
Citation: Wang, Y.; Zhang, Y.; Li, Z.

AAHEG: Automatic Advanced Heap

Exploit Generation Based on Abstract

Syntax Tree. Symmetry 2023, 15, 2197.

https://doi.org/10.3390/sym15122197

Academic Editor: Theodore E. Simos

Received: 1 November 2023

Revised: 30 November 2023

Accepted: 11 December 2023

Published: 14 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

AAHEG: Automatic Advanced Heap Exploit Generation Based
on Abstract Syntax Tree
Yu Wang 1 , Yipeng Zhang 2,* and Zhoujun Li 1

1 State Key Lab of Software Development Environment, Beihang University, Beijing 100191, China;
wangyu777@buaa.edu.cn (Y.W.); lizj@buaa.edu.cn (Z.L.)

2 School of Information Science and Technology, North China University of Technology, Beijing 100144, China
* Correspondence: zhangyipeng@ncut.edu.cn

Abstract: Automatic Exploit Generation (AEG) involves automatically discovering paths in a program
that trigger vulnerabilities, thereby generating exploits. While there is considerable research on
heap-related vulnerability detection, such as detecting Heap Overflow and Use After Free (UAF)
vulnerabilities, among contemporary heap-automated exploit techniques, only certain automated
exploit techniques can hijack program control flow to the shellcode. An important limitation of
this approach is that it cannot effectively bypass Linux’s protection mechanisms. To solve this
problem, we introduced Automatic Advanced Heap Exploit Generation (AAHEG). It first applies
symbolic execution to analyze heap-related primitives in files and then detects potential heap-related
vulnerabilities without a source code. After identifying these vulnerabilities, AAHEG builds an
exploit abstract syntax tree (AST) to identify one or more successful exploit strategies, such as fast bin
attack and Safe-unlink. AAHEG then selects exploitable methods via an abstract syntax tree (AST) and
performs final testing to produce the final exploit. AAHEG chose to generate advanced heap-related
exploits because the exploits can bypass Linux protections. Basically, AAHEG can automatically
detect heap-related vulnerabilities in binaries without source code, build an exploit AST, choose from
a variety of advanced heap exploit methods, bypass all Linux protection mechanisms, and generate
final file-form exploit based on pwntools which can pass local and remote testing. Experimental
results show that AAHEG successfully completed vulnerability detection and exploit generation for
20 Capture The Flag (CTF) binary files, 11 of which have all protection mechanisms enabled.

Keywords: automatic exploit generation; heap-related vulnerability; fuzzing; symbolic execution;
abstract syntax tree

1. Introduction

Since the inception of the Cyber Grand Challenge hosted by DARPA in 2016 [1],
Automatic Exploit Generation (AEG) has emerged as a focal point of research. Notable
solutions, such as CRAX [2] and Mayhem [3], have been introduced to detect vulnerabilities
in source code and binary files, and to autonomously generate vulnerabilities where
feasible. The pivotal technologies employed in this domain are fuzzing and symbolic
execution. While CRAX and Mayhem are well-established vulnerability exploitation
systems, the majority of their attacks on the existence of vulnerabilities involve merely
rudimentary concepts such as hijacking programs into shellcode. This utilization idea is
ideal because it does not consider the protection mechanism opened by the binary file. For
example, a simple protection mechanism, Non-Executable (NX) [4], can render this attack
method ineffective.

At the same time, in the current research on vulnerability exploitation forms, most
AEGs focus on stack overflow vulnerabilities and format string vulnerabilities. For example,
the latest research, BofAEG [5] and LAEG [6], mainly target binary files with stack overflow
vulnerability types. This is an asymmetrical phenomenon. As for heap-related AEG

Symmetry 2023, 15, 2197. https://doi.org/10.3390/sym15122197 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15122197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0009-0004-3482-817X
https://doi.org/10.3390/sym15122197
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15122197?type=check_update&version=1


Symmetry 2023, 15, 2197 2 of 22

research, the more classic ones are Revery [7] and MAZE [8]. Their main problems are
twofold. One is that the input needs to have a Proof of Concept (PoC), and the other is
that some common heap advanced exploit forms such as fast bin attack or tcache poisoning
attack are not applied. Although Revery can obtain an unlink state, it cannot successfully
generate an exploit and utilize it. MAZE can perform partial heap utilization; however,
with the support of PoC, it takes a relatively long time. At the same time, none of the above-
mentioned AEGs can generate exploits in file form. The exploits generated in file form are
very meaningful to assist experts in conducting in-depth research on the exploitation of
this vulnerability.

In response to the current situation, we proposed Automatic Advanced Heap Exploit
Generation (AAHEG). AAHEG focuses on mining heap-related vulnerability and solving
the asymmetry in vulnerability mining and exploit generation. Its main contributions are
as follows.

1. AAHEG applies symbolic execution technology to automatically collect information
in binary files without the need for a PoC or source code. AAHEG automatically
detects heap-related vulnerabilities (Heap Overflow, Off by One, Off by Null and Use
After Free) existing in binary files.

2. By sorting out the current advanced exploitation methods of heap-related vulnerabili-
ties targeting the Linux heap management mechanism glibc, and combining it with
our daily attack experience, we extracted the vulnerability exploitation abstract syntax
tree (AST) for each exploitation method. AAHEG will combine the protection mecha-
nisms enabled, control flow graph (CFG) information in functions, and heap-related
primitives in the binary file, and then select the appropriate exploit and complete the
final exploit generation.

3. AAHEG can apply advanced heap utilization methods to bypass all protection mech-
anisms in Linux binaries and Linux systems, and use the Dynamic Payload Element
(DPE) exploit generation strategy to bypass NX [4], PIE [9], Canary [10] and FULL
RELRO [11].

4. AAHEG will eventually generate a file-form exploit based on the pwntools [12] tool to
support subsequent expert research. At the same time, AAHEG will also use binary
files and a remote docker for testing to verify the correctness of the generated exploit.
Experimental results show that AAHEG can complete vulnerability detection and
exploit generation for 20 Capture The Flag (CTF) binary files, 11 of which have the
protection mechanism fully enabled.

The layout of this paper is as follows: Related work will be introduced in Section 2,
an overview of AAHEG will be introduced in Section 3, the primitive extraction part of
AAHEG will be introduced in Section 4, and Section 5 will introduce the vulnerability
detection principle and work in AAHEG in detail. The vulnerability exploitation abstract
syntax tree will be shown in Section 6. The details of the exploit generation will be
described in Section 7. The experimental results will be shown in Section 8, and in Section 9,
limitations and future work will be discussed. Conclusions will be presented in Section 10.

2. Related Work
2.1. Automatic Exploit Generation

Automated Exploit Generation (AEG) has always been a hot research topic. Traditional
AEG generators mainly have the following methods. In order to solve this state of asymme-
try in methods, where most AEGs only focus on methods from the Proof of Concept (PoC),
we need to analyse the AEGs and then show the methods of how to generate the exploit
from the binaries.

Starting from the Proof of Concept (PoC).Traditional AEGs require a vulnerability
trigger path that has been found through fuzzing and other methods. Through this path,
these AEGs determine how the vulnerability is triggered, and find the running state of the
program when the vulnerability is triggered. Based on this runtime state, the basic form of
the vulnerability and the method of exploit generation are determined. Research using this



Symmetry 2023, 15, 2197 3 of 22

technical route includes the work of AEMB [13] and He’s work [14]. AEMB finds PoC and
converts the PoC into an exploit (EXP) that can bypass vulnerability mitigation measures.
The main heap-related AEGs include Revery [7] and MAZE [8]. Revery will start from the
PoC, and then use some directional fuzzing techniques to find the state that can control
the eip register, so as to achieve the purpose of exploit generation. MAZE focuses on the
heap layout problem; it uses the Dig and Fill algorithm to find a heap layout that can be
exploited. Revery only supports the attack method of controlling the eip register, while
MAZE can support unlink and eip-hijack attacks.

Instead of starting from the PoC, start directly from analyzing the binary. The main
technologies used by this type of exploit generator are symbolic execution and taint analysis.
There are many exploit generators that use symbolic execution technology, including
CRAX [2], BofAEG [5] and AEG [15]. Symbolic execution technology can solve the problem
of path constraint solving and can also cover more paths. After the exploit is generated,
you can also use the Satisfiability Modulo Theories (SMT) solver to determine whether the
payload can be written to the corresponding memory. Automatic exploit generators based
on taint analysis mainly include the work of LAEG [6] and Huang [16]. Taint analysis
mainly achieves the purpose of monitoring the data propagation process by monitoring
taint propagation. LAEG analyzes and monitors the propagation of Canary values to
bypass the Canary protection mechanism. Huang’s work mainly uses taint analysis to
monitor unsafe functions in input data and binary files.

Since the 2016 CGC, AEG has become a hot research topic. Even in a large global
competition like CGC, the vulnerability exploitation environment is set up very ideally. For
example, the ASLR protection mechanism of the system will not be turned on, and the NX
protection mechanism will not be turned on in the binary file. This idealized environment
preset makes vulnerability exploitation easier, and Automatic Exploit Generation against
this preset environment is not powerful enough. For example, Revery only supports the
eip-hijack attack method, which means that the prerequisite for this attack is to be able to
implant shellcode in advance or to be able to find a backdoor in a binary file.

