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Abstract: One of the most frequently identified cancers globally is skin cancer (SC). The computer-
aided categorization of numerous skin lesions via dermoscopic images is still a complicated problem.
Early recognition is crucial since it considerably increases the survival chances. In this study, we
introduce an approach for skin lesion categorization where, at first, a powerful hybrid deep-feature
set is constructed, and then a binary tree growth (BTG)-based optimization procedure is implemented
using a support vector machine (SVM) classifier with an intention to compute the categorizing
error and build symmetry between categories, for selecting the most significant features which are
finally fed to a multi-class SVM for classification. The hybrid deep-feature set is constructed by
utilizing two pre-trained models, i.e., Densenet-201, and Inception-v3, that are fine-tuned on skin
lesion data. These two deep-feature models have distinct architectures that characterize dissimilar
feature abstraction strengths. This effective deep feature framework has been tested on two publicly
available challenging datasets, i.e., ISIC2018 and ISIC2019. The proposed framework outperforms
many existing approaches and achieves notable {accuracy, sensitivity, precision, specificity} values of
{98.50%, 96.60%, 97.84%, 99.59%} and {96.60%, 94.21%, 96.38%, 99.39%} for the ISIC2018 and ISIC2019
datasets, respectively. The proposed implementation of the BTG-based optimization algorithm
performs significantly better on the proposed feature blend for skin lesion classification.

Keywords: skin lesion classification; deep learning; hybrid deep-features; binary tree growth
algorithm; feature selection; building symmetry between categories using SVM

1. Introduction

Skin cancer (SC) is one of the most prevalent types of cancer in the current decade [1].
According to several reports, in many countries, the number of new SC patients and the
loss of lives from SC has increased in recent years. Among various types of SC, e.g., basal
cell carcinoma, squamous cell carcinoma, melanoma, etc., melanoma is one of the most
deadly and lethal compared to other types [2]. The majority of malignant cases such as
melanoma are distinguished by the growth of lesion accompanied by its asymmetric shape
and various colors, entirely with a record of variation in texture, color, structure and/or size.
UV radiation disclosure is one of the primary origins of SC. Melanoma exhibits the highest
number of cases among various other types of SC. Prior to age 50, incidence rates are higher
in women than men, but after that, it become progressively higher among men. Melanoma
skin cancer can be treated early to reduce patient mortality. So, early detection is crucial
to reduce the incidence of melanoma SC. The “ABCDE” rule and the “7-point checklist”
are two of the most used techniques for diagnosis. Decisions based on asymmetry, uneven
borders, colour variation, diameter, evolution, inflammation, and sensory alterations are
strongly relied upon.

In order to identify melanoma SC, an experienced dermatologist typically follows
a series of steps. They begin by visually inspecting suspicious lesions, then proceed to
dermoscopy and, if necessary, a biopsy. In the biopsy procedure, a suspected cutaneous
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lesion is obtained and examined in the pathological laboratory to ascertain if it is cancerous.
This procedure is time consuming and painful [1]. Because of the increasing number of
cases, the inter-human variations in views and the infrastructural constraints, the manual
way of examination is not found to be reliable. Moreover, melanoma is hard to notice
in the early stages as they are visually quite similar to benign lesions. Because of all
these reasons, the manual diagnosis procedure is usually challenging. To overcome such
problems, a computer-aided diagnosis using dermoscopic images could be highly beneficial
to discriminate between melanoma SC and benign cases in its early phases and may be
utilized as a second opinion. Dermoscopy is an effective imaging mechanism for skin
lesions where an enlarged high-resolution image is captured while suppressing the skin
surface back scattering. Though improved high resolution pictures of skin lesions are
available through dermoscopy, dermatologists still encounter difficulties achieving higher
SC diagnosis improvement rates. The inter-expert variation in opinions, the time factor and
the availability of experienced dermatologists pose limitations in the manual examination
of dermoscopic images. An automatic computer-aided system for SC diagnosis from
dermoscopic images is important for the improved diagnosis of SC and may be utilized as
a second opinion for experts.

In this study, we construct a hybrid deep feature set in order to capture the compre-
hensive features and improve the generalization capacity. The best appropriate features
are selected through an effective BTG algorithm. Our contributions in this paper are
encapsulated below:

1. We fine-tuned the Densenet-201 and Inception-v3 models on skin lesion data. The
deep features from each model are extracted and blended together to form a powerful
hybrid deep-feature set in order to obtain improved discriminating features. It is
observed that the features extracted from each model are complementary to each other.

2. In order to further improve the classification outcomes, the redundant or irrelevant
features from the hybrid feature set are removed using the BTG-based optimization
procedure. The BTG-based optimization is implemented employing a SVM classifier
which is used for computation of categorizing errors and to build a symmetry between
the classification categories. Extensive tests have been performed to verify the benefits
of the suggested method.

The remaining work is assembled as follows — Section 2 presents the literature survey
on various skin lesion classification studies and feature selection techniques. Section 3
provides an overview of the dataset used, and the proposed methodology is described
in Section 4. Section 5 presents the experimental results and related discussion, and finally,
Section 6 concludes the paper.

