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Abstract: Several new acceptance sampling plans using various probability distribution methods
have been developed in the literature. However, there is no published work on the design of new
sampling plans using trigonometric-based probability distributions. In order to cover this amazing
and fascinating research gap, we first introduce a novel probabilistic method called a new modified
cosine-G method. A special member of the new modified cosine-G method, namely, a new modified
cosine-Weibull distribution, is examined and implemented. The density function of the new model
possesses symmetrical as well as asymmetrical behaviors. The usefulness and superior fitting power
of the new modified cosine-Weibull distribution are demonstrated by analyzing an asymmetrical
data set. Furthermore, based on the new modified cosine-Weibull distribution, we develop a new
repetitive acceptance sampling strategy for attributes with specified shape parameters. Finally, a
real-world application is presented to illustrate the proposed repetitive acceptance sampling strategy.

Keywords: cosine function; weibull model; acceptance sampling plan; producer’s risk; consumer’s risk;
median life; repetitive sampling; statistical modeling

1. Introduction

The acceptance sampling (AS) plan is a prominent and an efficient quality control
mechanism. It is frequently implemented to ensure and verify the quality and conditions of
services or products, etc. The AS plan is implemented to inspect the products of lots and to
decide whether to keep or extract the incoming products of lots. Rather than investigating
the entire lot, the AS technique allows us to decide about the entire lot via its portion (i.e.,
a sample of the entire lot) only. Thus, if the selected portion of the entire lot appears as
good as expected, the entire lot as per the result will be accepted. On the other hand, if the
selected portion of the entire lot does not appear as good as expected, the entire lot will be
rejected accordingly. Henceforth, the products will be given back to the supplier [1–3].

The AS plan has great applicability on industrial scales and is implemented to decrease
the expenditure of the inspection process. It provides a guideline to the inspection team
on whether the specified products or services are reliable enough for marketing or not.
In addition to the reduction of the inspection expenditure, it also helps to prevent both
suppliers and buyers from future losses by minimizing:
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(i) the supplier’s risk to prevent the rejection of the good quality lot, and
(ii) the consumer’s risk to prevent the buyers from accepting the poor quality lot. For

more detail, see [4,5].

Due to the importance of the AS plan in the industry and other commercial sectors,
researchers have been trying to develop more and more efficient AS plans using different
probability distributions. For example,

(i) Singh and Tripathi [6] introduced an AS plan using the inverse Weibull distribution,
(ii) Abushal et al. [7] implemented the power inverted Topp–Leone distribution for

developing a new AS plan,
(iii) Tripathi et al. [8] used the inverse log-logistic distribution to introduce a new AS plan,
(iv) Alyami et al. [9] created a new AS plan by adopting the Fréchet binomial distribution,
(v) Algarni [10] proposed a group acceptance sampling (GAS) plan with the three-

parameter Weibull distribution,
(vi) Nassr et al. [11] used the inverted Topp-Leone distribution for studying a new AS plan,
(vii) Khan et al. [12] created the fuzzy AS plan using the transmuted Weibull distribution,
(viii) Fayomi and Khan [13] proposed a group AS plan using the generalized transmuted

exponential distribution,
(ix) Al-Omari and Alomani [14] introduced a double AS plan by using the Xgamma

distribution, and
(x) Yiğiter et al. [15] recommended a group AS plan for the compound Weibull-exponential

distribution, among others.

From the above-mentioned literature, we can see the development of new AS plans
has received great attention. Nonetheless, there is a lack of established research work
and guidelines for constructing new AS plans through incorporating trigonometric-based
probability distributions. In this ongoing part of our research, we aim to cover this curious
and astonishing research gap. The core motivation of this work is therefore to design and
implement a new AS plan by means of the cosine function.

In this paper, we first attempt to introduce a new probabilistic method by considering
the cosine function. The suggested method is called a new modified cosine-G (NMC-G)
family. The beauty of the NMC-G family is that it does not have any extra or additional
parameters. In the second attempt, we incorporate the proposed model for generating a
new AS plan.

Definition 1. X follows a NMC-G model if its cumulative distribution function (CDF) F(x; ηηη) is
expressed by

F(x; ηηη) = 1−
(

1− cos
[

π
2 Ḡ(x; ηηη)

]
1 + cos

[
π
2 Ḡ(x; ηηη)

])2

, x ∈ R, (1)

where Ḡ(x; ηηη) = 1− G(x; ηηη) and G(x; ηηη) is a valid CDF depending upon the parameter vector
ηηη. The expression F(x; ηηη) defined by Equation (1) is a valid CDF as limx→−∞ F(x; ηηη) = 0 and
limx→∞ F(x; ηηη) = 1, because G(x; ηηη) is a CDF. Moreover, F(x; ηηη) is an increasing differentiable
function with a derivative provided in Equation (2).

