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Abstract: The theory of quantum mechanical scattering in hyperbolic space is developed. General
formulas based on usage of asymptotic form of the solution of the Shrödinger equation in hyperbolic
space are derived. The concept of scattering length in hyperbolic space, a convenient measurable
in describing low-energy nuclear interactions is introduced. It is shown that, in the limit of the flat
space, i.e., when ρ→ ∞, the obtained expressions for quantum mechanical scattering in hyperbolic
space transform to corresponding formulas in three-dimensional Euclidean space.
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1. Introduction

The problems of mechanics in spaces of constant curvature were dealt with by many
prominent mathematicians and mechanics in the 19th century (for more information,
see books [1,2]).

In the beginning of the 20th century, the general theory of relativity and quantum
mechanics were created. These greatest achievements in physics raised the interest in the
problems of both classical and quantum mechanics in Riemannian spaces. The important
role of the tetrad formalism, which is systematically presented in [3,4] for the formulation
of such problems, should be emphasized.

In the work [5], the quantum mechanical problem of a hydrogen atom on a three-
dimensional sphere was first solved by E. Schrödinger. A similar problem in hyperbolic
space was considered in Refs. [6–8]. These authors showed that the energy spectrum of
the hydrogen atom in spaces of constant curvature has a degeneracy analogous to the
degeneracy in the planar case. Subsequently, it was demonstrated that the reason for
the degeneration is in the additional conserved operators, which are analogues of the
Runge–Lenz vector found in [9–11] in the case of positive constant curvature space, and
in [12] for hyperbolic space.

Non-Euclidean geometry is used for the description of various physical problems [13–23].
For example, hyperbolic geometry finds application in the theory of relativistic nuclear col-
lisions [13–16]. In [14], the connection between geometric relations in the hyperbolic space
and kinematic characteristics determined from the experiment (transverse momentum,
longitudinal velocity, etc.) was considered. It was shown that accounting for the proper-
ties of hyperbolic space—in particular, the absence of geometric similarity (in contrast to
Euclidean geometry)—is very important in the analysis of experimental data and construc-
tion of adequate models for describing the multiple production of particles. Hyperbolic
geometry was used for the description of particle production on the basis of experimental
data obtained at bubble chambers in n− p and other reactions in an energy range from
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a few to tens of GeV in [15]. The model based on the Coulomb interaction on the sphere
has been used for description of the spectrum of quarkonium [17] and the excited states of
excitons in quantum dots [18–20]. In addition, the usage of hyperbolic geometry to solve
the problems of relativistic kinematics [24–26] can be highlighted. This is due to the fact
that the group of motions of the Lobachevsky space is isomorphic to the Lorentz group.
The geometric approach to the kinematics of relativistic particles is essentially based on
the connection between the vector parametrization of the Lorentz group established in [25]
and the quaternion calculus.

In the scattering theory, in hyperbolic space, two directions can be highlighted. One
is the abstract scattering theory on the hyperbolic plane using the theory of automorphic
functions, which is a spectral harmonic analysis on the group SL (2.R). The group SL(2.R)
is locally isomorphic to the group O(2.1), the three-dimensional Lorentz group, and the
group of motions of the Lobachevsky plane [27]. Well-known scientists, such as D. Lax,
R. Phillips, L.D. Faddeev, B.S. Pavlov, and other experts in the field of mathematical
physics, contributed to this approach, in which physics is the starting point for setting new
mathematical problems.

In a series of papers by the present authors and their colleagues [28–30], a scattering
theory in three-dimensional hyperbolic space similar to the scattering theory in three-
dimensional Euclidean space was developed. The problems solved in those works were
aimed at modeling physical problems in the spirit of Refs. [14,15,17–21]. In the flat space
limit, they reduce to the corresponding problems in the Euclidean space.

The present paper focuses on the case of low-energy particle scattering, which is
typical of nuclear physics. The dependences of the scattering length and effective scattering
radius on the radius of the curvature of the hyperbolic space were studied.

The symmetry of the spaces used by physicists is crucial for the formulation and
solution of the inherent problems of classical and quantum mechanics. Our approach is
based on group-theoretical methods, the mathematical framework of symmetry.

2. The Scattering Problem in Hyperbolic Space

In Ref. [28], the formulation of the quantum-mechanical scattering problem in the
hyperbolic space using Shapiro plane wave solutions of Schrödinger’s equation [31] as an
expression for the incident wave was considered.

