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Abstract: The aim of this theoretical paper is to investigate the physical mechanism responsible for
the appearance of vortex flow in a hybrid aligned nematic (HAN) microvolume with an orientational
defect, excited by a temperature gradient ∇T. This was done in the framework of the classical
Ericksen-Leslie theory, supplemented by thermomechanical correction of the shear stress and Rayleigh
dissipation function, as well as taking into account the entropy balance equation. We have carried out
a numerical study of the system of hydrodynamic equations including director reorientation, fluid
flow v, and the temperature redistribution across the HAN microvolume under the influence of ∇T,
when the HAN microvolume is heated from above. Calculations show that, due to the interaction
between the gradient of the director field ∇n̂ and ∇T, the HAN microvolume settles down to a
stationary complex vortex flow regime.

Keywords: liquid crystals; hydrodynamics of anisotropic system; thermomechanical effect
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1. Introduction

During the last decade, detailed numerical simulations were carried out to clarify
the role of the heat flux q in the formation of vortex flows in microsized channels and
capillaries [1–3]. Special attention was paid to the role of the heat flux caused by laser
radiation focused in the volume and at the boundary of the liquid crystal channel [4]. The
role of conformational trans-cis and cis-trans transitions caused by focused laser radiation
on the process of vortex flow v formation in microsized channels and capillaries were
also investigated [5]. It is shown that a thermally excited vortex flow is maintained with
motion in a positive sense (clockwise) in the vicinity of the orientation defect at the lower
boundary of the hybrid aligned nematic (HAN) channel caused by the trans-cis and cis-trans
conformational changes. In the case of the same HAN channel, but without the azobenzene
monolayer at the lower boundary, the heat flux q can also produce the vortical flow near
the laser spot at the lower boundary, directed in a negative sense (anti-clockwise), which
is characterized by a much lower velocity than the vortex flow in the first case. Whatever
the actual goal, the condition for initiating the vortex flow under the influence of the heat
flux q caused by coupling between gradients of the director ∇n̂ and the vertically applied
temperature gradient∇T, in the presence of the orientation defect at the lower boundary of
the HAN channel is important information for this LC system. It is necessary to understand
the mechanism responsible for the excitation of the vortex flow in the microsized LC
volume and the state when the excitation of this vortex flow is impossible under the effect
of the vertically applied temperature gradient. Knowing this, it is possible to predict the
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further behavior of this LC system with the orientational defect under the effect of the
temperature gradient.

Thus, our main goal is to study the role of the temperature gradient formed under the
effect of focused laser radiation on the formation of the vortex flow in the microsized HAN
channel. In our case, the HAN system, consisting, for example, of asymmetric molecules,
such as cyanobiphenyls, confined in the microsized volume between two horizontal and
two lateral surfaces under the influence of the temperature gradient ∇T directed from
the cooler lower restricted surface with the orientational defect (with the bidirectionally
aligned lower surface) to the warmer upper restricted surface. This problem will be treated
in the framework of the appropriate nonlinear extension of the Ericksen-Leslie theory [6,7],
together with accounting the thermoconductivity equation for the temperature field T [8].

The layout of this article is as follows. In the next section, we will give the theoreti-
cal background for describing the physical mechanism responsible for the heat-induced
vortex flow in the HAN microvolume with the bidirectionally aligned lower surface. The
numerical description of the occurrence of the vortex flow in the HAN microvolume under
the effect of the temperature gradient directed from the cooler lower to the warmer upper
restricted surfaces is given in Section 3. Our conclusions are given in Section 4.

2. Basic Hydrodynamic Equations

To investigate the heat-driven microfluidics of a liquid crystal system confined to a
hybrid aligned volume with an orientational defect, we consider the LC drop delimited by
two horizontal and two lateral surfaces at mutual distances d and 2L on scale on the order
of micrometers, with the warmer upper restricted surface

T−L<x<L,z=d = Tup, (1)

whereas in the rest of the boundaries, the temperature

T−L≤x≤L,z=0 = Tx=−L,0<z<d = Tx=L,0<z<d = Tlw, (2)

is kept lower (Tup > Tlw). Thus, we will investigate the role of a temperature gradient
∇T in exciting of the vortex flow v = vx î + vzk̂ = uî + wk̂ in the hybrid aligned nematic
(HAN) drop. In our case, the coordinate system assumed that the director n̂ = nx î + nzk̂ =
sin ϕî + cos ϕk̂ is in the XZ plane, where ϕ is the polar angle between the director n̂ and
the normal vector k̂ to the horizontal surfaces, while î is the unit vector directed parallel to
the upper and lower restricted surfaces, and ĵ = k̂× î.

