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Abstract: In this work, we study the existence of horizons in circular accelerated motions and its
consequences. One particular case is the existence of two horizons in any uniform circular motion.
The radiation of the Poincaré invariant vacuum is related to the spontaneous breakdown of the
conformal symmetry in Quantum Field Theory The main consequence of the existence of these
horizons is the Unruh radiation coming from such horizons. This consequence allows us to study
the possible experimental detection of the Unruh radiation in such motions. The radiation of the
Poincaré invariant vacuum is related to the spontaneous breakdown of the conformal symmetry in
Quantum Field Theory. This radiation is associated with an effective temperature that can be detected
using an Unruh–DeWitt detector. In fact, this effective temperature at the relativistic limit depends
linearly with respect to the proper acceleration. However, in general, this dependence is not linear,
contrary of what happens in the classical Unruh effect. In the relativistic limit and high density case,
the uniform circular motion becomes a rotating black hole. This allows for future studies of pre-black
hole configurations.

Keywords: Unruh radiation; circular motions; quantum fluctuations; uncertainty principle

PACS: 04.60. m Quantum gravity; 04.62.+v Quantum fields in curved space-time; 04.70.Dy Quantum
aspects of black holes; evaporation; thermodynamics

1. Introduction

An observer in an accelerated frame sees quantum fluctuations, which results in the
so-called Unruh effect predicted in [1] using the quantum field theory. Indeed, the Unruh
effect was first described by Fulling [2] and Davies [3]. In order to describe the Unruh
effect different approaches have been developed. The original one is based on Bogolyubov
transformations. In this approach the field quantization in the Rindler space is considered,
see [2,4]. Using the concept of Unruh-DeWitt detector another approach study the response
of these accelerating detectors under the quantum fluctuations of the fields. In the present
work we consider this operational approach. Another one use operator algebra in Modular
Theory. In this approach the concept of KMS (Kubo-Martin-Schwinger) takes a dominant
role, see [5–7]. Finally the last one use the Thermalization Theorem [8,9]. This last approach
uses the Quantum Field Theory (QFT) in curved space time via the path integral. Using
this Thermalization Theorem approach a restoration of the symmetry can be analyzed.
The internal continuous symmetry is spontaneously breaking by an accelerating observer.
Indeed, the destabilization of the Poincaré vacuum provokes the radiation due to special
conformal transformations associated to the accelerations, see [10]. The special conformal
transformations are given by

xµ → x′µ =
xµ + kµx2

1 + 2kx + k2x2 (1)
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which are transitions to accelerated observers systems with acceleration a = 2k and the
conformal accelerations kµ ∈ R4. More specifically, the Poincaré vacuum is described as
a coherent state of conformal zero modes. Under special conformal transformations the
Poincaré vacuum is unstable, unlike for inertial observers it is undetectable.

The main idea is that the quantum vacuum is not really empty for all observers. In
reality, the quantum vacuum is filled with zero-point quantum field fluctuations. In fact,
other non-zero vacuum expectation values, lead to observable consequences. For instance
the zero-point energy is the responsible of the Casimir effect. The behavior of the Universe
on cosmological scales is also affected by the zero point energy. In fact, vacuum energy
contributes to the cosmological constant and, consequently, the expansion of the universe.
It has recently been detected that the universe is expanding at an accelerated rate and
dark energy is the widely accepted proposal to explain such observations, see [11] and
references therein.

The Unruh effect can be theoretically detected using what is known as Unruh–DeWitt
detector. This Unruh–DeWitt detector in its motion must be weakly coupled to the quantum
scalar field, see [4,12,13]. In such works, the interaction between a quantum field and an
accelerating particle detector is analyzed with respect to an inertial observer. It is shown in
detail how the absorption of a Rindler particle corresponds to the emission of a Minkowski
particle. Under a uniform proper linear acceleration a inside a Minkowski space, the
Unruh–DeWitt detector perceives an Unruh temperature

TU =
h̄a

2πkBc
, (2)

where h̄ is the reduced Planck constant, c is the speed of light, and kB is the Boltzmann
constant. The experimental verification of the Unruh effect is extremely difficult us-
ing Equation (2) since to produce a temperature of T ∼ 1 K, a linear acceleration of
a ∼ 1020 m/s2 is required [14]. Consequently a confirmation of the Unruh effect has re-
mained elusive because of the high magnitude of the acceleration required [15]. The
experimental detection of the Unruh effect has an intrinsic interest: first, because it is proof
of the existence of the quantum fluctuations, and second, because the connections with
the Hawking effect [16], the early universe, and the quantum effects are responsible for the
origin and structure of the present Universe [17,18].

