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Abstract: In this paper, we discuss the time-fractional mKdV-ZK equation, which is a kind of
physical model, developed for plasma of hot and cool electrons and some fluid ions. Based on the
properties of certain employed truncated M-fractional derivatives, we reduce the time-fractional
mKdV-ZK equation to an integer-order ordinary differential equation utilizing an adequate traveling
wave transformation. Further, we derive a dynamical system to present bifurcation of the equation
equilibria and show existence of solitary and kink singular wave solutions for the time-fractional
mKdV-ZK equation. Furthermore, we establish symmetric solitary, kink, and singular wave solutions
for the governing model by using the ansatz method. Moreover, we depict desired results at different
physical parameter values to provide physical interpolations for the aforementioned equation. Finally,
we introduce applications of the governing model in detail.

Keywords: truncated M-fractional derivative; time-fractional mKdV-ZK equation; wave solution;
ansatz method; symmetry; dynamical system

1. Introduction

The ion-acoustic solitary wave has been developed and investigated over the last
few decades. The symmetric ion-acoustic solitary wave plays a significant role in the
nonlinear structure of the plasma due to its massive enforcement in certain astrophysical
environments, including the symmetric pulsar magnetosphere, the plasma environment,
active galactic nuclei, neutron stars, and symmetric white dwarfs [1–4]. Scientists frequently
provide experimental observations to illustrate the refraction and reflection of the ion-
acoustic solitary waves. In [5], the authors establish indirect propagation of an ion-acoustic
solitary wave (IASW) with finite amplitude in an external magnetic field in plasma without
dust particles. In contrast, they investigate indirect propagation of the ion-acoustic solitary
wave for the external magnetic field in a magnetized dusty plasma (see, e.g., [6,7]). In the
frameworks of Korteweg-deVries (KdV) and modified KdV equations, Yadav et al. in [8]
introduce the nonlinear ion-acoustic periodic waves in two-electron temperature plasma
with compressive solitons.

The Zakharov-Kuznetsov (ZK) equation is an extremely likable model equation in
geophysical flows to study vortices. It appears in certain fields of physics, engineering, and
applied mathematics [9]. Specifically, the ZK equation decides the conduct of weakly non-
linear ion-acoustic waves in a plasma containing warm isothermal electrons and cold ions
in the existence of a uniform magnetic field [10]. Moreover, the researchers of [11] construct
a three-dimensional extended Zakharov-Kuznetsov equation for Langmuir structures with
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small but finite amplitude. In [12], the authors explore the Korteweg-deVries-Zakharov-
Kuznetsov (KdV-ZK) equation for a blend of tough isothermal, cold immobile background
species and warm adiabatic fluid in a magnetized plasma using the reductive perturba-
tion approach. In addition, they discuss ion-acoustic, dust-acoustic, and electron-acoustic
solitons. A modified Korteweg-deVries-Zakharov-Kuznetsov (mKdV-ZK) equation was
deduced by utilizing the reductive-perturbation approach. The mKdV-ZK equation takes
control of slanted propagation in nonlinear electrostatic modes [13]. There are many pa-
pers in the literature which establish analytical solutions for the mKdV-ZK equation. For
instance, the authors of [14] derive multiple-soliton solutions and interactions between
these solitons. The modified extended direct algebraic method is utilized to explore solitary
solutions for the mKdV-ZK equation [15]. In [16], Younas et al. investigate various traveling
wave solutions for the mKdV-ZK equation using two different approaches. In [17], the
authors construct solitary wave solutions for the mKdV-ZK equation using analytical and
semi-analytical methods.

In recent decades, the study of fractional differential equations (FDEs) became an
attractive field due to its significant and notable application in several areas of science. Con-
sequently, it has become necessary to develop and present new methods and approaches to
derive numerical and analytical solutions for this type of equation (see, e.g., [18–30]). This
paper deals with the time-fractional mKdV-ZK equation:

iD
η, α
M,t ψ + µψ2 ∂ψ

∂x
+

∂3ψ

∂x3 +
∂3ψ

∂x∂y2 +
∂3ψ

∂x∂z2 = 0, (1)

where iD
η, α
M,t is the truncated M-fractional derivative of order 0 < η < 1, t is the time

