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Abstract: In this paper, the novel heuristic search algorithm called Smart Root Search (SRS) was
examined for solving a set of different-sized service time–cost optimization in cloud computing
service composition (STCOCCSC) problems, and its performance was compared with those of the
ICACRO-C, ICACRO-I, ICA, and Niching PSO algorithms. STCOCCSC is an np-hard problem due to
the large number of unique services available as well as the many service providers who provide
services with different quality levels. Finding closer-to-optimal solutions supports cloud clients
by providing them with higher quality-lower price services. The SRS obtained results proved that
the SRS provided 6.74, 11.2, 47.95, and 87.29 percent performance improvement on average to the
comparative algorithms, respectively, for all considered five problems. Furthermore, employing
symmetry concepts in dividing the problem search space helps the algorithm to avoid premature
convergence and any efficiency reduction while facing higher-dimensional search spaces. Due to
these achievements, the SRS is a multi-purpose, flexible, and scalable heuristic search algorithm
capable of being utilized in various optimization applications.

Keywords: combinatorial optimization problem; NP-hard problem; heuristics method; nature-inspired
algorithm; cloud computing; quality of service; service time–cost; service composition

1. Introduction

Non-deterministic polynomial-time hard (NP-hard) problems are a set of problems
for which there is no nondeterministic Turing machine able to solve them in polynomial
time. In recent years, a wide range of intelligent phenomena of nature has been considered
the source for proposing several search algorithms proposed to solve NP-hard problems.
Different aspects of everyday habits and collective wisdom of animals, physical laws of
dynamics and electromagnetism, and sociopolitical behaviors of countries have been used
repeatedly. It is critical to note that although each of the intelligent search algorithms
exhibits its own set of efficiencies and is capable of solving a variety of optimization
problems, some common issues exist between them when it comes to solving large-scale,
high-dimensional search problems. As part of these issues, the dangers of falling into
the trap of local optimizations and the absence of features necessary for endogenous
exploitation are two that seem impossible to overcome [1]. As a result, a lot of researchers
are trying to come up with novel methods to deal with these problems. Especially, these
raised problems in the previously designed nature-inspired stochastic algorithms, have
motivated the researcher to look for a new type of intelligent search algorithm that is
capable of resolving the existing problems with the present stochastic search algorithms.
Accordingly, proposing a new intelligent search algorithm inspired by another type of
natural intelligence aimed at dealing effectively with the aforementioned challenges have
attracted attention.
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Aimed at providing solutions to the aforementioned problems that appeared in the
classic search algorithms, stochastic search algorithms have been designed, which are
known to be intelligent and efficient [2]. The search process in stochastic search algorithms,
not being a linear approach, employs different kinds of random and intelligent selections
and searches in order to find the near-to-optimal solution in an acceptable time in the cases
that high-dimensional search spaces are being encountered [3]. Stochastic search algorithms
are mostly of nature-inspired types; however, some non-nature-inspired algorithms also ex-
ist in this category. The well-known nature-inspired algorithms are the Genetic Algorithms
(GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Artificial
Fish Swarm Algorithm (AFSA), Gravitational Attraction Search (GAS), Artificial Immune
System (AIS), and Artificial Bee Colony (ABC) [4–6]. In addition, the so-called Imperialist
Competitive Algorithm (ICA) [7] and Differential Evolutionary Algorithm (DE) [8] belong
to the non-nature-inspired class of stochastic algorithms.

Motivated by the point that although plants are considered intelligent creatures that
demonstrate their intelligence in shoot and root development, no strong research studies
had focused on utilizing the natural intelligence of plants’ roots as a search algorithm,
the new, independent, growth-inspired Smart Root Search (SRS) algorithm was proposed
in [9,10] to achieve high efficiency and overcome the abovementioned problems.

As the result of another research, the authors proposed a novel search algorithm called
SRS in [9,10]. In this study, to evaluate and prove the performance of the SRS, it is applied
to solve the real-world problem of the Cloud Computing Service Composition (CCSC) [11]
type problems, namely the service time–cost optimization problem in CCSC (STCOCCSC).
The obtained experimental results by the SRS are presented, analyzed, compared with
those provided in the existing literature on STCOCCSC solutions, and statistically tested.
Then, a complete discussion of the results is provided.

The main motivation of the researchers in selecting STCOCCSC is the high dimen-
sionality of the search space as well as complexity of taking different quality of service
(QoS) [12,13] and experience (QoE) [14] parameters, making the optimal solution very
difficult to find [11,15].

By taking advantages of the symmetry concepts, the SRS is capable of tackling high-
dimensional search spaces and directing the search mechanism towards focusing on the
best areas of search space. This approach avoids exploring the non-promising areas and as
a result, makes the optimal solution easier to reach.

The remainder of the paper is organized as follows. After a preliminary discussion on
the SRS and our motivation to consider the STCOCCSC problems provided in Section 1.1,
the STCOCCSC problems and the SRS algorithm are described in Section 2. Section 3
characterizes the conducting experiments to evaluate the SRS and comparative algorithms
ICACRO-C, ICACRO-I, ICA, and Niching PSO, including the explanations of the selected
problems, experimental design, employed dataset details, and SRS specialization to be
applied in solving the STCOCCSC problem. Then, in Section 4, the obtained experimental
results by the SRS are presented and analyzed, compared with those provided in the
existing literature on STCOCCSC solutions, and statistically tested. Finally, the conclusion
and suggestions for future work are presented in Section 5.

