Is Inconsistency in the Association between Frontal Alpha Asymmetry and Depression a Function of Sex, Age, and Peripheral Inflammation?
Abstract
:1. Introduction
1.1. Depression
1.2. CRP
1.3. Alpha Asymmetry
1.4. CRP and FAA
1.5. The Influence of Sex and Age
1.6. Study Goals
2. Materials and Methods
2.1. Participants, Sex
2.2. Depression
2.3. CRP Assays
2.4. EEG Measurements
2.4.1. EEG Signals
2.4.2. Skin Preparation and Electrode Application
2.4.3. AA Sites
2.4.4. EEG Data Collection
2.4.5. EEG Signal Processing, Data Reduction, and Data Extraction
2.4.6. Alpha Asymmetry
2.5. Procedure
2.6. Statistical Analyses
2.7. Study Aims
3. Results
3.1. Participant Sex, Age
3.2. SDS Scores
3.3. CRP Data
3.4. FAA
3.5. Regression Analysis
3.5.1. C-Reactive Protein
3.5.2. Age
3.5.3. FAA
4. Discussion
4.1. Major Findings
4.2. Models of Depression
4.3. Limitations
4.4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Depression and Other Common Mental Disorders: Global Health Estimates; Contract No.: WHO/MSD/MER/2017.2; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Greenberg, P.E.; Fournier, A.-A.; Sisitsky, T.; Simes, M.; Berman, R.; Koenigsberg, S.H.; Kessler, R.C. The Economic Burden of Adults with Major Depressive Disorder in the United States (2010 and 2018). PharmacoEconomics 2021, 39, 653–665. [Google Scholar] [CrossRef]
- Rush, A.; Trivedi, M.; Wisniewski, S.; Nierenberg, A.; Stewart, J.; Warden, D. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR* report. Am. J. Psychiatry 2006, 163, 1905–1917. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.; Derry, H.; Fagundes, C. Inflammation: Depression Fans the Flames and Feasts on the Heat. Am. J. Psychiatry 2015, 172, 1075–1091. [Google Scholar] [CrossRef]
- Sharpley, C.F.; Bitsika, V.; McMillan, M.E.; Jesulola, E.; Agnew, L.L. The association between cortisol: C-reactive protein ratio and depressive fatigue is a function of CRP rather than cortisol. Neuropsychiatr. Dis. Treat. 2019, 15, 2467–2475. [Google Scholar] [CrossRef]
- Black, S.; Kushner, I.; Samols, D. C-reactive protein. J. Biol. Chem. 2004, 279, 48478–48490. [Google Scholar] [CrossRef]
- Volanakis, J. Human C-reactive protein: Expression, structure, and function. Mol. Immunol. 2001, 38, 189–197. [Google Scholar] [CrossRef]
- Felger, J.; Haroon, E.; Patel, T.; Goldsmith, D.; Wommack, E.; Woolwine, B.; Le, N.-A.; Feinberg, R.; Tansey, M.; Miller, A. What does plasma CRP tell us about peripheral and central inflammation in depression? Mol. Psychiatry 2020, 25, 1301–1311. [Google Scholar] [CrossRef]
- Osimo, E.F.; Baxter, L.J.; Lewis, G.; Jones, P.B.; Khandaker, G.M. Prevalence of low-grade inflammation in depression: A systematic review and meta-analysis of CRP levels. Psychol. Med. 2019, 49, 1958–1970. [Google Scholar] [CrossRef]
- Khandaker, G.M.; Pearson, R.M.; Zammit, S.; Lewis, G.; Jones, P.B. Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: A population-based longitudinal study. JAMA Psychiatry 2014, 71, 1121–1128. [Google Scholar] [CrossRef]
- Coan, J.; Allen, J. Frontal EEG asymmetry as a moderator and mediator of emotion. Biol. Psychol. 2004, 67, 7–49. [Google Scholar] [CrossRef]
