inside each class; hence, Aut(Kn∗m) = Sn × (Sm)n.

The graphs Kn∗m may be viewed in the way that they are obtained from Kn by sub-
stituting an independent set of size m into each vertex. This operation is often referred to
as “blowing up points” or the “expanding points method”. In fact, these graphs belong to
a class generated by a type of graph product.

Definition 2. The lexicographic product—or wreath product, or composition—of two graphs G
and H, denoted by G ◦ H, is the graph whose vertex set is the Cartesian product:

V(G ◦ H) = V(G)×V(H) = {(g, h) | g ∈ V(G), h ∈ V(H)}

and whose edge set is

E(G ◦ H) = {(g, h)(g′, h′) | either gg′ ∈ E(G), or g = g′ and hh′ ∈ E(H)} .
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A small illustrative example is the lexicographic product of P2 and P3; it also demon-
strates that ◦ is not commutative. The graph P2 ◦ P3 has two vertex classes, say V1 and V2,
each with three vertices, and each Vi induces a P3. Hence two edges are missing from
the complete graph of order six, P2 ◦ P3 ∼= K6 − 2K2. On the other hand, P3 ◦ P2 has three
vertex classes, say V′1, V′2, V′3, each of them containing two adjacent vertices; moreover, V′2 is
completely adjacent to V′1 ∪V′3, while there is no edge between V′1 and V′3. Hence, a 4-cycle
is missing from the complete graph of order six, P3 ◦ P2 ∼= K6 − C4.

It follows from the definitions that Aut(G ◦ H) ⊇ Aut(G)×Aut(H))|V(G)|; but, here,
equality does not hold in general. A simple counterexample is seen by the equality
Knm = Kn ◦ Km. On the other hand, we have equality for Kn∗m = Kn ◦ Km, where the
complementary graph Km is the edgeless graph with m vertices. Analogous to Kn∗m,
we shall use the notation Cn∗m for the “blown-up cycle” Cn ◦ Km, assuming n ≥ 3. It
has nm2 edges, and Aut(Cn∗m) = Z2 × Zn × (Sm)n. The general theory of symmetries in
lexicographic products of graphs is discussed in Chapter 10.5 of [6].

There exist several further types of graph products. Here, we mention the following
one, which has been studied to some extent in the context of gregarious decompositions
as well.

Definition 3. The direct product—or categorical product, or tensor product—of two graphs G and
H, denoted by G× H, is the graph that has vertex set V(G)×V(H), and whose edge set is

E(G× H) = {(g, h)(g′, h′) | gg′ ∈ E(G) and hh′ ∈ E(H)} .

(For this type of graph product, several further names occur in the literature; cf., e.g., page 36 of [6].)

For example, labeling the vertices of K2× K3 as v1,1, v1,2, v1,3, v2,1, v2,2, v2,3, the product
graph has the following edges: v1,1v2,2, v1,1v2,3, v1,2v2,1, v1,2v2,3, v1,3v2,1, v1,3v2,2. Hence,
K2 × K3 ∼= C6. One may also check that P2 × P3 ∼= 2P3.

A particular elementary property of the × operation is that if both G and H are
bipartite, then G× H is disconnected. This fact is not hard to see: consider the bipartitions
V(G) = V1,G ∪ V2,G and V(H) = V1,H ∪ V2,H of G and H into independent sets, and
observe that there is no edge connecting (V1,G × V1,H) ∪ (V2,G × V2,H) to (V1,G × V2,H) ∪
(V2,G ×V1,H) because the subgraph induced by each of the four sets V1,G, V2,G, V1,H , V2,H
is edgeless.

The general theory of symmetries in the lexicographic products of graphs is discussed
in Chapter 8.6 of [6].

The notation G×H visually expresses the fact that K2×K2 ∼= 2K2 (two disjoint edges),
while the notation G ◦ H follows the tradition concerning the composition of functions.

As a general approach to the current subject, assuming V(G) = {g1, . . . , gn}, for both
V(G)×V(H) and V(G) ◦V(H), the default is to consider the vertex partition (V1, . . . , Vn),
where

Vi = {(gi, h) | h ∈ V(H)}

for i = 1, . . . , n. This convention is compatible with the vertex partition of Kn∗m. It applies
for products with more terms, as well. For example, in G × (H1 ◦ H2) or G ◦ (H1 ◦ H2),
the vertex partition is always taken with respect to the first term, namely G.

3. Decompositions, Gregarious Subgraphs, and Resolvable Systems

Let us begin this section with recalling the following standard definitions.

Definition 4. Let G be any graph:

(i) A decomposition (or edge decomposition) of G is a collection F = {F1, . . . , Fs} of mutually
edge-disjoint subgraphs whose union is G. Formally, E(Fi)∩ E(Fj) = ∅ for all 1 ≤ i < j ≤ s,
and

⋃s
i=1 E(Fi) = E(G).
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(ii) For a specified graph F, a decomposition F = {F1, . . . , Fs} of G is called an F-decomposition
if all Fi are isomorphic to F.