1.1. Literature Review

The point of interest in the SRS, proposed by [9,10], was that unlike the previous plant
root-based search algorithms, the proposed search algorithm had to be in absolute align-
ment with optimization principles and be able to overcome the drawbacks that influence
other heuristic search algorithms, i.e., the local optima problem, premature convergence,
and weak exploitation ability. The SRS provided unique and well-defined features and op-
erators that were precisely extracted from plant intelligence, imitating plant root intelligent
foraging behaviors. The smart functionality of the SRS model was based on different intelli-
gent functions of different parts of plant roots in analyzing the heterogeneous conditions
of different soil sections. This model divided the search space into subspaces to focus on
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promising regions. Employing mature, immature, and hair roots allowed the SRS to exploit
and explore simultaneously based on the opportunities provided by various parts of the
search space. A mechanism involving branching and drouth operations also stimulated
the SRS to focus its searching efforts on more promising areas while ignoring unpromising
sections in order to search the relatively viable parts and become stronger. To examine the
performance and evaluate the efficiency of the SRS in solving classic test functions and
real-world optimization problems, two experimental tests were conducted in [9,10]. Several
unimodal and multimodal test functions were used to evaluate the SRS. We compared the
results with those obtained using GA, PSO, DE, and ICA and analyzed them statistically.
Based on the tests that were conducted on the unimodal and multimodal test functions,
the SRS outperformed similar algorithms by 91.67% and 81.81%, respectively. Generally,
after developing a solution method to solve a particular problem, the proposed method is
required to be proved mathematically and then, as a proof, demonstrated using computer
programs even though, for many real-world applications, proving a given methodology
mathematically is not straightforward, if it is possible at all. In these cases, empiricism proof
is used [16]. Classified in [17], this research method in computer science includes three
distinct methodologies, namely the theoretical, experimental, and simulation methods.
Because of the complexity of the real-world problems caused by factors, including the
real-time requests, high multi-modality, non-differentiable nature of the objective function,
large, and sometimes deeply constrained search spaces which bring up complexity even in
the modeling phase [18,19], the experimental proof has been widely applied. In this context,
this paper focuses on applying the proposed SRS algorithm [9,10] to solve the well-known
real-world problem STCOCCSC.

In cloud computing and sensor networks [20,21], there are two main challenges to
be considered that specifically concern the significance of the accessibilities of all needed
services and the efficient allocation possibilities [22]. In the first challenge, predicting all
the possibly needed services requires software services, which is an extremely difficult
procedure. Simple and single fundamental services are required to be designed and
provided by different service providers to be employed in facing this problem. On the other
hand, the second challenge usually arises during the selection process of the optimum
required single services supplied by various service providers that possess variant quality
of service (QoS) attributes. Investigating this challenge as an optimization problem can
be considered an NP-hard problem [23] since it is subject to a huge number of analogous
single services provided by several services in the cloud [24].

Dating back to 2000, service composition was primarily introduced for web ser-
vices [25–28]. Service composition techniques attracted attention for use in cloud computing
systems first in 2009 [29,30], which was followed by substantial efforts, increasing interest,
and extensive application of this method in different areas. The variety of novel frame-
works, mechanisms, approaches, and algorithms in addition to expanding the scope of
problems faced by researchers in this promising area brought up the necessity of recog-
nizing different existing datasets and efficient QoS parameters. There are over 20 QoS
parameters, such as time, cost, privacy [31], and network quality, involved in CCSC [11,32]
that must be taken into consideration while dealing with CCSC. Various implementation
environments with dependability and resilient [33] complications are other factors playing
important roles.

2. Problem and Algorithm Description

In this section the STCOCCSC problem is described followed by discussing the ob-
jective function of the problem. Then, the main elements of the SRS algorithm will are
introduced, and the required references are given for further details.

2.1. Service Time–Cost Optimization in Cloud Computing Service Composition (STCOCCSC)

Development in the procedures of the computer-based system has resulted in a grow-
ing complexity in the services requiring and executing processes. This complexity and the



Symmetry 2023, 15, 272 4 of 21

variety of systems make it difficult for an independent service to be sufficiently capable of
satisfying the functional prerequisites of the various real-world requests. This propounds
the necessity of preparing the simple atomic services as a set, whose components must
work together effectively in order to achieve a complex service. Thus, a cloud service
composer system (CSC) is required to be combined with the cloud computing.

Accompanied by the growing number of service providers, the similarities can po-
tentially occur within unique services located at different parts of the network. Therefore,
for each requirement, the CSC should make efficient decisions to select a unique service
amongst the analogous services provided by different service providers. Then, the most
proper selected method will lead to the maximum QoS according to the requirements and
priorities of customers.

Now, noting that the composite service (CS) in a cloud is assumed to consist of n USs,
the QoS parameters of each USs are considered to be the associated service cost (SC) and the
service time (ST). A combination of unique services is then required to act correspondingly
in an ordinal workflow (wf ) in order to arrange for the desired CS. Considering w fk as
the workflow of CSk, the SC(w fk) and ST(w fk) can be defined as the SC and ST of the
corresponding workflow k, while the ST and SC vectors of the workflow are described by
Equations (1) and (2), respectively [11,15].

ST(w fk) = (ST1(w fk), ST2(w fk), . . . , STn(w fk)), (1)

SC(w fk) = (SC1(w fk), SC2(w fk), . . . , SCn(w fk)). (2)

The merit value of w fk, which is defined as the sum of the total service times and total
service costs of all elements of w fk, can be obtained using Equation (3) in which CW and
TW indicate, respectively, the weights of cost and time that are assumed to be determined
by the user in the range of [0, 1], in such a way that TW + CW = 1. In order to define the
optimal solution for the STCOCCSC problem, the solution must possess a minimum merit
value so that it can be considered the best solution [11,15].

MV(w fk) =
n

∑
i=1

(TW × STi(w fk) + CW × SCi(w fk)) (3)

It should be emphasized that service time and cost values used in the above equations
are required to be normalized in the range of 1 to 10 via min–max normalization [34].

2.2. Smart Root Search (SRS) Algorithm

Aimed at overcoming the weakness and shortcomings of the other search algorithms
by equipping the SRS with the abilities to simultaneously explore and exploit the search
space and circumvent the trap of local optima caused by premature convergence, the
proposed SRS algorithm [9,10] was designed to possess some distinguished characteristics,
taking into account the plant root intelligence. One of the basic steps in designing the SRS
was providing a map between the optimization terms and real plant root growth terms. In
this context, the following mappings were considered:

• The soil environment for plant roots was interpreted as the search space which contains
all the problem’s possible candidate solutions.

