Semi-Analytical Approach in BiER4BP for Exploring the Stable Positioning of the Elements of a Dyson Sphere
Abstract
:1. Introduction
2. Description of the Model, Equations of Motion
3. Semi-Analytical Approximate Solution to the System of Equation (7)
4. Families of Quasi-Stable Plane Orbits of System (7) and Equation (11), Their Graphical and Numerical Solutions
5. Discussion
- We consider in (11) two primaries of masses {, }, μ3 << μ2, rotating on elliptic orbits, whereas their barycenter is Kepler-rotating around the main primary M1, μ2 << μ1.
- The motions of the primaries are preferably coplanar (while it is a well-known fact that the orbit of the Moon is inclined on circa 5 degrees with respect to the invariable plane of rotation of Earth around the Sun).
- Eccentricity e2 of orbit around is negligible, e2 << 1.
- Orbiter m is moving outside the Hill sphere [15] of second primary with radius (minimal distance) ~ 0.101 AU for the system “Sun–Earth”.
- Small orbiter m is assumed to oscillate nearby plane .
- Masses of all primaries are constant.
6. Conclusions
- Elegant ansatz is developed for analysis of motion of a small mass in BiER4BP.
- Three primaries rotate around a barycenter on bi-elliptic orbits: << , << .
- Coordinate z is considered to be stable in oscillating close to fixed plane {x, y, 0}.
- The planar bi-elliptic restricted four-body problem (BiER4BP) is investigated well.
- Stable drift dynamics of solutions for analogue of a Dyson sphere are analyzed.
- No stable solutions for a Dyson swarm were found, but an orbiter will flyby near Earth.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Celletti, A. Stability and Chaos in Celestial Mechanics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Wintner, A. The Analytical Foundations of Celestial Mechanics; Princeton University Press: Princeton, NJ, USA, 1941. [Google Scholar]
- Szebehely, V. Theory of Orbits. The Restricted Problem of Three Bodies; Yale University: New Haven, CT, USA; Academic Press: New York, NY, USA; London, UK, 1967. [Google Scholar]
- Siegel, C.L.; Moser, J. Lectures on Celestial Mechanics; Springer: Berlin/Heidelberg, Germany, 1971. [Google Scholar]
- Marchal, C. The Three-Body Problem; Elsevier: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Chakraborty, A.; Narayan, A. A new version of restricted four body problem. New Astron. 2019, 70, 43–50. [Google Scholar] [CrossRef]
- Chakraborty, A.; Narayan, A. BiElliptic Restricted Four Body Problem. Few Body Syst. 2019, 60, 7. [Google Scholar] [CrossRef]
- Dewangan, R.R.; Chakraborty, A.; Narayan, A. Stability of generalized elliptic restricted four body problem with radiation and oblateness effects. New Astron. 2020, 78, 101358. [Google Scholar] [CrossRef]
- Ansari, A.A.; Prasad, S.N. Generalized elliptic restricted four-body problem with variable mass. Astron. Lett. 2020, 46, 275–288. [Google Scholar] [CrossRef]
- Singh, J.; Leke, O. Stability of the photogravitational restricted three-body problem with variable masses. Astrophys. Space Sci. 2010, 326, 305–314. [Google Scholar] [CrossRef]
- Kushvah, B.S.; Sharma, J.P.; Ishwar, B. Nonlinear stability in the generalised photogravitational restricted three body problem with Poynting-Robertson drag. Astrophys. Space Sci. 2007, 312, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Ershkov, S.; Abouelmagd, E.I.; Rachinskaya, A. A novel type of ER3BP introduced for hierarchical configuration with variable angular momentum of secondary planet. Arch. Appl. Mech. 2021, 91, 4599–4607. [Google Scholar] [CrossRef]