The probability density function (PDF) f (x; ηηη) is

f (x; ηηη) =
2πg(x; ηηη) sin

[
π
2 Ḡ(x; ηηη)

](
1− cos

[
π
2 Ḡ(x; ηηη)

])(
1 + cos

[
π
2 Ḡ(x; ηηη)

])3 , x ∈ R, (2)

where g(x; ηηη) = d
dx G(x; ηηη).

With a link to G(x; ηηη), the survival function (SF) S(x; ηηη) is

S(x; ηηη) =

(
1− cos

[
π
2 Ḡ(x; ηηη)

]
1 + cos

[
π
2 Ḡ(x; ηηη)

])2

, x ∈ R.
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The hazard function (HF) h(x; ηηη) is

h(x; ηηη) =
2πg(x; ηηη) sin

[
π
2 Ḡ(x; ηηη)

](
1 + cos

[
π
2 Ḡ(x; ηηη)

])(
1− cos

[
π
2 Ḡ(x; ηηη)

]) , x ∈ R.

The cumulative hazard function (CHF) H(x; ηηη) is

H(x; ηηη) = −2 log

(
1− cos

[
π
2 Ḡ(x; ηηη)

]
1 + cos

[
π
2 Ḡ(x; ηηη)

]), x ∈ R.

In this paper, using the approach defined in Equation (1), we study a new trigonometric
distribution. The new trigonometric distribution may be called a new modified cosine-
Weibull (NMC-Weibull) distribution. Section 2 offers the basic key functions and visual
illustrations of the NMC-Weibull distribution. The usefulness and optimality of the NMC-
Weibull distribution are shown in the industrial sectors by analyzing two applications
in Section 3. In addition to the practical illustrations, the important work based on the
NMC-Weibull distribution is performed in Section 4. The work that is carried out in
Section 4 deals with the construction of the NMC-Weibull distribution-based repeating
acceptance sampling strategy for attributes with specified shape parameters. Finally,
Section 5 summarizes the conclusions drawn from this research work.

2. Special Model

Assume that X(∈ R+) follows the Weibull distribution (chosen as a special case of the
NMC-G method) with parameters α > 0 and τ > 0. Then, the CDF G(x; ηηη) of X is

G(x; ηηη) = 1− e−τxα
, (3)

and PDF g(x; ηηη)

g(x; ηηη) = ατxα−1e−τxα
, (4)

where ηηη = (α, τ).
Incorporating Equation (3) in Equation (1) gives the CDF of the proposed NMC Weibull

distribution, expressed as

F(x; ηηη) = 1−

1− cos
[

π
2 e−τxα

]
1 + cos

[
π
2 e−τxα]

2

, x ∈ R+, (5)

and SF S(x; ηηη)

S(x; ηηη) =

1− cos
[

π
2 e−τxα

]
1 + cos

[
π
2 e−τxα]

2

, x ∈ R+.

The PDF f (x; ηηη) corresponding to Equation (5) is

f (x; ηηη) =
2πατxα−1e−τxα

sin
[

π
2 e−τxα

](
1− cos

[
π
2 e−τxα

])
(
1 + cos

[
π
2 e−τxα])3 , x ∈ R+. (6)

Furthermore, the expression of the HF h(x; ηηη) of the NMC-Weibull distribution is

h(x; ηηη) =
2πατxα−1e−τxα

sin
[

π
2 e−τxα

]
(
1 + cos

[
π
2 e−τxα])(1− cos

[
π
2 e−τxα]) , x ∈ R+,
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and the expression of the CHF H(x; ηηη) of the NMC-Weibull distribution is

H(x; ηηη) = −2 log

1− cos
[

π
2 e−τxα

]
1 + cos

[
π
2 e−τxα]

, x ∈ R+.

The visual representations for F(x; ηηη) and S(x; ηηη) of the NMC-Weibull distribution are
shown in Figure 1. The plots of F(x; ηηη) and S(x; ηηη) are sketched for α = (1.2, 3.6, 4.5, 6.4)
and τ = (0.3, 0.1, 0.02, 0.001).

The plots of f (x; ηηη) for α = (0.5, 3.6, 4.5, 6.4), τ = (0.2, 0.1, 0.02, 0.001) and the plots of
h(x; ηηη) for α = (0.5, 1.4, 1.1), τ = (0.2, 0.4, 0.7) are, respectively, presented in Figures 2 and 3.

From Figure 2, we can see that when α < 1, f (x; ηηη) of the NMC-Weibull model has a
reverse-J shape (or decreasing shape). Furthermore, we can see that when the value of α
increases and the value of τ decreases, f (x; ηηη) of the NMC-Weibull distribution captures
the following:

(a) a right-skewed shape when α = 3.6 and τ = 0.1,
(b) a symmetrical shape when α = 4.5 and τ = 0.02, and
(c) a left-skewed shape when α = 6.4 and τ = 0.001.