• The plant root set was considered as the solutions’ vector.
• The root was regarded as the solution.
• The nitrate concentration was considered as the objective function employed for

evaluating the solution.
• The location of the highest nitrate concentration was considered as the optimal solution,

whose objective function value is minimized.
• The growth steps were interpreted as iterations.
• Hair roots germination represented the local search operator.
• Root growth was interpreted as the solution movement.
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• The concept of root drouth represented solution elimination.
• The root growth speed was interpreted as the velocity of movement of the solution.
• The concept of root branching was interpreted as solution reproduction.
• The immature root was considered as a limited-move solution.
• The growth direction was regarded as a movement coefficient set.

In the following, we describe the main procedures of the SRS algorithm, which include
parameter initialization, search space division, initialization of the first generation, the roots’
evaluation, sorting and ranking, growth of roots, roots drouth, and branching, in addition
to HRG and termination criteria, which are illustrated in the SRS flowchart in Figure 1.

To adjust the SRS search elements and operations, setting a few guiding parameters is
one of the first steps. The values taken by these parameters are affected by the problem
specifications. The parameters will be gradually defined within the following paragraphs.

In the expansive search spaces, the search algorithms deal with a massive number
of space points that require probing. Generally, the total space point’s number in these
cases is notably more than the initial solutions number, obtained in the first iteration of
the algorithm running. Additionally, since the algorithm’s initial solutions are generated
randomly, there is not usually a uniform distribution of solutions within the search space.
Hence, the search space cannot be exhaustively searched well. In these extensive search
spaces, dividing the search space helps algorithms solve the problem more conveniently. In
designing the SRS algorithm, a divide-and-conquer strategy [35] was employed to divide
the problem search space into Ns number of subspaces. Noting that the convergence
speed of the SRS is directly affected by the number of subspaces, an effective Ns initialized
value is subject to the problem specifications which are the solutions’ structure, sizes of the
different dimensions of the search space, and number of dimensions.

The first generations of the solutions, which are randomly generated by the SRS, are
assumed to include NumMinRoot number of solutions that are distributed in the search
space so that the numbers of initially generated solutions assigned to every subspace
are equal. However, in the cases that some solutions remained unassigned, they will be
assigned to the subspaces at random. Noting that in SRS terminology any SRS-generated
solution is interpreted as a root, for the root i in a D-dimensional problem search space, the
location is given by Equation (4), in which xd

i indicates the location of root i in the specific
dimension d.

xi =
(

x1
i , x2

i , . . . , xd
i , . . . , xD

i

)
(4)

In the SRS, a root is identified by its structures that are needed to describe the root.
The fundamental structure of a root is illustrated in Figure 2. In the first row, the structure
of interest is listed, while in the second row, an element of the structure is identified. Once
the step of initialization of the first generation ends, all subspaces have an equal number of
generated roots.

To provide a procedure for evaluating roots, the detailed effects of the two most
effective soil nutrients, phosphate and nitrate, on root growth were provided in [9,10].
To be more specific, root growth speed, hair roots density, and branch density are highly
affected by the concentration of these nutrients [6,36–42]. When the phosphate concentra-
tion becomes deficient, the primary and LR growth are dramatically modified, causing
significant changes in the overall root architecture. In contrast, sufficient nitrate acces-
sibility may influence LR elongation. Primary root elongation has been revealed to be
influenced by nitrate and phosphate availability in a contrasting way [36]. In Arabidopsis,
it has been observed that increasing nitrate supply leads to a reduction in the primary
root elongation. On the other hand, the abundance of phosphate availability increases
primary root elongation. Forming hair roots is another manifest change in root architecture
that can be caused by a deficiency of some nutrients. Especially, deep investigation on
Arabidopsis has demonstrated that in response to phosphate deprivation the hair roots
grow longer and denser [36,39,43]. Lateral root density is the other conspicuous factor in
root architecture. Research has shown that density of LRs remains indifferent to changes in
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nitrate concentrations but shows a dramatic response to phosphate supply, as it decreases
when the phosphate availability increases [37].
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Figure 2. An SRS basic root structure.

To apply these behaviors in the SRS, two main points were considered. The SRS
is particularly interested in root growth speed. Since the root growth speed can only
be considered for the primary type of roots and noting that under different nutrient
availabilities the primary root elongation behavior is the same as the primary root growth
speed behavior, without loss of generality, the effect on primary root elongation was
considered as the effect on the root growth speed. In addition, the production of the LR
was considered the task of root branching in the SRS.

Generally, the impact of a high concentration of nitrate on the growth of root speed
appeared to be similar to that of the low phosphate concentration. However, when these
two nutrients have the same availabilities, i.e., both are high or low, nitrate and phosphate
conceal each other’s effects, suppressing the primary root growth. The main idea behind
combining the several effects of disparate nutrient concentrations was to simplify the
proposed model. Then, highlighting the importance of primary root growth in the SRS, the
cases in which the high (low) nitrate accompanied by high (low) phosphate supplies, which
concluded in almost zero root growth speed, was abandoned. Then, noting the great im-
portance of the reasonable simplicity in proposing the SRS, supported by the evidence, the
increasing nitrate concentration was considered to coincide with the decreasing phosphate
concentration. This assumption, besides shortening the procedure, facilitated defining the
SRS concepts that have more compatibility with the corresponding botany terminology.
Then, it suffices to consider only the effects of nitrate as the nutrient that influences root life.
Accordingly, the objective function value of each root, indicated by f (x), was considered
to be specified by the nitrate concentration of that root, where it was defined by [9,10]
as follows:

f (x) = Nitrate Concentration. (5)

Another important mechanism in the SRS is sorting and ranking the roots that are
being used for solving the problem based on the objective function values associated with
each root. Sorting the existing roots of the SRS is made not only when the initialization
step is finished, but also at the end of all execution iterations. In doing so, the ranking of
each root becomes manifest among all the current roots as well as among the roots of the
corresponding subspace. The advantage of this mechanism is that besides recognizing the
best roots of every subspace, it gives the rank of each root in the roots list and finally makes
it possible for the SRS to capture and determine which root is the best global root and place
it at the top of the roots list. The root ranking and sorting affect root growth, branching,
drying up, as well as the SRS convergence.