- Ershkov, S.; Leshchenko, D.; Abouelmagd, E. About influence of differential rotation in convection zone of gaseous or fluid giant planet (Uranus) onto the parameters of orbits of satellites. Eur. Phys. J. Plus 2021, 136, 387. [Google Scholar] [CrossRef]
- Llibre, J.; Conxita, P. On the elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 1990, 48, 319–345. [Google Scholar] [CrossRef]
- Ershkov, S.; Rachinskaya, A. Semi-analytical solution for the trapped orbits of satellite near the planet in ER3BP. Arch. Appl. Mech. 2021, 91, 1407–1422. [Google Scholar] [CrossRef]
- Aslanov, V.S.; Ledkov, A.S. Swing principle in tether-assisted return mission from an elliptical orbit. Aerosp. Sci. Technol. 2017, 71, 156–162. [Google Scholar] [CrossRef]
- Ansari, A.A.; Singh, J.; Alhussain, Z.A.; Belmabrouk, H. Perturbed Robe’s CR3BP with viscous force. Astrophys. Space Sci. 2019, 364, 95. [Google Scholar] [CrossRef]
- Ershkov, S.V.; Leshchenko, D. Solving procedure for 3D motions near libration points in CR3BP. Astrophys. Space Sci. 2019, 364, 207. [Google Scholar] [CrossRef] [Green Version]
- Ershkov, S.V. The Yarkovsky effect in generalized photogravitational 3-body problem. Planet. Space Sci. 2012, 73, 221–223. [Google Scholar] [CrossRef] [Green Version]
- Ershkov, S.V.; Leshchenko, D.; Rachinskaya, A. Solving procedure for the motion of infinitesimal mass in BiER4BP. Eur. Phys. J. Plus 2020, 135, 603. [Google Scholar] [CrossRef]
- Wright, J.T. Dyson spheres. Serb. Astron. J. 2020, 200, 1–18. [Google Scholar] [CrossRef]
- Ershkov, S.V.; Rachinskaya, A.; Prosviryakov, E.Y.; Shamin, R.V. On the semi-analytical solutions in hydrodynamics of ideal fluid flows governed by large-scale coherent structures of spiral-type. Symmetry 2021, 13, 2307. [Google Scholar] [CrossRef]
- Shen, H.-X.; Luo Y-Zh Zhu, Y.-H.; Huang, A.-Y. Dyson sphere building: On the design of the GTOC11 problem and summary of the results. Acta Astronaut. 2022; in press. [Google Scholar] [CrossRef]
- Absil, C.O.; Serra, R.; Martinez, I.S.; Charpigny, N.; Labroquère, J.; Morales, V.M.; Olympio, J.; Rodriguez-Fernandez, V. Design of impulsive asteroid flybys and scheduling of time-minimal optimal control arcs for the construction of a Dyson ring (GTOC 11). Acta Astronaut. 2022, 201, 94–110. [Google Scholar] [CrossRef]
- Huston, M.; Wright, J. Evolutionary and Observational Consequences of Dyson Sphere Feedback—IOPscience. Astrophys. J. 2022, 924, 78. [Google Scholar] [CrossRef]
- Suazo, M.; Zackrisson, E.; Wright, J.; Korn, A.J.; Huston, M. Project Hephaistos—I. Upper limits on partial Dyson spheres in the Milky Way. Mon. Not. R. Astron. Soc. 2022, 512, 2988–3000. [Google Scholar] [CrossRef]
- Abouelmagd, E.I.; Ansari, A.A. The motion properties of the infinitesimal body in the framework of bicircular Sun perturbed Earth–Moon system. New Astron. 2019, 73, 101282. [Google Scholar] [CrossRef]
- Peale, S.J. Orbital Resonances In The Solar System. Annu. Rev. Astron. Astrophys. 1976, 14, 215–246. [Google Scholar] [CrossRef]
- Ershkov, S.V.; Leshchenko, D. Revisiting Apophis 2029 approach to Earth (staying on shoulders of NASA’s experts) or Can we be sure in almost ricocheting fly-by of Apophis on 13 of April 2029 near the Earth? J. Space Saf. Eng. 2022, 9, 363–1374. [Google Scholar] [CrossRef]
- Ershkov, S.V. About tidal evolution of quasi-periodic orbits of satellites. Earth Moon Planets 2017, 120, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Smith, J. Review and viability of a Dyson Swarm as a form of Dyson Sphere. Phys. Scr. 2022, 97, 122001. [Google Scholar] [CrossRef]