The Unruh radiation appears due to the existence of a horizon in the Rindler spacetime
associated with the accelerated observer. In fact, via the equivalence principle Unruh
radiation, the Hawking radiation of the black holes [16] is connected, as given by

TH =
h̄c3

8πkBGM
, (3)

where G is the gravitational constant and M is the mass of the black hole. In fact, in
Schwarzschild coordinates (t, r, θ, φ), the line element for proper time has the form

−c2 dτ2 = −
(

1− rs

r

)
c2 dt2 +

(
1− rs

r

)−1
dr2 + r2dΩ2, (4)

where dΩ2 =
(

dθ2 + sin2 θ dφ2
)

, whose singularity gives the location of the horizon, and

the Schwarzschild radius of the massive body rs is given by rs = 2GM/c2.
In this work, we focus one the case of a uniform circular motion having constant

angular speed Ω. This case is interesting from both theoretical and experimental points of
view. The uniform circular motion can give experimental verification of the Unruh radiation
as is described in [19,20]. For a linear acceleration, it is hard to achieve accelerations of
order 1020 m/s2. However, for circular accelerations, this is possible. For instance, storage
rings at LEP can have a ∼ 1023 m/s2, giving Unruh temperatures T ∼ 1000 K [14].
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In the case of uniform circular classical motion, the tangential speed v = Ωρ increases
when the radius ρ increases. The classical centripetal acceleration is given by ac = v2/ρ.
However, as we allow tangential speeds close to the speed of light c, we use the Special
Relativity applied to the case of circular motion, and, in this case, the proper acceleration is
ac = γ2ρΩ2, where γ = (1− v2/c2)−1/2.

It is expected that the Unruh temperature associated with the uniform circular motion
will be expressed in terms of the proper acceleration in the same way as for the uniformly
linear acceleration case. Indeed, this is the case as we recall in the next section, see the com-
plete development in [4,21]. However, as we will see, it is not true that for uniform circular
motion, Formula (2) would directly predict the Unruh temperature. More specifically, it is
not true that the Unruh temperature for uniform circular motion is given by

TC =
h̄γ2ρΩ2

2πkBc
. (5)

The Unruh effect, and its analog using the equivalence principle, as well as the Hawk-
ing effect in black holes, are often explained in terms of the geometric notion of an event
horizon and the quantum fluctuations near it, see [1,16]. However, it was believed that there
are no horizons for motions with non-uniform accelerations or finite-time accelerations,
because in such movements, the acceleration changes direction or does not exist after a
period. Although the Unruh effect is a kinematic effect, the line element associated with
each movement can have singularities that can become event horizons.

In this work, we prove the existence of two horizons for the case of the uniform
circular motion, and, in general, for any accelerated circular motion, and we analyze
its consequences.

One important difference between the classical Unruh effect associated with the uni-
form proper linear acceleration and the one associated with non-uniform motions is that,
in the last case, the detector senses a non-thermal radiation, see [22,23]. Nonthermality
increases the further we deviate from a uniform linear acceleration. It is important to
emphasize that a detector that is not uniformly linear accelerated (in circular or other
oscillatory motions) belongs to a non-equilibrium state. In such cases, the detector reg-
isters non-thermal radiations, which becomes thermal in a limit condition such as linear
uniform acceleration.