From a lifetime point of view, the SRS categorizes the roots into two main categories
of temporary and permanent roots. The permanent roots, subcategorized into immature
and mature roots, are introduced according to the age of the roots. On the other hand,
the temporary roots fall into a category called Hair Roots (HRs). Considering these three
groups of roots, the root growth mechanism applied in the SRS was designed to result in
managing the local convergence in all subspaces.

Regarding the process of growing the mature roots, suppose that root i in D-dimensional
search space at time t is located at xi(t), given by Equation (6). Root growth means that in
each dimension d, the root cap moves from its current location, given by xd

i (t), to a new
location, given by xd

i (t + 1). Assuming that the root growth velocity v(t) and direction
are determined, the second location is related to the first one by Equation (7), where the
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velocity in d direction, i.e., vd
i (t), is the projection of the root velocity vector vi(t) on the

d direction’s axis.
xd

i (t + 1) = xd
i (t) + vd

i (t), (6)

vd
i (t) =

⌈
vi(t)× cosθd

i

⌉
. (7)

In this case, cos θd
i for root i is the cosine of the angle between the direction d and the

root movement direction, which is the direction of velocity as well.
On the other hand, noting that the convergence policy of the SRS constrains the root

growth direction toward the best roots, the best root set (BRS) was introduced in [9,10].
The BRS for each subspace was defined to be created by the first k number of the best roots
of that subspace. This substantial set affects the growth directions in subspaces in such
a way that all roots of a subspace grow toward the closest root from that subspace’s BRS.
To establish this set, k is determined by utilizing the well-proposed method of “Roulette
Wheel Selection via Stochastic Acceptance” (RWSSA) [44]. Once the k number of the best
roots is picked to create the BRS of every subspace, the best nearest root to root i can be
determined to identify the root growth direction of root i. In order to determine the best
nearest root to root i, the SRS uses a parameter called densityj,i. Density is defined for
every root j in BRS by Equation (8) in which NCj stands for the concentration of nitrate
for root j, xd

j and xd
i are, respectively, the locations of roots j and i in dimension d, and the

Euclidean distance between roots i and j is the dominator.

densityj,i =
NCj√

∑D
d=1

(
xd

j − xd
i

)2
. (8)

Then, among the BRS roots, the best root nearest to root i, indicated by best_closesti, is
defined as a root j which maximizes the densityj,i. In other words, we have

best_closesti =
{

j
∣∣ densityj,iis MAX

}
. (9)

Accordingly, the growth velocity and direction of a mature root can be defined. To
calculate the velocity of a mature root, there is a need for the maximum value of velocity
which is not allowed to be exceeded by the velocity of roots. Referred to as vmax, this
maximum velocity is assumed to be defined by the user. Then, the velocity of the root can
be identified as a function of vmax, considering the rank of each root between all roots. In
doing so, the velocity is required to decrease for lower ranks of roots. This policy provides
an effective exploration since the roots located at promising areas strain to grow slowly
and explore the area precisely, while the other roots are required to recede quickly from
the non-appropriate areas. Then, if glb_ranki stands for the global rank of root i among
all present roots and NumCurrRoot shows the number of roots that currently exist, the
velocity of root i is defined by Equation (10).

vi(t) = vmax −
[

vmax

(
1 − glb_ranki

NumCurrRoot

)]
(10)

The direction of the mature root i is especially dictated by the location of best_closesti,
such that for every dimension, the root grows toward its best closest root. Therefore, a
coefficient needs to be defined for the root’s current velocity to demonstrate the root growth
direction toward the best_closesti by using a suitable dimensional velocity. The coefficient
was formulated to choose values that prevent the growth of the current root beyond its
closest best root. Now, if θd

i is the angle of root i growth toward its xd
best_closesti

, i.e., the best

closest root in dimension d, the cosines of θd
i are given by Equation (11).
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cosθd
i =

xd
best_closest − xd

i√
∑D

d=1

(
xd

best_closest − xd
i

)2
. (11)

Then, noting that for mature root i currently located at xd
i (t), the root velocity is

given by Equation (10) and the direction toward best_closesti indicates the angle θ given by
Equation (11), the next position of root, xd

i (t + 1), can be easily determined via Equation (6).
Despite the mature roots, the immature roots, which are newborn, are not allowed

to change their direction and velocity of growing or to generate new branches. There are
some rules obeyed by the immature roots. Their growth velocity is constant and specified
by their parent as they follow the growth behavior of the parent and grow with the same
root velocity. In addition, the growth direction of immature roots is initialized randomly
and will be constant.

The SRS uses a maturation mechanism by which an immature root can transform
into a mature one. Thus, since the type of root can be changed during iterations, the same
root can be used by the algorithm to apply various search policies. As shown in the smart
root search (SRS) flowchart in Figure 1, each root possesses an attribute called the root age.
As soon as a new root is produced, its age is initialized as 0. After each iteration of the
algorithm, the age of the root is increased by one. Once a threshold, called Mature_Age,
is reached by the age value assigned to an immature root, the status of the immature root
will be changed to “mature”. Mature_Age can be either stated between three and five
iterations randomly as it is considered in the SRS or defined by the user, noting the adopted
exploitation and exploration policies and considering the fact that the higher Mature_Age
values lead to less exploitation and more exploration and vice versa.