Thus, we are dealing with the HAN microvolume, where the director’s orientation on
the upper (n̂z=d ‖ k̂) (homeotropic anchoring) and on the side (k̂ ‖ n̂x=±L) (homogeneous
anchoring) restricted surface is parallel to the unit vector k̂, while on the lower restricted
surface the director n̂ is tilted with respect to the normal vector k̂. Consequently, in our case,
the nematic volume contains a complex gradient∇ϕ due to the bidirectional orientation on
the lower surface with a transition to the homogeneous orientation on both side surfaces,
as well as with a further transition to the homeotropic orientation on the upper surface,
respectively, i.e.,

ϕ0≤x<L,z=0 = −π

4
, ϕ−L<x<0,z=0 =

π

4
, ϕ−L<x<L,z=d = 0,

ϕx=L,0<z<d = 0, ϕx=−L,0<z<d = 0. (3)

Thus, a complex gradient of the director field ∇n̂ is formed in the HAN drop, which will
interact with the temperature gradient∇T formed across the HAN volume, due to the tem-
perature difference ∆T = Tup − Tlw on the upper (Tup) and lower (Tlw) bounding surfaces.

Moreover, we will assume the no-slip boundary conditions for the nematogenic
molecules on these bounding surfaces, i.e.,

v−L<x<L,z=0,d = vx=±L,0<z<d = 0. (4)
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Taking into account the fact that the mass density ρ is constant in the microsized HAN
volume, we can assume that we can deal with an incompressible liquid ∇ · v = 0. In our
case, the incompressibility condition assumes that

u,x + w,z = 0, (5)

where u ≡ vx(x, z, t) and w ≡ vz(x, z, t) are the components of the vector v = uî + wk̂, and
u,x = ∂u

∂x .
The hydrodynamic equations describing the reorientation of the LC phase in the 2D

case, when there exists a heat flux q across the HAN microvolume, can be derived from
the torque balance equation~Γel +~Γvis +~Γtm = 0, where~Γel =

δΨel
δn̂ × n̂ is the elastic [2,5],

~Γvis = δRvis

δn̂t
× n̂t is the viscous [2,5], and ~Γtm = δRtm

δn̂t
× n̂ is the thermomechanical [9]

torques, respectively. In turn, the linear momentum balance equation for the velocity field
v has the form [2,5]

ρ
dv
dt

= ∇ · Σ, (6)

where Σ = Σel + Σvis + Σtm − PE is the full stress tensor (ST), and Σel = − ∂Ψel
∂∇n̂ · (∇n̂)T,

Σvis = δRvis

δ∇v , and Σtm = δRtm

δ∇v are the ST components corresponding to the elastic, viscous,
and thermomechanical forces [2,5], respectively. Here R = Rvis +Rtm +Rth is the full
Rayleigh dissipation function, Ψel =

1
2

[
K1(∇ · n̂)2 + K3(n̂×∇× n̂)2

]
is the elastic energy

density, while P is the hydrostatic pressure in the HAN system. A number of constants K1
and K3 denotes the splay and bend elastic coefficients, while E is the unit tensor. In our
case the entropy balance equation the form [8]

ρCP
dT
dt

= −∇ · q, (7)

where q = −T δR
δ∇T is the heat flux in the HAN system, T(z, t) is the temperature field that

is formed across the HAN channel, and CP is the heat capacity of the LC system.
In order to investigate the evolution of the angle ϕ(x, z, t) to its stationary orientation

ϕst(x, z), the process of excitation of the vortex flow v(x, z, t) caused by the interaction of
temperature and the director gradients, as well as the redistribution of the temperature field
T(x, z, t) to its stationary distribution Tst(x, z) over the HAN microvolume, we consider a
dimensionless analog of these equations. The dimensionless torque balance equation has
the form [2,5]

θ,τ = −1
2
(1 + γ cos 2ϕ)Ω,zz −

1
2
(1− γ cos 2ϕ)Ω,xx + γ sin 2ϕΩ,xz +(

sin2 ϕ + K31 cos2 ϕ
)

ϕ,xx +
(

cos2 ϕ + K31 sin2 ϕ
)

ϕ,zz +

(K31 − 1)
[(

ϕ,xz +
1
2

(
ϕ2

,z − ϕ2
,x

))
sin 2ϕ + ϕ,x ϕ,z cos 2ϕ

]
−1

2
δ1χ,z

(
− sin 2ϕϕ,x + 2ϕ,z + cos2 ϕϕ,z

)
−Ω,z ϕ,x + Ω,x ϕ,z, (8)

where Ω = γ1
K1

ω is the scaled analog of the current function ω for the velocity field

v = uî + wk̂ = −∇× ĵω, K31 = K3
K1

, and γ = γ2
γ1

are the elastic and viscous constants of the
LC system. The dimensionless analog of the Navier–Stokes equation takes the form [2,5]