In daily attacks, all protection mechanisms can be bypassed by manually writing ex-
ploits, which means that automated exploit generation can also achieve this goal. Research
on ways to bypass protection mechanisms is also a hot topic. For example, the exploits
generated by HAEPG [17] can bypass both NX and Full RELRO protection mechanisms;
AEGs such as BofAEG and CRAX based on stack overflow vulnerability can bypass the NX
protection mechanism through ret_to_libc; AEMB can bypass the NX protection mechanism
on Linux systems and the Data Execution Prevention (DEP) protection mechanism on
Windows systems; LAEG uses the taint analysis method to track the location of the input
and Canary value, and finally achieve the purpose of bypassing the Canary protection
mechanism. But none of them can bypass all the protection mechanisms in Linux.

In heap-related AEG, there are two core research directions. One is the generation
method of vulnerability exploitation, and the other is the construction of heap layout,
also called heap feng shui [18]. Regarding the generation method of vulnerability exploits,
most research focuses on eip-hijack and unlink attacks. MAZE can detect Use After Free
(UAF) and Heap Overflow vulnerabilities and generate eip-hijack and unlink exploits. If it can
only generate exploit based on unlink and it cannot bypass the PIE protection mechanism,
ARCHEAP [19] can achieve the purpose of writing and constructing stacking blocks at any
address by detecting whether a combination of a series of operations can be achieved.

Heap utilization research not only includes the selection of heap utilization methods
but also the study of methods to achieve heap layout structure. In the research of heap
layout, typical studies include the work of Zhang [20], the work of Heelan [21], the work
of Gennissen [22], and the work of Li [23]. Zhang used distance-guided fuzzing to find
specific heap layout structures, and their experimental results showed that they were able
to generate 18 desired heap layout structures from 27 Heap Overflow vulnerabilities. Heelan
proposed SHRIKE, a novel system that performs automatic heap layout operations on
the PHP interpreter and can be used to construct control flow hijacking vulnerabilities.



Symmetry 2023, 15, 2197 4 of 22

Gennissen proposed Hack the Heap, a game that comes with an extensive tutorial to teach
players how to play but does not require computer science knowledge. Hack the Heap
also provides a toolchain that can generate heap vulnerability puzzles from unmodified
real-world applications. Hack the Heap makes heap layout manipulation easier. Li proposed
BAGUA. BAGUA first uses the heap operation dependency graph to accurately identify the
primitives of heap layout operations and deeply analyzes their dependencies and capabili-
ties. Based on this, it models the heap layout operation as an integer linear programming
problem and solves the constraints to identify the sequence of primitives that achieves the
desired heap layout.

AEG is also used in other architectures or other platforms. For example, Kang [24]
proposed a framework for automatically catching exploits in JIT compilers, paying special
attention to heap corruption vulnerabilities triggered by dynamic code (code generated by
the JIT compiler at runtime). The purpose is to help assess the severity of a vulnerability
and thereby assist in vulnerability classification. The attack target of EXGEN [25] is a smart
contract, and EXGEN can generate a symbolic attack contract with partially sequential
transactions and then symbolically execute the attack contract with the target to find and
solve all constraints. teEther [26] also targets smart contracts, which allows the creation
of exploits for contracts given only binary bytecode. Huang [27] proposed an end-to-
end method that can create exploits based on crash input or existing exploits of various
applications to generate exploits for some large applications. This is a huge breakthrough.
AEG for the Linux kernel is [28], which introduced a new method, automatic vulnerability
migration (AEM), to facilitate cross-version exploitability assessment for the Linux kernel.
FUZE [29] proposed a new framework to facilitate the utilization process of kernel UAF.

Large Language Models (LLM) and deep learning are also current research hotspots.
There are also many studies on the combination of LLM and Automatic Exploit Generation.
For applications that utilize machine learning to automatically generate vulnerabilities,
current work mainly focuses on the generation of shellcode or shellcode-based vulnerabili-
ties. For the trained model to complete binary-level analysis work, the model needs to be
trained to understand assembly code. Therefore, most of the work is based on translation,
and indeed some work is based on pre-trained models in programming languages such as
CodeBERT [30]. Translation-based work includes Neural Machine Translation (NMT) [31],
which can efficiently generate assembly code for real shellcode starting from natural de-
scriptions. DualSC [32] uses a shallow Transformer for model building and compares with
six state-of-the-art baselines in terms of code generation and code summarization, which
shows the competitiveness of DualSC. Additionally, there are other studies on using models
to generate assembly code and Python code. For example, EVIL [33] can automatically
generate exploit programs in assembly language and Python language based on natural
language descriptions, and it also applies Neural Machine Translation (NMT) technology.
ExploitGen [34] generates vulnerability exploit codes based on CodeBERT, which can effec-
tively integrate template information into the semantics of the original natural language.
ExploitGen can also generate Python code.

AAHEG mainly uses symbolic execution to extract primitives for functions in binary
files. It determines the vulnerabilities in binary files through conditional judgments and
directed symbolic execution in the primitives, and then generates a final exploit through
vulnerability exploit abstract syntax trees (ASTs). Finally, with the help of constraint
solving, AAHEG can generate the final exploit. Experimental results show that based on
symbolic execution, AAHEG can complete vulnerability detection and exploit generation
for 20 Capture The Flag (CTF) binary files, 11 of which have the protection mechanism
fully enabled.

2.2. Heap-Related Vulnerability and Heap-Related Exploit

In glibc (ptmalloc) [35], whether it is a heap block in use or a heap block after release,
the heap block structure used is rough, as shown in Figure 1.



Symmetry 2023, 15, 2197 5 of 22

prev_size size

fd bk

fd_nextsize bk_nextsize

PMA

Figure 1. The heap structure in glibc.

The meaning of each field is as follows:

• prev_size. If the heap block before the physical address is in use, then this field has
no meaning and can be used to store the data of the previous heap block; if the heap
block before the physical address is not in use, then this field will be used to store the
previous heap block’s size.

• size. The size of the current heap block, of which the lower 3 bits are A, M, and P
from high to low. A represents NON_mainarena, indicating whether the current heap
block belongs to the main thread, where 0 means it belongs, and 1 means it does not
belong; M means whether the current heap block is allocated by the mmap system call,
1 means it is allocated by the mmap system call [36] and 0 means not by the mmap
system call(brk system call). P indicates whether the previous heap block is in use,
1 indicates that it is in use, and 0 indicates that it is not in use.

• fd/bk(forward/backward).If a heap block is in use, starting from fd, it is the data
controlled by the user. If a heap block is not in use, then fd/bk will be used to save
information related to the linked lists. fd represents the previous heap block (released
before). bk represents the last heap block (released later). The order here is different
between the fast bin chain and the tcache bin chain because the fast bin chain and the
tcache bin chain use a single linked list structure (first in last out(FILO)). fd/bk is the
core attack area for heap utilization. The attack targets of unlink, fast bin attack, and
unsorted bin attack are all fd/bk area.

• fd_nextsize/bk_nextsize.These two fields will only be used in large bins. In heap
exploitation, only large bin attack will attack these two fields.

There are four types of heap-related vulnerabilities. From the perspective of overflow,
the most typical vulnerability is Heap Overflow. The root cause of Heap Overflow vulnerability
is that the input data are not well controlled when writing data to the heap memory. For
example, the requested length is 0x80 bytes, and the input length is greater than 0x80 bytes,
which will cause a Heap Overflow vulnerability. Among the Heap Overflow vulnerabilities,
there are two special ones. One is Off by One, and the other is Off by Null. The principles of
these three vulnerabilities are shown in Figure 2. Another vulnerability is Use After Free
(UAF), where the heap block can still be indexed (read or written) after it is released.

heap1

heap2
overflow

overflow
heap1

heap2
B

off by one
heap1

heap2
0

off by null

(1) (2) (3)

Figure 2. Heap-related vulnerability.

In this paper, heap-related utilization and its development history are introduced
as follows.



Symmetry 2023, 15, 2197 6 of 22

• Unlink. Unlink is the oldest attack method. The first ones proposed were [37,38].
Unlink mainly uses heap-related vulnerabilities to overwrite linked-list-related data in
the heap and then remove the heap blocks from the doubly linked list. When the link
is broken, any address will be written. In 2004, a patch was proposed for this attack
that detected link integrity in doubly linked lists, making the attack difficult to exploit.

• Safe-unlink [39]. The Safe-unlink method overwrites the fd and bk of a certain heap
block P to ptr – 0x18 and ptr – 0x10 (ptr is the address of a pointer pointing to P) by
laying out the heap block in advance, and then triggers the unlink mechanism of glibc.
The ultimate goal of Safe-unlink is to write to an arbitrary address, and the condition is
that the address of ptr needs to be known in advance, which means that the binary file
needs to not have the PIE protection mechanism turned on.

• Fast bin attack [40]. The basic goal of fast bin attack is to modify the fd of a heap block
that is already in the fast bin chain and then allocate two heap blocks of the same size.
The basic goal of fast bin attack is to hijack __malloc_hook into one_gadget [41]. After
that, we can hijack the control flow of the program.

• Tcache positioning [40]. Tcache is a mechanism added after Ubuntu 17.10 (glibc 2.26).
It is mainly used to improve the efficiency of heap block allocation during program
running. Tcache and fast bin are similar in data structure. Tcache poisoning refers to
modifying the fd in the tcache chunk (heap block in the glibc heap manager) to the
target. Tcache poisoning is an attack method of writing fd of chunk in the tcache bin,
similar to fast bin attack.

• Unsorted bin attack [40]. The basic goal of the unsorted bin attack is to modify the bk of
a heap block already in the unsorted bin chain to the target address–0x10 (64 bit). After
the modified unsorted bin is allocated, the target address will be written as main_arena
+ 88 (a large value), unsorted bin attack is difficult to hijack control flow and needs to
be coordinated with other exploitation methods.