- Blackhart, G.C.; Kline, J.P. Individual differences in anterior EEG asymmetry between high and low defensive individuals during a rumination/distraction task. Personal. Individ. Differ. 2005, 39, 427–437. [Google Scholar] [CrossRef]
- Deslandes, A.C.; de Moraes, H.; Pompeu, F.A.; Ribeiro, P.; Cagy, M.; Capitao, C.; Alves, H.; Piedade, R.A.; Laks, J. Electroencephalographic frontal asymmetry and depressive symptoms in the elderly. Biol. Psychol. 2008, 79, 317–322. [Google Scholar] [CrossRef]
- Mathersul, D.; Williams, L.M.; Hopkinson, P.J.; Kemp, A.H. Investigating Models of Affect: Relationships Among EEG Alpha Asymmetry, Depression, and Anxiety. Emotion 2008, 8, 560–572. [Google Scholar] [CrossRef]
- Feng, X.; Forbes, E.E.; Kovacs, M.; George, C.J.; Lopez-Duran, N.L.; Fox, N.A.; Cohn, J.F. Children’s depressive symptoms in relation to EEG frontal asymmetry and maternal depression. J. Abnorm. Child Psychol. 2012, 40, 265–276. [Google Scholar] [CrossRef]
- Henriques, J.; Davidson, R. Regional brain electrical asymmetries discriminate between previously depressed and health control subjects. J. Abnorm. Psychol. 1990, 1, 22–31. [Google Scholar] [CrossRef]
- Henriques, J.; Davidson, R. Left Frontal Hypoactivation in Depression. J. Abnorm. Psychol. 1991, 100, 535–545. [Google Scholar] [CrossRef]
- Davidson, R. Anterior electrophysiological asymmetries, emotion, and depression: Conceptual and methodological conundrums. Psychophysiology 1998, 35, 607–614. [Google Scholar] [CrossRef]
- Baehr, E.; Rosenfeld, J.P.; Baehr, R.; Earnest, C. Comparison of two EEG asymmetry indices in depressed patients vs. normal controls. Int. J. Psychophysiol. 1998, 31, 89–92. [Google Scholar] [CrossRef]
- Gotlib, I.H. EEG Alpha Asymmetry, Depression, and Cognitive Functioning. Cogn. Emot. 1998, 12, 449–478. [Google Scholar] [CrossRef]
- Allen, J.; Urry, H.; Hitt, S.; Coan, J. The stability of resting frontal electroencephalographic asymmetry in depression. Psychophysiology 2004, 41, 269–280. [Google Scholar] [CrossRef]
- Vuga, M.; Fox, N.A.; Cohn, J.F.; George, C.J.; Levenstein, R.M.; Kovacs, M. Long-term stability of frontal electroencephalographic asymmetry in adults with a history of depression and controls. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2006, 59, 107–115. [Google Scholar] [CrossRef]
- Carvalho, A.; Moraes, H.; Silveira, H.; Ribeiro, P.; Piedade, R.; Deslandes, A.; Laks, J.; Versiani, M. EEG frontal asymmetry in the depressed and remitted elderly: Is it related to the trait or to the state of depression? J. Affect. Disord. 2011, 129, 143–148. [Google Scholar] [CrossRef]
- Gold, C.; Fachner, J.; Erkkila, J. Validity and reliability of electroencephalographic frontal alpha asymmetry and frontal midline theta as biomarkers for depression. Scand. J. Psychol. 2013, 54, 118–126. [Google Scholar] [CrossRef]
- Thibodeau, R.; Jorgensen, R.; Kim, S. Depression, anxiety, and resting frontal EEg assymetry: A meta-analytic review. J. Abnorm. Psychol. 2006, 115, 715–729. [Google Scholar] [CrossRef]