Figure 3 shows that when α < 1, h(x; ηηη) of the NMC-Weibull has a decreasing form.
When α > 1, h(x; ηηη) of the NMC-Weibull distribution has an increasing form. Moreover, when
α > 1 and the value of τ increases, h(x; ηηη) of the NMC-Weibull distribution tends to unimodal.
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Figure 1. The visual representations for (a) F(x; ηηη) and (b) S(x; ηηη) of the NMC-Weibull distribution
for α = (1.2, 3.6, 4.5, 6.4) and τ = (0.3, 0.1, 0.02, 0.001).
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Figure 2. The PDF f (x; ηηη) plots for α = (0.5, 3.6, 4.5, 6.4) and τ = (0.2, 0.1, 0.02, 0.001).
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Figure 3. The HF h(x; ηηη) plots for α = (0.5, 1.4, 1.1) and τ = (0.2, 0.4, 0.7).

3. Data Analysis

Here, we practically show the implications of the NMS-Weibull distribution on an
industrial scale. For this purpose, we consider a reliability engineering data set taken
from [16]. The observations of the data set represent the waiting period between each
successive failure when testing secondary reactor pumps, which are measured in thou-
sands of hours. The observations of the considered reliability data sets are 6.560, 5.320,
4.992, 4.082, 3.465, 2.160, 1.921, 1.359, 1.060, 0.954, 0.746, 0.614, 0.605, 0.491, 0.402, 0.358,
0.347, 0.273, 0.199, 0.150, 0.101, 0.070, 0.062. Some descriptive measures of the data set
are: n = 23, minimum = 0.062, maximum = 6.560, mean/x̄ = 1.578, median/Q2 = 0.614,
variance = 3.7275, Q1 = 0.310, standard deviation = 1.9306, Q3 = 2.041, skewness = 1.3643,
kurtosis = 3.54453, and range = 6.498. For information on researchers who have recently
considered this data set, see [17,18]. Figure 4 sketches some baseline plots for the secondary
reactor pump data set.
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Figure 4. Some baseline plots for the secondary reactor pump data set.

By means of secondary reactor pump data, the performance of the NMC-Weibull
distribution is compared numerically and visually with the baseline Weibull distribution.
Additionally, the performance of the NMC-Weibull distribution is also compared numer-
ically and visually with the (a) new modified Weibull (NM-Weibull) distribution with
parameters α, τ ∈ R+, σ ≥ 1, σ ≤ −1, (b) exponential TX Weibull (ETX-Weibull) distri-
bution with parameters α, τ ∈ R+, θ > 1, and (c) new beta power transformed Weibull
(NBPT-Weibull) distribution with parameter β ∈ R+.

For X ∈ R+, the SFs of the rival distributions are

• Weibull distribution
S(x) = e−τxα

.
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• NM-Weibull distribution

S(x) = 1−
(

1− e−τxα

σ

)(
σ− e−τxα

)
.

• ETX-Weibull distribution

S(x) =
θe−τxα

θ − 1 + e−τxα .

• NBPT-Weibull distribution

S(x) =
β− β

(
1−e−τxα

)
+ e−τxα

β
.

The next step after selecting the competing models is to consider evaluation criteria
to identify which distribution has the most optimal fit and best suited for the secondary
reactor pump data. To figure out the most optimal model for the secondary reactor pumps
data, we consider three well-known evaluation criteria. These assessment criteria are

• The Cramér–von Mises (CM)

n

∑
i=1

[
2i− 1

2n
− G(xi)

]2
+

1
12n

.

Here, n and xi indicate the data size (or number of observations) and the ith observa-
tions in the data, respectively.

• The Kolmogorov–Smirnov (KS)

supx
∣∣G(x)− Gn(x)

∣∣,
where Gn(x) represents the empirical CDF.

• The Anderson–Darling (AD)

−n−
n

∑
i=1

(2i− 1)
n

λi,

where the term λi is
[log{1− G(xn+1−i)}+ log G(xi)].

In addition to the above three evaluation criteria, the p-value relating to the KS test
is also taken into account to calculate when comparing the performances of the fitted
distributions. The numerical values of the evaluation criteria as well as the p-value are
obtained by implementing the optim() with R software using the SANN method.

After carrying out the analysis, the values of
(
α̂MLE, τ̂MLE, σ̂MLE, θ̂MLE, β̂MLE

)
are

provided in Table 1. In order to check the uniqueness of α̂MLE and τ̂MLE of the NMC-
Weibull distribution, we obtain the log-likelihood profiles plots of α̂MLE and τ̂MLE. Figure 5
illustrates and confirms the uniqueness of α̂MLE and τ̂MLE.

With regard to the secondary reactor pump data, Table 2 reports the assessment
criteria values as well as the p-value for the fitted distribution. Based on our analysis of the
secondary reactor pumps data, we can conclude that the NMC-Weibull distribution may
be the best choice to apply for the data sets on the industrial scale.