δ2u,τ = Σvis
xx,x + Σvis

zx,z + Σel
xx,x + Σel

zx,z +

δ1
(
Σtm

xx,x + Σtm
zx,z
)
− P,x − δ2uu,x, (9)
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δ3w,τ = Σvis
xz,x + Σvis

zz,z + Σel
xz,x + Σel

zz,z +

δ1
(
Σtm

xz,x + Σtm
zz,z
)
− P,z − δ3ww,z, (10)

were the set of functions Σvis
ij (i, j = x, z), Σel

ij (i, j = x, z) and Σtm
ij (i, j = x, z) are given in

the Refs. [2,5], whereas the dimensionless entropy balance equation takes the form [2,5]

δ4χ,τ =
(

λ sin2 ϕ + cos2 ϕ
)

χ,zz + (λ− 1) sin 2ϕϕ,zχ,z + δ4Ω,xχ,z, (11)

where λ = λ‖/λ⊥, χ ≡ χ(z, τ) = T(z, τ)/TNI is the dimensionless temperature, τ =
(

K1
γ1d2

)
t

is the dimensionless time, z̄ = z
d is the dimensionless distance away from the bottom of the

LC drop, corresponding to z-axis, x̄ = x
d is the dimensionless space variable corresponding to

x-axis, δ1 = ξTNI
K1

, δ2 = ρLK1
dγ2

1
, δ3 = ρK1

γ2
1

, and δ4 =
ρCpK1
γ1λ⊥

are parameters of the LC system. Here

2L is the length, whereas d (d = L) is the thickness of the 2D LC film.
It should be taken into account that the overbars in the space variables x and z have

been (and will be) eliminated in the last as well as in the following equations.
Now the process of reorientation of the director in a microsized HAN volume, ac-

counting for the backflow, is governed by viscous, elastic and thermomechanical forces.
In that case, the relaxation regime the director ϕ(x, z, τ), velocity v(x, z, τ) and tempera-
ture χ(z, τ) fields can be obtained by solving the system of nonlinear partial differential
Equations (8)–(11) with the appropriate dimensionless boundary conditions for the angle

ϕ0≤x≤1.0,z=0 = −π

4
, ϕ−1.0<x<0,z=0 =

π

4
, ϕ−1.0<x<1.0,z=1 = 0,

ϕx=1.0,0<z<1 = 0, ϕx=−1.0,0<z<1 = 0, (12)

velocity

v−1.0<x<1.0,z=0,1 = vx=±1.0,0<z<1 = 0, (13)

and temperature

χ−1.0<x<1.0,z=1 = χup, χ−1.0≤x≤1.0,z=0 = χx=−1.0,0<z<1 = χx=1.0,0<z<1 = χlw. (14)

Here χup = Tup/TNI and χlw = Tlw/TNI are the dimensionless temperatures correspond-
ing to the highest and lowest values, respectively. Thus, when the director n̂ is strongly
bidirectionally anchored to the lower restricted surface, homeotropically to the upper
and planar to two lateral restricted surfaces, the angle ϕ has to satisfy the boundary
conditions (12) and its initial orientation is chosen equal to ϕ(x, z, τ = 0) = ϕin

el (x, z).
Notice that the initial distribution of the angle ϕin

el (x, z) is obtained from Equation (8), with
Ω,x = Ω,z = χ,z = 0, and the boundary conditions in the form of Equation (12), whereas
the initial condition for the polar angle ϕin

el (x, z, τ = 0) is chose equal to 0.

3. Numerical Results for the Microsized Hybrid Aligned Nematic System

Numerical investigations will be carried out for a sample of 4− n − pentyl − 4′ −
cyanobiphenyl (5CB) confined between two horizontal and two lateral surfaces at a distance
of d = 5 µm, at the temperature 300 K and density 103 kg/m3. The measured values of
the elastic constants are chosen equal to K1 = 10.5 pN and K3 = 13.8 pN [10], while the
experimental values both for the rotational and six Leslie coefficients are (in [Pa s] [11])
γ1∼0.072, γ2∼−0.079, α1∼−0.0066, α2∼−0.075, α3∼−0.0035, α4∼0.072, α5∼0.048, and
α6∼−0.03, respectively. The measured value of the heat conductivity coefficients parallel
(λ‖) and perpendicular (λ⊥) to the director are (in [W/mK] [12]) 0.24 and 0.13, respectively.
In the following, we use the measured value of the specific heat [13] Cp∼103 [J/kgK]. The
set of parameters that is involved in Equations (8)–(11) has the following values: δ1∼29,
δ2∼2× 10−5, δ3∼2× 10−6, and δ4∼1.1× 10−3. Using the fact that δi � 1 (i = 2, 3), the
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Navier–Stokes equations [Equations (9) and (10)] can be considerably simplified and take
the form