In root growth, branching is a mechanism in which new roots are produced by mature
roots to enhance the search rate over not yet investigated parts of the soil. The SRS utilizes
a Branching operation in the search space to generate new immature roots, which are
adjacent to their mature parent root in the early stages of their lifetime. The basic idea
behind designing the root branching was providing the roots located in promising locations
the opportunity to create more branching compared to the roots in non-promising areas.
To manage the number of branches in the SRS, a score-based mechanism was designed in
which the mature roots are granted nitrate concentration-based scores in the range of one
to four in every iteration, determined based on their fitness.

The sum of collected scores, referred to as SCSs, is one of the effective factors in
branching, as the mature root will be allowed to create branches after several iterations
provided that the obtained SCS meets a predefined threshold value, called Minimum
Required Ability (MRA). As soon as the MRA score is reached by a root, a new root will
be generated, resetting the SCS value to 0. Then, the mature root begins to re-collect the
concentration-based scores, and the cycle continues.

On the other hand, as it is well-understood from botany research, plant roots absorb
the water from the moistened parts of soil and store it to use afterward by transferring the
reserved water to drier parts of soil [45–47]. The amount of the stored water of the core root
determines whether the root is qualified to make new roots or not. Focusing on this process,
a mechanism for root drouth was proposed exclusively in the SRS. In fact, the branching
procedure may increase the number of active roots in the search space. In these cases, in
order to eliminate the improper roots, an operator was introduced to the SRS, called the
Root Drouth operator.

Naturally, a newly generated root possesses a certain amount of water. Noting this
fact, to implement the Root Drouth operator, all new roots were considered to have a
definite moisture volume, called the Moisture Percentage (MP), at their initialization. MP
is a variable, and its initial value in the SRS can be set to 50 as a moderate value. For the
mature roots, the MP changes as the root grows. To help immature roots sustain themselves
during the pre-pubertal development, their MP values are kept fixed.
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In the SRS, to stimulate the plant roots’ behavior as they absorb and store the wa-
ter to use in drier areas and dry when encounter a lack of water supply in dry soil, the
root encouragement (punishment) value was introduced, referred to as Encourage_Value
(Penalty_Value). To identify which kind of these values should be assigned to a root in
the growth process in the SRS, the current and the previous position of the root need
to be compared, considering the objective function values. Then, the MP value is in-
creased by the Encourage_Value if the root is in a better location and is decreased by the
Penalty_Value if the root is in a worse location. The roots in non-promising locations are
usually given a limited chance to continue searching. However, if the MP dwindles to meet
(pass) the predetermined drouth threshold, i.e., the minimum accepted value of MP, root
drouth occurs.

In contrast to the permanent type of plant roots that includes mature and immature
roots, hair roots are temporary and short-sized roots, which are generated by mature roots
in order to take better advantage of the promising areas of soil [6,48]. The survival period
of these short-lived roots is usually about 2 to 3 weeks, and then they die off [6,48]. The hair
root inspired the built-in exploitation operation, called the HRG operator, which provides
additional local search around the neighborhoods of the best-generated solutions. However,
not all the good solutions can be given the chance to be enhanced by local search in their
neighborhood. The number of the best roots to be considered in this mechanism, the radius
of the neighborhood to be locally searched, and the selected dimensions of the roots to be
investigated must be identified.

The SRS, being similar to other heuristic search algorithms, will stop executing when it
meets at least one of the following criteria: (1) achieving the desired solution or (2) exceeding
the maximum number of iterations. After the algorithm has been executed, the best solution
is acknowledged as the final result.

3. Experimental Design

A trustworthy comparison between various algorithms for a specific problem requires
a fair comparison environment, which is usually provided by a well-designed Benchmark
Problems Set (BPS) to be solved by algorithms. In this study, we take advantage of the BPS
for STCOCCSC problems provided in [49] based on the extracted dataset presented in [32]
by which the proposed SRS algorithm can be compared to the comparative algorithms. The
description of the STCOCCSC dataset, experimental STCOCCSC problems, and the SRS
execution are provided in the following.

3.1. STCOCCSC Dataset

A reliable and adequate-sized dataset is the first requirement for an experimental test.
The real-world cloud computing systems often include a large service pool. The dataset
should involve many service providers presenting a great number of different simple
services with several values for the QoS parameter. Because the STCOCCSC problems
have a great extent and magnitude, the dataset cannot be generated blindly and uniformly
randomized, since nearly identical solutions will probably be obtained. As mentioned
before, in this work the data collection provided in [32] is utilized, where the WSDREAM-
DataSet2 [50] was selected to be improved and then utilized.

Although the WSDREAM dataset has many service providers, it lacks some service
time variable values. Noting that excluding these incomplete cases from its 339 service
providers may lead to a reduction of the dataset size and a loss of power in data analysis [51],
imputing the missing values was used in [32] to manage the problem of missing data
and complete the dataset. Among the traditional imputation methods proposed to treat
missing values, for instance, mean substitution, complete case analysis, and regression
imputation, the innovative approach of multiple-imputation is usually regarded as a
general solution [52].

In [32], to prepare the dataset, eliminating the services possessing 30% or more missing
values, which are 285 services, from the analysis, a new dataset which includes 5540 services
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was obtained. The multiple-imputation method was then applied, using the iterative
Markov chain Mont Carlo method and considering five iterations. In the dataset, the
specific number of iterations is actually indicated by the percentage of missing cases [53].
The used service cost values in the experiments were then prepared in such a way that the
assumed cost values were randomly generated in order to reach isodiametric service time
and service cost arrays. Practically, determining the statistical distribution which fits the
columns of the service time array the best, a column of data was randomly generated for
each investigated column of the service time array, reaching an identical distribution of
generated data and investigated data. In doing so, a highly reliable dataset was prepared
since neither missing values nor outlier data were present.

In the final step of preparing the dataset, the values of service time and service cost
were normalized in [32] using the min–max normalization method, where the maximum
and minimum were considered, respectively, as 10 and 1. This difference between the
maximum and minimum values helped the objective function calculations avoid missing
minor differences and rounding the results. Consequently, this makes it possible for
algorithms to properly decide between close solutions. Table 1 presents a brief description
of the specifications of the used dataset.