2. Related Work

In [3], the authors presented a deep learning (DL)-based CAD technique in which they
carried out image augmentation on a dermoscopic training dataset, and the fine tuning
of pre-trained CNN (Resnet-50 and Resnet-101) models was performed to classify the
skin lesion images. They extracted deep features from the global average pooling (GAP)
layer and performed feature fusion along with feature selection followed by machine
learning classification. They had encouraging outcomes on the HAM10000 dataset. Using
transfer learning with pre-trained GoogleNet, Kassem et al. [2] developed a technique for
the ISIC 2019 challenge dataset. Even with varying numbers of images in each category,
the suggested technique can reliably classify eight types of lesions. A few filters in some
layers were added to improve the features. Popescu et al. [4] presented a CAD system to
classify SC using the collective intelligence of nine CNNs. The judgement made by each
neural network is fused into a single one using a weight matrix to create a decision fusion
module. Compared to the best performing individual network, the authors demonstrate
a considerable increase in accuracy. Zhao et al. [5] introduced a novel SC classification
framework where high-quality synthetic images were generated using StyleGAN. The
structure of noise input and style control in the actual generator of the module was reor-
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ganized and a new loss function was implemented in order to boost balanced multi-class
accuracy. In [6], Al-Masni et al. developed a novel framework in which full-resolution
CNN (FrCN) [7] was used to segment the lesions and different pre-trained CNN models
such as Inception-v3, Resnet-50, Inception-Resnet-v2 and Densenet-201 were applied on
segmented lesions in order to classify them. The analysis revealed that ResNet-50 is the
best performing model for identifying SC, followed by the Inception-ResNet-v2 model.
The authors also show that their method performs better with augmented and balanced
datasets than unaugmented and imbalanced datasets. A framework [8] is developed to
collect a skin sample through a mobile device and label it according to its lesion. The
lesion is initially segmented using a 16-layered CNN architecture with an enhanced high
dimension contrast transform technique. This method reduced computational time while
increasing segmentation accuracy compared to contemporary methods. On a well-known
dataset of dermoscopic images, i.e., HAM10000, Kousis et al. [9] examined 11 pre-trained
networks to diagnose skin cancer. Their findings showed that the Densenet-169 performs
better than other networks. A two-class Densenet-169 mapping model was developed
which has shown excellent results. A mobile application was also developed to assist
users in obtaining a preliminary understanding of their skin lesions based on the basic
2-class model. Ali et al. [10] suggested an architecture that used sigmoid as the output
activation layer. The HAM10000 dataset was used to evaluate the suggested framework.
Compared to other transfer learning models already in use, the authors achieved better
training and testing accuracy results. The dataset was balanced to enhance classification
accuracy for all the datasets. Lan et al. [11] introduced a capsule network called FixCaps.
Applying a high-performance large-kernel with a kernel size of up to 31 × 31 at the bot-
tom convolution layer allows FixCaps to achieve a significant receptive field. In order to
reduce spatial information losses and prevent model underfitting in the capsule layer, the
convolutional block attention module and group convolution, respectively, were adopted.
FixCap can increase detection accuracy while requiring fewer calculations than other avail-
able techniques. Almaraz-Damian et al. [12] presented a new CAD system combining
handcrafted features with deep features to discriminate between melanoma and nevus
lesions. The suggested approach combines the features using a mutual information metric
to pick up the most important features. In order to improve the efficacy of skin lesion
classification, the authors [13] proposed a new deep CNN model, i.e., CSLNet with fewer
filters and parameters that employ numerous layers, and different filter sizes. CSLNet
unlike many other algorithms does not require rigorous pre-processing or handcrafted
features to classify the skin lesions effectively. In [14], the authors combined image deep
features, hand-designed features and some patient related meta-data in order to accurately
detect skin cancer. In [15], Kadirappa et al. proposed an efficient skin lesion segmentation
technique called SASegNet which is based on a new U-Net and spatial attention blocks.
The segmented output data are then fed to EfficientNet B1 in order to produce the local
features. The global features are produced by feeding the actual preprocessed images to
the EfficientNet B1 network and eventually both local and global features are combined to
produce the best features for accurate classification. A novel 56-layered residual deep CNN,
i.e., RDCNN for the detection of skin cancers is introduced in [16]. Golnoori et al. [17] opti-
mized the hyper parameters of a few pre-trained networks using metaheuristic algorithms
and blended the features extracted from them. A KNN classifier is employed to classify
the skin lesions. Alsahafi et al. [18] introduced a 54-layered deep residual network for skin
lesion categorization. This method captures multi-level features by employing variable
filter dimensions. The authors carried out cross-channel correlation and neglected the
spatial dimensions. Jasil and Ulagamuthalvi [19] offered a multi-class classification system
for skin lesion categorization that uses a Densenet and residual-based architecture. In order
to enhance the discriminativeness of the features, they blended the layers from Densenet
121 and the residual-based network. The features from both networks are blended together
and are fed to the convolutional layers and eventually to the classifier. It is shown that the
powerful pre-processing procedures before classification can notably enhance the overall
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performance of the system. In order to increase the system’s ability to recognize skin lesions,
Juan et al. [20] employed an optimized form of transfer learning version concerning to
Densenet-201, Inception-Resnet-v2 and Inception-v3 models. Experiments with/without
augmentation with/without optimization is employed to handle the class imbalance issue.
The experiments achieved an accuracy of up to 98% on the HAM10000 dataset and up to
93% on the ISIC2019 dataset. Hassan et al. [21] demonstrated the benefits of a decision
fusion scheme that utilizes the accuracy associated with a deep network model for SC
classification. The authors combined a few of such schemes to achieve a global decision
framework with much-enhanced accuracy than any other single classifier. The models
were fine-tuned to discriminate the various categories of skin lesions. In [22], Samia et al.,
examined the efficiency of seventeen deep CNN architectures for capturing of features and
twenty-four different classifiers for categorizing of skin lesions. The Densenet-201 coupled
with cubic SVM was observed to have achieved superior results on ISIC2019. In [23], Rashid
et al. introduced a deep feature framework based on the Mobilenet-v2 model for skin
cancer detection. Their model classifies the skin lesions into malignant or benign categories.
Data augmentation was carried out to tackle the class imbalance problem. A deep feature
framework called MSLANet for skin lesion categorization, which is made of multiple long
attention networks, is proposed in [24]. Each network utilizes context details and enhances
the crucial information description via long attention technique. The global context and
local scale details are captured through the MSLANet model. A deep data augmentation
scheme is introduced to improve the overall performance of the framework.

Each pre-trained deep network model based on its architectural design captures some
unique features from the input images and accordingly shows some misclassification
outcomes. The strength of different deep feature models can be used to reduce the wrong
predictions by blending their features for SC classification.