- Liu, C.; Gong, S. Hill stability of the satellite in the elliptic restricted four-body problem. Astrophys. Space Sci. 2018, 363, 162. [Google Scholar] [CrossRef]
- Veysi, H. Technological Evolution of Extraterrestrial Civilizations: Dyson Spheres, Warp Drives, Energy Capturing Conquerors. J. Astrobiol. 2022, 13, 14–25. [Google Scholar]
- Meena, P.; Kishor, R. First order stability test of equilibrium points in the planar elliptic restricted four body problem with radiating primaries. Chaos Solitons Fractals 2021, 150, 111138. [Google Scholar] [CrossRef]
- Dyson, F.J. Search for artificial stellar sources of infrared radiation. Science 1960, 131, 1667–1668. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, N.; Guo, X.; Wu, D.; Xie, X.; Li, J.; Yang, J.; Chen Sh Jiang, F.; Baoyin, H. GTOC 11: Results from Tsinghua University and Shanghai Institute of Satellite Engineering. Acta Astronaut. 2022; in press. [Google Scholar] [CrossRef]
- Umar, A.; Jagadish, S. Semi-analytic solutions for the triangular points of double white dwarfs in the ER3BP: Impact of the body’s oblateness and the orbital eccentricity. Adv. Space Res. 2015, 55, 2584–2591. [Google Scholar] [CrossRef]
- Ershkov, S.; Leshchenko, D.; Rachinskaya, A. Revisiting the dynamics of finite-sized satellite near the planet in ER3BP. Arch. Appl. Mech. 2022, 92, 2397–2407. [Google Scholar] [CrossRef]
- Ershkov, S.; Leshchenko, D.; Rachinskaya, A. Capture in regime of a trapped motion with further inelastic collision for finite-sized asteroid in ER3BP. Symmetry 2022, 14, 1548. [Google Scholar] [CrossRef]
- Ershkov, S.; Leshchenko, D.; Rachinskaya, A. Semi-analytical findings for rotational trapped motion of satellite in the vicinity of collinear points {L1, L2} in planar ER3BP. Arch. Appl. Mech. 2022, 92, 3005–3012. [Google Scholar] [CrossRef]
- Dziobek, O. Ueber einen merkwürdigen Fall des Vielkörperproblems. Astron. Nachr. 1900, 152, 33–46. [Google Scholar] [CrossRef]
- Ershkov, S.; Leshchenko, D. Estimation of the size of the solar system and its spatial dynamics using Sundman inequality. Pramana J. Phys. 2022, 96, 158. [Google Scholar] [CrossRef]
- Ershkov, S.; Leshchenko, D.; Prosviryakov, E.Y. A novel type of ER3BP introducing Milankovitch cycles or seasonal irradiation processes influencing onto orbit of planet. Arch. Appl. Mech. 2022; in press. [Google Scholar] [CrossRef]
- Ershkov, S.; Leshchenko, D. Analysis of the size of Solar system close to the state with zero total angular momentum via Sundman’s inequality. An. Acad. Bras. Ciências 2021, 93 (Suppl. S3), e20200269. [Google Scholar] [CrossRef]
- Zotos, E.E.; Chen, W.; Abouelmagd, E.I.; Han, H. Basins of convergence of equilibrium points in the restricted three-body problem with modified gravitational potential. Chaos Solitons Fractals 2020, 134, 109704. [Google Scholar] [CrossRef]
- Alshaery, A.A.; Abouelmagd, E.I. Analysis of the spatial quantized three-body problem. Results Phys. 2020, 17, 103067. [Google Scholar] [CrossRef]
- Abozaid, A.A.; Selim, H.H.; Gadallah, K.A.; Hassan, I.A.; Abouelmagd, E.I. Periodic orbit in the frame work of restricted three bodies under the asteroids belt effect. Appl. Math. Nonlinear Sci. 2020, 5, 157–176. [Google Scholar] [CrossRef]
- Abouelmagd, E.I.; Mostafa, A.; Guirao, J.L.G. A first order automated Lie transform. Int. J. Bifurc. Chaos 2015, 25, 1540026. [Google Scholar] [CrossRef] [Green Version]