In addition to the numerical assessments in Table 2, we also carry out a visual illustra-
tion/comparison of the fitted distributions. For such comparison through the secondary
reactor pumps data, we consider three graphical tools such as the (i) fitted PDF, (ii) em-
pirical CDF, and (iii) estimated survival plots. Figure 6 presents the fitted plots, which
graphically illustrate and demonstrate the fitting ability (or optimality) of the competing
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distributions. The given visual results in Figure 6 show that the secondary reactor pump
data set is closely fitted by the NMC-Weibull distribution.
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Figure 5. The log-likelihood profiles of α̂MLE and τ̂MLE of the NMC-Weibull model for the secondary reactor
pumps data.

Table 1. Using the given secondary reactor pumps data, the values of α̂MLE, τ̂MLE, σ̂MLE, θ̂MLE, and
β̂MLE of the fitted distributions.

Models α̂MLE τ̂MLE σ̂MLE θ̂MLE β̂MLE

NMC-Weibull 0.8587 0.1334 - - -
Weibull 0.8091 0.7642 - - -
ETX-Weibull 0.8009 26.772 - 0.7902 -
NM-Weibull 0.8000 0.7835 26.5708 - -
NBPT-Weibull 0.8077 1.0008 - - 0.7657
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Figure 6. The optimal fitting comparison of the rival distributions for the data from the secondary reactor pumps.
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Table 2. The assessment criteria values of the rival distributions for the data from the secondary
reactor pumps.

Models CVM AD KS p-Value

NMC-Weibull 0.0575 0.3894 0.1105 0.9126
Weibull 0.0655 0.4315 0.1192 0.8615
ETX-Weibull 0.0664 0.4365 0.1168 0.8766
NM-Weibull 0.0662 0.4353 0.1192 0.8614
NBPT-Weibull 0.0654 0.4310 0.1183 0.8667

4. A New Repetitive Acceptance Sampling Plan

In medical research and life testing trials, type-I and type-II filtering are two censoring
techniques that are frequently employed. The test duration is fixed by the type-I filtering
system and the number of failures is fixed by the type-II filtering technique. Nonetheless,
time-truncated schemes are now preferred in life testing. In life testing, the experiment is
often terminated when the allotted amount of time has passed. To cut down on the time
and expense of the experiment to obtain the ultimate conclusion, this plan is more practical
than censorship systems.

Generally speaking, an attribute sampling plan is easier to apply than a variable sampling
plan, but it does require more samples. A specified number of units from each lot are inspected
during attribute sampling, and each unit is labeled as either conforming or nonconforming.
Accept the lot if the sample’s nonconforming unit count is less than or equal to the required
minimum; if not, reject it. Depending on how many samples need to be taken from the lot,
sampling plans can be further divided into single, double, multiple, sequential, repeated, and
more categories. The cost of the inspection, which is directly correlated with sample size, is a
concern for the producers during the product inspection process. Thus, to reduce the expense,
duration, and effort of the inspection, the researchers would like to suggest a more effective
sample approach. Industrial engineers love single sampling plans (SSP) for their simplicity, but
in certain situations, deciding on lot sentencing solely based on a single sample might damage
goodwill between producers and consumers.

In circumstances where sampling inspection products are harmful and extremely
expensive, a repeated sampling plan is more suitable. Based on the excellent deal’s repeated
sample test findings, this plan allows for either acceptance or rejection of the lot. Comparing
the repeated sampling plan to the single sampling plan, the latter can provide the smallest
sample size with the appropriate protection. Regardless of the established acceptance
sampling plans (ASP), the lot decision is always linked to the producer and consumer risk.
This means that one may choose to accept a subpar lot or reject an excellent lot.

The risk to the consumer (β) is the possibility that a poor lot will be accepted, whereas the
risk to the producer (α) is the possibility that a good lot will be rejected. Therefore, the sampling
plan’s objective is to collect as few samples as feasible to minimize these risks; see [19–23].

If a sampling plan was designed in a method that required a minimum sample size, it
was deemed to be the best one out of the ones that were available for examination. These
designs are referred to as inexpensive sampling plans because they have a minimal sample
size, which reduces the inspection costs. It saves time as well. The main advantage of the
recurring group acceptance sampling approach is a reduction in the ASN based on attribute
repetitive group sampling. Sherman [24] proposed a repeating group acceptance sampling
approach for a normal distribution. According to him, the repeated group acceptance
sampling plan that was developed offers a sample size that is as near to the consumer risk
as feasible. Many authors thought about repetitive acceptance sampling plans (RASP) for
different distributions; for additional information, see [25–32].