c1Ω,zzzz + c2Ω,xzzz + c3Ω,xxzz + c4Ω,xxxz + c5Ω,xxxx + c6Ω,zzz +

c7Ω,xzz + c8Ω,xxz + c9Ω,xxx + c10Ω,zz + c11Ω,xz + c12Ω,zz +F = 0, (15)

where ci(ϕ) (i = 1, . . . , 12) andF (ϕ, χ) are functions which have been defined in Refs. [1,5].
Equation (11) also can be simplified because the parameter δ4 � 1, and the whole left-hand
side of Equation (11), as well as the last term, can be neglected so that Equation (11) become(

λ sin2 ϕ + cos2 ϕ
)

χ,zz + (λ− 1) sin 2ϕϕ,zχ,z = 0. (16)

Thus, the response of the HAN microvolume with the orientational defect in the above
setting is described by Equations (8), (15) and (16), together with the boundary conditions
Equations (12)–(14), and the initial condition

ϕ(x, z, τ = 0) = ϕel(x, z), (17)

where ϕel(x, z) is the stationary distribution of the angle ϕ across the HAN drop under the
influence of the elastic force.

First of all, let’s study how the coupling of the director and temperature gradients
affects the evolution of the director n̂(x, z, τ) [or polar angle ϕ(x, z, τ)] to its stationary
distribution n̂st(x, z, τ = τR), both near the bidirectional defect and in the volume of the
HAN microvolume. This was achieved by solving the system of the nonlinear partial
differential Equations (8), (15) and (16), together with the boundary (Equations (12)–(14))
and the initial (Equation (17)) conditions by means of the sweep method [14]. In this
case, the initial distribution of the angle ϕin

el (x, z) was obtained from Equation (8) using
the relaxation method [15], with u,x = u,z = w,x = w,z = χ,z = 0 and with bound-
ary conditions in the form of Equations (12) and (14), whereas the initial condition for
the polar angle ϕ is chosen as ϕel(x, z, τ = 0) = 0. In our case, the magnitude and di-
rection of the hydrodynamic flow is affected by both the gradient of the director field
∇n̂ (or ∇ϕ) and the temperature gradient ∇χ. Notice that the largest value ∇n̂ (or ∇ϕ)
is reached near the orientation defect, where the director’s orientation characterized by
sharp changing along the lower bounding surface, from one tilted (ϕ−1.0<x<0,z=0 = π

4 )
to another tilted (ϕ0<x<1.0,z=0 = −π

4 ) orientation. Using the fact that |∇n̂| (or |∇ϕ|) �
|∇χ| and |∇v|, the nonlinear system of the partial differential Equations (8), (15) and (16)
can be simplified to the system of two linear Equations (15) and (16), with the coeffi-
cients of these equations ci (i = 1, . . . , 12) and F , depending on ϕel(x, z, τ). Later we
replaced the set functions ci(ϕ(x, z, τ)) (i = 1, . . . , 12) and F (ϕ(x, z, τ), χ(x, z, τ)) by
functions ci(ϕel(x, z, τ)) (i = 1, . . . , 12) and F (ϕel(x, z, τ), χ(x, z, τ)). Now, Equation
(15) contains unknown functions ci(ϕel(x, z)) (i = 1, . . . , 12), which can be obtained
from Equation (8), for instance, by solving the relaxation method [15], together with
the boundary and initial conditions in the form of Equation (12). In turn, the func-
tions F (ϕel(x, z, τ), χ(x, z, τ)) can be obtained from the Equation (16), by means of the
alternating directions method [14], with u = Ω,z and w = −Ω,x. In this case, the nec-
essary boundary and initial conditions are taken in the form of Equations (14) and (17).
The next time step τ = ∆τ for the velocity field is determined by the five-point sweep
method [11]. In the notation of the stream function, the no-slip boundary conditions
are Ω(x, z ∈ Γ) = Ω,x(x, z ∈ Γ) = Ω,z(x, z ∈ Γ) = 0, where Γ is the boundary of the
LC volume. The stability of the numerical procedure for Equation (15) is defined by
the condition

min
−1.0≤x≤1.0,0≤z≤1

[
c5(ϕel(x, z, τ))

c1(ϕel(x, z, τ))