In [25–35], it was observed that the presence of irrelevant or redundant features
may lead to the incorrect prediction of images and may bring down the classification
results. Many techniques [25–35] employ feature selection (FS) algorithms for selecting
the most appropriate features in order to maximize the classification performance. In [25],
the authors suggested a technique where the best features from a fine-tuned NASNET-
large network are selected through a hybrid whale optimization algorithm (WOA) and
entropy mutual information technique, and, fused using modified canonical correlation
scheme and eventually classified through ELM. In [26], the authors introduced an SC
categorization technique that uses a grasshopper optimization algorithm for optimized
FS. In [27], Khan et al., used entropy coupled with Bhattacharyya distance and variance as
an FS scheme to capture the significant features. Khan et al., in [28] used an FS technique
based on distance-guided entropy for SC categorization. An iterative Newton-Raphson-
based FS scheme is utilized in [29] for skin lesion categorization. In [31], Wen et al.,
introduced a technique for the categorization of meta-spectral remote sensing images
where the ant colony optimization scheme is applied for feature selection. The ant colony
optimization (ACO) imitates the foraging conduct of ants. In [32], Venkata proposed an
effective framework for the detection of kidney carcinoma. Their method comprised of
region of interest segmentation, image pre-processing, extraction and then optimal selection
of features, and finally categorization. The optimal feature selection here is carried out using
dragonfly algorithm. The dragonfly technique concentrates on dragonfly characteristics
and their psychological potential. The dragonfly swarming nature during migration
and hunting is known as a stationary swarm and it is characterized by small groups of
dragonflies changing their movement quickly and in close proximity. An amalgamation
of deep GoogleNet features and a natural environment inspired optimization scheme, i.e.,
particle swarm optimization (PSO) is used for autonomous vehicle categorization [33]. The
canonical PSO is greatly influenced by the transformative conduct of the creatures and
is based on the social co-ordination and flocking conducts of birds and fish schools. An
effective scheme, which combines the butterfly optimization and ant lion procedures in
order to effectively lessen the feature dimensions through eliminating redundant features,
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is proposed in [36]. The selected features are then used to foresee the benign/malignant
condition of breast tissues employing different classifiers. In [37], an efficient metaheuristic
procedure called the tree growth algorithm (TGA) which is motivated from a tree’s struggle
to obtain light and nourishment, is proposed. Zhong et al., in [34] introduced a binary TGA
and a linearly escalating variable adjustment scheme to adjust the variable value in TGA.
In [38], Khasanov et al., proposed an integrated optimization scheme utilizing TGA and
power loss sensitivity factor, i.e., PLSF to recognize the best dimension and position of
different distributed generation unit in distributed systems in order to lessen the complete
power losses. In [35], Too et al., proposed a framework for myoelectric signal categorization
utilizing the binary TGA-based feature selection. In any image classification framework,
the choice of optimized feature selection (FS) algorithms plays a crucial role. While many
effective feature selection-based image classification frameworks exists in the literature, yet
more powerful frameworks that facilitate improved and robust feature selection are still
demanding.

Several meta-heuristic procedures have been employed in the feature selection appli-
cations. The monarch butterfly optimization algorithm (MBOA) [39] is a category of swarm
intelligence and motivated by relocation conduct of monarch butterflies. Lone cases in
MBOA are modified through the relocation process and butterfly adaptation action. The
performance of MBOA was compared to five different metaheuristic optimization schemes
via 38 criteria. MBOA performs at the fifth best level on six out of the 38 criteria when taken
as the mean. The very recent RIME optimization algorithm [40] imitates the formation of
rime-ice’s soft-rime and hard-rime layers, and then builds a soft-rime probe tactic and a
hard-rime piercing scheme in order to apply the exploration and exploitation conducts
in optimization approaches. In [41], Wang introduced a new all-purpose metaheuristic
approach called Moth search where the photo axis and levy flights of moths in the natural
environment are abstracted and mapped in this study. The Moth search implementation
was demonstrated to be simple and flexible. Iman et al. [42] introduced a new optimizer
called weighted mean of vectors to optimize various issues. This approach is an improved
weight-mean approach that employs the weight mean tactic for a solid layout and three
key schemes to change the location of the vectors: (i) an updating way, (ii) vector merging
and (iii) a local exploration. This technique has been demonstrated to have converged
to 0.99% of the overall best solution. In [43], a nature-motivated algorithm called Harris
hawks optimization algorithm (HHOA) which is based on population-kind, is proposed.
The primary source of HHO’s motivation is the friendly attitude and tracking manner of
Harris hawks in their natural environment known as surprise pounce. In this clever plan,
many hawks work together to attack prey from various angles in an effort to surprise it. In
order to create an optimization procedure, this study computationally imitates such active
patterns and conducts. This technique exhibits good results at random occasions when
compared to popular relevant schemes. The Runge Kutta optimization scheme proposed
by Iman et al. [44] can be applied in many real word applications. The Runge Kutta
optimization scheme is based on a logical probing technique for global optimization that
makes use of the rationale of slope differences computed by the Runge Kutta scheme. In
order to explore the crucial areas in the feature space and to make progress towards the
overall optimal result, this search technique takes advantage of two dynamic stages, i.e.,
exploration and exploitation. This method has shown good results and faster convergence.
Motivated by the action of animals in a starving situation, in [45], a hunger game search
algorithm (HGSA) is introduced. The HGSA integrates the hunger idea into the feature
operation. To put it differently, an adaptive weight depending on the hunger idea is created
and used to mimic the impact of hunger on each search stage. The key benefits of this
algorithm over other approaches are its dynamic behavior, straight-forward framework,
good converging results and adequate nature of solutions. In [46], Li et al., introduced a
slime mould (SM) optimization algorithm which is based on the fluctuation fashion of slime
mould in the natural environment. This algorithm has many novel features and a special
computational model that imitates the creation of (+ve) and (−ve) feedbacks of the SM
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propagation wave built on bio-oscillator to construct the ideal path for linking food with
very good exploratory capability and exploitation tendency. This model utilizes adaptive
weights. To validate the effectiveness of this SM-based technique, it was tested on four
traditional engineering issues, where it demonstrated the best results quite often on various
search prospects. An optimization method called the colony predation algorithm which
utilizes the joint kind of predation of animals is proposed in [47]. This algorithm uses a
computational depiction that mimics the tactics employed by animal-hunting parties like
scattering prey, surrounding the prey, assisting the hunter with the best chance of success
and looking for alternative prey. This algorithm has shown good performance over a few
other meta-heuristics on some criteria.

From the literature, it can be seen that the TGA [37] is a straightforward meta-heuristic
that has proven to be more effective than many others. Its performance was tested and
found to be satisfactory in solving different engineering optimization problems. Its con-
vergence conduct on two standard functions demonstrates that TGA is very fast and has
powerful convergence nature and can detect the global optima in very few iterations. More-
over, with the adjustment of very few parameters, the compromise between intensification
and diversification can be achieved. Therefore, motivated by the encouraging performance
of TGA, we have attempted the implementation of a binary tree growth (BTG) algorithm
which simulates the behavior of a flourishing tree in feature selection with an application
to the skin lesion classification problem.

A feature selection issue is a search-space issue and needs complete balance between
diversification or exploration and intensification or exploitation phases. Although a good
number of work exists in the literature that shows good balance between these two phases,
discerning schemes that exhibit more appropriate balance between these two phases for a
feature selection problem is demanding.

3. Datasets

We have considered ISIC2018 [48,49] and ISIC2019 [49,50] datasets for experiments in
this study.