The difference between linear and circular uniform motion lies in the difference be-
tween linear acceleration and angular acceleration. In the first case, the proper acceleration
is fundamental. In the second case, the angular acceleration and the radius of the orbit, of
which is equivalent to the cross-radial velocity, are fundamental. For the linear uniform
motion, the velocity asymptotically approaches the speed of light, implying the appearance
of an event horizon, see [22,23]. For the uniform circular motion, the velocity direction
changes but its magnitude remains constant, and it seems that there is no event horizon.
However, as we will see, there appears an effective Unruh temperature which implies that
the quantum fluctuations are coming from an event horizon. This event horizon appears
because for large values of the radius orbit, the cross-radial velocity tends to the speed
of light. The true existence of the event horizon can be heuristically explained using the
relativity principle. Assume that the detector is in a circular uniform motion. Then, in
the comoving frame with the detector is all the universe that is rotating in the opposite
direction. However, far away from the detector is the cross-radial velocity that tends to the
speed of light, which implies that outside of this limit, there is a region not connected to
the detector (the region outside of the event horizon).

In the next section, we review the Unruh–DeWitt detector and its application to the
uniform circular motion. Later, we study the existence of two horizons for the case of
the uniform circular motion and we analyze its consequences. Finally, a conclusion and
discussion section will be given in the last section of the work. In the next section, we use
units in which h̄ = c = kB = 1 for simplicity.
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2. Unruh–DeWitt Detector Method Applied to Uniform Circular Motion

In this section, we revisited the Unruh–Dewitt detector method for the computation
of the Unruh temperature in the case of circular motion, following the general setting
presented in [4,12,13]. We assume a detector passing through a region permeated via a
quantum scalar field φ(xµ(τ)), where xµ(τ) is the trajectory along the Minkowski spacetime
with a proper time τ. We also assume that the detector is coupled with the scalar field
via the coupling gµ(τ)φ(xµ(τ)), where g is the coupling constant and µ(τ) is defined as
always as µ(τ) = eiH0τµ(0)e−iH0τ .

Then, when the detector accelerates, it will measure the energy transition from the
energy E0 of the ground state to the high energy E. The transition probability rate per unit
proper time is defined as

P(E) = g2 ∑
E
|〈E|µ(0)|E〉|2F (E), (6)

where the response function F is

F (E) =
∫ −∞

∞
e−i(E−E0)∆τ G+(∆τ)d(∆τ), (7)

where G+(∆τ) = G+(x(τ), x′(τ)) = 〈0|φ(x)φ(x′)|0〉 is the so-called positive frequency
Wightman function, where ∆τ is given by ∆τ = τ− τ′. The information about the particular
spacetime trajectory is embedded in G+(x(τ), x′(τ)).

2.1. Detector in a Linear Uniform Acceleration

For a detector along a linear acceleration a, the trajectory in Rindler coordinates is

xµ(τ) =

(
1
a

sinh(aτ),
1
a

cosh(aτ), 0, 0
)

, (8)

where we take Ȳ = Z̄ = 0 for simplicity, and the Wightman function is

G+L (∆τ) ∝
a2

sinh2( a
2 (∆τ − iε))

, (9)

which leads to the response function

F+
L (E) ∝

(
1− exp

(
2π∆E

a

))−1
, (10)

where ∆E = E− E0. Hence, the Unruh temperature can be deduced from the comparative
of the previous expression with the Planck distribution, see [4,12,13], and we obtain the
well-known result TU = a/(2π).

2.2. Detector in a Uniform Circular Motion

Now, we compute the temperature measured using an Unruh–DeWitt detector in a
circular motion. We assume that the detector is rotating in a uniform circular motion of
radius ρ around the z-axis and with a finite constant angular velocity Ω. The trajectory is
given by

xµ(τ) = (t, x, y, z) = (γτ, ρ cos(γΩτ), ρ sin(γΩτ), 0). (11)

Now, by taking cylindrical coordinates (t, ρ, ϕ, z), the line element

ds2 = −(1−Ω2ρ2)dt2 + 2Ωρ2dϕdt + dρ2 + ρ2dϕ2 + dz2, (12)

describes the rotating frame. This line element has a singularity which corresponds to the
maximum radius of ρ given by the value ρmax = 1/Ω [24]. Indeed, the proper acceleration
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ac = γ2ρΩ2 vanishes for v = 0 that corresponds to ρ = 0, and tends to infinity when v→ 1
that corresponds to the radius ρ→ ρmax. The explicit form of the Wightman function is