variable, x, y, and z are the scaled space coordinates, ψ(x, y, z, t) is the electric field poten-
tial, and µ is a dispersion coefficient. The constant µ stands for positive correlation with
negative correlation, Boltzmann distribution, and fluid species. In addition, µ represents
the electron distribution, adiabatic, and inertialess components. Moreover, the sign of µ
represents the proportional balance between the hot isothermal electrons depicted by a
Boltzmann distribution and cooler ions handled as fluid species. Model (1) was constructed
by considering the homogeneous magnetized component of electron–positron plasma,
consisting of equal temperature positrons and cool and hot electrons [31]. The density of
the positrons of equal temperatures and hot electrons is given by:

np = NhExp
(
− eψ

KTh

)
, np = NhExp

(
eψ

KTh

)
, (2)

where Nh and Th are the positrons of equal temperatures and hot electrons, K is the
Boltzmann constant, and e is the electron charge. The difference between the density
number of positrons of equal temperatures and hot electrons can be written as:

np − ne = −2Nhsinh
(

eψ

KTh

)
= − 1

4πe
∇2ψ, (3)

where the second equality is obtained using Poisson’s equation [31].
The fractional mKdV-ZK equation has been studied in many research papers. In [32],

the analytical exact solutions for the fractional mKdV-ZK equation have been constructed by
using an improved fractional sub-equation approach. Al-Ghafri and Rezazadeh investigate
exact solutions of the (3 + 1)-dimensional space-time fractional mKdV-ZK equation using
the variable separated ordinary differential equation technique [33]. In [34], the authors
explore an exponential function solution for the (3 + 1)-dimensional space-time fractional
mKdV-ZK equation by utilizing the Bernoulli sub-equation function approach. In [35],
the authors present analytical solutions for the space-time fractional mKdV-ZK equation
using the undetermined coefficients method [36,37]. The motivation of our work is to
show the existence of solitary, kink, and singular wave solutions for the time-fractional
mKdV-ZK Equation (1). Therefore, we present bifurcation of nonlinear and super nonlinear
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ion-acoustic waves by utilizing a phase plane analysis of planar dynamical systems. We
study the effect of the dispersion coefficient, which plays a major role on the control
parameter, the governing model, and the desired results. We investigate traveling wave
solutions for (1) by using the ansatz method. The constructed traveling wave solutions
in this paper are new and novel, and the method, as far as we know, is not used for the
governing model. Moreover, we provide some applications for the obtained results. The
ansatz method begins by guessing an appropriate solution for the governing model and
utilizing the balancing principle to reveal the value of the unknown constants that appear in
the suggested solution [38,39]. In this work, we assume the model has solutions involving
hyperbolic functions to construct solitary, kink, and singular wave solutions for the time-
fractional mKdV-ZK equation. However, we subsequently set up the suitable constraints
from the results.

This paper is organized as follows. In Section 2, we present some preliminaries. In
Section 3, we reduce the time-fractional mKdV-ZK equation into integer-order ODE by
utilizing traveling wave transformation. In Section 4, we investigate the corresponding
dynamical system and explore the traveling wave solutions. Finally, in Section 5 we list
some concluding remarks.

2. Preliminaries

Since the advent of the concept of fractional calculus, several definitions for frac-
tional differential and integral operators have been introduced in the literature, including
Riemann–Liouville, Caputo, Hadamard, Caputo–Hadamard, Riesz, conformable, local M-
derivative, and others [40–48]. With the existence of these various definitions, we wonder
what the gauges of these operators should achieve, whether differential or integrative. This
lead to us calling them fractional operators. Machado and Ortigueira [48] debated the con-
cepts which are implicit for those definitions and indicated common attributes that should
be achieved by those operators in order to be considered fractional. Katugampola criticized,
in turn, the discussed criteria because there were operators that one could consider as
fractional even though they do not meet those criteria [49]. In this work, we consider the
derivative in a truncated M-fractional sense. In 2018, Sousa and Oliveira introduced a
truncated M-fractional derivative definition involved a truncated Mittag-Leffler function
with one parameter [50]. This definition has unified four extant fractional derivatives
from the above mentioned literature, and it also satisfies some classical properties, such as
linearity, composition, chain rule, and others.

In this section, we present the definition of the truncated M-fractional derivative and
its essential properties that will be utilized to achieve our goal in this work. Firstly, we
present the definition of the truncated Mittag-Leffer function.

Definition 1 ([50]). The truncated Mittag-Leffer function having one parameter is stated as:

Ei
α(z) =

i

∑
n=0

zn

Γ(αn + 1)
, (4)

where α > 0 and z ∈ C.