The ISIC2018 dataset contains 10,015 dermoscopic images. The dataset images were
collected from the Medical University of Vienna (MUV), Austria, and C. R. skin cancer
practice in Queensland, Australia. It has taken twenty years to put this collection together.
Prior to the easy access of digital cameras, lesion photographs were taken, saved, and
placed at the Department of Dermatology, MUV, Austria. The Nikon-Coolscan-5000-ED
scanner was used to digitally scan these image prints which were next transformed into
8-bit color JPEG pictures with a quality of 300 DPI. After necessary editing, the photos
were saved at 72 DPI and 800 × 600 pixels of resolution. This dataset comprised of
seven classes, i.e., (i) vascular lesions (VASC), (ii) actinic keratosis (AKIEC), (iii) melanoma
(MEL), (iv) benign keratosis (BKL), (v) melanocytic nevus (NV), (vi) basal cell carcinoma
(BCC) and, (vii) dermatofibroma (DF) with 142, 327, 1113, 1099, 6705, 514 and 115 images
in each class, respectively.

The ISIC2019 dataset contains 25,331 dermoscopic images and is comprised of eight
classes, i.e., (i) melanoma (MEL), (ii) squamous cell carcinoma (SCC), (iii) basal cell carci-
noma (BCC), (iv) dermatofibroma (DF), (v) melanocytic nevus (NV), (vi) vascular lesion
(VASC), (vii) benign keratosis (BKL) and actinic keratosis (AKIEC) with 4522, 628, 3323,
239, 12,875, 253, 2624 and 867 images in each class, respectively. Because photographs from
previous ISIC challenges were re-employed in subsequent challenges, ISIC images were
grouped by their actual datasets, as depicted in the ISIC records, to avoid the same images
being considered more than one time in analysis.

The sample images from each class of the ISIC2019 dataset are shown in Figure 1.
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Figure 1. Sample images from each class of ISIC2019.

4. Methodology

The block diagram of proposed framework for SC classification is presented
in Figure 2. The proposed method consists of the following crucial steps: (i) data aug-
mentation; (ii) construction of a hybrid feature set by concatenating features obtained from
fine-tuned Inception-v3 and Densenet-201 models; (iii) feature selection via binary tree
growth (BTG) algorithm.

4.1. Data Augmentation

The performance of DL models strongly depends on the image quality, size of the
dataset, and contextual sense of images because these models need huge amounts of images
to achieve good results. Data scarcity is a big problem where gathering and developing
more data is challenging. Data augmentation schemes provide a strong and low cost
answer in such situations [51]. Data augmentation schemes can artificially generate more
images and boost the total number of images. The simplest form of generating augmented
images is by creating different geometrical transformations of the original image using
operations such as adding noise, cropping, translation, shearing, etc. This study generated
the augmented images using translation (pixelshift = [−30 30]), reflection (flips/turn over
the images with an 50 percent prob. in every dimension), and shearing (with the shearing
angle varying randomly between −30 and 30). These schemes supply the proposed model
with various forms of the actual version which enhances its generalization potential.
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Figure 2. Framework of the proposed methodology.

4.2. Construction of Hybrid Deep Feature Set via Fine-Tuned Densenet-201 and
Inception-v3 Models

In the interest of capturing effective image features, we employed well-known deep-
learning architectures that are pre-trained Densenet-201 and Inception-v3 models, which
have demonstrated excellent classification results and are trained on a huge amount of data
from the Imagenet dataset.

4.2.1. Densenet-201

The Densenet architecture [52] is built on intricate connections between convolutional
layering. Densenet strengthens the feature extraction process by addressing the vanishing
gradient problem and minimizes the number of inputs and the associated variables. Its
architecture which is composed of a number of dense blocks connected by transition layers
utilizes the benefits of shortcut connections. Each block has a bunch of convolutional layers,
and rather than accumulating them, each layer is linked to all the preceding layers from the
same block. The network becomes thinner and tighter when the earlier level feature-maps
are transferred to succeeding layers. As a succession of dense blocks, transition layers,
classification layers, and conv. along with pooling layers, construct Densenet. Several
variants of Densenet have been introduced, such as Densenet-121, Densenet-169, Densenet-
201, etc. We used Densenet-201 in our study, which is a 201 layered-CNN and considers an
input image dimension of 224 × 224.

Figure 3 shows the structure of a Densenet framework where every layer comprises
(i) batch normalization (BN), (ii) ReLU and (iii) Conv. (3 × 3-filter). Every block accepts
input in a matrix form that represents an image pixel, which is then fed to the BN step,
thereby minimizing the over-fitting kind of issues.
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Figure 3. The structure of a Densenet framework.

4.2.2. Inception-v3

The upgrade of the inception block with modifications to the symmetric and asym-
metric construction modules was the concept behind Inception-v3 [53]. Inception-v3 is an
improved form of Inception-v2 that performs image classification with improved efficiency
through factorizing conv. (5 × 5) into two reduced forms of conv. (3 × 3) to accelerate
calculations and stretch the filter bank in thickness to eliminate the symbolic bottleneck. In
asymmetric convolution, a conv. (N × N) may be substituted by a (1 × N) conv. followed
by a (N × 1) convolution. The Inception-v3 achieves label smoothing and eliminates over-
fitting by including a regularisation module into a loss function. In addition, Inception-v3
factorizes conv. (7 × 7) and concatenates several layers using the BN scheme, resulting in
better capability and reduced computing complexity. Figure 4 illustrates the structure of
Inception blocks, and Figure 5 depicts the Inception-v3 framework.

Both Inception-v3 and Densenet-201 pre-trained models are originally capable of
categorizing images into 1000 different classes like different animals, pencils, monitors, etc.
and the characteristic learned from images from the Imagenet dataset might be utilized
to resolve certain jobs requiring fresh data with the limited amount of samples. This
problem has been addressed with the introduction of the transfer learning (TL) scheme [54].
In Figure 6, the concept of TL is depicted. Our pre-trained Inception-v3 and Densenet-201
models are trained on millions of images, so that it can be treated as a generalized model.
Hence, the TL scheme avoids the requirement to train a network using a huge amount of
data right from the beginning. The TL can be implemented using fine-tuning, where we
modify the network architecture by eliminating and substituting the earlier fully connected
(FC) layers with new FC layers, and these fresh layers are trained with the new desired
dataset to foretell the current input categories. The TL with fine-tuning is the process of
image categorization using pre-trained CNN operating on a new given dataset.

The hyper-parameters of fine-tuned Inception-v3 and Densenet-201 models are tuned
according to our datasets. In order to capture the comprehensive features, we concatenate
the features obtained from fine-tuned Inception-v3 and Densenet-201 models to form a
hybrid feature set. The most discriminating features are next selected from the hybrid
feature set using the BTG algorithm, which are eventually fed to a multi-class SVM classifier
for skin lesion categorization.
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(a) (b)

(c)

Figure 4. Inception blocks (a) block-1; (b) block-2; (c) block-3.