G+C (∆τ) ∝ 1
γ2(∆τ−iε)2−4ρ2 sin2( γΩ

2 ∆τ)

≈ 1
γ2(∆τ−iε)2

(
1 + 1

12 (ac∆r)2

− 1
360v2 (ac∆r)4 + · · ·

)−1
,

(13)

which is the expansion of G+C up to O(a4
c ). However, it is non-trivial to construct the re-

sponse function rate which is obtained in [25–27] using slightly different ways. Surprisingly,
in [25], and using the appropriate definition of a rotating vacuum state where the region
beyond the light cylinder is circumvented, the detector fails to respond and no Unruh
radiation is detected. Nevertheless, in the relativistic limit [19,20], and taking G+C up to
O(a2

c ), the response function is

F+
C (E) ∝ ae−2

√
3 ∆E

a , (14)

and although it is not Planckian, one can define the effective temperature for the circular motion

TC =
a

2
√

3
. (15)

Following [21], there are two important differences between the Unruh effect for linear
accelerations and for circular accelerations. The first is that the spectrum is not exactly
thermal for the circular motion. The second is that for the circular case, the temperature
does not have a simple expression as (2), and in the relativistic limit, one could define an
effective temperature given by (15). This implies that TC/TU = π/

√
3 ≈ 1.8. In the recent

work [23], analytic results for TC for a massless scalar field in 3 + 1 and 2 + 1 spacetime
dimensions in several asymptotic regions of the parameter space are given.

Note that for large values of the radius in the circular motion, the motion looks like
the case of a uniform linear acceleration, but with a speed perpendicular to the acceleration
direction. This case is investigated in [28–30] and the temperature for the drifted Rindler
motion is obtained and compared with the temperature for the linear acceleration case.

3. The Horizons in the Uniform Circular Motion

In the classical Unruh effect for a linear uniform acceleration, it is well known that
a horizon exists in the Rindler spacetime at distance c2/a to any trajectory given a fixed
value of a, see Figure 1. The horizon is a barrier for all the radiation coming from behind
the horizon, and the pair of quantum fluctuations near the horizon produce the so-called
Unruh radiation.

In the uniform circular motion, the acceleration has a constant modulus but the
direction changes instantly according to the angular velocity Ω. The trajectories are at
distance ρ = ac/(γ2Ω2), where ρ is the radius of the circumference described by the circular
motion. The shape of the horizons is obtained by taking Rindler coordinates. The horizons
are defined by the Rindler coordinates and their relation with the local coordinates (t, x, y, z)
that define the circular motion of radius ρ, with centripetal acceleration ac.

The Rindler coordinates are defined by

T̄ = x sinh(αt), X̄ = x cosh(αt), Ȳ = y, Z̄ = z, (16)

where the proper acceleration is α = ac = γ2ρΩ2 and the circular motion in local coordi-
nates is described by

x = ρcos(γΩτ), y = ρsin(γΩτ), (17)

where x2 + y2 = ρ2.
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In the classical Unruh effect for a linear uniform acceleration, from the Rindler co-
ordinates (16), we have x2 = X̄2 − T̄2 and the Rindler horizon corresponds to the locus
x = 0, that is, X̄2 = T̄2, which consists of two null half-planes, ruled by a null geodesic
congruence, see Figure 1.

Figure 1. The Rindler horizon to its left (at a distance c2/a away).