The stationary problem for the Schrödinger equation in Cartesian coordinates xµ has
the form (} = m = 1)

HΨ = EΨ, H =
1

4ρ2 Mµν Mµν + U, Mµν = xµ∂ν − xν∂µ, µ, ν = 1, 2, 3, 4, (1)

where xµxµ = x2 + x2
4 = x2 − x2

0 = −ρ2, x = (x1, x2, x3), x4 = ix0, ρ is the radius of
curvature of the space, and U is the potential energy.

The solution of Schrödinger equation far beyond the region of scattering is a super-
position of the incident and scattered (spherical) waves. However, in hyperbolic space,
contrary to the flat space, simple plane wave solutions do not exist and it is required to
construct analogues of such waves. The closest to a plane wave in its properties is the
solution of the free Schrödinger equation known as Shapiro’s plane waves (see [31]), which
can be written as

ξ(x, n) =
( x0 − xn

ρ

)−1−iη
, η =

√
2Eρ2 − 1, (2)

where n is a unit vector and E is the energy of the system.
In the hyperbolic space, Schrödinger equation has solutions in the form of a spherical

diverging wave by analogy with flat space.
Let us introduce the spherical coordinate system in hyperbolic space as

x0 = ρchβ, x1 = ρshβ sin θ cos φ,
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x2 = ρshβ sin θ sin φ, x3 = ρshβ cos θ,

0 ≤ β < ∞, 0 ≤ θ ≤ π, 0 ≤ φ < 2π.

The solution of Schrödinger equation with potential V(β) depending only on the
distance can be written in factorized form Ψ = Rl(β)Ym

l (θ, φ), where the radial equation is[ 1
2ρ2

(
− 1

sh2β

d
dβ

(
sh2β

d
dβ

)
+

l(l + 1)
sh2β

)
+ V(β)− E

]
Rl(β) = 0. (3)

The solution of Equation (3), which is regular at β = 0, in the absence of interaction
has the form

Rηl(β) =

√
π

2shβ

Γ(iη + l + 1)
Γ(iη + 1)

P−
1
2−l

− 1
2+iη

(chβ). (4)

where P−
1
2−l

− 1
2+iη

(chβ) is the Legendre functions of the first kind.

The asymptotic form of the solution Rηl at β −→ ∞ for a rapidly decreasing potential
V(β) ∼ sh−nβ, n ≥ 2 is given by an expression in a form close to the standard one, namely

Rηl(β) ≈ 1
2iηshβ

(
ei(ηβ− π

2 +δl) − e−i(ηβ− π
2 +δl)

)
, η =

√
2Eρ2 − 1. (5)

The solution of Equation (3), which is a diverging spherical wave in the hyperbolic
space, has the form

R+
ηl(β) =

1
2

√
π

2shβ

[Γ(iη + l + 1)
Γ(iη + 1)

P−
1
2−l

− 1
2+iη

(chβ) +
Γ(iη − l)
Γ(iη + 1)

P
1
2+l
− 1

2+iη
(chβ)

]
. (6)

As β −→ ∞, we have

R+
ηl(β) ≈ 1

2iηshβ
eiηβ ≈ 1

iηeβ
eiηβ. (7)

Let us set a direction in (2) as n = (0, 0, 1). Consequently, a plane Shapiro wave in a
spherical coordinate system will be written as

ξ(β, θ) = (chβ− shβ cos θ)−1−iη . (8)

The expression (8) expanded in spherical waves is

ξ(β, θ) =
∞

∑
l=0

(2l + 1)Rηl(β)Pl(cos θ). (9)

Accordingly, the asymptotic expression for the expansion of the incident wave, taking
into account (5) (see [32]), is

ξ(β, θ) =
1

2iηshβ

∞

∑
l=0

(2l + 1)
(
(−1)le−iηβ + eiηβ

)
Pl(cos θ). (10)

The exact solution of the stationary Schrödinger Equation (1) for the potential V(β)
while β −→ ∞ should have the form

Ψ(β, θ) ≈ (chβ− shβ cos θ)−1−iη +
f (θ)
ρshβ

eiηβ, (11)

where f (θ) is a scattering amplitude.
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The solution (11) in terms of Legendre polynomials will take the form

Ψ(β, θ) ≈ 1
2iηshβ

∞

∑
l=0

(2l + 1)[(−1)l+1eiηβ + Sle−iηβ]Pl(cos θ), (12)

where Sl = e2iδl and δl are the scattering phases.
Let us expand the scattering amplitude in Legendre polynomials:

f (θ) =
∞

∑
l=0

Al Pl(cos θ). (13)

By subtracting the incident wave in the form Equation (10) from Equation (12) and
comparing the result with (11), we obtain

f (θ) =
ρ

2iη

∞

∑
l=0

(2l + 1)(Sl − 1)Pl(cos θ). (14)

Comparing Equations (13) and (14), we obtain the expression for the coefficients

Al =
ρ

2iη
(2l + 1)(e2iδl − 1).