(iii) A decomposition F = {F1, . . . , Fs} of G is called resolvable if it admits a partition into
subsystems F1, . . . ,Fr—termed resolution classes or parallel classes—such that each class
Fi satisfies the condition

⋃
Fj∈Fi

V(Fj) = V(G), and F1 ∪ · · · ∪ Fr = F holds with
Fi ∩ Fj = ∅ for all 1 ≤ i < j ≤ r.

Gregarious subgraphs have been introduced gradually in the literature in different
formal ways, depending on the size of subgraphs under consideration, as follows.

Definition 5. Let a graph G with a partition (V1, . . . , Vn) of V(G) with n vertex classes be given;
let F ⊂ G be any subgraph:

(G1) If |V(F)| < n, then F is called a gregarious subgraph of G if no two vertices of F are in the
same class.

(G2) If |V(F)| = n, then F is called a gregarious subgraph of G if each class contains exactly one
vertex of F.

(G3) If |V(F)| > n, then F is called a gregarious subgraph of G if F meets every class.

As one may observe, all three conditions can be formulated in the following unified way:

(?) A subgraph F of G is gregarious (with respect to a specified vertex partition of G into n
classes) if F has vertices in precisely

min (n, |V(F)|)

classes of G; i.e., if F intersects as many classes of G as possibly allowed by the parameters.

The combination of Definitions 4 and 5 leads to the following notion.

Definition 6. An F-decomposition F1, . . . , Fs of a graph G with its given vertex partition (V1, . . . , Vn)
is called a gregarious F-system—or gregarious F-decomposition—of G if each Fi is a gregarious
subgraph of G. Resolvable gregarious F-systems/-decompositions are defined analogously, adopting
the additional requirement described in Definition 4 (iii).

It follows from the definitions that, in general, the number of subgraphs Fi in an
F-decomposition of G is |E(G)|/|E(F)|, and if F is resolvable, then each parallel class
consists of |V(G)|/|V(F)| subgraphs; hence, the number of parallel classes is |E(G)|·|V(F)|

|V(G)|·|E(F)| .

In particular, if G = Kn∗m, then F includes en∗m
|E(F)| =

m2n(n−1)
2 |E(F)| subgraphs, and the number

of parallel classes is mn−m
2 · |V(F)|

|E(F)| if F is resolvable. Similarly, if G = Cn∗m, then F includes
m2n
|E(F)| subgraphs and m·|V(F)|

|E(F)| parallel classes. In most of the literature on gregarious
decompositions, the specified graph F is a cycle (hence, |V(F)| = |E(F)|) or even the
n-cycle with |V(F)| = |E(F)| = n, in which cases the above formulae become quite simple.

4. A Survey on Gregarious Systems

Several types of systems automatically satisfied the “gregarious” property much
before the introduction of this notion. Immediate examples are the subgraphs of bipartite
graphs, as each edge meets both vertex classes. Also, the case of m = 1 in Kn∗m just
means edge decompositions of the complete graph Kn. Moreover, in the field of Design
Theory, the extensively studied Group Divisible Designs of index one are equivalent to edge
decompositions of complete multipartite graphs into complete subgraphs of given sizes.

All three are huge areas of research, whose survey is far beyond the scope of the
present work. Here, we mention just two fundamental results on cycle decompositions.
Sotteau [7] proved that the complete bipartite graph Km,n is decomposable into cycles
of length 2k if and only if both m and n are even integers no smaller than k and mn is a
multiple of 2k. Moreover, the results of Alspach and Gavlas [8], Šajna [9], and Buratti [10]
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together yield that the complete graph Kn is decomposable into cycles Ck if and only if n
is odd and (n

2) is a multiple of k. The Handbook [3] provides a collection of results and
references concerning Block Designs and Group Divisible Designs (Parts II and IV), cycle
decompositions of complete graphs/multigraphs/directed graphs (Chapter VI.12), and
also, various other types of decompositions into subgraphs (Chapter VI.24).

The first work explicitly dealing with gregarious systems was performed by Billington
and Hoffman [11], who studied the case n = 3 and F = C4, hence under the definition (G3).
They characterized those complete three-partite graphs (also, the non-balanced ones) that
admit gregarious C4-decompositions. At the end of their paper, they noted, leaving the
proof to the reader, that the case of n = 4 for F = C4 (hence, the condition (G2) for 4-cycles)
is simple and that the gregariously decomposable complete four-partite graphs are exactly
of the form K4∗m with even m. Later, the same authors [12] analyzed also n > 4 for F = C4,
which means the condition (G1). Besides Kn∗m, complete multipartite graphs with one
vertex class of different size were studied. Independently and simultaneously with the
preprint version of [12], the 4-cycle systems over Kn∗m were considered with additional
requirements of symmetry in the unpublished manuscript by Cho, Ferrara, Gould, and
Schmitt [13] and, later, in the closely related publication by Kim, Cho, and Cho [14].