- Abouelmagd, E.I.; Pal, A.K.; Guirao, J.L. Analysis of nominal halo orbits in the Sun–Earth system. Arch. Appl. Mech. 2021, 91, 4751–4763. [Google Scholar] [CrossRef]
- Ershkov, S.V.; Leshchenko, D. Revisiting dynamics of Sun center relative to barycenter of Solar system or Can we move towards stars using Solar self-resulting photo-gravitational force? J. Space Saf. Eng. 2022, 9, 160–164. [Google Scholar]
- Abouelmagd, E.I.; Ansari, A.A.; Ullah, M.S.; García Guirao, J.L. A planar five-body problem in a framework of heterogeneous and mass variation effects. Astron. J. 2020, 160, 216. [Google Scholar] [CrossRef]
- Mia, R.; Prasadu, B.R.; Abouelmagd, E.I. Analysis of stability of non-collinear equilibrium points: Application to Sun–Mars and Proxima Centauri systems. Acta Astronaut. 2023, 204, 199–206. [Google Scholar] [CrossRef]
- Idrisi, M.J.; Ullah, M.S. A Study of Albedo Effects on Libration Points in the Elliptic Restricted Three-Body Problem. J. Astronaut. Sci. 2020, 67, 863–879. [Google Scholar] [CrossRef]
- Younis, S.H.; Ismail, M.N.; Mohamdien, G.H.F.; Ibrahiem, A.H. Effects of Radiation Pressure on the Elliptic Restricted Four-Body Problem. J. Appl. Math. 2021, 2021, 5842193. [Google Scholar] [CrossRef]
- Vincent, A.E.; Perdiou, A.E.; Perdios, E.A. Existence and Stability of Equilibrium Points in the R3BP With Triaxial-Radiating Primaries and an Oblate Massless Body Under the Effect of the Circumbinary Disc. Front. Astron. Space Sci. 2022, 9, 877459. [Google Scholar] [CrossRef]
- Cheng, H.; Gao, F. Periodic Orbits of the Restricted Three-Body Problem Based on the Mass Distribution of Saturn’s Regular Moons. Universe 2022, 8, 63. [Google Scholar] [CrossRef]
- Arif, M.; Ullah, M.S.; Kant, L. Photogravitational magnetic-binary problem with oblateness and belt of material points. New Astron. 2022, 97, 101877. [Google Scholar] [CrossRef]
- Ansari, A.A. Kind of Robe’s restricted problem with heterogeneous irregular primary of N-layers when outer most layer has viscous fluid. New Astron. 2010, 83, 101496. [Google Scholar] [CrossRef]
- Ansari, A.A.; Singh, J.; Alhussain, Z.A.; Belmabrouk, H. Effect of oblateness and viscous force in the Robe’s circular restricted three-body problem. New Astron. 2019, 73, 101280. [Google Scholar] [CrossRef]
- Umar, A.; Hussain, A.A. Motion in the ER3BP with an oblate primary and a triaxial stellar companion. Astrophys. Space Sci. 2016, 361, 344. [Google Scholar] [CrossRef]
- Singh, J.; Umar, A. Effect of Oblateness of an Artificial Satellite on the Orbits Around the Triangular Points of the Earth–Moon System in the Axisymmetric ER3BP. Differ. Equ. Dyn. Syst. 2017, 25, 11–27. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ershkov, S.; Leshchenko, D.; Prosviryakov, E.Y. Semi-Analytical Approach in BiER4BP for Exploring the Stable Positioning of the Elements of a Dyson Sphere. Symmetry 2023, 15, 326. https://doi.org/10.3390/sym15020326
Ershkov S, Leshchenko D, Prosviryakov EY. Semi-Analytical Approach in BiER4BP for Exploring the Stable Positioning of the Elements of a Dyson Sphere. Symmetry. 2023; 15(2):326. https://doi.org/10.3390/sym15020326
Chicago/Turabian StyleErshkov, Sergey, Dmytro Leshchenko, and Evgeniy Yu. Prosviryakov. 2023. "Semi-Analytical Approach in BiER4BP for Exploring the Stable Positioning of the Elements of a Dyson Sphere" Symmetry 15, no. 2: 326. https://doi.org/10.3390/sym15020326
APA StyleErshkov, S., Leshchenko, D., & Prosviryakov, E. Y. (2023). Semi-Analytical Approach in BiER4BP for Exploring the Stable Positioning of the Elements of a Dyson Sphere. Symmetry, 15(2), 326. https://doi.org/10.3390/sym15020326