• The House of Series. The House of series was first proposed by Phantasmagoria in The
Malloc Maleficarum [42]. In The Malloc Maleficarum, five glibc attack methods including
The House of Force were proposed. This naming method also affected subsequent
naming methods for new exploits of glibc’s heap manager, such as The House of Orange
and The House of Rabbit.

In this paper, the test environment we used is Ubuntu 18.04 (glibc 2.27). Table 1
summarizes the feature, type, applicable versions, and protection mechanisms that can be
bypassed for these exploits.

Table 1. Heap-related exploit methods in AAHEG.

Exploit Method Feature Type Applicable Version Protection Mechanism
Bypass

Safe-unlink Arbitrary address
writing Linked-list attack Any version NX, Canary, ASLR

fast bin attack Control
flow hijacking Linked-list attack Ubuntu version ≤ 20.04

(glibc version ≤ 2.31) NX, PIE, Canary, ASLR

Tcahe poisoning
Arbitrary address
writing/Control
flow hijacking

Linked-list attack Ubuntu version ≥ 18.04
(glibc version ≥ 2.27) NX, PIE, Canary, ASLR

Unsorted bin attack Write a large value
at arbitrary address Linked-list attack Ubuntu version ≤ 18.04

(glibc version ≤ 2.27) NX, PIE, Canary, ASLR

We did not put The House of series in Table 1. In our evaluation, we found that these
utilization methods are not simple enough and can process too few binary files, so they
are not worthy of being put into an AEG system. In AAHEG, it mainly applied Linked-list
attack method shown in Table 1. The attack characteristics of Linked-list attack are simple



Symmetry 2023, 15, 2197 7 of 22

and efficient. In many cases, we only need to modify the fd/bk of a chunk to achieve the
final purpose of utilization.

3. Overview of AAHEG
3.1. Modules in AAHEG

AAHEG is divided into six modules in total.

1. Static analysis of binary files. The work to be carried out by static analysis of binary
files is information collection. The work of information collection is to collect the
protection mechanisms enabled in the binary file, such as whether PIE is enabled.

2. Primitive extraction. There are several aspects of primitive extraction including
extraction of branch paths, conditions, and primitive grammar. Branch path extraction
refers to extracting the conditions for reaching the malloc, free, and other functions.
Simply put, primitive grammar is to determine the parameter range of functions’
parameters such as heap block writing size, storage address, and other information in
the malloc function.

3. Vulnerability analyzer. The vulnerability analyzer will solve the constraints of vulner-
ability based on the conditions existing in the primitive extracted before. For example,
if you want to determine whether there is a Heap Overflow vulnerability, you need to
determine whether the size written to a heap block after the malloc function exceeds
its size malloc before. And it can be judged by the primitive grammar extracted before.

4. Exploit generator. The exploit generator will automatically search for an AST path
that can successfully exploit the vulnerabilities found by the vulnerability analyzer.
The ASTs are constructed based on experts’ experience. The exploit generator collects
protection mechanism information, generates the final exploit based on the abstract
syntax tree, and verifies that the condition can be satisfied by the SMT solver.

5. Exploit verifier. The main work of the exploit verifier is to verify whether the vul-
nerability generated by the exploit generator can obtain the permissions of the target
host. In AAHEG, the exploit verifier will automatically run a process or automatically
start a remote docker to simulate the remote environment. If the exploit generator can
successfully obtain the permissions of the target host, then the exploit verification is
successful, otherwise, the exploit verification fails.

6. File-form exploit generator. File-form exploit generator will generate exploit files
based on pwntools. First, a Python-based function is generated based on the primitive
grammar, and then the code for the corresponding function is generated based on
the AST branch selected by the exploit generator, and finally a complete exploit is
generated. The file-form exploit generated is in Python language and it has a built-in
gdb debugger to help experts do subsequent verification and analysis.

3.2. Attack Model

In AAHEG, users do not need any professional knowledge, they only need to provide
the path of the binary file. AAHEG will receive the path of the binary file, automatically
analyze the corresponding binary file, and finally generate the corresponding exploit.

3.3. Overview

The basic process of AAHEG is as follows.
(1) AAHEG obtains binary protection mechanism information through static analysis.

(2) AAHEG obtains the primitives of the entire binary file and the grammar of the primitive
through dynamic symbolic execution. (3) AAHEG analyzes the vulnerability existing in
the binary file through primitive grammar. According to different vulnerability types,
AAHEG generates corresponding exploits, such as leak-information exploit and hijack-
control-flow exploit. The generation of the exploit is based on the grammar of primitives
and the abstract vulnerability exploits AST. (4) AAHEG will verify the generated exploit.
(5) AAHEG generates the exploit in file form after passing the verification. The exploit in
file form can assist experts in subsequent verification and debugging.



Symmetry 2023, 15, 2197 8 of 22

For programs without vulnerabilities, AAHEG will not detect the vulnerability and
will return normally. AAHEG will not generate wrong exploits because the exploit will
be verified for exploitability at the end. AAHEG will start a process and then generate an
exploit to verify whether it can obtain the shell of the target host. If it can be obtained, it
means that the attack is successful, and if it cannot be obtained, it means that the attack
failed. This kind of process is divided into two types; one starts a local process, and the
other simulates a remote process (using docker simulation), represented by the Local Exploit
and Remote Exploit in Figure 3.

The overview of AAHEG is shown in Figure 3.

Binary
program

Static Analysis of Binary Files Primitive Extraction

Symbolic 
execution

Distributor 
analysis

Vulnerability Analyzer

Heap Overflow

Exploit Generate Techniques Choose

fast bin attack(tcache poisoning)

Safe-unlink

leak information payload

other techniques(unsorted bin 
attack/The House of series)

send to 
primitive 
extractor

Send to Vulnerability 
Analyzer

Exploit
Generate

Final Exploit Analyzer and Checker 

State satisfiable checker

Local exploit success detection

Remote exploit success detection

Analyze and Check

generate
final

exploit

Final Exploit Generated by AHAEG

pwntools-based
file-type

exploitaion

runtime 
exploit

Binary
program

NX PIE

ASLR Canary parameter
analysis

Off by One

Off by Null

Use After Free

Figure 3. Overview of AAHEG.

4. Primitive Extraction

Because AAHEG’s attack model needs a binary file input and ultimately directly
obtains a file-based exploit, the input binary file needs to be processed and analyzed. The
first step in the processing here is to extract information such as protection mechanisms,
and the subsequent work is primitive extraction.

Before introducing the basics of primitive extraction, we first determine the goals of
AAHEG. AAHEG only targets event-loop-driven programs. The program is driven by the
user input and enters different branches according to the user input. Different branches
will have different effects, such as malloc, free, show, etc.

Figure 4 shows some types of binary files’ functions that are mainly targeted by
primitive extraction in AAHEG.



Symmetry 2023, 15, 2197 9 of 22

List[index] = malloc(size);
read_input(List[index], size);

Add(index, size, content)

read_input(List[index], size);

Edit(index, size, content)

Switch Case Statement

puts(List[index]);

Show(index)

free(List[index]);

Free(index)

Condition_Add: 1 Condition_Edit: 2Condition_Show: 3 Condition_Free: 4

Figure 4. The function primitive to extract in binary files.

First, the program will select different branches based on the user’s input. For example,
to enter the Add branch, you need to enter 1, and to enter the Edit branch, you need to
enter 2. The branches here are different in each binary and are dynamic. Then, there is the
processing of the entire heap block. For example, Add mainly performs malloc and input
data. The corresponding free is to release a heap block. List is the core storage area. List
will save the addresses of all allocated heap blocks. Show function and Free function will
treat List and index as direct parameters, and select the printed heap and released heap
according to the specific value of the index function. Table 1 shows the characteristics of
these functions.

Primitive extraction mainly consists of the following steps.

1. Constraint path extraction. AAHEG will first extract the constraint path, i.e., the
path conditions from the entire binary file to each branch. The condition in Figure 4
has two main tasks. One is to perform the control flow graph (CFG) in the program.
After analysis, the exit point of the branch statement that generates the switch case
is extracted, which corresponds to the exit node of CFG. When extracting the exit
node, you also need to prune the default branch of the switch statement or the error-
reporting branch. The pruning method is to detect whether internal functions are
called (external functions are puts or printf). Then, Angr [43], a symbolic execution
tool, is used to solve the constraints of the corresponding branch path.

2. Function analysis. The second step of primitive extraction is to conduct an automated
analysis of the function’s functionality. The first step in automated analysis is to
judge the List pointer. AAHEG will automatically search the .bss segment and other
global segments to find the addresses indexed by the above functions (Add, Edit, etc.)
and determine that this may be a List pointer. AAHEG uses two-way confirmation,
i.e., after finding the possible List pointer, it continues to search for the possible Add
function and finds the relevant address where malloc saves the return value in the
Add function (determined based on the distance between the addresses, or based on
the parameters) to determine whether it is an Add function and whether it is a List
pointer. After the List pointer is determined, its content is determined based on the
characteristics of other functions. For example, there is a call of the free function in
Free, and the parameters of the free function are related to the List pointer; Edit
does not call malloc, but the relevant address saved in the List is Write; the Show
function will use some output functions to print the address related to the List.

3. Constraint paths correspond to functions. After extracting the corresponding con-
straint path and the corresponding function name, AAHEG will match these function
names with paths and record them as the conditions of the function. Specifically, the
information we want to extract here is the corresponding relationship in Figure 4.
Entering 1 will enter the Add function, and entering 2 will enter the Edit function.

4. Key parameter information extraction. In AAHEG, the work of this step is to determine
whether there is this parameter and the specific range of this parameter. For example,
in the Add function, the specific value of index will be detected to determine its range.
The detection here is based on the location where the last malloc return value is saved.