Also, the later works on gregarious systems mostly dealt with cycles. There are clear
necessary conditions for the existence of any decomposition of Kn∗m into k-cycles, no matter
whether or not the gregarious assumption (?) is imposed. Namely, given a cycle length k,
let us say that a pair (n, m) is admissible for Ck if the following holds:

〈A∗〉The vertex degrees (n− 1)m are even, and the number en∗m = 1
2 m2n(n− 1) of edges

is a multiple of k.

For convenience, in Table 1, we collect the explicit form of 〈A∗〉 in terms of residue
classes for the small values k = 4, 5, 6, 8; those are the cycle lengths for which, so far, it
has been proven that 〈A∗〉 is not only necessary, but also sufficient for the existence of a
gregarious Ck-system over the entire class of Kn∗m graphs with n ≥ k. (Instead of n ≥ k,
one would only need mn ≥ k, but many papers do not allow small values of n.)

Table 1. The condition 〈A∗〉 for cycles Ck of lengths k = 4, 5, 6, 8.

C4 C5
m n m (mod 10) n

even any 0 any
odd 1 (mod 8) 5 odd

1, 3, 7, 9 1, 5 (mod 10)
2, 4, 6, 8 0, 1 (mod 5)

C6 C8
m (mod 6) n m (mod 4) n

0 any 0 any
3 1 (mod 4) 2 0, 1 (mod 4)

2, 4 0, 1 (mod 3) 1, 3 1 (mod 16)
1, 5 1, 9 (mod 12)

We exhibit the known results on gregarious decompositions of Kn∗m into cycles in
Table 2. Its first section deals with short cycles Ck, for which the problem is completely
resolved for all n ≥ k. The case of 5-cycles was settled by Smith [15]. (To our great surprise,
it was explicitly stated and proven (!) in [15] (Lemma 3) that “any integer k ≥ 3 can be
expressed as the sum of three positive integers, k = k1 + k2 + k3, where k > k1 ≥ k2 ≥
k3 ≥ 1 and k1 − k3 ≤ 1”.) Several papers have dealt with 6-cycles; after the works by Cho
and Gould [16] and by Billington, Smith, and Hoffman [17], more symmetric systems were
constructed by Cho [18]. Also, the case of 8-cycles was solved by Billington, Smith, and
Hoffman [17]. They proposed the following problem, based on the fact that 〈A∗〉 alone is
responsible for the existence of gregarious Ck-systems in the completely solved cases just
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listed. Informally, the conjecture states that the relevance of 〈A∗〉 remains the same for all
cycle lengths, and no additional necessary conditions are needed for any k.

Conjecture 1 ([17]). If Kn∗m with n ≥ k has an edge decomposition into k-cycles, then it also
admits a gregarious Ck-decomposition.

Table 2. Decomposability of Kn∗m into gregarious k-cycles (n ≥ 3, m ≥ 1, k ≥ 4), summary of
existence results; G = gregarious, R = resolvable, S = with a specified type of symmetry.

F n m Condition Properties References

C4 3 even – G [11]
≥4 any 〈A∗〉 G [12,13]
≥5 even 〈A∗〉 G & S [13,14]

C5 ≥5 any 〈A∗〉 G [15]
C6 ≥6 even n ≡ 0, 1 (3) G [16]

any 〈A∗〉 G [17]
even n ≡ 0 (3) G & S [18]

C8 ≥8 any 〈A∗〉 G [17]

Ck n = k any (a) 2 | (n− 1)m G & R [19]
Ck ≡ 0, 1 (mod k) any 〈A∗〉 G [20]

Ck, 2 - k any k | m 〈A∗〉 G [20]
Ck odd m = k prime n large (b) G & S [15]
Ck even m = 2k, k prime n large (c) G & S [15]

Ck, 2 | k k | n even n > (k−1)2+3
4

G + S [21] + [22]
Ck, 2 | k k | n− 1 even – G & S [22,23]

Ck even even k = 2n− 2 G [5]
Ck even 4 | m k = 2n G [5]
Ck n | k k

n | m (d) 2 | (n− 1)m G & R & S Theorem 1

Side conditions: (a) the combinations (n, m) = (3, 2) and (n, m) = (3, 6) are excluded; (b) it is required that n does
not have any prime factors smaller than k; (c) it is required that n− 1 does not have any prime factors smaller
than k, and n ≥ 2k− 2; (d) if n = 3, then mn/k is neither 2 nor 6.

In the second section of Table 2, we list classes of cycle lengths k for which positive
results are available, but the sufficiency of 〈A∗〉 has not yet been proven completely. In the
paper on 5-cycles, Smith [15] considered cycles of a general prime length k, as well, as-
suming that also the vertex classes have the same size k (for n odd) or its double (for n
even). In particular, here, the parity of n and m is the same. Interestingly enough, those
constructions need an additional number-theoretic assumption on the number n of classes,
as indicated in the footnotes of Table 2. It is worth noting that, in the case of odd n and m
(i.e., if |V(Kn∗m)| is odd), the construction has automorphisms by the simultaneous rotation
of vertices inside the classes and, also, by rotation among the classes.