The 100qth percentile of the NMC-Weibull is given as

tq =

(
− 1

λ
log

[
2
π

cos−1

(
1− (1− q)1/2

1 + (1− q)1/2

)]) 1
τ

. (7)
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On simplifying Equation (7), we obtain

λtτ
q = − log

[
2
π

cos−1

(
1− (1− q)1/2

1 + (1− q)1/2

)]
,

λtτ
q =

ςq

tτ
q

,

where

ςq = − log

[
2
π

cos−1

(
1− (1− q)1/2

1 + (1− q)1/2

)]
.

In order to obtain a lot with defective fraction p, we postulate the termination time t0
as a multiple of the specified lifetime t0

q. That is, t0 = at0
q, for a constant a which is known

as the experiment termination ratio and the targeted 100qth lifetime percentile, t0
q, thus,

λtτ
0 =

ςq

(
at0

q

)τ

tτ
q

.

4.1. Design of the Repetitive Acceptance Sampling Scheme

The following is a description of the RASP under the proposed plan’s truncated life test:

• Step-1: select a sample at random of size n from the whole population, and subject
them to a timed life test t0

• Step-2: if the number of failures (D) is less than (or equal to) c1, accept the lot (first
acceptance number). As soon as the number of defectives surpasses c2, the test and
the lot should be terminated c2 , where c2 ≥ c1.

• Step-3: if c1 < D ≤ c2 , then move to Step-1. Continue the earlier experiment. The
parameters of the suggested plan are n, c1 and c2. The single sample plan is generalized
into the characteristics repetitive acceptance sampling plan, which reduces the above-
mentioned strategy to a SSP. The operational characteristic (OC) function, from which
the probability of acceptance lot is determined, is deduced to be:

PA(p) =
Pa

Pa + Pr
, 0 < p < 1, (8)

where Pa is the probability of acceptance of a submitted lot with a fraction of defective P
based on a given sample.

Pa(p) = Pr(D ≤ c1|p) =
c1

∑
i=0

[(
n
i

)
pi(1− p)n−i

]
, (9)

whereas, Pr is the corresponding probability of lot rejection.

Pr(p) = Pr(D > c2|p) = 1−
c2

∑
i=0

[(
n
i

)
pi(1− p)n−i

]
. (10)

The OC specified in Equation (8) can therefore be rewritten as

PA(p) =
∑c1

i=0

[
(n

i )pi(1− p)n−i
]

∑c1
i=0

[
(n

i )pi(1− p)n−i
]
+
(

1−∑c2
i=0

[
(n

i )pi(1− p)n−i
]) , 0 < p < 1. (11)

The design parameters of the proposed RASP are n, c1 and c2, as pointed out by Aslam
and Jun [33]. It could be simplest to state the time of termination t0, as a multiple of the
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specified length a. Accordingly, we will consider that t0 = at0
q for a constant a and the

targeted 100qth lifetime percentile, t0
q, thus,

λtτ
0 =

aτςq(
tq

t0
q

)τ .

At two places on the OC curve, we select the strategy that accounts for both the
producer’s and the customer’s risk. This viewpoint was adopted by many writers, such
as Fertig and Mann [34], to create their sample plans. This approach calculates the quality
level as a ratio of its life expectancy to the specified value tq

t0
q
. A minimum probability

of lot acceptance of 1− α at the Acceptance Quality Level (AQL) is demanded from the
producers; let p1 be the probability of a failure corresponding to the producer’s risk α at
AQL, say tq

t0
q
= 1.5, 1.6, 1.8, 2.0, 2.2. However, from the standpoint of the customer, the lot

rejection probability should be at most β at the Restricted Quality Level. Let p2 stand for
the probability of a corresponding consumer’s risk β at LQL, say tq

t0
q
= 1. The following two

inequality conditions must be met for the RASP parameters n, c1, and c2:

PA(p1) =
∑c1

i=0

[
(n

i )pi
1(1− p1)

n−i
]

∑c1
i=0

[
(n

i )pi
1(1− p1)

n−i
]
+
(

1−∑c2
i=0

[
(n

i )pi
1(1− p1)

n−i
]) ≥ 1− α, (12)

and

PA(p2) =
∑c1

i=0

[
(n

i )pi
2(1− p2)

n−i
]

∑c1
i=0

[
(n

i )pi
2(1− p2)

n−i
]
+
(

1−∑c2
i=0

[
(n

i )pi
2(1− p2)

n−i
]) ≤ β, (13)

where p1 and p2 are given by

p1 = 1−


1− cos

π
2

1− e
− aτ ςq

(tq/t0q)


1 + cos

π
2

1− e
− aτ ςq

(tq/t0q)





2

,

and

p2 = 1−

1− cos
[

π
2

(
1− e−aτςq

)]
1 + cos

[
π
2
(
1− e−aτςq

)]
2

.

The minimum ASN at the LQL yields the recommended repetitive acceptance sampling
plan’s parameters. Here is the suggested plan’s ASN when p is the true fraction faulty.