Symmetry 2023, 15, 2197 10 of 22

The next step is to determine the value range of the malloc parameter. The range here
is determined directly by hooking the malloc function and using the SMT solver in
Angr. After the function reaches the malloc function, its parameters will be probed to
obtain their minimum and maximum values.
In terms of results, the value of the Add function can be fixed (corresponding to Fixed
in Table 2) or a range (corresponding to Dynamic in Table 2). The final data that need
to be extracted are the input content. The core data are the input length and input
structure. The input length needs to be judged using Angr’s is_symbolic attribute.
is_symbolic represents whether data are variable, i.e., whether they are consistent with
the input or variable data. If data have the is_symbolic = True attribute, it means that
they may be related to the input. You can use the constraint solver in Angr to determine
whether the application can be written. At the same time, you can also use is_symbolic
to determine the length of the input. This size is very critical information, which is
relevant to subsequent vulnerability detection. The input data here also pay attention
to the last byte. The main purpose is to detect whether there are vulnerabilities such
as Off by One or Off by Null. AAHEG’s approach is to record the status of the memory
application (malloc) and initialize it to uninitialized data. After data input, AAHEG
will record the changed bytes, record their length, and record the state of the last byte.
If they are uninitialized data, it proves that there is no vulnerability; if it is \x00, it
should be an Off by Null vulnerability; if it is a symbolic state, it should be an Off by
One vulnerability.

Table 2. Characteristics of functions.

Function Name Index Size Content Main Functions

Add Optional Dynamic/Fixed Dynamic Allocate a heap block
Edit Dynamic Optional Dynamic Modify the content of a heap block
Show Dynamic No No Print the content of a heap block
Free Dynamic No No Free a heap block

Optional: This parameter is optional, Dynamic: The value of this parameter is dynamic. Fixed: The value of this
parameter is fixed. No: This function does not require this parameter.

The analysis process of other functions such as Edit, Show, and Free is similar to the
analysis process of Add because the parameters in functions such as Edit, Show, and Free
are similar to the Add function. Primitive extraction is a very important step in AAHEG.
Because the attack model designed by AAHEG inputs a binary file instead of a PoC, it
requires the support of reverse engineering tools. AAHEG uses radare2 [44] for reverse
analysis, and radare2 can analyze the code, index, and symbol information in the binary file.
radare2 also supports Python implementation, which is very suitable for AAHEG. Other
AEGs, such as MAZE and other tools, require input from PoC, which is fundamentally
different from AAHEG.

The work of primitive extraction is very important. First, the vulnerability type is
determined through primitive extraction and key parameter range judgment. At the same
time, when the exploit is generated, the key parameter range will also guide the program
to select branches in the AST.

5. Vulnerability Detection

After completing the primitive extraction, AAHEG can basically understand the entire
binary file. The first step in the follow-up work is to complete the detection of vulnerabilities.
The overflow vulnerabilities are Heap Overflow, Off by One and Off by Null, and another type
of heap-related vulnerability is UAF. This is the key concept of AAHEG because we solved
the asymmetrical types of methods in vulnerability detection.



Symmetry 2023, 15, 2197 11 of 22

Heap Overflow. The detection of Heap Overflow vulnerabilities is relatively simple,
because the input to the heap is directly in the Add and Edit functions, and the basic
conditions are as Equation (1).

Addsize < inputsize ∨ ((Addsize < Editsize) ∧ (Addindex == Editindex)) (1)

In Equation (1), Addsize represents the allocated size, which is the parameter value
of the malloc function; inputsize represents the length of the input; Editsize represents the
length of the input in the edit function; Addindex represents the subscript index in the Add
function, and Editindex represents the subscript index in the Edit function.

Because the range of parameters of the malloc function has been extracted during
primitive extraction, AAHEG determines a representative value of the malloc function
parameters based on the results of primitive extraction. After determining the repre-
sentative value, if the input size exceeds the selected representative value, then it is
determined that there is a Heap Overflow vulnerability, i.e., Addsize < inputsize. If the
size of Add is smaller than the size of Edit and the subscript of Add is equal to the sub-
script of Edit, it can also be determined that a Heap Overflow vulnerability exists, i.e.,
Addsize < Editsize ∧ Addindex == Editindex. If no vulnerability is found, AAHEG will also
detect all value ranges and make judgments on all size values to ensure the existence
of vulnerability.

Off by One/Off by Null. Because these two vulnerabilities are special types of Heap
Overflow vulnerabilities. After AAHEG determines that the Heap Overflow vulnerability
exists, it will also judge the overflow length of this vulnerability. Practically speaking, this
judgment is determined by the length of symbolic data, which is the same as the judgment
method of Heap Overflow. The judgment conditions for Off by One are as Equation (2).

Addsize + 1 == inputsize ∨ (Addsize + 1 == Editsize ∧ Addindex == Editindex) (2)

The judgment condition for Off by One is the allocated length plus 1 is equal to the
input length. Or the length in Edit is equal to the allocated length plus 1, and the subscripts
of the Add function and the Edit function are consistent.

The judgment conditions for Off by Null are as Equation (3) or Equation (4).

Addsize + 1 == inputsize ∨ inputsize−1 == 0 (3)

Addsize + 1 == Editsize ∨ Addindex == Editindex ∨ inputsize−1 == 0 (4)

The judgment condition for Off by Null is that the allocated length plus 1 is equal to the
input length, or the length in Edit is equal to the allocated length plus 1 and the subscripts
of the Add function and the Edit function are equal. The difference between Off by Null and
Off by One is that inputsize−1 == 0, i.e., the last character is fixed to 0 and cannot be any
other character.

Use After Free. The strict definition of UAF is that a heap block can still be indexed
after it is released. The common method of exploitation is to directly modify the content or
release it again (Double Free). To address this vulnerability, AAHEG’s judgment condition
is Equation (5).

Freeindex == Showindex ∨ Freeindex == Editindex (5)

That is, the subscript of Free is equal to the subscript of the Show function or the
subscript of Edit. Practically speaking, this detection method is indirect. The actual
detection conditions are:

Freeaddr == Showaddr ∨ Freeaddr == Editaddr (6)



Symmetry 2023, 15, 2197 12 of 22

The addr here represents the address of the heap block, i.e., after a heap block is
released, it can also be indexed by the Show function or the Edit function. If there are
no problems with the primitive extraction steps, then the meaning expressed by the two
formulas is the same, because the relationship between the index and addr is a one-to-one
correspondence.

This section introduces the vulnerability detection method used in AAHEG. The
detection idea is based on the correctness of primitive extraction.

6. Exploit Abstract Syntax Tree

After AAHEG completes vulnerability detection, it is necessary to pre-evaluate and
select the exploitation method. In AAHEG, whether a vulnerability can be exploited is
determined through an AST. This AST is based on our team’s experience in heap-related
exploitation. When we exploit a certain binary file, we first obtain the primitives of
each function through reverse analysis. After extracting the primitives, we use some
restrictions in the primitives (such as limiting the allocation size, input length, etc.) to
choose the appropriate exploitation method. These exploitation methods are divided into
the following parts: exploitation of leaking the libc, exploitation of hijacking hooks, and
exploitation of triggering hooks. It is worth mentioning that because the higher version
of glibc and the test environment version used by AAHEG are different, AAHEG uses
glibc 2.27. The AST version introduced in this paper is glibc 2.27. For higher versions, just
following this principle of syntax tree generation is enough to write the corresponding AST.

For example, when using glibc 2.29, the following code shows the protection mecha-
nism added.

p = chunk_at_offset(p, -((long) prevsize));
if (__glibc_unlikely (chunksize(p) != prevsize))
malloc_printerr (“corrupted size vs. prev_size while consolidating”);

Glibc will check whether the size of the heap block with the first physical address is
the same as the prevsize field. As a result, the syntax tree for Off by Null may change in glibc
version 2.29. Specifically, the heap address needs to be leaked in advance during utilization
in glibc version 2.29.

In AAHEG, we define three operation types:

• Sequence type (S): Sequence type, which means that these two operations are exe-
cuted sequentially, i.e., executed one after another, and the left subtree precedes the
right subtree.

• Multiplication type (M): Multiplication type, representing the number of times the
right subtree repeats the left subtree operation.

• Conditions (C): Condition type, which means that when performing the operation of
the left subtree, the conditions of the right subtree must be met.

In the AST, the four function types will be simplified, and the four functions Add, Edit,
Free, and Show will be simplified to A, E, F, and S, respectively. As a parameter of the
Add function, si(i = 0, 1, 2...) represents the size of the allocation, corresponding to the
allocation order; i(i = 0, 1, 2...) represents the subscript. pi(i = 0, 1, 2...) represents the order
of input payload. For example, in A(s0), s0 represents the size of the first allocation, and
F(0) represents the release of the 0th allocated heap block.

Leak libc Exploit. We directly show the abstract syntax tree through UAF vulnerability,
as shown in Figure 5.



Symmetry 2023, 15, 2197 13 of 22

S(0)S

A(s0)

C

s0 >= 
0x400 A(s1) F(0)

S

S

Figure 5. The Leak Libc AST through UAF vulnerability.

The sequence of operations represented by UAF AST is 1. A(s0) & s0 >= 0x400 2. A(s1)
3. F(0) 4. S(0). Because of the existence of UAF vulnerability, after freeing the heap block
corresponding to the subscript 0, it can still be indexed. The condition of s0 >= 0x400 here
is to bypass tcache (because the maximum size of tcache bin is 0x400), so that the released
heap blocks will be put in the unsorted bin, and the libc-related address can be obtained by
directly printing the content of heap block 0.