4.3. Optimized Feature Selection (FS) Using Binary Tree Growth (BTG) Algorithm

While maintaining the integrity of the information, FS picks up the most significant
information from the input feature vector. FS boosts the classification results by decreasing
the count of insignificant features. There are two broad types of FS: (i) filter-type and
(ii) wrapper-type. The wrapper type use a meta-heuristic algorithm to pick up the most
effective mixture of pertinent features to improve the classification results. The filter type
bases its selection of the pertinent aspects on (i) statistical, (ii) separation and, (iii) mutual
information. The filter-type strategy takes less time and is not dependent on the learn-
ing task in contrast to wrapper-type schemes. The wrapper-types are quite popular in
engineering-related fields and usually exhibit satisfactory results.
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Figure 5. The structure of an Incpetion-v3 framework.

Figure 6. The idea of transfer learning.

Image categorization relies heavily on selecting a relevant collection of features, which
increases classification efficiency and speeds up computation. In this study, the subset
of best image characteristics from the feature vector is chosen using the BTG algorithm.
The BTG is a powerful FS algorithm with very few related studies in the literature. In this
study, we have investigated the application of the BTG algorithm-based FS in skin lesion
classification problems. In [34,37], the authors proposed a tree growth (TG) algorithm
which is motivated by a natural environment inhabitant build meta-heuristic that tries to
imitate the developing or spreading conduct of forest trees.

In the TG algorithm, to build the primary trees in the forest, a collection of possible
solutions is produced randomly. The entire community of trees is separated into four
categories based on their fitness parameters. The trees that are more fit go into the first
group, where the trees will continue to expand further. The group that competes for light
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trees is the second group. In this group, the tree is transferred to a location such that it
is near to the two nearby trees. The objective of the third category, known as ’removal or
replacement’, tries to remove the bad trees and grow new ones. The fourth group involves
reproduction, where the best trees from this category are used to produce new trees. The
following is an explanation of the TG algorithm in brief [34,37]:

A starting population or community of trees is produced arbitrarily in the first step,
and the fitness value is calculated. In this study, an SVM classifier is employed for the
computation of categorizing errors and to form a symmetry between the categories. We
employ the following fitness function in our study:

Fitness = B ∗ Er + (1− B) ∗ |Fs|
|Ft|

(1)

where |Fs| is the number of chosen features, and |Ft| denotes the complete set of fea-
tures. Er is the categorizing error rate of the learning procedure, whereas factors B and
(1− B) are used for symmetric-balancing of both the measures. The value of B ranges
between 0 and 1.

The fitness value is used to rank the community/population of trees in ascending
order. The first tree group is then given the best N1 trees, which expands further as:

Pt+1
i =

Pt
i

θ
+ rPt

i (2)

where r represents a random number between 0 and 1, t represents the present number
of iterations, theta represents the tree depletion figure of power, and Pi represents the tree
(solution) at order i in the community. The present tree will be substituted if the freshly
created tree obtains a higher fitness score. If not, the present tree is saved for the next
generation. In the subsequent phase, N2 trees are transferred to a second group. The
Euclidean distance for each tree is computed using Equation (3) , based on which the two
closest trees (from the first and second group) are identified.

di =

(
N1+N2

∑
i=1

(
Pt

N2
− Pt

i

)2
) 1

2

(3)

Pi represents the ith tree in the community and PN2 denotes the present tree. It can be
noted that when PN2 = Pi, where N2 = i the distance becomes infinite. The present tree then
approaches the neighboring trees to battle for light. The following equation computes the
linear sum of the two nearby trees:

Q = λa1 + (1− λ)a2 (4)

where λ is employed to tune the effect of a nearby tree, whereas the parameters a1 and a2
are the first and second nearest trees, respectively. In the second group, the tree location is
changed as:

Pt+1
N2

= Pt
N2

+ αQ (5)

where α stands for the angular distribution between 0 and 1, the N3 bad trees are eliminated
from the third group and substituted with fresh trees (fresh solutions). The N3 trees are
determined by the expression:

N3 = N − N1 − N2 (6)

N1 and N2 are the number of trees in the first and second groups, respectively, and N is the
population size. Utilizing the mask operator, fresh N4 trees are created in the final group
around the finest trees. It is to be noted that the total no. of N1 and N2 is not supposed to
be less than the no. of N4. After that, the freshly created N4 trees are then included into the
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community/population. The fitness value is used to order the combined population. The
finest N trees are then chosen to represent the fresh population in the subsequent iteration.
Until the final condition is fulfilled, the procedure is repeated. Eventually, the universally
supreme arbitrary tree is chosen as the supreme solution.

For engineering problems, TGA is an excellent optimizer, but for feature selection, a
binary version is required. For feature selection, Jingwei et al. [35] presented binary TG,
i.e., the BTG technique. The trees location is translated into a probability value by using the
transfer function. A greater prob. number often means a greater possibility that the feature
will be chosen. The sigmoid function is used in this work as the transfer function in the
BTG algorithm for FS, which is expressed by:

S(pt
id) =

1

1 + e−pt
id

(7)

where p represents the dth facet of the search space. The location is transformed by the
transfer function into a prob value, ranging from 0 to 1. The tree’s location is then modified
depending on the prob. value in the manner described below:

pt+1
id =

{
1, if Rn < St

id
0, otherwise

(8)

where Rn is an arbitrary number from 0 to 1. The forth tree group employs a mask procedure
as indicated in the TG algorithm. The mask procedure for the BTG algorithm is explained
as illustrated in the Figure 7.

New Tree Sol. Z1 0 1 1 0 1 

Mask operator 1 1 0 0 1 

Finest tree Sol. Z2 0 1 0 1 0 

Fresh tree after masking 

Masking (Z1, Z2) 

0 1 1 0 0 

 

 

New Tree (Solution) 1 0 0 1 0 

Mask operator 0 1 1 0 1 

Best tree (Solution) 1 0 1 0 1 

New tree after applying mask 

operator 

1 0 1 1 1 

Figure 7. An example of masking procedure.

Though the TG algorithm-based concept has shown some good results [34,37], few
studies have been found regarding FS concerning image classification mainly linked to skin
lesion classification.

5. Experimental Results and Discussion

This section describes of the experimental setup, performance assessment metrics
utilized in the study, experimental findings, and the associated discussion.