In the case of circular movement from (16) and (17), we have

ρ2 = x2 + y2 = X̄2 + Ȳ2 − T̄2. (18)

Taking (18) into account, the case ρ = 0, which corresponds to x = y = 0 and α = 0, gives
the infinite conus

X̄2 + Ȳ2 = T̄2, (19)

which is the equation of one horizon. Figure 2 corresponds with the infinite conus passing
through the origin. However, the important case is the case when ρ takes the maximum
values ρmax = 1/Ω, that corresponds to a proper acceleration ac tending to infinite for
v→ 1. In this case, we have the horizon given by

ρ2
max = X̄2 + Ȳ2 − T̄2. (20)

which is a one-sheeted hyperboloid and is the second horizon. Figure 1 corresponds to
the exterior hyperboloid. Figure 3 is the Rindler chart taking Ȳ = 0 in Figure 2. If we
consider hyperboloids ρ2 = X̄2 + Ȳ2 − T̄2 inside the two horizons, that is, for ρ satisfying
0 ≤ ρ ≤ ρmax, none of the points of such hyperboloids can ever receive light signals from
events outside from the two horizons. Hence, an accelerating observer in one hyperboloid
allowed us to see a radiation coming from these two horizons (19) and (20).

We can heuristically deduce the effective temperature following the same reasonings
made in [31,32]. The simple derivation is based on the uncertain principle. The uncertainty
in the position of a particle of the Unruh radiation captured using the Unruh–DeWitt
detector is given by the unique information that is coming from the horizon (19) The
maximum distance to the horizon is ρmax = c/Ω. However, we have the contribution of
the other horizon (20). Therefore, we assume that

∆x = κ
πc
Ω

. (21)
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where κ is an arbitrary constant. Taking into account that ρ = ac/(γ2Ω2), the corresponding
proper acceleration for ρmax is acmax = cΩγ2 Hence, the uncertainty principle takes the form

∆x∆p = κ
πc2γ2

ac
∆p ' h̄/2. (22)

From here we have ∆p ' (h̄ac)/(2κπc2γ2). Since the energy of the photon is given by
E = pc, we have ∆E = c∆p and

∆E ' h̄ac

2κπc
, (23)

for v� c, which implies γ ≈ 1. The radiation in the circular motion is not thermalized but,
at first approximation, we can assume, in order to compute the effective temperature, that
E = kBT, where kB is the Boltzmann constant and Equation (23) becomes

∆T ' h̄ac

2κπc kB
. (24)

Then, comparing Equations (15) with (24), we obtain that the value of κ in Equation (24) is
κ =
√

3/π ≈ 0.55. In fact, the temperature that sees an observed is greater than in the linear
movement. Recall that in the previous section we have obtained TC/TU = π/

√
3 ≈ 1.8.

Figure 2. Two hyperboloids and the infinite conus.

Figure 3. Rindler chart taking Ȳ = 0 in Figure 1.

4. The Uniformly Accelerated Circular Motion

We consider now the uniformly accelerated circular motion. In this case, the angular
velocity is not constant and is indeed Ω = aϕτ, where aϕ is a constant angular acceleration.
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This implies a centripetal acceleration given by ac = γ2v2/ρ = γ2Ω2ρ and also a constant

tangential acceleration at = aϕρ. The total acceleration is a =
√

a2
t + a2

c that does not have
a constant modulus and the direction also changes instantly. The circular motion is also
described by

x = ρcos(γΩτ), y = ρsin(γΩτ), (25)

where x2 + y2 = ρ2. We have taken the initial angular velocity Ω0 = 0. The trajectory
is also given by (11). We also have the same line element in cylindrical coordinates that
undergoes a uniform circular motion. Therefore, the singularity also corresponds to the
maximum radius ρmax = c/Ω = c/(aϕτ). However, we have a moving singularity because
it depends on τ. Hence, taking the Rindler coordinates defined by (16), where the proper
acceleration is α = a, we obtain the same results as in the previous case. However, when τ
increases the cross-radial velocity, it tends to the seep of light, that is, the event horizon is
getting closer and closer to the trajectory. The event horizon is moving until it collapses
with the trajectory in the limit when v→ c.

5. The Oscillating Motions

In this section we revisited the results for the detectors moving along oscillating move-
ments. Accelerated detectors under these regimes will also reproduce Unruh behaviors
with associate effective temperatures. However, it is difficult here describe the associate
event horizons.