ASN(p) =
n

Pa + Pr
. (14)

Thus, the proposed plan’s n, c1, and c2 parameters can be found by resolving the
following optimization issue:

Minimize ASN(p), subject to

• PA(p1) ≥ 1− α,
• PA(p2) ≤ β,

where n is an integer.
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Given the producer’s risk α = 0.05 and its percentile ratio tq/t0
q with α = 0.5 to 1.0,

there are three parameters n, c1, and c2 in this proposed RASP under the truncated life test
at the specified time t0, with τ = 1.0, 1.5, and 2.0 obtained according to the consumer’s
confidence levels β = 0.25, 0.10, 0.05, and 0.01 for 50th percentile lifetime. The ASN is also
reported and finally, the probability of acceptance is also reported.

Finally, the likelihood of acceptance is presented together with the ASN. Tables 3–6
present the findings. The NMC-Weibull distribution estimated parameters value τ̂ = 0.8587,
the sampling parameters for 50th percentile predicted lives are shown in Table 6.

The sample size n reduces as the constant increases from 0.5 to 1.0, as seen in Tables 3–6.
Moreover, the sample size n is reduced as the shape parameter rises from 0.8587 to 2.0.
Moreover, the sample size grows as consumer risk rises. The tables also include the ASN
and acceptance probability pa for the best acceptance strategies.

Table 3. The proposed plan’s design criteria for the NMC-Weibull distribution at τ = 2.0.

a = 0.5 a = 1.0

β tq/t0
q c1 c2 n PA(p1) ASN c1 c2 n PA(p1) ASN

1.5 4 6 41 0.9558 58.93 4 6 13 0.9515 20.52
1.6 2 4 27 0.9545 43.51 3 5 11 0.9600 17.94

0.25 1.8 1 3 20 0.9706 35.76 3 4 10 0.9650 12.58
2.0 0 2 13 0.9685 28.20 2 3 8 0.9672 10.24
2.2 1 2 18 0.9694 23.47 1 2 6 0.9544 7.84
1.5 2 6 37 0.9531 81.48 5 8 18 0.9515 28.09
1.6 3 6 45 0.9512 66.59 5 7 17 0.9575 22.45

0.1 1.8 0 3 19 0.9509 45.57 2 4 10 0.9552 14.76
2.0 1 3 25 0.9673 37.06 1 3 8 0.9539 11.91
2.2 0 2 16 0.9654 28.52 0 2 5 0.9568 9.41
1.5 5 9 66 0.9518 95.10 4 8 17 0.9583 32.41
1.6 2 6 42 0.9510 73.25 5 8 19 0.9658 26.84

0.05 1.8 1 4 31 0.9513 49.80 1 4 9 0.9584 17.32
2.0 0 3 23 0.9523 41.44 2 4 11 0.9690 14.51
2.2 1 3 29 0.9711 37.99 1 3 9 0.9609 11.76
1.5 5 11 80 0.9529 115.84 7 12 28 0.9567 38.86
1.6 4 9 71 0.9532 93.54 3 8 18 0.9525 30.18

0.01 1.8 2 6 52 0.9532 66.62 2 6 15 0.9584 21.43
2.0 0 4 31 0.9560 51.72 2 5 15 0.9541 17.59
2.2 1 4 39 0.9764 48.71 1 4 12 0.9658 14.83

Table 4. The proposed plan’s design criteria for the NMC-Weibull distribution at τ = 1.5.

a = 0.5 a = 1.0

β tq /t0
q c1 c2 n PA(p1) ASN c1 c2 n PA(p1) ASN

1.5 7 10 47 0.9542 74.21 6 9 18 0.9519 34.21
1.6 6 8 40 0.9509 54.70 6 8 17 0.9548 25.52

0.25 1.8 3 5 25 0.9568 38.07 6 7 17 0.9506 19.96
2.0 2 4 20 0.9677 32.44 1 3 6 0.9592 13.24
2.2 0 2 9 0.9504 21.01 3 4 10 0.9659 12.58
1.5 6 11 50 0.9561 101.15 8 12 25 0.9518 45.14
1.6 8 11 58 0.9523 77.92 4 8 16 0.9515 36.35

0.1 1.8 3 6 31 0.9516 50.04 3 6 13 0.9535 23.80
2.0 2 5 27 0.9578 43.35 4 6 15 0.9595 19.85
2.2 2 4 24 0.9588 33.30 2 4 10 0.9565 14.76
1.5 6 12 55 0.9505 113.01 8 13 27 0.9502 51.32
1.6 6 11 55 0.9524 89.38 9 13 29 0.9613 42.95

0.05 1.8 3 7 36 0.9539 60.09 5 8 19 0.9510 26.84
2.0 3 6 35 0.9574 48.21 3 6 14 0.9664 22.10
2.2 1 4 22 0.9576 37.00 1 4 9 0.9598 17.32
1.5 10 18 89 0.9529 139.57 10 17 36 0.9510 62.97
1.6 6 13 64 0.9550 108.05 8 14 31 0.9500 48.04