At the same time, the AST of the Leak Libc through Heap Overflow vulnerability is
given, as shown in Figure 6.

S

A(s0) E(0, s0 + 
0x10, p0)A(s1)

S

S

A(s2) s2 >= 
0x400

C

A(s3)

S

F(1) A(s1)

S

S

S

S(2)

Figure 6. The Leak Libc AST through Heap Overflow vulnerability.

The sequence of operations represented by the Heap Overflow AST is 1. A(s0) 2. A(s1)
3. A(s2) & s2 >= 0x400 4. A(s3) 5. E(0, s0 + 0x10, p1) 6. F(1) 7. A(s1) 8. S(2). Because of
the Heap Overflow vulnerability, we can directly modify the size of heap block 1 through
overflow heap block 0. p1 is “\00” * s0 + p64(0) + p64(s0 + 0x10), where p64 is function pack
64, which represents re-unpacking the value into an 8-byte string, which corresponds to
the endian order of the machine (big endian or little endian). The condition of s0 >= 0x400
here is also to bypass the tcache mechanism and allow the released heap blocks to be put in
an unsorted bin. The function of F(1) and A(s1) is to release the forged heap blocks first,
and then A(s1). Then, the unsorted bin will be at the same location as the heap block 2, and
S(2) can leak the libc-related address.

Exploitation of hijack hooks. In glibc version 2.27, the main attack target of AAHEG is
__free_hook. If __free_hook can be hijacked as the system function, then finally freeing a
heap block with the content of “/bin/sh” is equivalent to executing system(“/bin/sh”).

The AST is given directly here, as shown in Figure 7.



Symmetry 2023, 15, 2197 14 of 22

S

A(s0)

C

s0 < 
0x400 F(0) E(0,0x

8, p0)

S

S

A(s1) s1 == 
s0

C 2

M

Figure 7. The Hijack Hooks AST through UAF vulnerability.

The sequence of operations represented by the UAF AST is 1. A(s0) & s0 < 0x400 2.
F(0) 3. E(0, 0x8, p0) 4. (A(s1) & s1 == s0 ) * 2. Because of the existence of UAF vulnerability,
after allocating and releasing the heap block corresponding to the free subscript 0, the heap
block 0 will enter the tcache chain, and then allocate heap blocks of the same size twice
in a row. p0 here is the payload, which is p64(__free_hook), i.e., the fd location of tcache
is overwritten to the address of __free_hook. The final allocated heap block will hijack
__free_hook as the address of the system function.

The AST of Heap Overflow is shown in Figure 8.

S

A(s0)

S

S

A(s2) s2 == 
s1

C 2

M

A(s1) s1 < 
0x400

C F(1) E(0, s0 + 
0x18, p0)

S

Figure 8. The Hijack Hooks AST through Heap Overflow vulnerability.

The sequence of operations represented by the Heap Overflow AST is 1. A(s0) 2. A(s1) &
s1 < 0x400 3. F(1) 4. E(0, s0 + 0x10, p0) 5. (A(s2) & s2 == s1) * 2. Because of the existence of
a Heap Overflow vulnerability, after allocating and releasing the heap block corresponding
to the free subscript 0, the heap block 0 will enter the tcache chain, and then allocate heap
blocks of the same size twice in a row. p0 here is the payload, which is p64(__free_hook),
i.e., the fd location of tcache is overwritten to the address of __free_hook. The final allocated
heap block will hijack __free_hook as the address of the system function.

For the two vulnerabilities Off by One/Off by Null, the corresponding exploitation
methods will be different. Here, we directly give the utilization AST of the Off by Null
vulnerability, which is the utilization AST of hijacking __free_hook. Because Off by Null
can be used, Off by One can also be used, because the bytes overflowed by Off by One are
arbitrary bytes. The AST for using Off by Null is given in Figure 9.



Symmetry 2023, 15, 2197 15 of 22

S

S

S

F(2)

S

M

E(1, s1 + 
0x1, p0)

S

A(s0) s0 >= 
0x400

C

A(s1)

C

s1 % 0xf 
== 0x8 A(s4)F(0)

S

A(s3)

S

A(s5)

C

s4 == s0 s5 == s1

C

A(s2)
0xe8 < s2 
& 0xf8 <= 

0xf8

C

Figure 9. The Hijack Hooks AST through Off by Null vulnerability.

The operation sequence represented by the AST is 1. A(s0) & s0 >= 0x400 2. A(s1) & s1
% 0xf == 0x8 3. A(s2) & 0xE8 < (s2 & 0xf8) <= 0xf8 4. E(1, s1 + 0x1, p0) 5. A(s3) 6. F(0) 7.
F(2) 8. A(s4) & s4 == s0 9. A(s5) & s5 == s1. The first is to lay out the heap, first allocate
four heap blocks, and then modify the prev_size and size fields of subsequent heap blocks
through Off By Null. F(0) and then F(2) trigger the merger of the two heap blocks, and then
allocate one Heap block can make heap 1 and heap 5 at the same location.

The function of the AST is to give AAHEG a formalized way. AAHEG can pre-verify
the exploit generation through the exploit AST and guide the generation of exploits through
the exploit AST. The S operation can guide AAHEG to the next detection algorithm. The C
operation can guide AAHEG to constraint solver to some conditions. The M operation is
similar to the S operation and is used to guide AAHEG’s utilization detection process.

It is worth mentioning that in this paper, only some typical vulnerability exploitation
ASTs are listed. In AAHEG, there are dozens of actual vulnerability generation ASTs,
because some details will be different, such as UAF leaks. When libc-related address data
are needed, you can choose to continuously free more than seven heap blocks with sizes
smaller than 0x400 and larger than 0x80, and then leak the information. The corresponding
AST is shown in Figure 10.

S(7)S

S

A(s0)

C

0x80 < s0 < 
0x400

8

M

F(i) 0 <= i <= 7

M

S

A(s8)

Figure 10. The Leak Libc AST through UAF vulnerability with bypassing tcache.

First, allocate nine heap blocks, as long as the size meets 0x80 < size < 0x400, then
release the first eight heap blocks, so that the first seven heap blocks will fill the tcache



Symmetry 2023, 15, 2197 16 of 22

chain, and the last heap block will enter the unsorted bin, S(7) will leak the libc-related
address information when printing this heap block.

In short, the exploit AST is used to abstract heap-related exploits. The advantage of
this abstraction is that it can help AAHEG select the exploit method and pre-verify whether
the exploit can be generated, and finally complete the generation of the exploit.

7. Exploit Generation

Exploit generation is the final work of AAHEG. Its core work is to obtain the extracted
primitives after obtaining the symbol information and path information, analyze the
vulnerabilities detected in the binary file, choose an AST based on the vulnerability exploit,
and finally generate a feasible exploit. Finally, AAHEG will generate the exploit in the
form of file to give the experts more information about vulnerabilities. By generating the
file-form exploit, experts can improve their ability to defend against vulnerabilities, because
they have exploit files to debug to see the detailed part of vulnerabilities. By this file-form
exploit, AAHEG helps the defenders, thus ensuring the symmetry of network security.

Dynamic Payload Element (DPE). In AAHEG, in order to bypass the two protection
mechanisms, PIE and ASLR. We adopt the Dynamic Payload Element strategy. DPE will
classify and mark all content in the payload. The purpose of this processing is to generate a
dynamic payload, and then it is only instantiated when it is actually generated. Because in
actual attacks, the first thing to do in an exploit is to leak the address to bypass the PIE and
ASLR mechanisms, and then exploit it. For example, in heap utilization, the first thing to
do is to leak the base address of the heap allocation and the base address of the libc library.
Only then can the actual address of the content that needs to be hijacked be known, such as
the address of __free_hook and the address of system function.

There are two basic operating conditions for DPE:

• Mark the elements in the generated payload and mark the address information that
needs to be known in advance when instantiating it.

• The preamble payload is responsible for leaking information that subsequent payloads
need to know in advance. If the required address information is not known when the
payload is instantiated, the payload will fail to instantiate and need to be regenerated.

DPE is consistent with the actual attack model, which leaks the address first and then
instantiates it. In DPE, each payload contains three elements—value, addr, and type—
where value represents the specific value, addr represents the required address information,
and type represents its numerical type.

For example, in the Safe-unlink attack, AAHEG obtained the pointer address ptr
pointing to the heap block through binary static analysis. According to the basic Safe-
unlink attack syntax, the following payload was obtained:

(0, None, int64), (0x21, None, int64), (ptr – 0x18, “elf_base”, int64), (ptr – 0x10,
“elf_base”, int64), (0x20, None, int64), (0x30, None, int64)

The 0, 0x21, and other data here represent its numerical information; none means
that it does not need to know the address information, “elf_base” means that this payload
needs to know the base address of the binary file loading in advance; int64 represents 64-bit
integer type data.

Other address types include none, no address type required; “elf_base” binary file
loading base address; “Canary” needs to know the Canary value in advance; “libc_base”
needs to know the libc loading base address in advance.

Specifically, for example, in an attack like Safe-unlink, if the binary file does not have
the PIE protection mechanism turned on, then AAHEG will convert all the data related to
“elf_base” in the generated payload into the none type, such as the payload above. will be
converted to:

(0, None, int64), (0x21, None, int64), (ptr – 0x18, None, int64), (ptr – 0x10, None, int64),
(0x20, None, int64), (0x30, None, int64 )

The payload of the hijacking __free_hook generated in AAHEG is as follows:
(libc.symbols[“__free_hook”], “libc_base”, int64)



Symmetry 2023, 15, 2197 17 of 22

libc.symbols[“__free_hook”] represents the address of the __free_hook symbol ob-
tained from the libc.so link library file, and “libc_base” represents the loading base address
of the libc.so link library that needs to be known in advance.