The case where the cycle length equals the number of classes turns out to be easier
to handle and admits resolvable decompositions, as proven by Billington, Hoffman, and
Rodger [19]. General cycle lengths have also been considered by Smith [20], Kim [21], and
Cho [22,23]. A common feature of those results is that, for any fixed k, they provide an
infinite family of constructions for every fixed k, allowing arbitrarily large class size m
(and also, an arbitrarily large number n of classes, except in [19]).

On the other hand, Cho, Park, and Sano [5] considered cycles longer than n. In their
work, cycles of length 2n− 2 deserve special attention, as in the constructed decompositions,
some path systems were used, rather than cycle systems. The authors also proposed the
following condition stricter than (?). It is equivalent to (G1) or (G2) if F has at most n
vertices and leads to an interesting variant of (G3) if the order of gregarious subgraphs
under consideration exceeds the number of vertex classes:
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(??) For a subgraph F ⊂ Kn∗m with k vertices, where n ≥ 2 and k ≥ 3, it is required that⌊
k
n

⌋
≤ |V(H) ∩Vi| ≤

⌈
k
n

⌉
for every i ∈ {1, 2, . . . , n}.
Motivated by [5,19], continuing the study of k > n, in Section 5 of this paper, we

provide resolvable decompositions for an infinite family of triplets (n, m, k) under certain
divisibility conditions. The involved subgraphs are gregarious in the stronger sense re-
quired by (??). We also extended the methods to obtain resolvable gregarious cycle systems
over the combination of lexicographic and direct products of graphs.

Still concerning cycles, there are many publications dealing with decompositions in
which more than one cycle length occurs. In a very recent survey [24], Burgess, Danziger,
and Traetta summarized the results of that kind and listed 62 reference items. In particular,
Section 2.1.2 of that manuscript described a method based on the so-called “row-sum
matrices”, by which resolvable gregarious decompositions of Kn∗m and Cn∗m can be gen-
erated. The most-related recent works are [25–30]. We are grateful to the reviewer for
inviting attention to this part of the literature where similar results appeared under an
alternative terminology.

Gregarious F-systems for non-cycle graphs F have also been studied to some extent.
Supplementing Smith’s theorem [15] on 5-cycles, Fu and Hsu [31] investigated the four
connected graphs F5,5 different from C5 that have five vertices and five edges. They proved
that, for n ≥ 5 and m ≥ 2, there exists a gregarious F5,5-system over Kn∗m (for each of those
four graphs) if and only if en∗m = 1

2 m2n(n − 1) is a multiple of 5. One crucial point to
be emphasized here is that the vertex degrees (n− 1)m need not be even (as opposed to
the condition 〈A∗〉) because all four graphs in question have pendant vertices; hence, the
greatest common divisor of the vertex degrees is just 1, rather than 2.

The other non-cycle graph for which gregarious decomposability has been charac-
terized on the class of complete multipartite graphs is the “kite” or “paw” graph on four
vertices, obtained from K4 by removing the two edges of a P3 (or attaching a pendant edge
to K3). Fu, Hsu, Lo, and Huang [32] proved that, also in this case, 〈A∗〉 is necessary and
sufficient when n ≥ 4. This means that m is even or n ≡ 0, 1 (mod 8). For the same graph,
K4− E(P3), it was proven by Elakkiya and Muthusamy [33] that the direct product Km×Kn
of two complete graphs has a gregarious kite factorization if and only if mn is a multiple of
four and at least one of m and n is odd.

Finally, we mention that Yücetürk [34] studied gregarious P3-decompositions in graphs
G f , obtained from a base graph G equipped with a function f : V(G) → N, where each
vertex v is replaced with an independent set of size f (v).

To the best of our knowledge, gregarious decompositions of vertex-partitioned hyper-
graphs have not been explored so far. We initiate this open area of research here, and in
Section 6, we present the first result of this kind.

5. Blown-Up Cycles and Resolvable Decompositions

In this section, we prove results concerning the existence of decompositions into
long cycles. At some points, the following standard terminology will be used. A cycle
C in a graph G is called a Hamilton cycle if it contains all vertices of G. A graph G is
Hamilton-decomposable if it has an edge decomposition into Hamilton cycles.

A commonly used operation in constructions is the particular case of a lexicographic
product, in which an edgeless graph (independent set) is substituted into each vertex.
Concerning cycle decompositions, the following principle was stated by Cavenagh and
Billington [35] (see, also, [17]) for k even and by Smith [15] for all k: If there exists a (gregar-
ious) k-cycle decomposition of Kn∗m, then there exists a (gregarious) k-cycle decomposition
of Kn∗tm for every natural number t. Combining this general approach with more-explicit
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conditions, more symmetry properties of the resulting structures will be obtained, and the
existence of decompositions into a wider class of cycles will be derived.

Next, we prove the following result.