Table 1. Specifications of the utilized datasets in the experiments.

Dataset Name QoS Parameters No. of Service
Providers

No. of Presented
Services

Jula et al.’s dataset Service time
Service cost 339 5540

3.2. Experimental STCOCCSC Problems

In an effort to prevent instances of STCOCCSC problems in [49] based on their ex-
tracted dataset, namely the revised WSDREAM-DataSet2 presented in [32], a set including
5 different-sized problems was introduced, called P1, P2, P3, P4, and P5 with problem
sizes of 100, 200, 300, 400, and 500, respectively. The problem size 100, for example, stands
for 100 simple services that are required to be composed together to provide a favorable
complex service. Therefore, the presented set of STCOCCSC instances ranged from easy to
difficult problems. In addition, in generating each problem, they randomly selected a set of
m different and unique simple services among provided services in the extracted dataset.

These five generated different-sized STCOCCSC problems were probed by ICA,
ICACRO-I, ICACRO-C, and Niching PSO in [49]. Here, in order to compare and eval-
uate the results obtained by the SRS in solving these problems, we consider the results
obtained by the four algorithms provided in [49] based on the dataset provided in [32].
Considering their work, the default parameters for Niching PSO and ICA were estab-
lished based on [54,55] and [7], respectively, while for ICACRO-C and ICACRO-I, the
ICA environment was used. The SRS algorithm was applied on these five STCOCCSC
problems utilizing the revised WSDREAM-DataSet2 as a real-world dataset generated and
provided in [32].

3.3. SRS Execution

The SRS algorithm was implemented in Microsoft Visual Studio C#.NET 2015. For
each problem, the size of the problem indicated the number of unique services required to
be combined in preparing the requested composite service. According to the description of
the STCOCCSC problem, for any required unique service, the composition algorithm is
required to select a service between the 339 similar services in such a way that the associated
sum of the service time–cost for all selected services is minimized.

To compare the results of the SRS, we consider the four search algorithms, ICA,
ICACRO-I, ICACRO-C, and Niching PSO implemented and executed in [49]. Since the
mentioned algorithms were correctly executed 40 times on the experimented problems
defined based on the previously mentioned data, the SRS is also executed 40 times, inde-
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pendently for each problem, on a PC with 8 GB of RAM and an Intel Core i7-3.40 GHz
processor under identical conditions. Recording the results, the average of the executions
was calculated, stored, and observed to be employed for further analysis and comparison.

3.4. SRS Performance Evaluation

The main procedures of the SRS described in Section 2.2 were followed. In addition,
for the considered STCOCCSC problems, for which the QoS parameters are the service
time and service cost values, the description of the basic structure of the roots generated
by the SRS is presented in Figure 3. As a reminder, xd

i indicates the location of root i in
dimension d.
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Furthermore, the SRS parameter setting applied in solving STCOCCSC problems
are provided in Table 2. It should be noted that in [49] to study the results of applying
ICA, ICACRO-I, ICACRO-C, and Niching PSO on STCOCCSC problems, the initialized
number of countries for the first three algorithms was considered to be 500. In the same
way, Niching PSO was initiated with 500 particles. Hence, to arrange an equivalent
environment for comparing the SRS and the comparative algorithms presented in [49], the
SRS’s NumMaxRoot was particularly set to 500 to have the same number of solutions at
each iteration. The other parameters were set with respect to definitions and the behavior
of the parameters suggested by the SRS proposers. According to [9], vmax must be set
to one-third of maximum domain value of the problem which is 339. Thus, it was set
to 113. Encourage_Value and Penalty_Rate also follow constant values set in [9]. MRA
and Max_Penalty were suggested in [9] to be proportional to NumMaxRoot to keep the
proportion of the mature and immature roots over the course of running the algorithm.
In this research, high MRA value helps the algorithm keep the immature root at a lower
level to help the mature ones explore more. As a complementary setup, we also set the
Mature_Age at a small number to convert the best immature ones to mature to avoid them
being suppressed and give them higher chance to explore. High Max_Penalty also punishes
inappropriate solutions more to let the algorithm focus more on the promising areas.

Table 2. SRS parameters setting.

Ns
NumMinRoot
(Population

Size)
NumMaxRoot vmax MRA Max_Penalty Encourage_Value Penalty_Rate Mature_Age

8 125 500 0.33 × MDV 70 40 2 0.25 5

On the other hand, defining reliable measures is required to evaluate the performance
of the algorithms in solving instances of certain optimization problems in addition to
comparing the performance and scalability of the SRS against comparative algorithms. The
objective function value of the STCOCCSC problem is considered the merit value, and
the best merit value was used as a measure to indicate the quality of the best solution.
The nature of the investigated problems determines which one of the extremum values of
the objective function designates the best solutions. Since the main point of investigating
the STCOCCSC problem is to find solutions with higher QoS, the minimum merit valued
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solutions are of interest since the cost and service time need to be comparatively lower to
reach higher QoS.

In addition, in [49], for the five different-sized STCOCCSC problems probed by ICA,
ICACRO-I, ICACRO-C, and Niching PSO, the check point to compare the results was
considered at iteration 1500. Hence, to acquire more accuracy in evaluations and reliability
at comparisons, during an execution process the SRS results are compared to those of
the four comparative algorithms at iteration 1500. Comparing the results, the best solver
between is determined by ranking the algorithms in reaching the minimum merit value at
the end point of the run at iteration 1500. The improvement percentages of the solutions
obtained by the SRS are also calculated to demonstrate the efficiency of the SRS in solving
these real-world problems.