The quantity

fl =
ρ

2iη
(e2iδl − 1) (15)

is called partial amplitude.
Since the expression for the scattering amplitude (15) coincides with the correspond-

ing formula in three-dimensional Euclidean space, then, accounting for the isotropy of
the hyperbolic space and the orthogonality of the Legendre polynomials, we obtain an
expression for the total cross-section through partial scattering phases, which coincides
with the analogous expression in the plane space and has the form

σ = 4π| f (θ)|2 =
4πρ2

η2

∞

∑
l=0

(2l + 1)sin2δl . (16)

As follows from Equation (16), the maximum total cross section is equal to

σmax = 4π| f (θ)|2 =
4πρ2

η2

∞

∑
l=0

(2l + 1). (17)

In Equation (17), the curvature radius ρ is contained only in η, which allows us to
explicitly express the dependence on the space curvature 1/ρ2:

σmax =
4π

2E− 1
ρ2

∞

∑
l=0

(2l + 1), (18)

or in the first approximation in curvature

σmax =
2π

E

(
1 +

1
2Eρ2

) ∞

∑
l=0

(2l + 1). (19)
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It should be noted that partial phases generally depend on the energy and space
curvature. However, for short-range forces and low energies of the scattered particle, the
main contribution to the amplitude is given by the wave with l = 0:

f (θ) = f0 =
ρ

2iη
(e2iδ0 − 1). (20)

In this case, instead of Equation (16), we obtain

σ =
4πρ2

η2 sin2δ0. (21)

It is known [33] that, in the case of a flat space, at δ0 = π/2 , as the energy tends to zero
E −→ 0, the cross section tends to infinity. In the case of the problem under consideration,
the maximum of the cross-section (21) is reached at an energy equal to the curvature, as
follows from the formula below:

σ =
4π

2E− 1
ρ2

. (22)

In the case of low-energy scattering, when δ0 can be considered small and constant, by
expanding the exponent in Formula (20) and limiting ourselves by two terms, we obtain

f0 = L =
ρδ0

η
. (23)

The quantity L is similar to the scattering length in flat space [34], and reduces to it
at ρ −→ ∞. Therefore, expression (23) will be considered as the scattering length in the
hyperbolic space, and in terms of the small curvature, is written as

f0 = L ≈ δ0√
2E

(
1 +

1
4Eρ2

)
. (24)

The cross-section corresponding to the amplitude (24) is expressed by the formula

σ = 4πL2. (25)

Obviously, with vanishing curvature ρ −→ ∞, Equations (16)–(24) coincide with
the corresponding formulas in a flat three-dimensional space. An interesting feature of
scattering in the hyperbolic space is the fact that, when the energy is large, but ρ is not, the
dependence on the curvature radius in Equations (18), (19), (22), and (24) also disappears.
This feature is a consequence of Equation (2) and is essential when the mentioned formulas
are considered as model ones and when ρ acts as some additional parameter, whose
interpretation should be discussed separately in each particular case. These formulas may
be useful for describing the processes of neutron scattering on nuclei and nano-objects.

Let us demonstrate the above general principles of the scattering theory in non-
relativistic quantum mechanics in hyperbolic space by means of examples of scattering
by a spherically symmetric potential well and Coulomb potential. We would also like to
compare the results to those in flat (Euclidean) space.

3. Scattering Length in Euclidean and Hyperbolic Spaces

Let us first consider the scattering of s-waves for a low-energy particle with a short-
range interaction. The interaction will be described by a spherically symmetric potential
well of the form

V = −U0, r ≤ a; V = 0, r > a− in Euclidean space

and
V = −U0, β ≤ a; V = 0, β > a− in hyperbolic space
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Here, a is the “width” of the well. It has the dimension of length in Euclidean space
and is dimensionless in hyperbolic space.

As known [35], the scattering length on a spherically symmetric potential well in
Euclidean space is given by the expression

L = a
(

1− tg(K0a)
K0a

)
, (26)

where K2
0 = 2mU0.

