Existence of Global and Local Mild Solution for the Fractional Navier–Stokes Equations
Abstract
:1. Introduction
2. Preliminaries
- (i) for every ;
- (ii) for every and ;
- (iii) for every ;
- (iv) for .
- (i)
- (ii)
- (ii)
- We follow the same steps
3. Global and Local Existence in
3.1. Global Existence in
- (i)
- is continuous as well as ;
- (ii)
- is continuous as well as ;
- (iii)
- v fulfils (3) for .
3.2. Local Existence in
- (i)
- is continuous and ;
- (ii)
- is continuous and ;
- (iii)
- For , v satisfy (3).
- (i)
- is continuous and ;
- (ii)
- is continuous and ;with its neutral form
4. Local Existence in
5. Regularity
6. Example
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Varnhorn, W. The Stokes Equations; Akademie Verlag: Berlin, Germany, 1994. [Google Scholar]
- Cannone, M. Nombres de Reynolds, stabilité et Navier–Stokes. Banach Cent. Publ. 2000, 52, 29–59. [Google Scholar]
- Lemari-Rieusset, P.G. Recent Developments in the Navier–Stokes Problem; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Wojciech, S.O.; Benjamin, C.P. Leray’s Fundamental Work on the Navier–Stokes Equations: A Modern Review of (Sur le Mouvement d’un Liquide Visqueux Emplissant l’espace). In Partial Differential Equations in Fluid Mechanics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Bermudez, B.; Huerta, A.R.; Guerrero-Sanchez, W.F.; Alans, J.D. Two Different Formulations for Solving the Navier–Stokes Equations with Moderate and High Reynolds Numbers. In Computational Fluid Dynamics: Basic Instruments & Applications in Science; BoD: Norderstedt, Germany, 2018; p. 319. [Google Scholar]
- Chemin, J.Y.; Gallagher, I. Large, global solutions to the Navier–Stokes equations, slowly varying in one direction. Trans. Am. Math. Soc. 2010, 362, 2859–2873. [Google Scholar] [CrossRef]
- Giga, Y.; Sohr, H. Abstract Lp estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 1991, 102, 72–94. [Google Scholar] [CrossRef]
- Amrouche, C.; Rejaiba, A. Lp-theory for Stokes and Navier–Stokes equations with Navier boundary condition. J. Differ. Equ. 2014, 256, 1515–1547. [Google Scholar] [CrossRef]
- Kozono, H.; Yamazaki, M. On a larger class of stable solutions to the Navier–Stokes equations in exterior domains. Math. Z. 1998, 228, 751–785. [Google Scholar] [CrossRef]
- Raugel, G.; Sell, G.R. Navier–Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions. J. Am. Math. Soc. 1993, 6, 503–568. [Google Scholar]
- Choe, H.J. Boundary regularity of suitable weak solution for the Navier–Stokes equations. J. Funct. Anal. 2015, 268, 2171–2187. [Google Scholar] [CrossRef]
- Bazhlekova, E.; Jin, B.; Lazarov, R.; Zhou, Z. An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid. Numer. Math. 2015, 131, 1–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2011. [Google Scholar]
- Zhou, Y.; Zhang, L.; Shen, X.H. Existence of mild solutions for fractional evolution equations. J. Integral Equ. Appl. 2013, 25, 557–586. [Google Scholar] [CrossRef]
- Zhou, Y.; Vijayakumar, V.; Murugesu, R. Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control Theory 2015, 4, 507. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Jiao, F.; Pecaric, J. Abstract Cauchy problem for fractional functional differential equations. Topol. Methods Nonlinear Anal. 2013, 42, 119–136. [Google Scholar]
- Momani, S.; Odibat, Z. Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Appl. Math. Comput. 2006, 177, 488–494. [Google Scholar] [CrossRef]
- Ganji, Z.Z.; Ganji, D.D.; Ganji, A.; Rostamian, M. Analytical solution of time-fractional Navier–Stokes equation in polar coordinate by homotopy perturbation method. Numer. Methods Partial Differ. Equ. Int. J. 2010, 26, 117–124. [Google Scholar] [CrossRef]
- El-Shahed, M.; Salem, A. On the generalized Navier–Stokes equations. Appl. Math. Comput. 2004, 156, 287–293. [Google Scholar] [CrossRef]
- Wahl, W.V. The Equations of Navier–Stokes and Abstract Parabolic Equations; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Galdi, G.P. An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Nonlinear Steady Problems; Springer Tracts in Natural Philosophy; Springer: New York, NY, USA, 1998. [Google Scholar]
- Shafqat, R.; Niazi, A.U.K.; Yavuz, M.; Jeelani, M.B.; Saleem, K. Mild Solution for the Time-Fractional Navier–Stokes Equation Incorporating MHD Effects. Fractal Fract. 2022, 6, 580. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awadalla, M.; Hussain, A.; Hafeez, F.; Abuasbeh, K. Existence of Global and Local Mild Solution for the Fractional Navier–Stokes Equations. Symmetry 2023, 15, 343. https://doi.org/10.3390/sym15020343
Awadalla M, Hussain A, Hafeez F, Abuasbeh K. Existence of Global and Local Mild Solution for the Fractional Navier–Stokes Equations. Symmetry. 2023; 15(2):343. https://doi.org/10.3390/sym15020343
Chicago/Turabian StyleAwadalla, Muath, Azhar Hussain, Farva Hafeez, and Kinda Abuasbeh. 2023. "Existence of Global and Local Mild Solution for the Fractional Navier–Stokes Equations" Symmetry 15, no. 2: 343. https://doi.org/10.3390/sym15020343
APA StyleAwadalla, M., Hussain, A., Hafeez, F., & Abuasbeh, K. (2023). Existence of Global and Local Mild Solution for the Fractional Navier–Stokes Equations. Symmetry, 15(2), 343. https://doi.org/10.3390/sym15020343