](
∆z
∆x

)4
≥ 2

3
, (18)
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while the stability condition of the numerical procedure for Equation (16) is defined by

2
∆τ
≥ D1(ϕel(x, z, τ))

(∆x)2 +
D2(ϕel(x, z, τ))

(∆z)2 , (19)

where D1(ϕel(x, z, τ)) = λ sin2 ϕel(x, z, τ) + cos2 ϕel(x, z, τ), D2(ϕel(x, z, τ)) = λ cos2

ϕel(x, z, τ) + sin2 ϕel(x, z, τ), ∆τ is the time step, whereas ∆x and ∆z are the space steps in
the x and z directions, respectively. In the calculations, the relaxation criterion

ε = |
(ϕ(m+1)(x, z, ø)− ϕ(m)(x, z, ø))

ϕ(m)(x, z, ø)
|

was chosen to be equal to 10−4, and the numerical procedure was then carried out until a
prescribed accuracy was achieved. Here m is the iteration number and τR is the relaxation
time of the system.

Plots of the polar angle ϕ(x, zi, τk) (k = 1, . . . , 6) to its stationary distribution
ϕst(x, zi, τR = τ6) along the width −1.0 ≤ x ≤ 1.0 of the HAN microvolume, for two
values of dimensionless distance z1 = 0.18 (Figure 1a) and z2 = 0.48 (Figure 1b), cal-
culated from the orientation defect on the lower surface, where the director’s orienta-
tion is characterized by sharp changing along the lower bounding surface, from one
tilted (ϕ−1.0<x<0,z=0 = π

4 ) to another tilted (ϕ0<x<1.0,z=0 = −π
4 ) orientation, are shown in

Figure 1a,b, respectively.
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Figure 1. The evolution of the polar angle ϕ(x, zi, τk) (k = 1, . . . , 6) to its stationary distribution
ϕst(x, zi, τR = τ6) along the width −1.0 ≤ x ≤ 1.0 of the HAN microvolume, for two values of
dimensionless distance z1 = 0.18 (a) and z2 = 0.48 (b), calculated from the orientation defect on the
lower surface. Here 6 curves for ϕ are plotted as solid lines and correspond to the time τk, k = 1, . . . , 6.

Here the dimensionless temperature difference is equal to ∆χ = χup − χlw = 0.0162
(∼5 K), while the first 6 time slots are as follows: the first, after switching on the dimen-
sionless temperature difference ∆χ = 0.0162 (∼5 K), corresponds to the time τ1 = 0.001
(∼171 µs), the second, corresponds to the time τ2 = 0.005 (∼0.86 ms), while the other
4 correspond to the times τi+2 = ∆τi (i = 1, . . . , 4), where ∆τ = 0.02. Calculations show
that the reorientation of the director field near the orientational defect is characterized by
a sharp change in the magnitude of the polar angle ϕ(x, zi, τk) (k = 1, . . . , 6) along the
width −1.0 ≤ x ≤ 1.0 of the HAN microvolume. Indeed, the maximal oscillation of the
magnitude of the polar angle ∆ϕ = ϕmax(x, zi, τk)− ϕmin(x, zi, τk) (k = 1, . . . , 6), for the
value of dimensionless distance z1 = 0.18, is equal to 1.112, while for the value z2 = 0.48, is
equal to 0.496, which is practically in two times less.

The evolution of both horizontal u(x, z = 0.18, τk) (k = 1, . . . , 6) (see Figure 2a)
and vertical w(x, z = 0.18, τk)(k = 1, . . . , 6) (see Figure 2b) components of the velocity
field to their stationary distributions ust(x, z = 0.18) and wst(x, z = 0.18), along the width
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−1.0 ≤ x ≤ 1.0 of the HAN microvolume and far from the orientational defect (z = 0.18),
are shown in Figure 2.
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Figure 2. Evolution of both horizontal u(x, z = 0.18, τk) (k = 1, . . . , 6) (a) and vertical w(x, z = 0.18, τk)

(k = 1, . . . , 6) (b) components of the velocity field to their stationary distributions ust(x, z = 0.18)
and wst(x, z = 0.18), along the width −1.0 ≤ x ≤ 1.0 of the HAN microvolume and far from the
orientational defect z = 0.18. Here 6 curves for u and w are plotted as solid lines and correspond to
the time τk, k = 1, . . . , 6.