The scattering length in the hyperbolic space in a potential well can be obtained from
Formula (26) by replacing a with aρ as shown in [36]:

L = aρ

(
1− tg(K0aρ)

K0aρ

)
. (27)

The essential difference in scattering length expressions for both spaces should be
discussed. In deriving (26) (see [35]), we consider the limit of low-energy E −→ 0 and,
hence, k −→ 0, since, in the Euclidean space, k2 = 2mE. Moreover, the dimension of k is
length-inverse. On the other hand, in the hyperbolic space, the role of the wave number is
played by the dimensionless quantity η =

√
2mρ2E− 1, and the scattering length (27) is

determined from the first expansion term of the series of the function η
ρ ctgδ0 at η −→ 0, i.e.,

η

ρ
ctgδ0 ≈ −

1
L

. (28)

Thus, in hyperbolic space, the energy does not tend to zero, but E −→ Emin and
Emin = 1/(2mρ2), which is small when the radius of curvature of the space is sufficiently
large. When the energy of the incoming particle is lower than Emin, only bound states
are possible.

Let us consider the case of the Coulomb potential of the form

U =
α

r
, α > 0− repulsion potential in Euclidean space.

and
U =

−αx0

ρ|~x| , α < 0− repulsion potential in hyperbolic space.

As known [35], the scattering amplitude in the Euclidean space is given by the formula
(here, } = 1)

f (θ) = −Γ(1 + iα/k)
Γ(1− iα/k)

α

2k2 sin2(θ/2)
exp(−2iα

k
ln sin(θ/2)) (29)

The partial amplitude f0 is determined as

f0 =
1
2

∫ 1

−1
f (θ)d(cos θ). (30)

Calculations yield

f0 =
1

2ik
Γ(1 + iα/k)
Γ(1− iα/k)

, (31)

which can be written as
f0 =

1
2ik

e2iδ0 , (32)

recalling that

e2iδl =
Γ(1 + l + iα/k)
Γ(1 + l − iα/k)

.
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Hence, the partial cross-section for l = 0 is

σ0 = 4π| f0|2 =
π

k2 . (33)

Determining the scattering length from the equation σ0 = 4πL2, we have

L =
1
2k

. (34)

In [37], it is noted that the length of scattering in Coulomb potential is large but the
formula is not given.

Since S-scattering (l = 0) occurs at low energy, k −→ 0 and L −→ ∞. Thus, in
Euclidean space, the scattering length of Coulomb potential is infinite, confirming the
long-range nature of the Coulomb force.

Let us derive the corresponding formulas for Coulomb scattering in hyperbolic space.
As shown in [29], the scattering amplitude is determined by the expression

f (θ) =
ρ(γ+ − γ−)

γ+ + γ−

Γ(1− iγ+ + iγ−)
Γ(1 + iγ+ − iγ−)

2−i(γ+−iγ−)(1− cos θ)iγ+−iγ−−1, (35)

where

γ± =

√
Eρ2m± αρ

2
− 1

4
. (36)

Performing a similar calculation, we obtain

f0 =
ρ

2i(γ+ + γ−)

Γ(1− iγ+ + iγ−)
Γ(1 + iγ+ − iγ−)

, (37)

and thus

σ0 =
πρ2

(γ+ + γ−)2 . (38)

The low-energy limit corresponds to the condition γ+ −→ 0 and E −→ }2

2mρ2 (1− 2αρ).

At this limit, (γ+ + γ−)2 ≈ −αρ (here, α < 0). Thus, we have

σ0 =
−πρ

α
, (39)

and, for the scattering length,

L =

√
−ρ

4α
. (40)

As follows from (40), the scattering length in hyperbolic space is finite, i.e., the force is
not of a long range any more. However, when ρ −→ ∞, the scattering length transforms to
L −→ ∞, which is in agreement with (34).

4. Conclusions

In the introduction, a brief literature review of the practical applications of non-
Euclidean geometry in physics is presented.

Let us summarize the main results of the paper:
1. As follows from the formula for the modulus of the wave vector Equation (2)

and subsequent expressions obtained within the framework of the approach presented by
Equations (16)–(22), the effect of a “flat” space limit can be achieved with a constant radius
of curvature due to high-energy particles.

2. Studies of low-energy scattering—in particular, the use of Equation (22)—may help
in the identification of curvature effects.
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3. The formulae for the scattering length on the spherically symmetric potential will
have the same form in the hyperbolic space as in the Euclidean space.

4. Whereas, in the Euclidean space, the scattering length in the case of the Coulomb
potential is infinite, it is finite in the hyperbolic space, showing that the Coulomb potential
does not have long-range potential in the hyperbolic space.

It will be interesting to investigate these properties in other spaces as well.
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