5.1. Experimental Set-Up

Two challenging datasets, i.e., ISIC2018 and ISIC2019, are utilized to test the perfor-
mance of the proposed framework. The dataset details can be found in Section 3. The
entire code was implemented in MATLAB, and the experiments were performed on an HP
Workstation that has 64 GB RAM along with a NVIDIA’s Quadro P2200 5GB graphics card.
We chose the test:train ratio to be 20:80 (randomly selected) for the classification study. We
adjust the hyper-parameters of the fine-tuned Inception-v3 and Densenet-201 models for
various datasets, based on several tests to find the optimal outcomes (Table 1).
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Table 1. Hyper-parameters set used for training.

Models/Hyper-Par. Dataset Batch-Size Epochs Learning-
Rate Optimizer

Inception-v3
ISIC-2018 32 100 0.001 sgdm

ISIC-2019 32 50 0.001 sgdm

Densenet-201
ISIC-2018 24 20 0.001 sgdm

ISIC-2019 8 20 0.0001 sgdm

The implementation of the BTG algorithm in our study employs various choices of
parameters as depicted in Table 2. In the BTG procedure, we set the value of B to 0.99.

Table 2. Parameters of BTG algorithm employed in this study.

Parameters Value

No. of trees (N) 10
Max. no. of iter. 20

First group trees (N1) 3
Second group trees (N2) 5
Fourth group trees (N4) 3

Rate of tree reduction (theta) 0.8
Parameter controlling the impact of closest tree (lambda) 0.5

We have compared our classification outcomes with several well-known existing
schemes [2,4–6,12,13,20–22,25,30] to demonstrate the better performance of the
proposed framework.

5.2. Performance Evaluation Measures

We evaluate the SC classification performance of the proposed framework in terms of
accuracy, precision, sensitivity, specificity, and F1-score measures for all the datasets. These
measures can be calculated using the following expressions:

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

Precision =
TP

TP + FP
(10)

Sensitivity(Recall) =
TP

TP + FN
(11)

Speci f icity =
TN

TN + FP
(12)

F1score = 2 ∗ Precision ∗ Recall
Precision + Recall

(13)

where TP, TN, FP, and FN denote “true positive”, “true negative”, “false positive”, and
“false negative” values, respectively.

5.3. Results and Analysis

The classification outcomes of our framework are presented and discussed in this
subsection. The outcomes are analyzed via accuracy, precision, sensitivity, specificity, and
F1-score measures using seven separate feature vectors:
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1. The features extracted from the fine tuned Densenet-201 model are denoted as [F1]
feature vectors.

2. The features extracted from the fine tuned Inception-v3 model are denoted as [F2]
feature vectors.

3. The optimized feature selection (FS) using BTG algorithm from F1 is denoted as [F1](o)
feature vector.

4. The optimized FS using BTG algorithm from F2 is denoted as [F2](o) feature vector.
5. The concatenation of [F1] and [F2] is denoted as [F1F2] feature vector.
6. The concatenation of [F1](o) and [F2](o) is denoted as [[F1(o)][F2(o)]] feature vector.
7. The optimized FS using BTG algorithm from [F1F2] vector is denoted as [F1F2](o)

feature vector.

Table 3 illustrates the classification performance of the proposed method (i.e., [F1F2](o))
along with other feature vectors in terms of various measures for ISIC2018. The performance
of [F1] and [F2] individually shows very low sensitivity, F1-score, and precision compared
to its respective accuracy and specificity values. However, the optimized feature vectors
[F1](o) and [F2](o) individually show outstanding improvement in terms of sensitivity,
F1-score, and precision when compared to the performance of feature vectors [F1] and [F2],
respectively. Though the outcomes of feature vector [F1F2] improve upon the individual
outcomes of [F1] and [F2] vectors, the improvements in sensitivity, F1-score and precision
measures are not satisfactory. The [F1F2](o) vector exhibits a tremendous improvement in
performance over all other feature vectors (Table 3) in terms of all the metrics, including
sensitivity, F1-score, and precision.

Table 3. Classification performance of proposed framework with SVM classifier on ISIC-2018 dataset.
(Bold face indicates best performance).

Feature Vector Accuracy Precision Sensitivity Specificity F1-Score Feat. Dim.

[F1] 89.62 81.71 74.96 97.34 78.19 1920
[F2] 88.97 82.75 75.21 97.22 78.80 2048

[F1](o) 97.40 96.40 95.00 99.38 95.69 1429
[F2](o) 97.55 96.30 95.06 99.41 95.69 1371
[F1F2] 90.81 85.85 75.97 97.61 80.61 3968

[[F1(o)][F2(o)]] 97.85 97.49 95.17 99.41 96.31 2801
[F1F2](o) 98.50 97.84 96.60 99.59 97.22 1983

The confusion matrix of the proposed framework, i.e., the feature vector [F1F2](o) for
various classes of ISIC2018, is shown in Figure 8. The ‘bkl’ and ‘vasc’ classes were noted to
have been perfectly learned by the model (i.e., 100%), however, the error rates were noted
to be 12.7% for class ‘ak’, 4.7% for ‘mel’, 4.0% for ‘df’, 2.1% for ‘bcc’ and 0.4% for class ‘nv’.

The ROC plots also provide important information that depicts a compromise between
true and false positive rates. Figure 9 shows the highest AUC, i.e., 1 for both the ‘df’ and
‘vasc’ classes and worst for the ‘mel’ class.

Table 4 shows the performance of Densenet-201 and Inception-v3 models with and
without augmentation implementations which further motivated us to include this crucial
step in this study.

Table 4. Classification performance on ISIC-2018 dataset for two deep learning models with and
without augmentation cases (using SVM classifier).

Feature Vector Accuracy Precision Sensitivity Specificity F1-Score

Densenet-201 (with Augment.) 89.62 81.71 74.96 97.34 78.19
Densenet-201 (without Augment.) 86.22 82.06 69.15 95.96 75.05

Inception-v3 (with Augment.) 88.97 82.75 75.21 97.22 78.80
Inception-v3 (without Augment.) 84.62 75.57 66.19 95.70 70.57
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Figure 8. Confusion matrix obtained for proposed framework on ISIC2018. (The correct and incorrect
observations are displayed in diagonal and off-diagonal cells respectively. The values in last column
displays the corresponding precision and false discovery rates. The values in last row correspond to
recall and false negative rates. The last diagonal cell in the bottom right displays the overall accuracy.)
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bcc (AUC = 0.9999)
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df Model Operating Point
mel (AUC = 0.9968)
mel Model Operating Point
nv (AUC = 0.9988)
nv Model Operating Point
vasc (AUC = 1)
vasc Model Operating Point

(b)

Figure 9. ROC curve corresponding to proposed framework for ISIC 2018 dataset (a) original
and (b) partially zoomed form of (a).