Theorem 1. Let k, m, n be natural numbers such that (n− 1)m is even, n ≥ 3; moreover, k is a
multiple of n, and m is a multiple of k/n:

(i) If m is odd, then Kn∗m admits a resolvable gregarious Ck-system whose automorphism group
has Zn−1 ×Zk/n ×Zmn/k as a subgroup.

(ii) If m is even, then Kn∗m admits a resolvable gregarious Ck-system unless n = 3 and mn/k ∈
{2, 6}.

Proof. Let us denote d = k/n and b = m/(k/n) = mn/k; hence, m = bd. The condition
2 | (n− 1)m implies that at least one of n− 1, b, and d is even. For the vertices of Kn∗m,
it will be convenient to use a triple indexing, vi,s,t, where i ∈ Zn−1 ∪ {n − 1}, s ∈ Zb,
and t ∈ Zd. This representation also expresses how the automorphisms will act on the
decomposition in case m is odd. In intermediate steps of the construction, single or double
indexing will also be used.

Proof of (i).

Since (n− 1)m is even, we have that n is odd whenever m is odd. Note that both b
and d are odd in this case, since m = bd. We perform a construction in three steps. We first
apply the classical result, attributed to Walecki by Lucas in [4], that if n is odd, then Kn is
Hamilton-decomposable. More explicitly, we consider the decomposition into the following
Hamilton cycles:

Cj = vjvj+1vj−1vj+2vj−2vj+3 . . . vj+h−1vj−h+1vj+hvn−1 ;

here h = (n− 1)/2 and j = 0, 1, . . . , h− 1, the last vertex vn−1 remains fixed in all these
cycles, and subscript addition is taken modulo (n− 1) for all the other vertices. Then, the
mapping µ : V(Kn)→ V(Kn) defined as µ(vn−1) = vn−1 and µ(vi) = vi+1 modulo (n− 1)
for i = 0, 1, . . . , n− 2 is an automorphism of this decomposition.

Next, each vi is expanded to a set {vi,0, . . . , vi,b−1}. This expands each Cj to a graph
Gj
∼= Cn∗b. General resolvable decompositions of Cn∗b were constructed in [19] using two

parameters s1, s2 via orthogonal pairs of quasigroups, whose existence was known from
previous literature. Instead of that, here, we give a self-contained explicit description of a
one-parameter resolvable system based on Zb, which will guarantee symmetry. (It would
not work for an even b.)

Consider any Cj; let us denote the cyclic sequence of its vertices as va1 va2 . . . van−1 vn−1.
For each s ∈ Zb, we define the base cycle:

Cj,s = va1,0 va2,s va3,0 va4,s . . . van−2,0 van−1,s vn−1,2s .

Observe that the differences between the second indices of any two consecutive
vertices take all values from Zb as s runs over Zb. This fact is obvious between the classes of
ai and ai+1 for i = 1, . . . , n− 2, and, also, between an−1 and vn−1; this also is valid between
vn−1 and a1, where the set {b− 2s | s ∈ Zb} is just Zb, because b is odd. As a consequence,
the rotation ρ : s′ 7→ s′ + 1 (mod b) performed simultaneously for all second indices
generates an orbit C j,s of Cj,s, which consists of b mutually vertex-disjoint n-cycles. Hence,
taking the collection {C j,s | s ∈ Zb} of these orbits yields a resolvable Cn-decomposition of
Cn∗b. By construction, Zb is a subgroup of the automorphism group of this system.

The construction is completed via a second expansion, substituting a set {vi,s,t | t ∈
Zd} of size d for each vertex vi,s, which yields Kn∗b ◦ Kd = Kn∗bd = Kn∗m. Then, from each
n-cycle of the form va1,s′ va2,s+s′ va3,s′ va4,s+s′ . . . van−2,s′ van−1,s+s′ vn−1,2s+s′ (as introduced
above), we obtain a subgraph isomorphic to Cn∗d. The plan is to choose one of those
Cn∗d, create a decomposition, say F0, into Hamilton cycles, and copy F0 into all the
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other Cn∗d subgraphs, using the automorphisms µ, ρ on the first and second indices. So,
the final point is how a Hamiltonian decomposition is created, for which the rotation
η : t′ 7→ t′ + 1 (mod d) over the third indices is an automorphism.

Recall that also d is odd; hence, analogous to s ∈ Zb with respect to b in the second
index, we can use t ∈ Zd with respect to d in the third index, in order to construct a
resolvable decomposition of Cn∗d into d2 cycles of length n. Each resolution class has d
cycles. Assume, in general, that one such class consists of the following n-cycles:

(va1,s1,t1 , va2,s2,t2 , . . . , van−1,sn−1,tn−1 , vn−1,sn ,tn),
(va1,s1,t1+1, va2,s2,t2+1, . . . , van−1,sn−1,tn−1+1, vn−1,sn ,tn+1),

...
(va1,s1,t1+d−1, va2,s2,t2+q−1, . . . , van−1,sn−1,tn−1+d−1, vn−1,sn ,tn+d−1).

The last edges of these cycles are:

va1,s1,t1 vn−1,sn ,tn , va1,s1,t1+1vn−1,sn ,tn+1, . . . , va1,s1,t1+d−1vn−1,sn ,tn+d−1.