Furthermore, statistical tests were applied to validate the obtained results by the
SRS and comparative algorithms to show whether the results and conclusions were sup-
ported by the experiment based on the considered STCOCCSC problem. In this regard,
two different statistical tests were implemented using IBM SPSS STATISTICS version 22.
First, to determine the difference between the mean merit values found via the SRS and
the comparative algorithms, a repeated measures analysis of variance [44–46] performed
with the Greenhouse–Geyser correction [47]. The results of this analysis show the statisti-
cally significant difference, if it exists, between the mean merit values of the considered
algorithms. In this stage, the difference between the performances of two algorithms is
considered significant when the null hypothesis of the test is rejected at the 95% confidence
level with p-value < 0.05. In the case that the null hypothesis is rejected in the repeated
measures analysis of variance, which represents the equivalence of the rankings between
the algorithms, a post hoc analysis is conducted in order to compare the highest performing
algorithm against the other algorithms. The considered post hoc procedure in this part of
the research was the Bonferroni corrected [56–58]. The results of this test can be employed
in evaluating and pairwise comparing the functionality and performance of the algorithms,
noting the size of the problems.

4. Results and Discussion

For the given problem P1, Figure 4 shows the total service time–cost obtained by
the SRS in 1500 iterations, compared to the solutions achieved by ICA, ICACRO-I, and
ICACRO-C in [49]. Clearly, the solutions obtained by the SRS at the end of 1500 iterations
are considerably better than the other four algorithms. Niching PSO seems to be the first one
trapped in the local optima, away from the optimal solutions obtained by ICA, ICACRO-I,
ICACRO-C, and the SRS. Although the ICACRO-I and ICACRO-C show comparatively
closer performance to the SRS, the SRS sustains its dominance to reach better solutions.
The fixed point of 1500 iterations was considered to be the checkpoint of performance
comparison; however, it is noteworthy that the SRS overtook the other algorithms after
almost 300 iterations. The SRS avoided the local optima trap, and the trend of merit value
of the best solutions reveals that the SRS has the potential to reach better solutions with a
higher number of iterations.

Similarly, for problems P2, P3, P4, and P5, the achieved performance of the SRS,
compared to those of ICA, Niching PSO, ICACRO-C, and ICACRO-I [49], are shown in
Figures 5–8. The results indicate that the total service time–cost of the best solutions
generated by the SRS, ICACRO-C, and ICACRO-I were consistently lower than the service
time–cost of the provided solutions by the ICA and Niching PSO. Focusing on the generated
execution results of the SRS and the two types of ICACRO, it can be concluded that, despite
the fact that the best solutions produced by ICACROs are neighboring the best solutions
generated by the SRS, the established superiority by the SRS is sufficient to reach the
optimal solutions.
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It is worth mentioning that, noting Figures 4–8, the size of the problems does not alter
the competence of the SRS as it overcomes the other algorithms after almost 300 iterations
for all problem instances and avoiding the local convergence, obtains the optimal solutions
at 1500 iterations. In addition, noting the trends, the SRS predictably reached better
solutions with a higher number of iterations. This high performance relies on the efficiency
of the SRS and the method in which it is designed.

To give another comparative view in solving problems P1 to P5 at the end point of
the run at 1500 iterations, the best results obtained by the SRS, along with the provided
best results by Niching PSO, ICA, ICACRO-C, and ICACRO-I [49], are summarized and
ranked in Table 3. Being indifferent to the size and difficulty of the five problems, the SRS
demonstrated the best performance among these five algorithms, producing the ranked
first solution. The two types of ICACRO-I and ICACRO-C follow, respectively, the SRS
in supplying the best results. Then, after a noteworthy gap, the ICA and Niching PSO
presented their best results.
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Table 3. Best results after 1500 iterations.

Algorithm P1 P2 P3 P4 P5

Niching PSO
Best 57.80 121.21 197.59 257.70 324.07

Rank 5 5 5 5 5

ICA
Best 45.43 103.06 147.21 203.61 253.28

Rank 4 4 4 4 4

ICACRO-C
Best 34.53 69.63 103.018 147.96 190.64

Rank 2 2 2 2 2

ICACRO-I
Best 35.23 73.78 107.54 155.3 197.45

Rank 3 3 3 3 3

SRS
Best 32.29 64.42 96.98 138.31 180.8

Rank 1 1 1 1 1

4.1. Improvement Percentage of the Solutions Obtained by the SRS

A numerical analysis of the improvement percentage of the solutions obtained by
the SRS with respect to those obtained by Niching PSO, ICA, ICACRO-C, and ICACRO-I
in [49] is presented in Figure 9. It includes the improvement percentages for problems
P1 to P5, case by case, along with the average improvement percentage. The highest
improvements are observed over the Niching PSO solutions, ranging from 79% for P1 to
103.74% for P3. With a notable difference, the second highest improvements are over the
ICA results, ranging from 40.09% for P5 to 59.98% for P2. The ICACRO-I solutions are
the next promoted solutions, for which the improvement percentage varies from 9.1% for
P1 to 12.28% for P4. Finally, having closer results to the SRS, the ICACRO-C gains the
least improvement, with 5.44% for P4 up to 8.09% for P2. The maximum and minimum
improvement values achieved for problems P1 to P5 are 103.74% for P3 with Niching
PSO and 5.44% for P5 with ICACRO-C. No outstanding relation is detected between the
improvement percentages and the size of the different problems, demonstrating that the
size of search space does not influence the SRS efficiency.
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In addition, the mean average improvement of the SRS over Niching PSO was 87.29%,
whereas for the SRS over ICA, it was 47.95%, for the SRS over ICACRO-I it was 11.2%,
and for the SRS over ICACRO-C it was 6.74%. Hence, it can be understood that the
SRS is successful in generating closer-to-optimal solutions compared to the other four
algorithms. This underscores the efficiency, scalability, and acceptable performance of
the SRS, which outperformed the other four algorithms regardless of the difficulty of the
considered various size problems, in solving the search problems.

4.2. Performance Statistical Tests

Table 4 summarizes the results obtained by running the ANOVA test for the five prob-
lems P1–P5, where the α level is selected as 0.05. F(4, 7495) for P1 to P5 are, respectively,
10,012.93, 4834.08, 8786.23, 6395.4, and 6372.45, which are greater than the F-criteria value
of 2.37. In addition, the calculated p-values by this test for all the five problems are 0.
This is strong evidence for rejecting the null hypothesis, showing the significant difference
between the results of each five problems.