Tables 5 and 6 depicts the performance of proposed framework on ISIC2018 dataset
with k-NN and random forest classifiers, respectively. The results from Tables 3, 5 and 6
clearly demonstrates the superiority of proposed framework with SVM classifier over k-NN
and random forest for skin lesion categorization.
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Table 5. Classification performance of proposed framework with k-NN classifier on ISIC-2018 dataset.

No. of Iter. Accuracy Precision Sensitivity Specificity F1-Score

10 98.00 96.04 93.77 99.56 94.89
20 97.85 96.24 96.08 99.50 96.16
25 98.20 97.47 95.07 99.57 96.26
50 98.00 96.84 94.83 99.55 95.83

100 98.00 96.21 95.99 99.54 96.10
150 97.85 97.19 96.39 99.53 96.79
200 98.20 97.23 95.25 99.54 96.23
300 98.45 98.58 95.32 99.56 96.92

Table 6. Classification performance of proposed framework with random forest classifier on
ISIC-2018 dataset.

No. of Iter. Accuracy Precision Sensitivity Specificity F1-Score

10 97.10 96.98 91.81 99.09 94.32
20 97.10 96.58 92.66 99.06 94.58
25 97.15 97.94 92.63 99.02 95.21
50 96.90 97.16 91.25 98.98 94.11

100 96.95 96.92 91.71 99.12 94.24
150 97.20 97.09 92.31 99.22 94.64
200 97.25 97.19 91.92 99.21 94.48
300 96.75 97.01 91.84 98.96 94.36

In Table 7 we have shown the comparison of combination of different DL models such
as fine-tuned Inception-v3, Densenet-201, Renet-101 and Googlenet models for ISIC2018. It
can be clearly observed from Tables 3 and 7 that the blend of fine-tuned Densenet-201 and
Inception-v3 features achieves best results and is complementary to the individual models.

Table 7. Comparison of different deep features combination with respect to proposed framework
with SVM classifier on ISIC-2018 dataset.

Combination Accuracy Precision Sensitivity Specificity F1-Score

Densenet-201-Inceptionv3 98.50 97.84 96.60 99.59 97.22
Densenet-201-Googlenet 98.15 97.35 95.45 99.50 96.41
Densenet-201-Resnet101 97.60 96.27 92.64 99.39 94.42
Inceptionv3-Googlenet 98.10 97.74 95.81 99.50 96.77
Inceptionv3-Resnet101 98.10 96.70 96.17 99.54 96.44
Googlenet-Resnet101 97.95 93.32 95.26 99.54 96.28

Table 8 shows the classification performance of the proposed method in terms of
various measures for ISIC2019. Like the results shown in Table 3, here, too, the feature
vectors [F1] and [F2] individually show very low values of sensitivity, F1-score, and precision
when compared to accuracy and specificity values. The feature vectors [F1](o) and [F2](o),
respectively, when compared to [F1] and [F2] vectors, provides a great benefit in terms of
improvement in all the measures, including sensitivity, F1-score, and precision metrics. As
can be seen clearly from Table 8, the proposed feature set, i.e., [F1F2](o) , shows notable
improvement in terms of all metrics, demonstrating the effectiveness of powerful FS from
a hybrid comprehensive feature set [F1F2]. Unlike [[F1(o)][F2(o)]] where the global best
solutions are computed in individual [F1] and [F2], the feature vector [F1F2](o) allows the
BTG algorithm to compute globally superior feature subset from the hybrid comprehensive
feature set [F1F2] which can identify the best optimal fitness solution.
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Table 8. Classification performance on ISIC-2019 dataset using proposed framework with SVM. (Bold
face indicates best performance).

Feature Vector Accuracy Precision Sensitivity Specificity F1-Score Feat. Dim.

[F1] 82.06 77.09 67.90 96.72 72.20 1920
[F2] 86.07 82.86 71.38 97.49 76.69 2048

[F1](o) 91.49 89.44 85.51 98.53 87.43 979
[F2](o) 96.17 94.92 93.78 99.35 94.35 1037
[F1F2] 86.84 85.44 72.43 97.56 78.39 3968

[[F1(o)][F2(o)]] 96.23 96.25 94.16 99.32 95.19 2016
[F1F2](o) 96.60 96.38 94.21 99.39 95.28 3106

The confusion matrix of the proposed framework, i.e., the feature vector [F1F2](o) for
various classes of ISIC2019, is shown in Figure 10. The ‘bcc’ and ‘df’ classes, respectively,
were noted to have been the best and worst learned by the model. The class error rates
were observed to be 10.2% for class ‘df’, 8.7% for ‘vasc’, 8.1% for ‘scc’, 5.6% for ‘ak’, 5.0%
for class ‘bkl’, 4.9% for ‘mel’, 2.4% for ‘nv’ and 1.5% for ‘bcc’ class.

The ROC curve for ISIC2019 is demonstrated in Figure 11. Here, too, the ‘df’ and ‘vasc’
classes achieve the highest AUC and exhibits ‘bkl’ as the worst performing class.

Figure 10. Confusion matrix obtained for proposed framework on ISIC2019. (The correct and
incorrect observations are displayed in diagonal and off-diagonal cells respectively. The values in
last column displays the corresponding precision and false discovery rates. The values in last row
correspond to recall and false negative rates. The last diagonal cell in the bottom right displays the
overall accuracy.)
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Figure 11. ROC curve corresponding to proposed framework for ISIC 2019 dataset (a) original and
(b) partially zoomed form of (a).

From Tables 3 and 8, it can be seen that the feature vector [F1F2](o) has reduced feature
dimensions compared to [F1F2] with a notable increase in classification performance.

In Table 9, we have demonstrated a comparative analysis of proposed deep fea-
tures when combined with a few popular metaheuristic algorithm-based feature selection
schemes such as binary ACO, binary HHOA, binary dragonfly algorithm (BDA), binary
WOA, binary PSO and binary BTG algorithms. The results show that the proposed frame-
work (proposed deep features with BTG) consistently outperforms the cases when proposed
features are combined with binary ACO, binary PSO and binary HHOA (except for sen-
sitivity parameter) algorithms with much less feature dimensions. Though proposed
features with BDA provides less dimensions but their performance is much inferior to
the proposed framework. The proposed framework outperforms binary WOA-based FS
by a very close margin except for sensitivity where the proposed framework with BTG
underperforms WOA by a very small margin, however the WOA provides quite large di-
mensions compared to BTG algorithm-based FS. The proposed framework (proposed deep
features with BTG) overall shows encouraging results over many well-known metaheuristic
algorithm-based FS schemes but with many fewer feature dimensions.