We replace them with:

va1,s1,t1 vn−1,sn ,tn+1, va1,s1,t1+1vn−1,sn ,tn+2, . . . , va1,s1,t1+d−1vn−1,sn ,tn

in all cycles of the decomposition, performed for the corresponding values of the indices in
each cycle. This modification means just rotations on the edge set, namely on the edges
between the vertex classes obtained from va1,s1 and vn−1,sn (where a1, s1, sn also depend
on the cycle under consideration). Hence, another decomposition is obtained, while the d
cycles of length n in each resolution class are modified to one cycle of length dn. Observe
further that η remains an automorphism of the system. This completes the proof of Part (i).

Proof of (ii) for n ≥ 3.

If m is even, then the structure of constructions is less transparent. In this case, we
first apply the Billington–Hoffman–Rodger Theorem [19] (see Table 2) for cycle length n in
the graph Kn∗b, where b = mn/k. This yields a resolvable Cn-decomposition with b2 cycles
and b resolution classes. The excluded cases mn/k = 2 and mn/k = 6 arise from the fact
that the constructions for n = 3 apply two orthogonal Latin squares, which do not exist
in those cases. (The existence of two orthogonal Latin squares is highly nontrivial when
the order is the double of an odd integer. The history of this problem over the centuries
is discussed on page 12 of [3]. The final solution was achieved by Bose, Shrikhande, and
Parker in [36].) For all odd n ≥ 5, alternative constructions are provided in [19] for b = 2
and b = 6, as well; the cases of even n ≥ 4 are handled by a different method.

Once a resolvable Cn-decomposition of Kn∗b is at hand, we substitute a set of size d
for each vertex. Then, each Cn is expanded to a copy of Cn∗d, and those copies form a
resolvable Cn∗d-decomposition of Kn∗bd = Kn∗m. Now, we apply a result of Hetyei [37]
and Laskar [38], who proved that Cn∗d is Hamilton-decomposable. In this way, the cycles
of each resolution class in the Cn-decomposition of Kn∗b yield d resolution classes for a
decomposition of Kn∗bd = Kn∗m into cycles Cdn = Ck.

A similar theorem on resolvable gregarious decomposability can be proven for the
combination of the two graph products ◦ and × also. For the proof, we apply the following
important results.

Theorem 2. Let n ≥ 3 and m ≥ 1 be any integers:

(i) (Bermond [39]) If two graphs G and H are Hamilton-decomposable and at least one of them
has odd order, then their direct product G× H is Hamilton-decomposable, as well.

(ii) (Baranyai and Szász [40]) If two graphs G and H are Hamilton-decomposable, then their
lexicographic product G ◦ H is Hamilton-decomposable, as well.

Now, an extension of Theorem 1 can be stated as follows.
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Theorem 3. Let G1, . . . , G` (` ≥ 2) be Hamilton-decomposable graphs of odd orders, n =

∏`
i=1 |V(Gi)|, and let k, m be natural numbers. Let further G = G1 ⊗1 G2 ⊗2 · · · ⊗`−1 G`,

where ⊗1, . . . ,⊗`−1 ∈ {◦,×} (any sequence of ◦ and ×). If k is a multiple of n and m is a
multiple of k/n, then the graph G ◦ Km admits a resolvable gregarious Ck-system.

The same conclusion holds if some of the Gi have even orders, but m is even and if ⊗i = ×
and |V(Gi)| is even, then all the |V(Gj)| with j > i are odd.

Proof. By assumption, every Gi is Hamilton-decomposable. First, we prove by backward
induction on i = `− 1, `− 2, . . . , 1, for both parts of the theorem, that each Hi := Gi ⊗i
Gi+1 ⊗i+1 · · · ⊗`−1 G` is also Hamilton-decomposable. This requirement is satisfied by
H` = G`, by assumption. Assume that Hi+1 is Hamilton-decomposable for a certain i.
If ⊗i = ◦, then the Baranyai–Szász theorem directly implies that Hi = Gi ⊗i Hi+1 is
Hamilton-decomposable, as well. If ⊗i = ×, then we observe that at least one of Gi and
Hi+1 has odd order. This is obvious if all |V(Gj)| are odd; it also follows from the parity
condition associated with ⊗i in the second part of the theorem if some of the |V(Gj)| are
even. Consequently, we can apply Bermond’s theorem to derive the claimed conclusion
that G = G1 ⊗1 · · · ⊗`−1 G` has a decomposition into cycles Cn.

The Cn-decomposition of G yields a decomposition of G ◦ Km into edge-disjoint copies
of Cn∗m. Note that the vertex classes in any of those Cn∗m are the same as in G. Moreover,
(n− 1)m is even, because, by assumption, either all |V(Gi)| are odd and, thus, also n is
odd or, else, m is even. So, the conditions of Theorem 1 are satisfied, and the methods in its
proof can be applied. It follows, in particular, that each copy of Cn∗m in the decomposition
of G ◦ Km admits a resolvable decomposition into gregarious k-cycles. The union of its
resolution classes provides a decomposition of G ◦ Km with the required properties. This
completes the proof of the theorem.