0.01 1.8 5 10 57 0.9502 74.55 4 9 20 0.9598 33.67
2.0 1 6 30 0.9527 57.11 3 7 17 0.9548 24.57
2.2 2 6 38 0.9521 48.58 2 6 15 0.9602 21.43
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Table 5. The proposed plan’s design criteria for the NMC-Weibull distribution at τ = 1.0.

a = 0.5 a = 1.0

β tq /t0
q c1 c2 n PA(p1) ASN c1 c2 n PA(p1) ASN

1.5 12 17 55 0.9502 111.68 17 21 42 0.9535 72.57
1.6 12 16 54 0.9571 91.72 9 13 25 0.9523 54.37

0.25 1.8 10 12 44 0.9503 57.18 7 10 20 0.9561 36.80
2.0 4 7 24 0.9504 44.10 6 8 17 0.9517 25.52
2.2 4 6 22 0.9526 32.89 5 7 15 0.9615 23.05
1.5 16 23 77 0.9507 155.44 16 23 45 0.9545 107.34
1.6 17 22 79 0.9505 118.64 17 22 46 0.9515 75.36

0.1 1.8 7 12 41 0.9545 81.09 14 17 38 0.9502 50.13
2.0 5 9 32 0.9515 57.92 9 12 27 0.9542 38.00
2.2 6 9 36 0.9502 49.65 6 9 20 0.9612 30.97
1.5 17 26 87 0.9503 185.49 19 27 54 0.9505 115.86
1.6 15 22 77 0.9505 134.45 20 26 55 0.9553 86.59

0.05 1.8 12 17 64 0.9509 91.66 11 16 34 0.9567 56.98
2.0 6 11 40 0.9543 69.12 9 13 29 0.9574 42.95
2.2 6 10 39 0.9595 57.32 4 8 17 0.9514 32.41
1.5 37 47 174 0.9504 223.37 33 43 91 0.9533 136.20
1.6 18 28 99 0.9524 166.05 26 34 74 0.9514 101.88

0.01 1.8 15 22 85 0.9513 111.84 14 21 46 0.9530 68.02
2.0 6 13 47 0.9515 82.87 10 16 36 0.9568 51.66
2.2 5 11 42 0.9521 65.90 9 14 33 0.9633 43.23

Table 6. The proposed plan’s design criteria for the NMC-Weibull distribution at τ̂ = 0.8587.

a = 0.5 a = 1.0

β tq /t0
q c1 c2 n PA(p1) ASN c1 c2 n PA(p1) ASN

1.5 16 22 65 0.9522 142.29 20 25 49 0.9516 95.30
1.6 17 21 66 0.9503 104.18 17 21 42 0.9526 72.57

0.25 1.8 9 13 40 0.9546 74.31 13 16 33 0.9566 50.92
2.0 7 10 32 0.9520 52.60 7 10 20 0.9583 36.80
2.2 5 8 25 0.9624 45.19 8 10 22 0.9509 30.25
1.5 31 38 122 0.9517 193.86 35 41 85 0.9524 130.77
1.6 23 29 94 0.9532 147.83 21 27 55 0.9529 99.57

0.1 1.8 13 18 59 0.9503 95.92 17 21 45 0.9537 65.73
2.0 6 11 34 0.9535 73.33 14 17 38 0.9533 50.13
2.2 6 10 33 0.9558 57.65 10 13 29 0.9598 40.70
1.5 33 42 135 0.9521 221.34 36 44 91 0.9521 148.63
1.6 22 30 96 0.9536 167.93 27 34 71 0.9536 114.13

0.05 1.8 15 21 70 0.9508 109.30 15 21 44 0.9527 75.32
2.0 11 16 55 0.9513 82.00 15 19 43 0.9501 56.44
2.2 7 12 41 0.9511 66.55 9 13 29 0.9514 42.95
1.5 - - - - - - - - - -
1.6 36 46 156 0.9514 206.10 33 43 91 0.9517 136.20

0.01 1.8 17 26 87 0.9512 134.20 21 29 63 0.9517 90.23
2.0 10 18 60 0.9505 100.31 12 19 41 0.9510 65.27
2.2 7 14 47 0.9541 80.25 14 19 45 0.9516 54.72

4.2. An Industrial Application of the Developed Plan

The waiting durations between successive failures when testing secondary reactor pumps
are used to show the planned scheme for NMC-Weibull in this section using real lifetime data.
Take the NMC-Weibull distribution for the data set as given. The MLEs of the parameters
are τ̂ = 0.8587 and λ̂ = 0.1334, respectively. The data set is reasonably suited for the NMC-
Weibull distribution based on the results in Table 2 and Figure 6. Consider the NMC-Weibull
distribution as the life cycle of the products with τ̂ = 0.8587, α = 0.05, β = 0.1, t0

q = 0.15, and
tq = 0.300; thus we obtain tq/t0

q = 2. Using Table 6, we observe that a = 0.5, n = 34, c1 = 6 and
c2 = 11 are the ideal design parameters. As a result, the sample plan can be put into practice as
follows: choose a sample size, say n = 34, at random from the group. If there are more than
11 failures, reject the lot and stop the test. Accept the lot if six failures occur during the testing
of secondary reactor pumps before 0.150 million hours. The experiments should be repeated
if there are between 6 and 11 failures. Our data show that three failures occurred within
0.150 million hours. As a result, the provided lot is accepted as the best professional judgment.