Definition 2 ([50]). Let u : [0, ∞)→ R . Then, the truncated M-fractional derivative of the
function u of order η is acquainted as follows:

iD
η, α
M (u(ζ)) = lim

ε→0

u
(
ζEi

α

(
εζ1−η

))
− u(ζ)

ε
, ∀ζ > 0, (5)

where 0 < η < 1 and α > 0. If the truncated M-fractional derivative of the function u of order η
exists, then the function u is said to be η-differentiable.
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Theorem 1 ([50]). Let 0 < η ≤ 1, α < 0, c1, c2 ∈ R and the functions u and v be η
-differentiable at a point ζ > 0. Then, the following are satisfied:

iD
η, α
M (c1u + c2v)(ζ) = c1iD

η, α
M (u(ζ)) + c2iD

η, α
M (v(ζ)). (6)

iD
η, α
M (u, v)(ζ) = u(ζ)iD

η, α
M (v(ζ)) + v(ζ)iD

η, α
M (u(ζ)). (7)

iD
η, α
M

(u
v

)
(ζ) =

v(ζ)iD
η, α
M (u(ζ))− u(ζ)iD

η, α
M (u(ζ))

(v(ζ)2 . (8)

iD
η, α
M (c) = 0, where u(ζ) = c is a constant. (9)

If the function u is differentiable, then we have:

iD
η, α
M (u(ζ)) =

ζ1−η

Γ(α + 1)
du(ζ)

dζ
. (10)

The properties in Theorem 1 play an important role in this work as they will be pivotal,
with aid of a suitable traveling wave transformation, in reducing the time-fractional mKdV-
ZK equation into integer-order ordinary differential equation, from which the desired
traveling wave solutions can be derived [51–54].

3. Existence of Traveling Wave Solutions

In this section, we utilize a suitable traveling wave transformation for the time-
fractional mKdV-ZK Equation (1) to reduce it into an integer-order ordinary differen-
tial equation, then we find the corresponding dynamical system and the corresponding
Hamiltonian function. Further, we present the bifurcation of the equilibria of the gained
dynamic system to show the existence of the traveling wave solution for the time-fractional
mKdV-ZK Equation (1). Consider the following traveling wave transformation:

ψ(x, y, z, t) = Ψ(v), v = x + y + z− υ
Γ(α + 1)

η
tη , (11)

where Ψ(χ) represents the shape of the wave and υ represents the traveling wave speed.
Let Ψ(v) be a continuous solution of (1) with lim

v→±∞
Ψ(v) = s±. Then, Ψ(v) is called

kink/anti-kink if s+ 6= s− and, Ψ(v) is called solitary (bright or dark) if s+ = s−. Utilize
transformation (11) into the governing Equation (1) with aid of the properties given in
Theorem 1 to get the following integer-order ordinary differential equation:

− υ
dΨ
dv

+ µΨ2 dΨ
dv

+ 3
d3Ψ
dv3 = 0. (12)

Integrate (12) with respect to v to have:

− υΨ +
µ

3
Ψ3 + 3

d2Ψ
dv2 + c = 0, (13)

where c is the integration constants that made to the horizontal shift in the phase plane. So,
we assume c = 0. Such second-order ordinary differential Equation (13) corresponds to the
following dynamic system by letting:

dΨ
dv

= Φ,
dΦ
dv

=
υ

3
Ψ− µ

9
Ψ3. (14)

The Hamiltonian function is given as:

H(Ψ, Φ) =
Φ2

2
+

µ

36
Ψ4 − υ

6
Ψ2 = } ∈ R. (15)
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The qualitative theory of the dynamical systems (see,—e.g., [55,56]) ensures that
the kink, solitary, and periodic wave solutions for (1) correspond with the existence of
the heteroclinic, homoclinic, and periodic orbits of the dynamic system (14), respectively.
Therefore, the existence of traveling wave solutions for the governing model (1) corresponds
to the orbits in the (Ψ , Φ)-phase plane of system (14). To determine these orbits, we find the
equilibrium points of system (14). Obviously, system (14) has one equilibrium point E1(0, 0)

if υµ ≤ 0, while it has three equilibrium points E1(0, 0), E2

(√
3υ
µ , 0

)
and E3

(
−
√

3υ
µ , 0

)
if

υµ > 0. To demonstrate the properties of these equilibrium points, we find the coefficient
matrix of the linearized system of (14) as:

M(E(Ψe, Φe)) =

[
0 1

υ
3 −

µ
3 Ψ2

e 0

]
, (16)

with determinant given as follows:

J (E(Ψe, Φe)) = det(M(E(Ψe, Φe))) =
1
3

(
µΨ2

e − υ
)

. (17)

By the theory of planner dynamical system, J (E1(0, 0)) = −υ
3 , which means that the

equilibrium point E1(0, 0) is center if υ < 0 and it is a saddle equilibrium point if υ > 0. In
addition, the equilibrium point E1(0, 0) is cusp if υ = 0. For the other equilibrium points,

we find J
(
E2,3

(
±
√

3υ
µ , 0

))
= 2υ

3 . Thus, these equilibrium points are center if υ ώ 0 and
are saddle equilibrium points if υ < 0. From this discussion, the existence of equilibrium
points and its type for the dynamic system (14) depends directly on the parameters µ and υ.