DPE is used to assist in exploit generation and can help AAHEG complete the bypass
of some protection mechanisms that exist on Linux. With DPE, combined with the work of
the pre-order payload, AAHEG is able to bypass all protection mechanisms on Linux.

The final exploit generation flow chart is given in Figure 11.
After having the exploit generation syntax tree and DPE, AAHEG has the ability to

generate exploits. Finally, AAHEG will start a process to verify whether the entire payload
is correct (Check Local), and start a docker to verify whether the entire payload is correct
(Check Remote).

Binary
Files

Primitive Extraction
Heap Pointer Extraction

Check Local
And 

Check 
Remote

Generate 
Successfully

Yes

Vulnerability
Type?

Use After Free Off by One
Off by Null Heap Overflow

Libc Leak
Abstract Syntax Tree Search

(Bypass ASLR)

Failed or
Not

Failed

Vulnerability
Type?

Use After Free Off by One
Off by Null Heap Overflow

Not Failed

Chunk Overlapping Abstract
Syntax Tree Search

__malloc_hook/__free_hook
Key Data Hijack 

Abstract Syntax Tree Search

Generate Failed

No
Generate Failed

Figure 11. The flow chart of AAHEG.



Symmetry 2023, 15, 2197 18 of 22

8. Evaluation
8.1. Experimental Setup

Based on vulnerability detection and detection, we implemented these ideas in AA-
HEG. A total of 20,000 lines of code were written to complete these methods, of which
about 3000 lines of code were the dynamic execution engine we completed based on Angr,
about 4000 lines of code were the primitive extractor based on Angr, and the remaining
13,000 lines of code implemented AAHEG. These codes also implement database saving
results and simulation of the docker environment.

We used Angr version 9.1.11752 for symbolic execution, pwntools 4.7.0 for binary
analysis and exploit generation, and radare2 5.8.3 to assist with reverse engineering. The
experimental environment uses Ubuntu 18.04 64-bit operating system and Intel Core i7
chip, 8 GB memory, and Linux kernel version 5.4.0.

8.2. CTF Benchmark Evaluation

Then we selected 20 CTF problems. Most of these CTF topics are from ctftime [45]. CTF
problems can be considered as simplified versions of real programs for more concise and
demonstrate the principle of vulnerability. The difference is that the CTF problems are used
to test the relevant abilities of the players in the competition, so the vulnerabilities can be ex-
ploited, but the real-world programs are more complex, and even if there are vulnerabilities,
they may not necessarily be exploitable. Table 3 shows our experimental results.

Table 3. Evaluation AAHEG by 20 CTF binary files.

Binary Name Vuln Type N C P R Advanced Exploit Technique Exploit T(s)

2019_5thspace_final_pwn1 UAF ✓ ✓ ✓ F Tcache poisoning L + R 32
2020_diaoyucheng_very_easy UAF ✓ ✓ ✓ F Tcache poisoning L + R 50
2020_tiesan_fake UAF ✓ ✓ × P Safe-unlink L + R 25
2020_wangding_magic UAF ✓ ✓ × P Safe-unlink L + R 37
2023_longjian_14 UAF ✓ ✓ ✓ F Tcache poisoning L + R 41
2023_longjian_8 UAF ✓ ✓ × P Safe-unlink L + R 47
2017_RCTF_RNote Off by One ✓ × × P Safe-unlink L + R 57
2018_0ctfquals_babyheap Off by One ✓ ✓ ✓ F Fast bin attack L + R 78
2019_roarctf_easy_pwn Off by One ✓ ✓ ✓ F Tcache poisoning L + R 63
2023_longjian_16 Off by Null ✓ ✓ ✓ F Tcache poisoning L + R 23
2018_LCTF_easy_heap Off by Null ✓ ✓ ✓ F Tcache poisoning L + R 73
2018_qctf_babyheap Off by Null ✓ ✓ ✓ F Fast bin attack L + R 76
2018_rctf_babyheap Off by Null ✓ ✓ ✓ F Fast bin attack L + R 88
2019_5thspace_pwn12 Off by Null ✓ ✓ × F Safe-unlink L + R 42
2019_5thspace_pwn14 Off by Null ✓ ✓ × P Safe-unlink L + R 31
2019_swamp_dream_heaps Off by Null ✓ ✓ × P Safe-unlink L + R 54
2019_CISCN_pwn8 Heap Overflow ✓ ✓ × P Safe-unlink L + R 24
2019_qiangwang_AP Heap Overflow ✓ ✓ ✓ F Tcache poisoning L + R 51
2020_diaoyucheng_unknown Heap Overflow ✓ ✓ ✓ F Tcache poisoning L + R 34
2021_longjing_hellocat Heap Overflow ✓ ✓ × P Safe-unlink L + R 49

for table header: N: NX, C: Canary, P: PIE, R: RELRO, T: the time consumed by AAHEG, L means local check
succeeded, R means remote check succeeded(attack remote docker).

As can be seen from Table 3, AAHEG can detect 4 types of vulnerabilities—UAF, Heap
Overflow, Off by One and Off by Null. This detection result demonstrates the completeness
of AAHEG’s vulnerability detection and also verifies AAHEG’s ability to detect four types
of heap-related vulnerabilities. At the same time, it can be seen from Table 3 that AAHEG
chooses different exploit generation methods based on these four vulnerabilities. For
example, through UAF vulnerabilities, AAHEG will choose different exploit methods
based on the protection mechanism enabled by the actual binary file. When PIE is enabled,



Symmetry 2023, 15, 2197 19 of 22

the Safe-unlink exploit is powerless. When PIE is not enabled, AAHEG will choose to
generate the Safe-unlink exploit.

Overall, AAHEG’s exploit generation time does not exceed 2 min, which is a huge im-
provement. At the same time, 11 of the 20 CTF binary files have all protection mechanisms
enabled, which shows that AAHEG can bypass all protection mechanisms in Linux systems.

9. Discussion

AAHEG has the ability to bypass the protection mechanisms in Linux and it can
successfully generate the exploit of heap-related vulnerabilities. However, AAHEG still has
some limitations and issues to overcome, so we discuss these limitations and future work.

9.1. Limitations

Heap Layout Problem. AAHEG does not consider heap layout problems before exploit
generation. We suggest an ideal environment where the primitive extraction is strict. The
noise of heap allocating can be eliminated by the AST, because through the AST, AAHEG
can finally find a path that eliminates the noise.

Limitation of symbolic execution. AAHEG applies symbolic execution to extract the
primitives of binary files. It means AAHEG is sensitive to function complexity when the
path condition of primitives is, respectively, complex. Fortunately, it does not matter when
the program is not too large such as a CTF problem. But when we want to apply AAHEG
to some real-world problem, we need to optimize symbolic execution.

9.2. Future Work

Handle real-world problem. We will apply fuzzing technology to extract the path of
heap-related primitives. For example, when extracting a primitive of a real-world problem,
we can use fuzzing to find the path of a function call (malloc, free). Then, we use symbolic
execution to extract the primitives of this path. Finally, AAHEG can find the primitive and
use the primitive to generate an exploit.

Solve higher versions of glibc. When the glibc version is higher than 2.33 (or equal to
2.33), glibc will adopt a safe-linking mechanism to protect the fd of the heap block. Its
basic logic is to XOR the fd with the address of the current heap block, which increases the
difficulty of automated heap utilization. We need to add leakage of heap block addresses
in the exploit AST in advance. The difficulty of this in actual application will not increase
too much; it is just a matter of changing the general exploit AST.

9.3. Related Work

Heap-related vulnerabilities mining. Some research focuses on improving the ef-
ficiency of finding heap-related vulnerabilities. Tu [46] designed and implemented an
enhanced symbolic execution engine named HEAPX to facilitate the automatic detection
and exploitation of heap-based vulnerabilities. HEAPX designs new path exploration strate-
gies, a new memory model, and a new environment modelling solution so that the new
enhanced symbolic execution engine can detect heap-based vulnerabilities and generate
working vulnerabilities for them more efficiently.

Heap utilization primitives. Liu [47] uses pointer dependency analysis to identify
key behaviours of primitives and then uses primitives to trigger vulnerabilities. Sean
Heelan [48] proposed a method to automatically generate Heap Overflow vulnerabilities in
the interpreter. By discovering the vulnerability exploitation primitives and determining
the data structures that must be damaged, the attacker can achieve the desired exploitation
method. The form of vulnerability that Heelan [49] primarily targets is out-of-bounds
(OOB) reads of heap-related memory. HEAPHOPPER [50], proposes an automated method
based on model checking and symbolic execution to analyze the exploitability of heap
implementations in the presence of memory corruption. HEAPHOPPER will only predict
the feasibility of exploitation, and through the verification of this feasibility, evaluate how
the application of ptmalloc [35] will significantly weaken system security.



Symmetry 2023, 15, 2197 20 of 22

10. Conclusions

In this paper, we introduce the heap-related vulnerability and Heap-related exploit
methods. The heap-related vulnerability has four types. At the same time, we introduce
the primitive extraction and the exploit generation methods. Among the vulnerability
detection methods, symbolic execution is selected to solve the condition of every branch.
AAHEG can detect four heap-related vulnerability types and use AST to help generate
the exploit of the corresponding vulnerability. AAHEG applies the advanced heap exploit
method to generate the exploit. Experimental results show that AAHEG can complete
20 CTF problems’ exploit generation, 11 of which have all protection mechanisms enabled.