- Sharpley, C.F.; Bitsika, V.; Shadli, S.M.; Jesulola, E.; Agnew, L.L. EEG frontal lobe asymmetry as a function of sex, depression severity, and depression subtype. Behav. Brain Res. 2023, 443, 114354. [Google Scholar] [CrossRef]
- van der Vinne, N.; Vollebregt, M.; van Putten, M.; Arns, M. Frontal alpha asymmetry as a diagnostic marker in depression: Fact or fiction? A meta-analysis. NeuroImage Clin. 2017, 16, 79–87. [Google Scholar] [CrossRef]
- Rosenkranz, M.A.; Jackson, D.C.; Dalton, K.M.; Dolski, I.; Ryff, C.D.; Singer, B.H.; Muller, D.; Kalin, N.H.; Davidson, R.J. Affective style and in vivo immune response: Neurobehavioral mechanisms. Proc. Natl. Acad. Sci. USA 2003, 100, 11148–11152. [Google Scholar] [CrossRef]
- Kang, D.-H.; Davidson, R.J.; Coe, C.L.; Wheeler, R.E.; Tomarken, A.J.; Ershler, W.B. Frontal brain asymmetry and immune function. Behav. Neurosci. 1991, 105, 860. [Google Scholar] [CrossRef]
- Wener, M.; Daum, P.; McQuillan, G. The influence of age, sex, and race on the upper reference limit of serum C-reactive protein concentration. J. Rheumatol. 2000, 27, 2351–2359. [Google Scholar]
- Jha, M.K.; Minhajuddin, A.; Chin-Fatt, C.; Greer, T.L.; Carmody, T.J.; Trivedi, M.H. Sex differences in the association of baseline c-reactive protein (CRP) and acute-phase treatment outcomes in major depressive disorder: Findings from the EMBARC study. J. Psychiatr. Res. 2019, 113, 165–171. [Google Scholar] [CrossRef]
- Ocklenburg, S.; Friedrich, P.; Schmitz, J.; Schlüter, C.; Genc, E.; Güntürkün, O.; Peterburs, J.; Grimshaw, G. Beyond frontal alpha: Investigating hemispheric asymmetries over the EEG frequency spectrum as a function of sex and handedness. Laterality 2019, 24, 505–524. [Google Scholar] [CrossRef]
- Ciarleglio, A.; Petkova, E.; Harel, O. Elucidating age and sex-dependent association between frontal EEG asymmetry and depression: An application of multiple imputation in functional regression. J. Am. Stat. Assoc. 2022, 117, 12–26. [Google Scholar] [CrossRef]
- Cohen, J. The cost of dichotomization. Appl. Psychol. Meas. 1983, 7, 249–253. [Google Scholar] [CrossRef]
- Bruder, G.; Wexler, B.; Stewart, J.; Price, L. Perceptual Asymmetry Diffrence Between Major Depression with or without a Comorbid Anxiety Disorder: A Dichotic Listening Study. J. Abnorm. Psychol. 1999, 108, 233–239. [Google Scholar] [CrossRef]
- Overby, L. The relationship of handedness to depression in male and female college students. Personal. Individ. Differ. 1994, 16, 537–541. [Google Scholar] [CrossRef]
- Elias, L.; Saucier, D.; Guylee, M. Handedness and Depression in University Students: A sex by handedness interaction. Brain Cogn. 2001, 46, 125–129. [Google Scholar] [CrossRef]
- Logue, D.; Logue, R.; Kaufmann, W.; Belcher, H. Psychiatric disorders and left-handedness in children living in an urban environment. Laterality 2015, 20, 249–256. [Google Scholar] [CrossRef]
- Gollan, J.; Hoxha, D.; Chihade, D.; Pflieger, M.; Rosebrock, L.; Cacioppo, J. Frontal alpha EEG asymmetry before and after behavioral activation treatment for depression. Biol. Psychol. 2014, 99, 198–208. [Google Scholar] [CrossRef]
