Poly-Cauchy Numbers with Higher Level
Abstract
:1. Introduction
2. Definitions
3. Basic Results
4. Iterated Integrals
5. An Explicit Expression
6. Some Expressions of Poly-Cauchy Numbers with Higher Levels for Negative Indices
7. Cauchy Numbers with Higher Level
8. A Recurrence Relation for in Terms of
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tweedie, C. The Stirling numbers and polynomials. Proc. Edinb. Math. Soc. 1918, 37, 2–25. [Google Scholar] [CrossRef] [Green Version]
- Butzer, P.L.; Schmidt, M.; Stark, E.L.; Vogt, L. Central factorial numbers; their main properties and some applications. Numer. Funct. Anal. Optim. 1989, 10, 419–488. [Google Scholar] [CrossRef]
- Bell, E.T. Lagrange and Wilson theorems for the generalized Stirling numbers. Proc. Edinb. Math. Soc. 1938, 5, 171–173. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, T.; Ramírez, J.L.; Villamizar, D. A combinatorial approach to the Stirling numbers of the first kind with higher level. Stud. Sci. Math. Hung. 2021, 58, 293–307. [Google Scholar] [CrossRef]
- Komatsu, T.; Ramírez, J.L.; Villamizar, D. A combinatorial approach to the generalized central factorial numbers. Mediterr. J. Math. 2021, 18, 192. [Google Scholar] [CrossRef]
- Komatsu, T.; Pita-Ruiz, C. Poly-Cauchy numbers with level 2. Integral Transform. Spec. Funct. 2020, 317, 570–585. [Google Scholar] [CrossRef]
- Komatsu, T. Stirling numbers with level 2 and poly-Bernoulli numbers with level 2. Publ. Math. Debr. 2022, 100, 241–256. [Google Scholar] [CrossRef]
- Kaneko, M. Poly-Bernoulli numbers. J. Théor. Nombres Bordx. 1997, 9, 199–206. [Google Scholar] [CrossRef]
- Kaneko, M.; Pallenwatta, M.; Tsumura, H. On polycosecant numbers. arXiv 2019, arXiv:1907.13441. [Google Scholar]
- Kaneko, M.; Tsumura, H. On multiple zeta values of level two. Tsukuba J. Math. 2020, 44, 213–234. [Google Scholar] [CrossRef]
- Broder, A.Z. The r-Stirling numbers. Discret. Math. 1984, 49, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Kargin, L. On Cauchy numbers and their generalizations. Gazi Univ. J. Sci. 2020, 33, 456–474. [Google Scholar] [CrossRef]
- Kargin, L.; Cenkci, M.; Dil, A.; Can, M. Generalized harmonic numbers via poly-Bernoulli polynomials. Publ. Math. Debr. 2022, 100, 365–386. [Google Scholar] [CrossRef]
- Kargin, L.; Can, M. Harmonic number identities via polynomials with r-Lah coefficients. Comptes Rendus Mathématique 2020, 358, 535–550. [Google Scholar] [CrossRef]
- Komatsu, T. Poly-Cauchy numbers. Kyushu J. Math. 2013, 67, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, T. Poly-Cauchy numbers with a q parameter. Ramanujan J. 2013, 31, 353–371. [Google Scholar] [CrossRef]
- Lehmer, D.H. Lacunary recurrence formulas for the numbers of Bernoulli and Euler. Ann. Math. 1935, 36, 637–649. [Google Scholar] [CrossRef]
- Aoki, M.; Komatsu, T. Remarks on hypergeometric Cauchy numbers. Math. Rep. 2020, 22, 363–380. [Google Scholar]
- Komatsu, T.; Ramirez, J.L. Some determinants involving incomplete Fubini numbers. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 2018, 26, 143–170. [Google Scholar] [CrossRef] [Green Version]
- Glaisher, J.W.L. Expressions for Laplace’s coefficients, Bernoullian and Eulerian numbers etc. as determinants. Messenger 1875, 6, 49–63. [Google Scholar]
- Brioschi, F. Sulle funzioni Bernoulliane ed Euleriane. Ann. di Mat. Pura ed Appl. 1858, 1, 260–263. [Google Scholar] [CrossRef]
- Trudi, N. Intorno ad Alcune Formole di Sviluppo, Rendic; dell’ Accad: Napoli, Italy, 1862; pp. 135–143. [Google Scholar]
- Muir, T. The Theory of Determinants in the Historical Order of Development; Four Volumes; Dover Publications: New York, NY, USA, 1960. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komatsu, T.; Sirvent, V.F. Poly-Cauchy Numbers with Higher Level. Symmetry 2023, 15, 354. https://doi.org/10.3390/sym15020354
Komatsu T, Sirvent VF. Poly-Cauchy Numbers with Higher Level. Symmetry. 2023; 15(2):354. https://doi.org/10.3390/sym15020354
Chicago/Turabian StyleKomatsu, Takao, and Víctor F. Sirvent. 2023. "Poly-Cauchy Numbers with Higher Level" Symmetry 15, no. 2: 354. https://doi.org/10.3390/sym15020354
APA StyleKomatsu, T., & Sirvent, V. F. (2023). Poly-Cauchy Numbers with Higher Level. Symmetry, 15(2), 354. https://doi.org/10.3390/sym15020354