Table 4. The one-way ANOVA test results for different-sized problems P1 to P5.

No. Problem
Size

Source of
Variation

Sum of
Squares (SS) df Mean

Square (MS) F p-Value F Criteria

P1 100

Between
Groups 574,774.3 4 143,693.6 10,012.93 0.000000 2.373117

Within Groups 107,559.2 7495 14.3508

P2 200

Between
Groups 2,223,419 4 555,854.7 4834.082 0.000000 2.373117

Within Groups 861,824.6 7495 114.9866

P3 300

Between
Groups 7,633,617 4 1,908,404 8786.23 0.000000 2.373117

Within Groups 1,627,944 7495 217.204

P4 400

Between
Groups 9,107,241 4 2,276,810 6395.4 0.000000 2.373117

Within Groups 2,668,276 7495 356.0075

P5 500

Between
Groups 13,354,953 4 3,338,738 6372.445 0.000000 2.373117

Within Groups 3,926,883 7495 523.9336

Therefore, as the repeated measures analysis of variance verified the existence of signifi-
cant differences, we proceeded to perform post hoc procedures in order to pairwise compare
the results of the SRS algorithm with those of Niching PSO, ICA, ICACRO-I, and ICACRO-C
to identify the significantly different group. The results of the Bonferroni-corrected test is
presented in Table 5, in which the Bonferroni-corrected α level is 0.05/5 = 0.01, the * sym-
bol over the p-values stands for p-value < 0.05, and the ** symbol denotes p-value < 0.01.
Accordingly, it can be concluded that the results are significantly different, and the null
hypothesis is rejected with the confidence level of 99%.

The calculated p-values for the post hoc procedures shown in Table 5 indicate that
the differences of the results of the SRS with all the other comparative algorithms can be
considered statistically significant with a confidence level of 99%. The most statistically
significant differences are found between the results of the SRS and those of Niching
PSO and ICA. Then, the smaller but still significant differences lie between the SRS and
ICACRO-I and ICACRO-C, where the least differences in these cases are observed in the
case of the P4 problem, while the highest one for ICACRO-I is in P3 and for ICACRO-C is
in P2. Noting the trends of results of the test, there seems to be no obvious relation between
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the size of the problem and obtaining statistically significant different results by the SRS.
In other words, the size of the search space does not reduce the efficient performance of
the SRS.

Table 5. Results of Bonferroni pairwise comparisons.

No. Problem
Size Groups N Mean Std p-Value with SRS

P1 100

Niching PSO 1500 58.73 0.89 0 **

ICA 1500 46.21 1.76 0 **

ICACRO-C 1500 36.48 3.54 0.000984 **

ICACRO-I 1500 37.35 3.69 9.41 × 10−15 **

SRS 1500 35.86 6.45 –

P2 200

Niching PSO 1500 122.2 1.2 0 **

ICA 1500 104.87 4.43 0 **

ICACRO-C 1500 79.76 11.61 0.001799 **

ICACRO-I 1500 83.35 10.74 3.53 × 10−23 **

SRS 1500 78.07 17.43 –

P3 300

Niching PSO 1500 199.31 1.32 0 **

ICA 1500 150.01 6.8 0 **

ICACRO-C 1500 117.73 16.07 0.002513 **

ICACRO-I 1500 120.59 15.38 2.48 × 10−12 **

SRS 1500 115.51 23.31 –

P4 400

Niching PSO 1500 258.41 0.87 0 **

ICA 1500 208.22 8.67 0 **

ICACRO-C 1500 169.87 21.27 3.55 × 10−7 **

ICACRO-I 1500 176.23 20.20 3.02 × 10−33 **

SRS 1500 165.12 29.04 –

P5 500

Niching PSO 1500 324.71 1.07 0 **

ICA 1500 259.33 11.39 0 **

ICACRO-C 1500 217.19 25.08 8.52945 × 10−5 **

ICACRO-I 1500 221.51 24.09 4.92076 × 10−15 **

SRS 1500 212.75 35.76 –
* p-value < 0.05. ** p-value < 0.01.

5. Conclusions and Future Work

In this paper, we considered the novel nature-inspired SRS algorithm, proposed
in [9,10], and evaluated its performance in solving a particular CCSC problem, namely
the STCOCCSC problem by comparing it with the results of some previously studied
well-proposed search algorithms, including ICA, ICACRO-I, ICACRO-C, and Niching PSO.

Experimental results obtained by the SRS over five independent different-sized STCOCCSC
problems ranked the SRS as the best-performing algorithm compared to the mentioned
four algorithms. A careful improvement percentage analysis of the SRS indicated that
from an averaged viewpoint, the SRS solutions were notably better than Niching PSO and
ICA solutions with 87.29% and 47.95% improvement percentages, respectively, while the
ICACRO-I and ICACRO-C solutions were, respectively, 11.2% and 6.74% improved. In
addition, the one-way ANOVA and Bonferroni-corrected post hoc statistical tests confirmed
the significance of these improvements.
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From a general perspective: (i) The SRS outperformed the four comparative algorithms,
ICACRO-C, ICACRO-I, ICA, and Niching PSO, and yielded 6.74, 11.2, 47.95, and 87.29
percent performance improvement on average for five different-sized problems. (ii) The SRS
demonstrated a statistically significant superiority with a confidence level of 99% compared
to the four comparative algorithms. (iii) No efficiency reduction was observed for the
SRS facing higher-dimensional search space problems. In addition, considering the trend
of the obtained results at 1500 iterations, the SRS appeared to be more qualified to reach
improved solutions with a higher number of iterations, avoiding premature convergence.
Accordingly, the SRS can be employed for solving the CCSC problem as well as the other
similar-structured optimization problems.
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