- Segrave, R.A.; Cooper, N.R.; Thomson, R.H.; Croft, R.J.; Sheppard, D.M.; Fitzgerald, P.B. Individualized Alpha Activity and Frontal Asymmetry in Major Depression. Clin. EEG Neurosci. 2011, 42, 45–52. [Google Scholar] [CrossRef]
- Clarke, C.; Howard, R.; Rossor, M.; Shorvon, S. Neurological Diseases. In Clinical Medicine, 7th ed.; Kumar, P., Clark, M., Eds.; Saunders; Elsevier: Oxford, UK, 2009; pp. 1095–1183. [Google Scholar]
- Segalowitz, S.J.; Bryden, M.P. Individual Differences in Hemispheric Representation of Language; Segalowitz, S.J., Ed.; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Packheiser, J.; Schmitz, J.; Stein, C.; Pfeifer, L.; Berretz, G.; Papadatou-Pastou, M.; Peterburs, J.; Ocklenburg, S. Handedness and depression: A meta-analysis across 87 studies. J. Affect. Disord. 2021, 294, 200–209. [Google Scholar] [CrossRef]
- Zung, W. A self-rating depression scale. Arch. Gen. Psychiatry 1965, 12, 63–70. [Google Scholar] [CrossRef]
- APA. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; Text Revision; American Psychiatric Association: Washington, DC, USA, 2022. [Google Scholar]
- Zung, W. From art to science: The diagnosis and treatment of depression. Arch. Gen. Psychiatry 1973, 29, 328–337. [Google Scholar] [CrossRef]
- DeJonge, J.; Baneke, J. The Zung Self-rating Depression Scale: A replication study on reliability, validity and prediction. Psychol. Rep. 1989, 64, 833–834. [Google Scholar] [CrossRef]
- Gabrys, J.; Peters, K. Reliability, discriminant and predictive validity of the Zung Self-Rating Depression Scale. Psychol. Rep. 1985, 57, 1091–1096. [Google Scholar] [CrossRef]
- Schaefer, A.; Brown, J.; Watson, C.; Plenel, D.; DeMotts, J.; Howard, M.; Petrik, N.; Ballweg, B. Comparison of the validities of the Beck, Zung and MMPI depression scales. J. Consult. Clin. Psychol. 1985, 53, 415–418. [Google Scholar] [CrossRef]
- Sharpley, C.F.; Bitsika, V.; McMillan, M.E.; Jesulola, E.; Agnew, L.L. Dyadic coping and the cortisol-CRP ratio: How marital stress influences physiological state. Physiol. Behav. 2019, 211, 112669. [Google Scholar] [CrossRef]
- Acharya, J.N.; Hani, A.J.; Cheek, J.; Thirumala, P.; Tsuchida, T.N. American clinical neurophysiology society guideline 2: Guidelines for standard electrode position nomenclature. Neurodiagnostic J. 2016, 56, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Jesulola, E.; Sharpley, C.F.; Agnew, L.L. The effects of gender and depression severity on the association between alpha asymmetry and depression across four brain regions. Behav. Brain Res. 2017, 321, 232–239. [Google Scholar] [CrossRef]
- Iznak, A.F.; Tiganov, A.S.; Iznak, E.V.; Sorokin, S.A. EEG correlates and possible predictors of the efficacy of the treatment of endogenous depression. Hum. Physiol. 2013, 39, 378–385. [Google Scholar] [CrossRef]