Author Contributions: Conceptualization, Y.W. and Z.L.; methodology, Y.W. and Z.L.; software, Y.W.;
validation, Y.W.; formal analysis, Y.W.; resources, Y.W. and Y.Z.; visualization, Y.W.; supervision, Y.W.
and Y.Z.; project administration, Y.W. and Y.Z.; funding acquisition, Y.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(Grant Nos. 62276017, U1636211, 61672081), the 2022 Tencent Big Travel Rhino-Bird Special Research
Program, and the Fund of the State Key Laboratory of Software Development Environment (Grant
No. SKLSDE-2021ZX-18).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Song, J.; Alves-Foss, J. The DARPA Cyber Grand Challenge: A Competitor’s Perspective. IEEE Secur. Priv. 2015, 13, 72–76.

[CrossRef]
2. Huang, S.; Huang, M.; Huang, P.; Lai, C.; Lu, H.; Leong, W. CRAX: Software Crash Analysis for Automatic Exploit Generation by

Modeling Attacks as Symbolic Continuations. In Proceedings of the Sixth International Conference on Software Security and
Reliability, SERE 2012, Gaithersburg, MD, USA, 20–22 June 2012; Volume 2012, pp. 78–87. [CrossRef]

3. Cha, S.K.; Avgerinos, T.; Rebert, A.; Brumley, D. Unleashing Mayhem on Binary Code. In Proceedings of the IEEE Symposium on
Security and Privacy, SP 2012, San Francisco, CA, USA, 21–23 May 2012; pp. 380–394. [CrossRef]

4. Kc, G.S.; Keromytis, A.D. e-NeXSh: Achieving an Effectively Non-Executable Stack and Heap via System-Call Policing. In
Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005), Tucson, AZ, USA, 5–9 December
2005; pp. 286–302. [CrossRef]

5. Xu, S.; Wang, Y. BofAEG: Automated Stack Buffer Overflow Vulnerability Detection and Exploit Generation Based on Symbolic
Execution and Dynamic Analysis. Secur. Commun. Netw. 2022, 2022, 1251987. [CrossRef]

6. Mow, W.; Huang, S.; Hsiao, H. LAEG: Leak-based AEG using Dynamic Binary Analysis to Defeat ASLR. In Proceedings of the
IEEE Conference on Dependable and Secure Computing, DSC 2022, Edinburgh, UK, 22–24 June 2022; pp. 1–8. [CrossRef]

7. Wang, Y.; Zhang, C.; Xiang, X.; Zhao, Z.; Li, W.; Gong, X.; Liu, B.; Chen, K.; Zou, W. Revery: From Proof-of-Concept to Exploitable.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, 15–19 October 2018; Lie, D., Mannan, M., Backes, M., Wang, X., Eds.; ACM: New York, NY, USA, 2018; pp. 1914–1927.
[CrossRef]

8. Wang, Y.; Zhang, C.; Zhao, Z.; Zhang, B.; Gong, X.; Zou, W. MAZE: Towards Automated Heap Feng Shui. In Proceedings of the
30th USENIX Security Symposium, USENIX Security 2021, Online, 11–13 August 2021; Bailey, M., Greenstadt, R., Eds.; USENIX
Association: Berkeley, CA, USA, 2021; pp. 1647–1664.

9. Position-Independent Code. Available online: https://en.wikipedia.org/wiki/Position-independent_code (accessed on 30
October 2023).

10. Bierbaumer, B.; Kirsch, J.; Kittel, T.; Francillon, A.; Zarras, A. Smashing the Stack Protector for Fun and Profit. In Proceedings of
the 24th IFIP World Computer Congress, WCC 2018, Poznan, Poland, 18–20 September 2018; Janczewski, L.J., Kutylowski, M.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 529, pp. 293–306. [CrossRef]

11. FULL RELRO. Available online: https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-onlyrelro
(accessed on 30 October 2023).

12. Pwntools. CTF Framework and Exploit Development Library. 2020. Available online: https://github.com/Gallopsled/pwntools
(accessed on 1 December 2023).

13. Wang, R.; Pan, Z.; Shi, F.; Zhang, M. Aemb: An automated exploit mitigation bypassing solution. Appl. Sci. 2021, 11, 9727.
[CrossRef]

http://doi.org/10.1109/MSP.2015.132
http://dx.doi.org/10.1109/SERE.2012.20
http://dx.doi.org/10.1109/SP.2012.31
http://dx.doi.org/10.1109/CSAC.2005.22
http://dx.doi.org/10.1155/2022/1251987
http://dx.doi.org/10.1109/DSC54232.2022.9888796
http://dx.doi.org/10.1145/3243734.3243847
https://en.wikipedia.org/wiki/Position-independent_code
http://dx.doi.org/10.1007/978-3-319-99828-2_21
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only relro
https://github.com/Gallopsled/pwntools
http://dx.doi.org/10.3390/app11209727


Symmetry 2023, 15, 2197 21 of 22

14. He, L.; Cai, Y.; Hu, H.; Su, P.; Liang, Z.; Yang, Y.; Huang, H.; Yan, J.; Jia, X.; Feng, D. Automatically assessing crashes from heap
overflows. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering, ASE 2017,
Urbana, IL, USA, 30 October–3 November 2017; Rosu, G., Penta, M.D., Nguyen, T.N., Eds.; IEEE Computer Society: Washington,
DC, USA, 2017; pp. 274–279. [CrossRef]

15. Avgerinos, T.; Cha, S.K.; Rebert, A.; Schwartz, E.J.; Woo, M.; Brumley, D. Automatic exploit generation. Commun. ACM 2014,
57, 74–84. [CrossRef]

16. Huang, N.; Huang, S.; Chang, C. Analysis to heap overflow exploit in linux with symbolic execution. In IOP Conference Series:
Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 252, p. 042100.

17. Zhao, Z.; Wang, Y.; Gong, X. HAEPG: An Automatic Multi-hop Exploitation Generation Framework. In Proceedings of the
Detection of Intrusions and Malware, and Vulnerability Assessment—17th International Conference, DIMVA 2020, Lisbon,
Portugal, 24–26 June 2020; Maurice, C., Bilge, L., Stringhini, G., Neves, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2020;
Volume 12223, pp. 89–109. [CrossRef]

18. Sotirov, A. Heap feng shui in javascript. Black Hat Eur. 2007, 2007, 11–20.
19. Yun, I.; Kapil, D.; Kim, T. Automatic Techniques to Systematically Discover New Heap Exploitation Primitives. In Proceedings of

the 29th USENIX Security Symposium, USENIX Security 2020, Boston, MA, USA, 12–14 August 2020; Capkun, S., Roesner, F.,
Eds.; USENIX Association: Berkeley, CA, USA, 2020; pp. 1111–1128.

20. Zhang, B.; Chen, J.; Li, R.; Feng, C.; Li, R.; Tang, C. Automated Exploitable Heap Layout Generation for Heap Overflows Through
Manipulation Distance-Guided Fuzzing. In Proceedings of the 32nd USENIX Security Symposium, USENIX Security 2023,
Anaheim, CA, USA, 9–11 August 2023; Calandrino, J.A., Troncoso, C., Eds.; USENIX Association: Berkeley, CA, USA, 2023;
pp. 4499–4515.

21. Heelan, S.; Melham, T.; Kroening, D. Automatic Heap Layout Manipulation for Exploitation. In Proceedings of the 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA, 15–17 August 2018; Enck, W., Felt, A.P., Eds.; USENIX
Association: Berkeley, CA, USA, 2018; pp. 763–779.

22. Gennissen, J.; O’Keeffe, D. Hack the Heap: Heap Layout Manipulation made Easy. In Proceedings of the 43rd IEEE Security and
Privacy, SP Workshops 2022, San Francisco, CA, USA, 22–26 May 2022; pp. 289–300. [CrossRef]

23. Li, R.; Zhang, B.; Chen, J.; Lin, W.; Feng, C.; Tang, C. Towards Automatic and Precise Heap Layout Manipulation for General-
Purpose Programs. In Proceedings of the 30th Annual Network and Distributed System Security Symposium, NDSS 2023, San
Diego, CA, USA, 27 February–3 March 2023.

24. Kang, X.; Debray, S. A Framework for Automatic Exploit Generation for JIT Compilers. In Proceedings of the Checkmate@CCS
2021, Research on offensive and defensive techniques in the Context of Man at the End (MATE) Attacks, Virtual Event, Republic
of Korea, 19 November 2021; Hauser, C., Kwon, Y., Banescu, S., Eds. ACM: New York, NY, USA, 2021; pp. 11–19. [CrossRef]

25. Jin, L.; Cao, Y.; Chen, Y.; Zhang, D.; Campanoni, S. ExGen: Cross-platform, Automated Exploit Generation for Smart Contract
Vulnerabilities. IEEE Trans. Dependable Secur. Comput. 2023, 20, 650–664. [CrossRef]

26. Krupp, J.; Rossow, C. teEther: Gnawing at Ethereum to Automatically Exploit Smart Contracts. In Proceedings of the 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, 15–17 August 2018; Enck, W., Felt, A.P., Eds.; USENIX
Association: Berkeley, CA, USA, 2018; pp. 1317–1333.