Proposition 1. For the dynamic system (14), we conclude the following:

(i) If υ < 0 and µ > 0, then system (14) has unique equilibrium point E1(0, 0) and it is center.
(ii) If υ > 0 and µ < 0, then system (14) has unique equilibrium point E1(0, 0) and it is

saddle.
(iii) If υ < 0 and µ < 0, then system (14) has three equilibrium points E1(0, 0) and

E2,3

(
±
√

3υ
µ , 0

)
, which are center and saddle equilibrium points, respectively.

(iv) If υ > 0 and µ > 0, then system (14) has three equilibrium points E1(0, 0) and
E2,3

(
±
√

3υ
µ , 0

)
, which are saddle and center equilibrium points, respectively.

To construct the potential function P(Ψ) for system (14), we try to find a function
P(Ψ) that satisfies [57]:

d2Ψ
dv2 = −dP

dΨ
. (18)

Therefore, using (18) and system (14), we get the following ordinary differential equation:

dP
dΨ

= −υ

3
Ψ +

µ

9
Ψ3. (19)

Integrating both sides of (19) with respect to Ψ, the potential function P(Ψ) can be
read as:

P(Ψ) =
µ

36
Ψ4 − υ

6
Ψ2. (20)

The extreme points of the potential function P(Ψ) expressed in (20) corresponds to the
equilibrium points of the dynamic system (14), see [58]. Figures 1–4 show the bifurcation
of the equilibria of system (14). Figure 1 is depicted with the dispersion coefficient µ = −1
and the velocity of the wave υ = −1. In this case, according to Proposition 1(iii), we have
three equilibrium points, E1 = E1(0, 0), E2 = E2

(√
3, 0
)

, and E3 = E3

(
−
√

3, 0
)

, that are

center
(
J (E1) =

1
3 > 0

)
and saddle equilibrium points

(
J (E2,3) =

−2
3 < 0

)
, respectively
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(see Figure 1a). It is clear from Figure 1a that there is heteroclinic orbit which connects
E2 to E3 below the Ψ-axis and another one connects E3 to E2 above the Ψ-axis. These
heteroclinic orbits correspond to the existence of the kink traveling wave solutions for the
governing Equation (1). There are also a family of periodic orbits that circles around the
center E1 which corresponds to the existence of the periodic traveling wave solutions for
the governing Equation (1). Figure 1b exhibits the graph of the potential function P(Ψ) as
well as two local maxima, P2 and P3, which correspond to the saddle points E2 and E3. In
addition, there are local minima P1 that correspond to the center E1.
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Figure 2a presents the phase portrait for system (14) when the dispersion coeffi-
cient µ = 1 and the velocity of the wave υ = 1. Thus, we get three equilibrium points,
E1 = E1(0, 0), which is a saddle

(
J (E1) =

−1
3 < 0

)
together with E2 = E2

(√
3, 0
)

and

E3 = E3

(
−
√

3, 0
)

, which are centers
(
J (E2,3) =

2
3 > 0

)
. This corresponds with Proposi-

tion 1(iv). Two homoclinic orbits are enclosed in the centers E2 and E3 and their source is
saddle point E1. These homoclinic orbits correspond with the existence of the solitary wave
solutions for the governing Equation (1). The periodic orbits that surround the centers
E2 and E3 correspond with the existence of the periodic wave solutions for the governing
Equation (1). In addition, there is also a family of super nonlinear periodic orbits enclosed
in homoclinic and periodic orbits surrounding centers E2 and E3. These periodic orbits
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correspond with the existence of the periodic wave solutions for the governing Equation (1).
The potential function P(Ψ) at the mentioned parameters is plotted in Figure 2b. Obviously,
it has two local minima, P2 and P3, which correspond to the centers E2 and E3, respectively.
Moreover, the local maxima P1 corresponds to the saddle equilibrium point E1.
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In Figure 3, we depicted the phase portrait for system (14) at the dispersion coefficient
µ = 1 and the velocity of the wave υ = −1. According to Proposition 1(i), it appears to
exist of unique equilibrium points, with E1 = E1(0, 0) being a center