The stationary distribution of the horizontal component u(x, z = 0.18, τ6) of the velocity
field is characterized by a multidirectional flow. Indeed, near the left (−1.0 ≤ x ≤ −0.86) and
right (0.32 ≤ x ≤ 1.0) vertical bounding surfaces, the flow is directed in a positive sense,
while in the central region (−0.86 < x < 0.32) it is directed in a negative sense. Moreover,
near the right vertical boundary, the value of the horizontal component of the velocity field
u(x = 0.8, z = 0.18, τ6)∼0.6 (∼20 µm/s) is about an order of magnitude greater than the value
of this velocity near the left vertical boundary u(x = −0.92, z = 0.18, τ6)∼0.03 (∼1 µm/s).
In the central region (−0.86 < x < 0.32), the greatest value of the horizontal component
u(x = −0.62, z = 0.18, τ6) is ∼0.16 (∼5.3 µm/s), and the flow of the nematic material is di-
rected in a negative sense. In turn, the stationary distribution of the vertical component
w(x, z = 0.18, τ6) of the velocity field is characterized by a flow in a positive sense, and
the greatest value of the vertical component of the velocity field w(x = 0.76, z = 0.18, τ6) is
∼1.6 (∼53 µm/s).

The evolution of the vertical w(x, z = 0.04, τk) (k = 1, . . . , 6) component of the ve-
locity field to its stationary distribution wst(x, z = 0.04), along the width −1.0 ≤ x ≤ 1.0
of the HAN microvolume, near the orientational defect z = 0.04 is shown in Figure 3a,
while Figure 3b illustrates the evolution of the same component of the velocity field
w(x = −0.76, z, τk) (k = 1, . . . , 6) to its stationary distributions across the HAN microvol-
ume, near the left bounding surface x = −0.76.

In the vicinity of the orientational defect, the vertical component of the velocity field is
mainly directed in the positive sense, excluding a small area near the left vertical bound-
ary (−0.94 < x < −0.63) of the LC microvolume, where the flow of nematic material
is directed in the negative sense. Here, the greatest value of w(x = −0.8, z = 0.04, τ6)
is ∼0.3 (∼10 µm/s), while in the rest part of the microvolume the greatest value of
w(x = 0.09, z = 0.04, τ6) is ∼4.5 (∼150 µm/s). At the same time, the evolution of the
vertical w(x = −0.76, z, τ) component of velocity field to its stationary distribution, across
the thickness 0 ≤ z ≤ 1.0 of the dimensionless LC drop, near the left bounding surface
x = −0.76, is characterized by the flow in a positive sense, where the greatest value of
w(x = −0.76, z = 0.49, τ6) is ∼0.75 (∼25 µm/s).
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Figure 3. (a) Evolution of the vertical w(x, z = 0.04, τk) (k = 1, . . . , 6) component of the velocity
field to its stationary distribution wst(x, z = 0.04), along the width −1.0 ≤ x ≤ 1.0 of the HAN
microvolume, near the orientational defect z = 0.04. (b) Evolution of the vertical component
w(x = −0.76, z, τk) (k = 1, . . . , 6) of the velocity field to its stationary distribution across the HAN
microvolume, near the left bounding surface x = −0.76. Here 6 curves for w are plotted as solid lines
and correspond to the time τk, k = 1, . . . , 6.

As we approach the center of the HAN microvolume, the distribution of both the hori-
zontal u(x, z = 0.48, τk) (k = 1, . . . , 6) (Figure 4a) and vertical w(x, z = 0.48, τk)
(k = 1, . . . , 6) (Figure 4b) components of the velocity field to their stationary distribu-
tions ust(x, z = 0.48) and wst(x, z = 0.48), along the width −1.0 ≤ x ≤ 1.0 of the HAN
microvolume, changes.
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Figure 4. Evolution of both the horizontal u(x, z = 0.48, τk) (k = 1, . . . , 6) (a) and vertical
w(x, z = 0.48, τk)(k = 1, . . . , 6) (b) components of the velocity field to their stationary distributions
ust(x, z = 0.48) and wst(x, z = 0.48), along the width −1.0 ≤ x ≤ 1.0 of the LC drop calculated far
(z = 0.48) from the lower surface. Here 6 curves for u and w are plotted as solid lines and correspond
to the time τk, k = 1, . . . , 6.