27. Huang, S.; Huang, M.; Huang, P.; Lu, H.; Lai, C. Software Crash Analysis for Automatic Exploit Generation on Binary Programs.
IEEE Trans. Reliab. 2014, 63, 270–289. [CrossRef]

28. Jiang, Z.; Zhang, Y.; Xu, J.; Sun, X.; Liu, Z.; Yang, M. AEM: Facilitating Cross-Version Exploitability Assessment of Linux Kernel
Vulnerabilities. In Proceedings of the 44th IEEE Symposium on Security and Privacy, SP 2023, San Francisco, CA, USA, 21–25
May 2023; pp. 2122–2137. [CrossRef]

29. Wu, W.; Chen, Y.; Xu, J.; Xing, X.; Gong, X.; Zou, W. FUZE: Towards Facilitating Exploit Generation for Kernel Use-After-Free
Vulnerabilities. In Proceedings of the 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, 15–17
August 2018; Enck, W., Felt, A.P., Eds.; USENIX Association: Berkeley, CA, USA, 2018; pp. 781–797.

30. Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; et al. CodeBERT: A Pre-Trained
Model for Programming and Natural Languages. In Proceedings of the Findings of the Association for Computational Linguistics:
EMNLP 2020, Online Event, 16–20 November 2020; Cohn, T., He, Y., Liu, Y., Eds.; Association for Computational Linguistics:
Toronto, ON, Canada, 2020; Volume EMNLP 2020; pp. 1536–1547. [CrossRef]

31. Liguori, P.; Al-Hossami, E.; Cotroneo, D.; Natella, R.; Cukic, B.; Shaikh, S. Can we generate shellcodes via natural language? An
empirical study. Autom. Softw. Eng. 2022, 29, 30. [CrossRef]

32. Yang, G.; Chen, X.; Zhou, Y.; Yu, C. DualSC: Automatic Generation and Summarization of Shellcode via Transformer and Dual
Learning. In Proceedings of the IEEE International Conference on Software Analysis, Evolution and Reengineering, SANER 2022,
Honolulu, HI, USA, 15–18 March 2022; pp. 361–372. [CrossRef]

33. Liguori, P.; Al-Hossami, E.; Orbinato, V.; Natella, R.; Shaikh, S.; Cotroneo, D.; Cukic, B. EVIL: Exploiting Software via Natural
Language. In Proceedings of the 32nd IEEE International Symposium on Software Reliability Engineering, ISSRE 2021, Wuhan,
China, 25–28 October 2021; Jin, Z., Li, X., Xiang, J., Mariani, L., Liu, T., Yu, X., Ivaki, N., Eds.; IEEE: Piscataway, NJ, USA, 2021;
pp. 321–332. [CrossRef]

34. Yang, G.; Zhou, Y.; Chen, X.; Zhang, X.; Han, T.; Chen, T. ExploitGen: Template-augmented exploit code generation based on
CodeBERT. J. Syst. Softw. 2023, 197, 111577. [CrossRef]

http://dx.doi.org/10.1109/ASE.2017.8115640
http://dx.doi.org/10.1145/2560217.2560219
http://dx.doi.org/10.1007/978-3-030-52683-2_5
http://dx.doi.org/10.1109/SPW54247.2022.9833896
http://dx.doi.org/10.1145/3465413.3488573
http://dx.doi.org/10.1109/TDSC.2022.3141396
http://dx.doi.org/10.1109/TR.2014.2299198
http://dx.doi.org/10.1109/SP46215.2023.10179305
http://dx.doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
http://dx.doi.org/10.1007/s10515-022-00331-3
http://dx.doi.org/10.1109/SANER53432.2022.00052
http://dx.doi.org/10.1109/ISSRE52982.2021.00042
http://dx.doi.org/10.1016/j.jss.2022.111577


Symmetry 2023, 15, 2197 22 of 22

35. Gloger, W. Ptmalloc. 2006. Available online: https://github.com/hustfisher/ptmalloc/blob/master/malloc.c (accessed on 1
December 2023).

36. Linux Manual Page. 2023. Available online: https://man7.org/linux/man-pages/man2/syscalls.2.html (accessed on 1 December
2023).

37. MaXX. Vudo—An Object Superstitiously Believed to Embody Magical Powers. 2001. Available online: http://phrack.org/
issues/57/8.html (accessed on 1 December 2023).

38. Once upon a Free(). 2001. Available online: http://phrack.org/issues/57/9.html (accessed on 1 December 2023).
39. Mandt, T. Kernel Pool Exploitation on Windows 7. 2011. Available online: https://media.blackhat.com/bh-dc-11/Mandt/

BlackHat_DC_2011_Mandt_kernelpool-wp.pdf (accessed on 1 December 2023).
40. Karimi, A. A Survey of Heap-Exploitation Techniques. 2021. Available online: https://www.researchgate.net/profile/Alireza-

Karimi-31/publication/369594354_A_survey_of_heap-exploitation_techniques/links/6423d78392cfd54f84388e5b/A-survey-
of-heap-exploitation-techniques.pdf (accessed on 1 December 2023).

41. david942j. One_Gadget. 2023. Available online: https://github.com/david942j/one_gadget/releases (accessed on 1 December
2023).

42. Phantasmagoria, P. The Malloc Maleficarum. Bugtraq Mailinglist 2005. Available online: https://dl.packetstormsecurity.net/
papers/attack/MallocMaleficarum.txt (accessed on 1 December 2023).

43. Wang, F.; Shoshitaishvili, Y. Angr—The Next Generation of Binary Analysis. In Proceedings of the IEEE Cybersecurity
Development, SecDev 2017, Cambridge, MA, USA, 24–26 September 2017; pp. 8–9. [CrossRef]

44. Radareorg. Radare2. 2023. Available online: https://github.com/radareorg/radare2 (accessed on 1 December 2023).
45. Ctftime. Available online: https://ctftime.org/ (accessed on 1 December 2023).
46. Tu, H. Boosting Symbolic Execution for Heap-based Vulnerability Detection and Exploit Generation. In Proceedings of the 45th

IEEE/ACM International Conference on Software Engineering: ICSE 2023 Companion Proceedings, Melbourne, Australia, 14–20
May 2023; pp. 218–220. [CrossRef]

47. Liu, J.; An, H.; Li, J.; Liang, H. Detecting Exploit Primitives Automatically for Heap Vulnerabilities on Binary Programs. arXiv
2022, arXiv:2212.13990. [CrossRef]

48. Heelan, S.; Melham, T.; Kroening, D. Gollum: Modular and Greybox Exploit Generation for Heap Overflows in Interpreters. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, London, UK, 11–15
November 2019; Cavallaro, L., Kinder, J., Wang, X., Katz, J., Eds.; ACM: New York, NY, USA, 2019; pp. 1689–1706. [CrossRef]

49. Heelan, S.; Melham, T.; Kroening, D. Heap Layout Optimisation for Exploitation (Technical Report). Available online: https:
//www.blackhat.com/docs/eu-17/materials/eu-17-Heelan-Heap-Layout-Optimisation-For-Exploitation-wp.pdf (accessed on
10 December 2023).

50. Eckert, M.; Bianchi, A.; Wang, R.; Shoshitaishvili, Y.; Kruegel, C.; Vigna, G. HeapHopper: Bringing Bounded Model Checking to
Heap Implementation Security. In Proceedings of the 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, 15–17 August 2018; Enck, W., Felt, A.P., Eds.; USENIX Association: Berkeley, CA, USA, 2018; pp. 99–116.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/hustfisher/ptmalloc/blob/master/malloc.c
https://man7.org/linux/man-pages/man2/syscalls.2.html
http://phrack.org/issues/57/8.html
http://phrack.org/issues/57/8.html
http://phrack.org/issues/57/9.html
https://media.blackhat.com/bh-dc-11/Mandt/BlackHat_DC_2011_Mandt_kernelpool-wp.pdf
https://media.blackhat.com/bh-dc-11/Mandt/BlackHat_DC_2011_Mandt_kernelpool-wp.pdf
https://www.researchgate.net/profile/Alireza-Karimi-31/publication/369594354_A_survey_of_heap-exploitation_techniques/links/6423d78392cfd54f84388e5b/A-survey-of-heap-exploitation-techniques.pdf
https://www.researchgate.net/profile/Alireza-Karimi-31/publication/369594354_A_survey_of_heap-exploitation_techniques/links/6423d78392cfd54f84388e5b/A-survey-of-heap-exploitation-techniques.pdf
https://www.researchgate.net/profile/Alireza-Karimi-31/publication/369594354_A_survey_of_heap-exploitation_techniques/links/6423d78392cfd54f84388e5b/A-survey-of-heap-exploitation-techniques.pdf
https://github.com/david942j/one_gadget/releases
https://dl.packetstormsecurity.net/papers/attack/MallocMaleficarum.txt
https://dl.packetstormsecurity.net/papers/attack/MallocMaleficarum.txt
http://dx.doi.org/10.1109/SECDEV.2017.14
https://github.com/radareorg/radare2
https://ctftime.org/
http://dx.doi.org/10.1109/ICSE-COMPANION58688.2023.00059
http://dx.doi.org/10.48550/ARXIV.2212.13990
http://dx.doi.org/10.1145/3319535.3354224
https://www.blackhat.com/docs/eu-17/materials/eu-17-Heelan-Heap-Layout-Optimisation-For-Exploitation-wp.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Heelan-Heap-Layout-Optimisation-For-Exploitation-wp.pdf

	Introduction
	Related Work
	Automatic Exploit Generation
	Heap-Related Vulnerability and Heap-Related Exploit

	Overview of AAHEG
	Modules in AAHEG
	Attack Model
	Overview

	Primitive Extraction
	Vulnerability Detection
	Exploit Abstract Syntax Tree
	Exploit Generation
	Evaluation
	Experimental Setup
	CTF Benchmark Evaluation

	Discussion
	Limitations
	Future Work
	Related Work

	Conclusions
	References