(
J (E1) =

1
3 > 0

)
with periodic orbits enclosed in it (see Figure 3a). These periodic orbits correspond with
the existence of periodic wave solutions for the governing Equation (1). Figure 3b shows
the potential function at the same parameters and exhibits the existence of local minima
P1 for P(Ψ) which corresponds to the center E1. Figure 4 displays no such behavior when
the dispersion coefficient µ = −1 and the velocity of the wave υ = 1 (which makes
system (14) have a unique saddle equilibrium point

(
J (E1) =

−1
3 < 0

)
) with special orbit

passes through this saddle point. This indeed corresponds with the singular wave solution
for the governing model (1). From the above discussion, we conclude that the existence
of traveling wave solutions of the governing Equation (1) is related to the presence of
homoclinic, heteroclinic, and periodic orbits that correspond to the equilibrium points of
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the dynamical system (14). In addition, the existence of such orbits directly depends on the
dispersion coefficient µ and the velocity of the wave υ.

4. Traveling Wave Solutions

In the previous section we explained the existence of the traveling wave solution for
the time-fractional mKdV-ZK Equation (1). In this section we extract and create some
of these solutions using a suitable expansion for the wave profile Ψ(χ) that satisfies the
integer-order ordinary differential Equation (13). We try to construct kink, solitary (bright
and dark), and singular wave solutions for the time-fractional mKdV-ZK Equation (1).

4.1. Kink Wave Solutions

According to the above discussion, if the dispersion coefficient µ < 0 and the velocity
of the wave υ < 0, then the governing Equation (1) has kink wave solutions that correspond
to the heteroclinic orbits as shown in Figure 1. It should be noted in this case that the
negative dispersion is accompanied by a negative wave velocity, which indicates a negative
energy flux. To construct these solutions, we consider the wave profile Ψ(χ) written as:

Ψ(v) = ktanh(rv), (21)

where the constants k and r will be determined. After substitution of the expression in (21)
into integer-order ordinary differential Equation (13) and solving the algebraic system that
was generated from making the coefficients of the independent terms to be zero, the wave
profile Ψ(χ) reads as:

Ψ1,2(v) = ±
√

3υ

µ
tanh

(√
−υ

6
v

)
. (22)

Therefore, the kink wave solution for the time-fractional mKdV-ZK Equation (1) is
inferred as:

ψ1,2(x, y, z, t) = ±
√

3υ

µ
tanh

(√
−υ

6

(
x + y + z− υ

Γ(α + 1)
η

tη

))
, (23)

where υ < 0 and µ < 0. The potential electric field ψ is the amount of work energy that we

need to stir an electric unit charge from a reference point in an electric field
→
E to a specific

point. From line integrals, the electric potential in the electric field
→
E at a point r can be

written as:
ψ = −

∫
C

→
Edl, (24)

where C is an arbitrary path from a fixed reference point to r. Utilizing the gradient theorem,
we get:

→
E = −∇ψ = −∂ψ

∂x
→
ex −

∂ψ

∂y
→
ey −

∂ψ

∂z
→
ez. (25)

According to the Maxwell–Faraday equation, a time-varying magnetic field escorts a

non-conservative and spatially varying electric field. The magnetic field
→
B can be revealed

using the electric field
→
E throughout the Maxwell–Faraday Equation:

∇×
→
E = −∂

→
B

∂t
, (26)

where ∇× is the curl operator. Upon the obtained results in (23) and using (25), the
corresponding electric fields to the electric field potentials (23) can be written as:

→
E1,2 = ∓

√
−υ

2

√
υ

µ
sech2

(√
−υ

6

(
x + y + z− υ

Γ(α + 1)
η

tη

))(→
ex +

→
ey +

→
ez

)
. (27)
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The obtained electric fields in (27) can be used in (26) to obtain the corresponding
magnetic fields. Moreover, we can infer the difference between the density number of
positrons of equal temperatures and hot electrons as follows:

np − ne = − 1
4πe∇2ψ1

= − υ
4πe

√
3υ
µ sech2

(√
−υ
6

(
x + y + z− υ

Γ(α+1)
η tη

))
× tanh

(√
−υ
6

(
x + y + z− υ

Γ(α+1)
η tη

))
.