The evolution of horizontal u(x, z = 0.48, τk) (k = 1, . . . , 6) (see Figure 4a) compo-
nent of the velocity field to its stationary distribution ust(x, z = 0.48) along the width
−1.0 ≤ x ≤ 1.0 of the LC drop, calculated far (z = 0.48) from the orientational defect is
characterized by a multidirectional flow. Indeed, near the left (−1.0 ≤ x ≤ −0.77) and
right (0.17 ≤ x ≤ 1.0) vertical bounding surfaces, the flow is directed in a positive sense,
while in the central region (−0.77 < x < 0.17) it is directed in a negative sense. Moreover,
near the right vertical boundary, the value of the horizontal component of the velocity field
u(x = 0.56, z = 0.48, τ6)∼0.24 (∼8 µm/s) is about three times greater than the value of this
velocity in the domain with the flow u(x = −0.39, z = 0.48, τ6)∼0.1 (∼3.3 µm/s) directed
in the negative sense. At the same time, the evolution of the vertical w(x, z = 0.48, τk)
(k = 1, . . . , 6) component of velocity field to its stationary distribution, along the width
−1.0 ≤ x ≤ 1.0 of the LC drop calculated far (z = 0.48) from the orientational defect is char-
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acterized by the flow in the positive sense, and the greatest value of w(x = 0.4, z = 0.48, τ6)
is ∼1.15 (∼38.3 µm/s).

The evolution of the velocity field v(x, z, τk) = u(x, z, τk)î + w(x, z, τk)k̂ (k = 1, . . . , 6)
to its stationary distribution across the HAN microvolume 0 ≤ z ≤ 1.0, near the left
(x = −0.76) and right (x = 0.76) vertical bounding surfaces are shown in Figures 5 and 6,
respectively.
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Figure 5. Evolution of both the horizontal u(x = −0.76, z, τk) (k = 1, . . . , 6) (a) and vertical
w(x = −0.76, z, τk)(k = 1, . . . , 6) (b) components of the velocity field to their stationary distribu-
tions ust(x = −0.76, z) and wst(x = −0.76, z) across the HAN microvolume, near the left vertical
bounding surface x = −0.76, respectively. Here 6 curves for u and w are plotted as solid lines and
correspond to the time τk, k = 1, . . . , 6.
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Figure 6. (a,b) Same as in Figure 5, but for the evolution of the velocity field components near the
right vertical bounding surface x = 0.76.

The evolution of the horizontal u(x = −0.76, z, τk) (k = 1, . . . , 6) (see Figure 5a) com-
ponent of the velocity field to its stationary distribution ust(x = −0.76, z) across the HAN
microvolume 0 ≤ z ≤ 1.0 is characterized by a multidirectional flow. Indeed, during the
first 5 time terms, starting from τ1 = 0.001 (∼171 µs) to τ5 = 0.06 (∼10.3 ms), the flow
near the orientational defect is directed in the negative sense, while the rest of the LC
material is moving in the positive sense. At the same time, the area adjacent to the lower
bounding surface of the LC droplet expanded all the time, and finally, the stationary flow
of LC material is directed in the negative sense after time term τ6 = τR = 0.08 (∼13.7 ms).
It should be noted that the evolution of the vertical w(x = −0.76, z, τk) (k = 1, . . . , 6) (see
Figure 5b) component of velocity field to its stationary distribution across the HAN mi-
crovolume 0 ≤ z ≤ 1.0 is characterized by the flow directed in the positive sense, and
the greatest value of w(x = −0.76, z = 0.48, τ6) is ∼0.72 (∼24 µm/s). The evolution of the
velocity field v(x = 0.76, z, τk) = u(x = 0.76, z, τk)î + w(x = 0.76, z, τk)k̂ (k = 1, . . . , 6) to
its stationary distribution across the HAN microvolume 0 ≤ z ≤ 1.0, near the right vertical
bounding surface (x = 0.76) is also characterized by a multidirectional flow. During the
first 5 time terms started from τ1 = 0.001 (∼171 µs) to τ5 = 0.06 (∼10.3 ms), the flow
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near the lower bounding surface z = 0.0 of the microsized LC volume is directed in the
positive sense, while the rest volume of the LC material is moving in the negative sense.
At the same time, the area adjacent to the orientational defect in the LC droplet expanded
all the time, and finally, the stationary flow of LC material is directed in the positive sense
after time term τ6 = τR = 0.08 (∼13.7 ms). It should be noted that the evolution of the
vertical w(x = 0.76, z, τk) (k = 1, . . . , 6) (see Figure 6b) component of velocity field to its
stationary distribution across the HAN microvolume 0 ≤ z ≤ 1.0 near the right bounding
surface is characterized by the flow directed in the positive sense, and the greatest value of
w(x = 0.76, z = 0.002, τ6) is ∼ 5.75 (∼192 µm/s).

In order to give a complete picture of the origin of vortex flows in the microsized
HAN volume under the effect of the vertically directed temperature gradient ∇χ, we
calculate the evolution of rotv = ∇× v. The distribution of the velocity field v in the HAN
microvolume for the number of times, τ1 = 0.001 (∼171 µs), τ5 = 0.06 (∼10.3 ms), and
τ6 = τR = 0.08 (∼13.7 ms), after setting up of the temperature gradient ∇χ, are shown in
Figures 7, 8 and 9, respectively.
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Figure 7. The∇× v diagram after time term τ1 = 0.001. Here the pink area corresponds to∇× v < 0,
red and black—∇× v ∼ ±0.0, and gray—∇× v > 0, respectively.
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Figure 8. Same as in Figure 7, but after time term τ5 = 0.06.