Table 9. Performance comparison of proposed deep features when combined with different optimized
FS approaches for ISIC 2018 dataset. The ‘Time’ is the run-time (in seconds) required for only optimal
selection of features through a given FS approach. (Boldface indicates superior results).

Prop. Feat. Accuracy Precision Sensitivity Specificity F1-Score Feat. Dim. Time

with ACO 97.65 97.47 94.40 99.35 95.91 2260 1216
with BHHO 98.20 96.69 97.02 99.58 96.86 2476 2810
with BDA 98.00 97.53 95.30 99.46 96.40 1950 967
with WOA 98.45 97.45 96.79 99.58 97.12 2970 1898
with BPSO 98.35 97.60 96.11 99.58 96.85 2023 1400
with BASO 97.90 97.23 94.77 99.44 95.99 1095 1423
with BTG 98.50 97.84 96.60 99.59 97.22 1983 1760

Table 10 clearly demonstrates that at 20 number of iterations we achieve the best
performance with relatively much lesser feature dimensions and run-time.
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Table 10. Classification performance on the ISIC-2018 dataset for proposed framework with BTGA-
based FS using different numbers of iterations. The ‘Time’ is the run-time (in seconds) required for
only optimal selection of features through a given FS approach. (Boldface indicates superior results).

No. of Iter. Accuracy Precision Sensitivity Specificity F1-Score Feat. Dim. Time

10 98.15 97.51 95.06 99.46 96.27 3074 1062
20 98.50 97.84 96.60 99.59 97.22 1983 1760
25 97.90 97.00 94.40 99.43 95.68 2730 2692
50 98.25 96.38 93.24 99.54 94.78 2637 5247

100 98.20 97.65 96.08 99.49 96.86 2738 8541
150 98.05 96.64 95.44 99.51 96.04 2265 11,948
200 98.05 97.27 95.73 99.48 96.49 2414 15,477
300 98.30 97.53 95.37 99.56 96.43 2576 24,555

Table 11 shows the results comparison of proposed framework with a few well-known
recent techniques. Our framework clearly and consistently outperforms all the existing
recent techniques, including a few FS-based techniques in terms of all the performance
measures for all the datasets. The margin of improvement for proposed technique over
other techniques is comparatively higher in case of ISIC2018 than ISIC2019 dataset. The
significantly improved accuracy, sensitivity, precision, specificity, F1-score, and AUC of our
framework can offer remarkable benefits for both medical professionals and researchers
and pave the way for further advancements in skin lesion diagnostics.

Table 11. Comparison of proposed framework results with existing methods. (Boldface indicates
superior results).

Ref. Year Dataset Acc. Prec. Sens. Spec. F1-Score AUC Train:Test:Val.

[6] 2020 ISIC2018 89.28 81.00 87.16 81.28 72:20:8
[12] 2020 ISIC2018 92.40 75:25:0
[13] 2021 ISIC2018 88.75 90.45 88.75 95.72 89.11 70:20:10
[25] 2022 ISIC2018 94.36 94.08 50:50:0
[4] 2022 ISIC2018 86.71 70:30:0
[16] 2022 ISIC2018 95.05 82.29 82.86 97 70:15:15
[17] 2023 ISIC2018 90.1 89.8 90.0 89.7 70:20:10
[14] 2023 ISIC2018 94.13 90.49 97.76 80:10:10
[15] 2023 ISIC2018 92.73 92.10 92.5 95.4 92.8 0.972 70:10:20

Prop. ISIC2018 98.50 97.84 96.60 99.59 97.22 0.9989 80:20:0
[21] 2020 ISIC2019 93 92.5 93.33 70:30:0
[2] 2020 ISIC2019 94.92 80.36 79.8 97 80:10:10
[5] 2021 ISIC2019 93.64 68.20 0.925 —
[13] 2021 ISIC2019 89.58 90.66 88.58 97.57 89.75 70:20:10
[22] 2022 ISIC2019 92.34 80:20:0
[20] 2022 ISIC2019 93 75:8:17
[30] 2023 ISIC2019 91.7 —
[14] 2023 ISIC2019 91.93 85.58 98.29 80:10:10
[15] 2023 ISIC2019 91.73 92.70 92.4 97.7 92.5 0.962 70:10:20
[18] 2023 ISIC2019 94.65 72.56 70.78 96.78 71.33 70:15:15

Prop. ISIC2019 96.60 96.38 94.21 99.39 95.28 0.9966 80:20:0

6. Conclusions

This article has introduced a novel, automated and improved multiclass skin lesion
categorization framework composed of a few vital steps including image augmentation,
amalgamation of deep features obtained from fine-tuned Inception-v3 and Densenet-201
models, optimized feature selection via BTG algorithm and the categorization of hybrid
deep features using a SVM classifier. The experimental outcomes reveal that such blend of
features supplies improved discriminating capability and complements the independent
models. A BTG algorithm is implemented on the hybrid deep-feature set in order to obtain
improved classification results with decreased feature dimensions. The optimized feature
vector obtained after FS is eventually fed to a multi-class SVM for classification. The perfor-
mance of our scheme is validated on ISIC2018 and ISIC2019 datasets which is demonstrated
to be highly competitive when compared to existing well-known algorithms. Although
the proposed framework provides encouraging results for the challenging ISIC2018 and



Symmetry 2023, 15, 2213 21 of 23

ISIC2019 datasets, it has the following limitations and drawbacks: (i) though it is demon-
strated that the deep-feature blending from different fine-tuned pre-trained networks could
further enhance the classification performance, a limited number of pre-trained networks
are explored. The present work can be further extended by investigating a higher number
of such networks which may further improve the performance. Furthermore coupling the
present framework with hand-designed features could enhance the results. (ii) The training
images used in the present study are somewhat limited and a higher number of training
images is crucial for better fine-tuning of pre-trained networks, So, the availability of more
quality dermoscopic skin lesion images could enhance the performance. (iii) More appro-
priate pre-processing actions could further improve the classification outcomes. (iv) Some
skin lesion images are occasionally occluded by human hairs which may affect the classifica-
tion results. Many existing techniques remove these hairs through special image processing
schemes. In the future work, the above limitations and drawbacks shall be explored.
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