(28)

The obtained wave profiles Ψ1,2(v) in (22) are plotted and shown in Figure 5 at the
dispersion coefficient µ = −1 and the velocity of the wave υ = −1. We note that the
wave profile Ψ1(v) is an anti-kink wave, such that the limit of the Ψ1(v) when v → ±∞
approaches ± 1.732 (see Figure 5a). In Figure 5b, we present the kink wave profile Ψ2(v)
that has an opposite behavior of Ψ1(v), where the limit of the Ψ2(v) approaches ∓1.732
when v → ±∞ .
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Figure 5. The behavior of the wave profile Ψଵ,ଶ(𝜛) in (22) at the dispersion coefficient 𝜇 = −1 and 
the velocity of the wave 𝜐 = −1 where (a) anti-kink wave solution Ψଵ(𝜛) and (b) kink wave solu-
tion Ψଶ(𝜛). 

  

Figure 5. The behavior of the wave profile in (22) at the dispersion coefficient µ = −1 and the velocity
of the wave υ = −1 where (a) anti-kink wave solution Ψ1(v) and (b) kink wave solution Ψ2(v).

We studied the amount of change for the anti-kink wave solution Ψ1(v) concerning
the wave velocity υ and the dispersion coefficient µ. The conclusion is that if the wave
velocity υ decreases, then the amplitude of the wave increases. For example, the limit of the
Ψ1(v) when v → ±∞ approaches ±1.732 at the wave velocity υ = −1, while at the wave
velocity υ = −4, the limit of the Ψ1(v) approaches ±3.464 when v → ±∞ (see Figure 6a).
The anti-kink wave solution Ψ1(v) was affected by the change in the dispersion coefficient
µ (see Figure 6b). We notice that the amplitude of the wave decreased when the dispersion
coefficient µ decreased from −1 to −4, whereas the limit of the Ψ1(v) when v → ±∞
approaches ± 1.732 at the dispersion coefficient µ = −1, while at the dispersion coefficient
µ = −4, the limit of the Ψ1(v) approaches ±0.866 when v → ±∞ . Therefore, a wane in
the dispersion coefficient is accompanied by a flourish in the electric field potential.

The surface of the obtained kink wave solution ψ2(x, y, z, t) in (23) is shown in Figure 7
at the dispersion coefficient µ = −6 and the wave velocity υ = −1. We depicted ψ2(x, y, z, t)
concerning the independent variable x ∈ [−20, 20] and the time variable t ∈ [0, 1] in a
three-dimension plot in Figure 7a, while in Figure 7b we show a two-dimension plot of
the behavior of ψ2(x, y, z, t) concerning the independent variable at same parameters when
the time variable t = 0. The limit of the kink solution ψ2(x, y, z, t) under these parameters
approaches ∓0.707 when x → ±∞ .
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4.2. Solitary Wave Solutions

As previously mentioned, the solitary wave solutions for the governing Equation (1)
lead to homoclinic orbits within the dynamic system (14). In Section 3, we found that when
the dispersion coefficient µ > 0 and the wave velocity υ > 0, there are two centers and a
unique saddle equilibrium point together with two homoclinic orbits, which use the saddle
point as their source, and these orbits surrounded the centers. This case deals with positive
group-velocity dispersion, meaning that the wave with a short length moves slower than
the wave with a long length. The aim of this section is to establish solitary wave solutions
for the time-fractional mKdV-ZK Equation (1) and provide the physical interpolation for
these solutions to understand its behavior in certain statuses. We will construct solitary
wave solutions involving the hyperbolic function using two different forms. Let us consider
the solution of the integer-order ordinary differential Equation (12) which can be written as:

Ψs(v) = ksech(rv), (29)

where the constants k and r are to be determined. Utilize the expression of the wave profile
(29) into the integer-order ordinary differential Equation (12) and use some simplification,
then consider the coefficients of the independent term to be zero to yield an algebraic
system involving the constants k, r, µ, and the wave speed υ. Based on the solutions of the
obtained algebraic system, we can write the solitary solutions for the integer-order ordinary
differential Equation (12) in the form:

Ψs
1,2(v) = ±

√
6υ

µ
sech

(√
υ

3
(v)

)
(30)

provided that µ > 0 and υ > 0. These are two solitary wave solutions for the integer-order
ordinary differential Equation (12) using direct substitution. Consequently, the solitary
wave solutions for the time-fractional mKdV-ZK Equation (1) is inferred to be:

ψs
1,2(x, y, z, t) = ±

√
6υ

µ
sech

(√
υ

3

(
x + y + z− υ

Γ(α + 1)
η

tη

))
(31)

According to these results and using (25), the corresponding electric fields to the
electric field potentials (31) can be written as:

→
E1,2 = ±

√
2υ2

µ
sech

(√
υ

3

(
x + y + z− υ

Γ(α + 1)
η

tη

))
× tanh

(√
υ

3

(
x + y + z− υ

Γ(α + 1)
η

tη

))(→
ex +

→
ey +

→
ez

)
. (32)
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The obtained electric fields in (32) can be used in (26) to obtain the corresponding
magnetic fields. Moreover, we can infer the difference between the number density of
positrons with equal temperatures and hot electrons as follows:

np − ne = − 1
4πe∇2ψs

2 = − υ
4πe

√
6υ
µ sech

(√
υ
3

(
x + y + z− υ

Γ(α+1)
η tη

))
×
(

1− tanh
(√

υ
3

(
x + y + z− υ

Γ(α+1)
η tη

))) (33)

The explored wave profile Ψs
1,2(v) in (30) is depicted in Figure 9 with the dispersion

coefficient µ = 1 and the wave velocity υ = 1. Figure 9a appears as a solitary wave Ψs
1(v)

with a crest that has an absolute maxima of Ψs
1(0) =

√
6, while Figure 9b shows a solitary

wave Ψs
2(v) with trough that has an absolute minima of Ψs

2(0) = −
√

6. Obviously, the
limit of Ψs

1,2(v) as v → ±∞ approaches zero.
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Figure 9. The behavior of the wave profile Ψs
1,2(v) in (30) at the dispersion coefficient µ = 1 and the

velocity of the wave υ = 1 where (a) solitary crest wave solution Ψs
1(v) and (b) solitary trough wave

solution Ψs
2(v).

We studied the impact of the wave velocity υ and the dispersion coefficient µ on the
solitary crest wave Ψs

1(v) in (30). We obtained that the amplitude of the wave increases
when the wave velocity υ increases, while the amplitude of the wave displays the opposite
behavior when it is affected by the dispersion coefficient µ (see Figure 10). For instance, the
absolute maxima for Ψs

1(v) in Figure 10a at υ = 1, 2, 3 and 4 was Ψs
1(0) = 1,

√
2,
√

3 and 2,
respectively. Moreover, we note that the effect of the wave velocity υ on the amplitude of
the solitary crest wave makes it shrink whenever the wave velocity υ continues to increase.
Figure 10b presents the impact of the dispersion coefficient µ, when its value changes from
1 to 4, on the solitary crest wave solution Ψs

1(v) with a fixed wave velocity of υ = 3. We
notice that a raise of the dispersion coefficient be accompanied by a fading of the electric
field potential.

Figure 11 presents the surface of the obtained solitary wave solution ψs
1(x, y, z, t) in

(31) at the dispersion coefficient µ = 1 and the wave velocity υ = 0.95, where the fractional
derivative order η = 0.91. The absolute maxima for the solitary crest wave solution
ψs

1(x, y, z, t) approaches 2.387. Figure 11a presents the three-dimensional plots for the
obtained solution, while in (b) we depicted the obtained solution in two-dimensional plots
where the time variable is considered at t = 0, 1, 2 and 3.

The impact of the fractional derivative on the developed solitary trough wave solutions
ψs

2(x, y, z, t) in (31) for the governing model (1) is displayed in Figure 12. We deemed the
fractional derivative order to be 0.87, 0.73, 0.32, and 0.05 when we depicted the inferred
solution when the temporal variable t = 5 and t = 15 in Figure 12a,b, respectively.
Obviously, the absolute minima at the trough for all showed solutions approaches−2.121 at
certain values for the spatial variable x. In Figure 12a, we observe that the absolute minima
when t = 5 attained at x = 15.758, 16.399, 16.766, and 15.408 where the fractional derivative



Symmetry 2023, 15, 361 13 of 18

orders were µ = 0.87, 0.73, 0.32, and 0.05, respectively. On the other hand, in Figure 12b
when t = 15, the absolute minima was attained at x = 47.276, 49.198, 50.299, and 46.224,
where the fractional derivative orders were η = 0.87, 0.73, 0.32, and 0.05, respectively.
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(a) t = 5 and (b) t = 15.
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4.3. Singular Wave Solution

Consider the dispersion coefficient µ < 0 and the velocity of the wave υ > 0, then
according to Figure 4, the time-fractional mKdV-ZK Equation (1) has a singular wave
solution. To explore this solution, we assume that the integer-order ordinary differential
Equation (12) has a solution in the form of:

Ψsi(v) = kcsch(rv), (34)

where k and r are constants. To determine them, we insert the expression in (34) into integer-
order ordinary differential Equation (12) and after some simplification and assigning the
coefficients of the independent terms to zero, we obtain an algebraic system involving
k and r. Solving the gained algebraic system leads us to the following solutions for the
integer-order ordinary differential Equation (12):