4.3. Comparison Study

An attributes RASP based on truncated life tests is unquestionably superior to the
corresponding SSP in terms of necessary sample size. The sample size for the RASP with
the recommended features and the SSP when producer’s risk α = 0.05, a = 0.5, consumer’s
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confidence levels β = (0.25, 0.10, 0.05, 0.01), and tq/t0
q = (1.5, 1.6, 1.8, 2.0, 2.2) are reported

in Tables 7 and 8. It is evident in Table 7 that the developed scheme required a small sample
size than the SSP. For instance, when β = 0.05, tq/t0

q = 1.6, a = 0.5, and τ = 2.0, the sample
size of the proposed plan is 42, whereas the SSP is 122. From Table 8, for example, β = 0.10,
tq/t0

q = 1.6, a = 1.0, and τ = 1.5, the sample size of the proposed plan is 16, whereas the
SSP is 53. According to this study’s findings, the RASP approach offers greater benefits
than the SSP.

Table 7. Comparison of sample sizes for the NMC-Weibull distribution between proposed and single
sampling schemes when α = 0.05 and a = 0.5.

τ = 2.0 τ = 1.5 τ = 1.0

β tq /t0
q Proposed Single Proposed Single Proposed Single

1.5 41 71 47 86 19 55 138
1.6 27 58 40 67 54 107

0.25 1.8 20 37 25 47 44 71
2.0 13 30 20 37 24 53
2.2 18 30 9 27 22 42
1.5 37 119 50 143 77 218
1.6 45 91 58 113 79 168

0.1 1.8 69 19 31 77 41 113
2.0 25 55 27 61 32 83
2.2 16 47 24 51 36 68
1.5 66 151 55 182 87 278
1.6 42 122 55 141 77 212

0.05 1.8 31 85 36 94 64 142
2.0 23 69 35 73 40 108
2.2 29 53 22 62 39 85
1.5 80 224 89 263 174 407
1.6 71 172 64 206 99 311

0.01 1.8 52 125 57 142 85 210
2.0 31 101 30 108 47 160
2.2 39 84 38 91 42 124

Table 8. Comparison of sample sizes for the NMC-Weibull distribution between proposed and single
sampling schemes when α = 0.05 and a = 1.0.

τ = 2.0 τ = 1.5 τ = 1.0

β tq/t0
q Proposed Single Proposed Single Proposed Single

1.5 13 27 18 44 42 90
1.6 11 18 17 31 25 67

0.25 1.8 10 14 17 23 20 46
2.0 8 12 6 16 17 33
2.2 6 10 10 14 15 27
1.5 18 39 25 66 45 136
1.6 17 33 16 53 46 102

0.1 1.8 10 21 13 35 38 70
2.0 8 17 15 26 27 53
2.2 5 14 10 21 20 39
1.5 17 51 27 82 54 173
1.6 19 37 29 62 55 130

0.05 1.8 9 28 19 44 34 89
2.0 11 21 14 33 29 67
2.2 9 18 9 28 17 51
1.5 28 73 36 116 91 250
1.6 18 54 31 94 74 189

0.01 1.8 15 40 20 64 46 125
2.0 15 30 17 47 36 96
2.2 12 25 15 40 33 78

5. Concluding Remarks

We attempted to fill the curious and astonishing research gap by constructing a new
repetitive acceptance sample design using a trigonometric-based probability distribution.
For this purpose, we proposed a new distributional method via the cosine function, called
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a NMC-G family. Using the NMC-G method, a new useful probability model called a
NMC-Weibull distribution was studied. Based on the NMC-Weibull time-truncated life test,
a new repetitive acceptance sample design was introduced. Producer and customer risk
are taken into consideration simultaneously while determining the characteristics of the
suggested sample plan, n, c1, and c2. Regarding sample size, a comparison is made between
the SSP technique and the suggested recurrent group sampling plan. We discovered that
the suggested method works better than the option of using the SSP.

In this paper, we considered the statistical modeling of the reliability data set using the
NMC-Weibull distribution. Furthermore, we constructed an acceptance sampling strategy
for the NMC-Weibull distribution. Motivated by [35–37], in the future, we intend to carry
out Bayesian analysis using the NMC-Weibull distribution.
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