We consider the sinusoidal motion, which indeed is a projection of a circular motion
before described onto the t− z subspace. The trajectory is given by

xµ(τ) = (γt, 0, 0,−ρ cos(γΩt)). (26)

where ρ is the oscillation amplitude, and Ω is the oscillation frequency in coordinate
time. The restriction ργΩ < 1 is necessary in order for the motion to remain time-like.
The can compute explicitly the proper time as a function of the coordinate time t using
the elliptic integral of the second kind τ = (γΩ)−1E(γΩt, ρ2γ2Ω2), from where we can
find numerically t(τ). The directional proper acceleration is a = ργ2Ω2 cos(γΩt)(1−
(ργΩ)2 sin2(γΩt))−3/2. Hence the proper acceleration α = |a|. The period of oscillations
is T = 2π/(γΩ) and in the proper-time is given by τp = (γΩ)−1E(2π, ρ2γ2Ω2). The
time averaged proper acceleration, i.e., the acceleration over one period of oscillation is
expressed as

ā =
γΩ tanh−1(ργΩ)

E(2π, ρ2γ2Ω2)
. (27)

Then by analogy with the case of linear uniform acceleration one expects that the effective
temperature at late times recorded by an oscillating detector satisfies

T̄eff =
h̄ā

2πckB
. (28)

However such formula does not always work even at late times as it is proved in [22].

6. Conclusions and Discussion

We have reviewed the computation of the effective temperature for the circular motion.
From a theoretical point of view, the Unruh temperature in a circular motion increases from
the zero temperature at ρ = 0 that corresponds to ac = 0 up to a finite value for ρmax = c/Ω.
However, this value of ρ = 0 is not allowed because it defines one of the horizons of the
uniform circular movement. Moreover, in the case ρmax = c/Ω, that correspond to a proper
acceleration ac tending to infinite for v → c, the temperature is finite and close to zero,
see [28]. Therefore, when the proper acceleration goes to infinity, the Unruh temperature
remains finite as long as the velocity approaches the speed of light.
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Indeed, the Killing vector is time-like inside the hyperboloid surface, space-like beyond
the hyperboloid surface, and null at the hyperboloid surface which corresponds to ρ = ρmax,
see [33]. Consequently, since there is no object that travels faster than the speed of light,
then no object can be at rest with respect to the rotating frame beyond the hyperboloid
surface ρ = ρmax.

Such a region is beyond the hyperboloid surface and ρ = ρmax has a similar behavior to
the region inside the ergosphere of a rotating black hole [34]. We recall here that in a rotating
black hole, the particle creation can happens in two regions, close to the event horizon and
also in the ergosphere, see [35,36]. Therefore, for a detector undergoing a circular motion,
the computed Unruh effect can have a close relation with the ergoregion effect of a rotating
black hole [37,38], where it should be possible to also define a temperature associated with
this ergosphere region. Indeed, in the appendix of [38], it is explicitly shown how the metric
of the accelerated frame of a planar motion is identical to the limiting form of the Kerr
metric for points close to the equator of the rotating black hole when the mass of the hole
tends to infinity.

Moreover, in the case of a rotating black hole, at limit case ρmax → rs, we have that
rs ∼ ρ ∼ ρmax and the speed v tends to the light speed. The two horizons collapse into a
classical horizon of a black hole. Indeed, in Rindler coordinates, the horizon at ρ = 0 is
unrealistic for a black hole present. The analysis made before is now the following. The
uncertainty in the position is now ∆x = 2πrs and then

∆x∆p = 2πrs∆p ' h̄/2. (29)

Since the energy of the photon is given by E = pc, we have ∆E = c∆p and

∆E ' h̄c
4πrs

. (30)

Finally, taking into account that in the limit we have thermalized radiation with E = kBT,
Equation (30) becomes

∆T ' h̄c3

8πkBGM
. (31)

and we obtain the Hawking temperature of a black hole given by Equation (3).
Moreover, while it does not exist in nature, a Schwarzschild black hole is theoretically

an object. This is because the mass accretion for constituting any future black hole is formed
by mass with some initial speed that is captured in a circular or elliptical movement falling
down to the central mass, producing a rotating black hole, or what is call a Kerr black hole,
with a privileged accretion plane. Then, the study of the radiation around a circular motion
and other accelerated motions will be the basis of further studies about the origin of black
holes and their evolution.
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