- Kemp, A.; Griffiths, K.; Felmingham, K.L.; Shankman, S.A.; Drinkenburg, W.; Arns, M.; Clark, C.R.; Bryant, R.A. Disorder specificity despite comorbidity: Resting EEG alpha asymmetry in major depressive disorder and post-traumatic stress disorder. Biol. Psychol. 2010, 85, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Quinn, C.R.; Rennie, C.J.; Harris, A.W.; Kemp, A.H. The impact of melancholia versus non-melancholia on resting-state, EEG alpha asymmetry: Electrophysiological evidence for depression heterogeneity. Psychiatry Res. 2014, 215, 614–617. [Google Scholar] [CrossRef]
- Shankman, S.A.; Silverstein, S.M.; Williams, L.M.; Hopkinson, P.J.; Kemp, A.H.; Felmingham, K.L.; Bryant, R.A.; McFarlane, A.; Clark, C.R. Resting electroencephalogram asymmetry and posttraumatic stress disorder. J. Trauma. Stress 2008, 21, 190–198. [Google Scholar] [CrossRef]
- Feng, C.; Wang, H.; Lu, N.; Chen, T.; He, H.; Lu, Y.; Tu, X. Log-transformation and its implications for data analysis. Shanghai Arch. Psychiatry 2014, 26, 105–109. [Google Scholar]
- Sharpley, C.; Arnold, W.; Evans, I.; Bitsika, V.; Jesulola, E.; Agnew, L. Studies of EEG Asymmetry and Depression: To Normalise or Not? Symmetry 2023, 15, 1689. [Google Scholar] [CrossRef]
- Micceri, T. The unicorn, the normal curve, and other improbable creatures. Psychol. Bull. 1989, 105, 156. [Google Scholar] [CrossRef]
- Tabachnik, B.; Fidell, L. Using Multivariate Statistics, 6th ed.; Pearson Education: Boston, MA, USA, 2013. [Google Scholar]
- APA. Publication Manual of the American Psychological Association, 7th ed.; American Psychological Association: Washington, DC, USA, 2020. [Google Scholar]
- Cohen, J. Statistical Power for the Behavioural Sciences; Erlbaun: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Cohen, J.; Cohen, P.; West, S.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2003. [Google Scholar]
- Hayes, A. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; The Guilford Press: New York, NY, USA, 2022. [Google Scholar]
- Fried, E.; Nesse, R. Depression is not a consistent syndrome: An investigation of unique symptom patterns in the STAR*D study. J. Affect. Disord. 2015, 172, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Milaneschi, Y.; Lamers, F.; Berk, M.; Penninx, B. Depression heterogeneity and its biological underpinnings: Toward immunometabolic depression. Biol. Psych. 2020, 88, 369–380. [Google Scholar] [CrossRef]
- Miller, A.H. Beyond depression: The expanding role of inflammation in psychiatric disorders. World Psychiatry 2020, 19, 108. [Google Scholar] [CrossRef]
- Bafei, S.E.C.; Yang, S.; Chen, C.; Gu, X.; Mu, J.; Liu, F.; Sun, J.; Zhuang, Q.; Wei, P.; Zhao, X.; et al. Sex and age differences in the association between high sensitivity C-reactive protein and all-cause mortality: A 12-year prospective cohort study. Mech. Ageing Dev. 2023, 211, 111804. [Google Scholar] [CrossRef]
- McClure, I. The essential difference: Men, women and the extreme male brain. BMJ 2003, 327, 57. [Google Scholar] [CrossRef]
- Eliot, L.; Ahmed, A.; Khan, H.; Patel, J. Dump the “dimorphism”: Comprehensive synthesis of human brain studies reveals few male-female differences beyond size. Neurosci. Biobehav. Rev. 2021, 125, 667–697. [Google Scholar] [CrossRef] [PubMed]