Ψsi
1,2(v) = ±

√
−6υ

µ
csch

(√
υ

3
v

)
. (35)

Consequently, using the obtained solutions in (35) with aid of (11), the singular wave
solutions for the time-fractional mKdV-ZK Equation (1) can be written as:

ψsi
1,2(x, y, z, t) = ±

√
−6υ

µ
csch

(√
υ

3
(x + y + z− υ

Γ(α + 1)
η

t
)

, (36)

where µ < 0 and υ > 0. According to these results and using (25), the electric fields
corresponding to the electric field potentials (36) can be written as:

→
E1,2 = ±

√
−2υ2

µ
csch

(√
υ

3

(
x + y + z− υ

Γ(α + 1)
η

tη

))
× coth

(√
υ

3

(
x + y + z− υ

Γ(α + 1)
η

tη

))(→
ex +

→
ey +

→
ez

)
. (37)

The obtained electric fields in (37) can be used in (26) to obtain the corresponding
magnetic fields. Moreover, we can infer the difference between the number density of
positrons with equal temperatures and hot electrons as follows:

np − ne = − 1
4πe∇2ψs

2

= υ
4πe

√
−6υ

µ csch
(√

υ
3

(
x + y + z− υ

Γ(α+1)
η tη

))
×
(

1 + coth
(√

υ
3

(
x + y + z− υ

Γ(α+1)
η tη

)))
.

(38)

Figure 13 shows the singular wave solution Ψsi
1,2(v) given in (35) when the dispersion

coefficient µ = −1 and the velocity of the wave υ = 1.
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µ = −1 and the velocity of the wave υ = 1 where (a) singular wave solution Ψsi
1 (v) and (b) singular

wave solution Ψsi
2 (v).
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We studied the impact of varying the dispersion coefficient µ and the velocity of the
wave υ on the obtained singular wave solutions in (35) and we depicted the results in
Figure 14. In Figure 14a, we fixed the dispersion coefficient at µ = −6 and the velocity of
the wave υ varies between the values of 1, 10, 20 and 30. In Figure 14b we show the impact
of varying the dispersion coefficient µ when the velocity of the wave υ is fixed at three.
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singular wave solution Ψsi

1 (v) in (35) where (a) the dispersion coefficient µ = −6 and (b) the velocity
of the wave υ = 3.

The surface of the explored singular wave solution ψsi
2 in (36) is presented in Figure 15a

when the dispersion coefficient µ = −10 and the velocity of the wave υ = 1 at the fractional
derivative order η = 0.9. Figure 15b shows the behavior of the singular wave solution ψsi

2
in (36) in two-dimensions at same parameters. The fractional derivative plays an important
role in the behavior of the obtained singular wave solution. Therefore, we depicted the
singular wave solution ψsi

1 at µ = −12 and υ = 2 when the order of the fractional derivative
η varied (see Figure 16).
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Figure 16. Effect of the fractional derivative on the behavior of the singular wave solution ψsi
1 (x, y, z, t)

in (36) at the dispersion coefficient µ = −12, the velocity of the wave υ = 2 and α = 1 where (a) t = 5
and (b) t = 5.

5. Conclusions

This paper studied a significant and notable physical model, namely, the time-fractional
mKdV-ZK equation of weakly nonlinear ion-acoustic waves in a magnetized electron–
positron plasma. We considered the fractional derivative in the sense of the truncated
M-fractional derivative. The governing model was reduced to an integer-order ordinary
differential equation by a suitable traveling wave transformation with aid of the properties
of the truncated M-fractional derivative. We obtained the corresponding dynamical system
and introduced the bifurcation of its phase plane to ensure the existence of the traveling
wave solutions for the governing model. The governing model’s solitary, kink, and singular
wave solutions have been constructed using the ansatz method. The fractional mKdV-ZK
equation has been studied by researchers using different approaches [31–36]. Our obtained
results are in good agreement with other existing results. The novelty and significance
of our results are due to showing the existence of the traveling wave solutions for the
governing Equation (1) and introducing the bifurcation of nonlinear and super nonlinear
ion-acoustic waves by utilizing phase plane analysis of the planar dynamical systems.
In addition, the proposed method in this work is simple, effective, and applicable. The
physical interpolation of the obtained solutions has been presented. In future work, we aim
to study some other significant physical models in quantum plasmas and to investigate the
traveling wave solutions for them and their applications.
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