According to our calculations, a number of complex vortex domains rotating in oppo-
site directions are excited in the HAN microvolume under the effect of the temperature
gradient ∇χ: two domains with the vortex flow excited in the negative sense around their
centers with ∇× v < 0 (rotating anti-clockwise) (pink colored domains), one domain with
the vortex flow excited in the positive sense around its center with ∇× v > 0 (rotating
clockwise) (gray colored domain), and two domains, both with a small∇× v ∼ ±0 (slowly
rotating clockwise) (red colored domain) and (slowly rotating anti-clockwise) (black colored
domain), respectively. Over time τ5 = 0.06 (∼10.3 ms) (see Figure 8), the complex pattern
of forming vortices in the microscopic HAN volume changes, and domains with small
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values of∇× v ∼ ±0 are displaced to the boundaries of the HAN cell, while three domains
with ∇ × v > 0 (rotating clockwise) (gray colored domains) and one with ∇ × v < 0
(rotating anti-clockwise) (pink colored domain) are moved to the central part of the HAN
volume. As the HAN microvolume warms up further, up to τ6 = τR = 0.08 (∼13.7 ms)
(see Figure 9), the picture of the distribution of rotating domains is finally formed. Three
domains with ∇× v > 0 (rotating clockwise) (gray-colored domains) are formed near the
upper and lower corners and to the right of the center of the HAN microvolume, while
one domain with ∇× v < 0 (rotating anti-clockwise) (pink-colored domain) is placed to
the left of the center of the HAN cell. At the same time, two domains with small values
of ∇ × v ∼ ±0 (slowly rotating clockwise) (red-colored domain) and (slowly rotating
anti-clockwise) (black-colored domain), where rotation is almost negligible, are shifted
closer to the boundaries of the HAN cell.
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Figure 9. Same as in Figure 7, but after time term τ6 = 0.08.

Thus, in the quasi-two-dimensional HAN microvolume with the complex surface
alignment of the director field along the perimeter of the LC cell, the complex pattern
of vortex flows is formed under the effect of the temperature gradient after the time
τ6 = τR = 0.08 (∼13.7 ms), as shown in Figure 9.

4. Conclusions

In summary, we have investigated the complex vortex dynamics in thin hybrid aligned
nematic (HAN) cell with the orientational defect on the lower restricted surface of this LC
cell. It was shown that when the nematic sample confined by two horizontal and two lateral
surfaces is heated from above, a number of complex vortex domains rotating in opposite
directions are formed inside this microvolume under the effect of the temperature gradient
∇T. Our calculations based on the corresponding nonlinear extension of the classical
Ericksen-Leslie theory show that due to the interaction between ∇T and the gradient of
the director field ∇n̂, the self-sustaining thermally excited complex vortex fluid flow is
maintained in the HAN microvolume. The direction and magnitude of hydrodynamic flow
are influenced by both the direction of the heat flux and the nature of the orientational
defect on the bounding surfaces.

A possible experiment to detect a vortex flow in a microsized hybrid aligned ne-
matic droplet consisting, for example, of 5CB molecules can be carried out as follows.
Consider a nematic drop confined in a microsized cell with the director’s orientation on
the upper and on both sides of the bounded surfaces, as described in Section 2. Let us
consider the orientational defect on the lower bounding surface, where the director’s ori-
entation is characterized by sharp changing along the bounding surface, from one tilted
(ϕ−1.0<x<0,z=0 = π

4 ) to another tilted (ϕ0<x<1.0,z=0 = −π
4 ) orientation. Immerse the LC cell

in liquid at temperature Tlw, while the upper surface will remain at room temperature Tup,
so that Tup > Tlw. Thus, it will be possible to form a temperature gradient ∇T across the
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LC cell. If initially the marker particles are stirred in the isotropic volume of the LC material,
then this system is cooled to the nematic state of the LC material, thus a hydrodynamic flow
will form in the LC system as a result of the interaction of temperature∇T and director∇n̂
gradients. Marker particles allow us to observe vortex flows formed in microsized HAN
volumes under the influence of the temperature gradient. This vortex flow will persist for
the entire period of time when the above-described state of the LC system is maintained.

We believe that the present investigation can shed some light on the problem of control
of the dynamic response of the bidirectionally aligned LC display under the influence of
the temperature gradient.
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