- Wierenga, L.M.; Doucet, G.E.; Dima, D.; Agartz, I.; Aghajani, M.; Akudjedu, T.N.; Albajes-Eizagirre, A.; Alnæs, D.; Alpert, K.I.; Andreassen, O.A. Greater male than female variability in regional brain structure across the lifespan. Hum. Brain Mapp. 2022, 43, 470–499. [Google Scholar] [CrossRef] [PubMed]
- Ostergaard, S.; Jensen, S.; Bech, P. The heterogeneity of the depressive syndrome: When numbers get serious. Acta Psychiatr. Scand. 2011, 124, 495–496. [Google Scholar] [CrossRef] [PubMed]
Sites | All | Males | Females | |||
---|---|---|---|---|---|---|
Eyes Open | M | SD | M | SD | M | SD |
FP2-FP1 | 0.051 | 0.293 | −0.034 | 0.293 | 0.124 | 0.275 |
F4-F3 | −0.021 | 0.334 | −0.007 | 0.356 | −0.033 | 0.316 |
FC4-FC3 | −0.020 | 0.362 | −0.052 | 0.369 | 0.008 | 0.357 |
F8-F7 | 0.044 | 0.401 | −0.050 | 0.401 | 0.125 | 0.402 |
FT8-FT7 | 0.077 | 0.493 | −0.098 | 0.514 | 0.227 | 0.423 |
Eyes Closed | ||||||
FP2-FP1 | −0.041 | 0.375 | −0.114 | 0.318 | 0.019 | 0.409 |
F4-F3 | −0.010 | 0.532 | −0.062 | 0.503 | 0.033 | 0.556 |
FC4-FC3 | −0.034 | 0.626 | −0.147 | 0.610 | 0.059 | 0.629 |
F8-F7 | −0.032 | 0.612 | −0.136 | 0.599 | 0.056 | 0.615 |
FT8-FT7 | −0.004 | 0.687 | −0.188 | 0.687 | 0.149 | 0.655 |
Variable | B | 95% CI | β | t | p |
---|---|---|---|---|---|
Constant | 32.15 | 27.60–36.70 | 14.05 | <0.001 | |
CRP | 0.87 | 0.10–1.65 | 0.236 | 2.24 | 0.027 |
Females Only | |||||
Constant | 31.46 | 24.50–38.43 | 24.50 | <0.001 | |
CRP | 1.05 | 0.02–2.08 | 0.291 | 2.04 | 0.047 |
Variable | B | 95% CI | β | t | p |
---|---|---|---|---|---|
Constant | 36.42 | 34.16–38.69 | 31.90 | <0.001 | |
FAA | 19.336 | 1.59–37.09 | 0.219 | 2.17 | 0.033 |
Variable | B | 95% CI | β | t | p |
---|---|---|---|---|---|
Constant | 0.174 | 0.065–0.283 | 3.18 | 0.002 | |
CRP | −0.023 | −0.004–0.042 | −0.268 | −2.42 | 0.018 |
Sex | 0.124 | 0.007–0.240 | 0.234 | 2.11 | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharpley, C.F.; Evans, I.D.; Bitsika, V.; Arnold, W.M.; Jesulola, E.; Agnew, L.L. Is Inconsistency in the Association between Frontal Alpha Asymmetry and Depression a Function of Sex, Age, and Peripheral Inflammation? Symmetry 2023, 15, 2201. https://doi.org/10.3390/sym15122201
Sharpley CF, Evans ID, Bitsika V, Arnold WM, Jesulola E, Agnew LL. Is Inconsistency in the Association between Frontal Alpha Asymmetry and Depression a Function of Sex, Age, and Peripheral Inflammation? Symmetry. 2023; 15(12):2201. https://doi.org/10.3390/sym15122201
Chicago/Turabian StyleSharpley, Christopher F., Ian D. Evans, Vicki Bitsika, Wayne M. Arnold, Emmanuel Jesulola, and Linda L. Agnew. 2023. "Is Inconsistency in the Association between Frontal Alpha Asymmetry and Depression a Function of Sex, Age, and Peripheral Inflammation?" Symmetry 15, no. 12: 2201. https://doi.org/10.3390/sym15122201
APA StyleSharpley, C. F., Evans, I. D., Bitsika, V., Arnold, W. M., Jesulola, E., & Agnew, L. L. (2023). Is Inconsistency in the Association between Frontal Alpha Asymmetry and Depression a Function of Sex, Age, and Peripheral Inflammation? Symmetry, 15(12), 2201. https://doi.org/10.3390/sym15122201