6. Gregarious Decompositions of Hypergraphs

In this section, we introduce the generalization of gregarious decompositions from
graphs to hypergraphs and carry out its study in the first nontrivial particular case. The ter-
minology and notation needed for our discussion is given below; for a general reference on
the theory of hypergraphs, we cite the classical monograph [41].

A hypergraph H = (V, E) has a finite vertex set V and a collection E of nonempty
subsets of V called edges. In analogy with Definition 4 on graphs, a decomposition of hy-
pergraph H is an edge-disjoint collection of subhypergraphs F1, . . . , Fs of H, whose union is
H. Similarly, an F-decomposition—where F is a specified hypergraph—is a decomposition
such that each Fi is isomorphic to F. If a vertex partition (V1, . . . , Vn) on V is given, then
the definition (?) of gregarious decomposition extends to hypergraphs in a natural way,
requiring that each Fj either meets all Vi or, if F has fewer than n vertices, then all vertices of
each Fj belong to mutually distinct vertex classes Vi. In this context, the following general
problem arises.

Problem 1. For a specified hypergraph F, give sufficient conditions for classes of hypergraphs H to
admit a gregarious F-decomposition.

It is also natural to introduce the stricter version (??) of gregarious decompositions
for hypergraphs as well. In our case, however, the order of the considered F will be smaller
than n; therefore, the two conditions (?) and (??) will coincide. In the next definition,
we collect notation for particular types of hypergraphs for which we will give a solution in
this section.

Definition 7. Let r ≥ 3, n ≥ r, and m ≥ 1 be natural numbers:

(i) The complete r-uniform hypergraph K(r)
n of order n has an n-element vertex set, and its edge

set consists of the r-element sets of vertices.
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(ii) The vertex set of the hypergraph K(r)
n∗m is V1 ∪ · · · ∪ Vn, where |Vi| = m for all 1 ≤ i ≤ n

and Vi ∩ Vj = ∅ for all 1 ≤ i < j ≤ n; the edges of K(r)
n∗m are those r-element subsets of

V1 ∪ · · · ∪Vn that have at most one vertex in each Vi.
(iii) The three-uniform hypergraph H(3)

2 has four vertices and two three-element edges; i.e., it is
isomorphic to the hypergraph that has vertex set {a, b, c, d} and edge set {abc, abd}.

In this section, we concentrate on gregarious H(3)
2 -decompositions of K(3)

n∗m. For any

r, each edge of K(r)
n gives rise to mr edges of K(r)

n∗m. In particular, the edge set of K(3)
n∗m

consists of m3(n
3) vertex triples. Concerning m = 1, it was proven by Bermond, Germa, and

Sotteau [42] that K(3)
n admits a H(3)

2 -decomposition if and only if (n
3) is even, i.e., if and only

if n ≡ 0, 1, 2 (mod 4). Recently, in connection with “mixed hypergraph colorings” (cf., the
monograph [43]), various new constructions of H(3)

2 -systems over K(3)
n and, more generally,

over K(3)
n∗m were designed by Bonacini and Marino in [44,45] and by Bonacini, Gionfriddo,

and Marino in [46]. Those decompositions of K(3)
n∗m enjoy several nice combinatorial prop-

erties, but they are not gregarious in general. In the following result, we characterize the
K(3)

n∗m hypergraphs that have gregarious H(3)
2 -decompositions.

Theorem 4. For two integers n ≥ 4 and m ≥ 1, the hypergraph K(3)
n∗m admits a gregarious H(3)

2 -
decomposition if and only if (n

3) or m is even, i.e., either n ≡ 0, 1, 2 (mod 4) or n ≡ 3 (mod 4)
and m is even.

Proof. For the existence of any decomposition into copies of H(3)
2 , the number of edges has

to be even. In the case of K(3)
n∗m, this means 2 | m3(n

3); hence, the conditions given in the
theorem are necessary.

To prove sufficiency, assume first that n ≡ 0, 1, 2 (mod 4). Then, we can start with an
H(3)

2 -decomposition of K(3)
n , say F , as constructed in [42]. Let abc, abd be the two edges in

a copy F of H(3)
2 in F . Moving from K(3)

n to K(3)
n∗m, the vertices a, b, c, d of F are expanded

to m-element sets of vertices ai, bi, ci, di (i = 1, . . . , m). Now, we define the collection (*m)
as below:

{ {apbqcr, apbqdr} | 1 ≤ p, q, r ≤ m }

of m3 copies of H(3)
2 . Performing this for every F ∈ F , a gregarious decomposition of K(3)

n∗m
is obtained.

In the rest of the proof, we have to construct systems for n ≡ 3 (mod 4). Then, m is
even; we first consider the smallest particular case, m = 2. Let the vertex classes of K(3)

n∗2
be Vi = {xi, yi} for i = 1, . . . , 4k + 3. We set V′ =

⋃4k
i=1 Vi and V′′ = V4k+1 ∪ V4k+2 ∪

V4k+3. Here, |V′| is a multiple of four; hence, the edges inside V′ can be decomposed
into a gregarious H(3)

2 -system as above. There remain to decompose three further types
of edges:

(a) The eight edges inside V′′; these are the vertex triples in V4k+1 ×V4k+2 ×V4k+3;
(b) The 12|V′| = 96k edges with one vertex in V′ and two vertices in V′′, containing a

vertex pair from (V4k+1 ×V4k+2) ∪ (V4k+1 ×V4k+3) ∪ (V4k+2 ×V4k+3);
(c) The

(
(|V

′ |
2 )− 4k

)
|V′′| = 4(4k

2 )|V′′| = 48k(4k− 1) edges with two vertices in distinct

parts Vi, Vj of V′ (1 ≤ i < j ≤ 4k) and one vertex in V′′, which means four possible
vertex pairs from Vi ×Vj for each of the (4k

2 ) choices of i, j, together with any one of
the six vertices from V′′.

The set of edges described in (c) can be decomposed separately from the other two
types, defining three pairs of edges for each relevant vertex pair vi, vj from V′ as follows:

{vivjx4k+1, vivjy4k+2}, {vivjx4k+2, vivjy4k+3}, {vivjx4k+3, vivjy4k+1}.
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These three copies of H(3)
2 are taken for all vi ∈ {xi, yi} and vj ∈ {xj, yj}, 1 ≤ i < j ≤ 4k.

Further, the eight edges from (a) can be paired with eight edges from (b), which meet the
first vertex class V1:

{v4k+1v4k+2x1, v4k+1v4k+2x4k+3}, {v4k+1v4k+2y1, v4k+1v4k+2y4k+3},

and these are taken for all the four combinations of v4k+1 ∈ {x4k+1, y4k+1} and v4k+2 ∈
{x4k+2, y4k+2}. The other edges containing such a pair {v4k+1, v4k+2} can be decomposed
into 4k− 1 copies of H(3)

2 as

{v4k+1v4k+2xi, v4k+1v4k+2yj}

where (xi, yj) ∈ {(x2, y3), (x3, y4), . . . , (x4k−1, y4k), (x4k, y2)}. The rest consists of the edges
that have one vertex in each of the three sets V′, V4k+1 ∪V4k+2 and V4k+3. Then, for every
v0 ∈ V4k+1 ∪ V4k+2 and v4k+3 ∈ V4k+3 and for all odd i = 1, 3, . . . , 4k − 1, we take the
following two copies of H(3)

2 :

{v0v4k+3xi, v0v4k+3xi+1}, {v0v4k+3yi, v0v4k+3yi+1}.

In this way, a gregarious H(3)
2 -decomposition is obtained for m = 2.

Finally, if m is even and m > 2, we begin with a gregarious H(3)
2 -decomposition of K(3)

n∗2
just constructed and proceed analogously in the way as we did during the transformation
K(3)

n → K(3)
n∗m for n ≡ 0, 1, 2 (mod 4). The difference is that, in the present case, each vertex

of K(3)
n∗2 will be expanded to a set of m/2 vertices. So, the subscripts p, q, r of (∗m) now

range between 1 and m/2. Then, each copy of H(3)
2 in K(3)

n∗2 gives rise to m3/8 copies of H(3)
2

to form a gregarious decomposition of K(3)
n∗m.

7. Discussion

Decomposition techniques are very important in both theory and practice. In this pa-
per, we considered “gregarious decompositions” of graphs and hypergraphs. This research
established a link between partitions of the edge set and a fixed partition of the vertex set,
requiring that each sub(hyper)graph in the decomposition meets as many classes of the
given vertex partition as possible. In Section 4, we gave a detailed survey of the existing
literature on the subject.

In Section 5, we proved the decomposability into relatively long gregarious cycles,
for complete equipartite graphs (Theorem 1) and, more generally, for graph classes ob-
tained by two types of product operations, where the two types may occur simultaneously
(Theorem 3). Our new results provide extensions of some of the known theorems in various
directions concerning gregarious decompositions: (1) further types of subgraphs, (2) the
existence of resolution classes, (3) guaranteed types of symmetry, and (4) larger classes of
host graphs. Each of these four offer much space for further research.

In Section 6, we initiated the analogous problem for hypergraphs and achieved the first
result of that kind. We solved the design-theoretical spectrum problem for the gregarious
decomposability of complete equipartite three-uniform hypergraphs into subhypergraphs
of order four with two edges. Our Theorem 4 is just the first step on a long way, opening a
wide area for future studies. All four aspects, just mentioned concerning Section 5, would
be of definite interest to explore on hypergraphs as well. What is more, in hypergraphs,
many further types of properties are worth taking into consideration. One example from
the cited papers [45,46] is the class of edge-balanced decompositions. Higher degrees of
balance may also occur in decompositions of hypergraphs where the size of edges is larger
than three.
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