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Abstract: The pure state evaluation map from Mn(C) to C(CPn−1) is a completely positive map
of C∗-algebras intertwining the Un symmetries on the two algebras. We show that it extends to a
cochain map from the universal calculus on Mn(C) to the holomorphic ∂̄ calculus on CPn−1. The
method uses connections on Hilbert C∗-bimodules.
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1. Introduction

For a subset X of the state space S of a C∗-algebra A we have a positive “state evalu-
ation map” δ : A → C(X) given by δ(a)(φ) = φ(a) for a ∈ A and φ ∈ X. For Mn(C) the
result of Choi [1] gave the pure state space as CPn−1. We use the KSGNS construction [2] to
analyse the case A = Mn(C) and X = CPn−1 and then consider the differentiability of the
state evaluation map. To do this, we begin by constructing the Hilbert C∗-bimodule giving
the state evaluation map. Then, we use the methods of connections on bimodules to con-
nect the differential structure on Mn(C) (we take the universal calculus) to that on CPn−1

(the usual calculus). Here, we follow the methods in [3] but then find that the conditions
required there do not apply, so in Section 5.1 we consider a more general theory extending
the results in [3]. As a result, Proposition 12 on an induced functor from left Mn-modules
to holomorphic bundles on CPn−1 is phrased in terms of holomorphic bundles rather than
flat bundles on CPn−1. For brevity, we often refer to Mn(C) just as Mn. Additionally, our
main result Theorem 1 on extending the state evaluation map to a cochain map uses the ∂̄
calculus on projective space.

The main reason why we chose to do this construction with Mn is the concrete con-
struction of the state space. More generally, it might be possible to put a differential
structure on the pure state space of a C∗-algebra, even if we know little about the state
space. For this one thing, it is important to remember that there is a very general idea
of calculus on infinite dimensional spaces [4] using directional derivatives. It would be
interesting to see whether the constraint of having bimodule connections, similar to the
one in this paper, for smooth subalgebras of more general C∗-algebras would shed light on
possible calculi on the algebras.

Apart from the concrete description of the state space, another reason why we are
interested in the calculi on matrix algebras and the link with representations and states
is Connes’ noncommutative derivation of the standard model [5]. The fact is that from a
relatively simple noncommutative beginning involving matrices Connes constructs the
standard model indicates that there probably something very interesting in the geometry
of the initial noncommutative space. Most gauge theories in physics are described in
terms of calculi, so we are naturally led to questions about calculi on matrices and how

Symmetry 2023, 15, 474. https://doi.org/10.3390/sym15020474 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15020474
https://doi.org/10.3390/sym15020474
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-3139-0983
https://doi.org/10.3390/sym15020474
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15020474?type=check_update&version=1


Symmetry 2023, 15, 474 2 of 17

they relate to states. The unitary symmetry described in Section 3.1 is then related to
gauge transformations.

The construction of the state evaluation map and its associated bimodule implies the
existence of various functors between categories of modules, including one from Mn(C)
modules to holomorphic bundles on CPn−1, which is described in Section 6.

We use the notation that hi ∈ Coln(C) is the column vector with 1 in position i and
zero elsewhere, and that Eij ∈ Mn(C) in the matrix with 1 in row i and column j and
zero elsewhere. An element of CPn−1 is written in homogenous coordinates as [(v1 . . . vn)],
where we suppose ∑ |vi|2 = 1. We sum over repeated indices unless otherwise indicated.

2. Preliminaries
2.1. Calculi and Connections

Definition 1. Given a first order calculus (Ω1
A, d) on an algebra A, the maximal prolongation

calculus ΩA has relations ∑ dci ∧ dai = 0 for every relation ∑ ci dai = 0 on Ω1
A, where ci, ai ∈ A.

Definition 2. The universal first order calculus Ω1
uni(A) on a unital algebra A is defined by

Ω1
uni(A) = ker · : A⊗ A→ A,

where · is the algebra product and dunia = 1⊗ a− a⊗ 1.

The maximal prolongation of the universal calculus has Ωn
uni(A) ⊂ A⊗ n+1, which

is the intersection of all the kernels of the multiplication maps between neighbouring
factors, i.e.,

Ω2
uni(A) = ker(· ⊗ id : A⊗ A⊗ A→ A⊗ A) ∩ ker(id⊗ · : A⊗ A⊗ A→ A⊗ A) .

We now assume that the unital algebras A and B have calculi Ωn
A and Ωn

B, respectively.

Definition 3. A right connection ∇E : E → E⊗B Ω1
B on a right B-module E is a linear map

obeying the right Leibniz rule for e ∈ E and b ∈ B

∇E(e b) = e⊗db +∇E (e).b . (1)

Definition 4. Given the right connection (E,∇E) in Definition 3, we define for n ≥ 1

∇[n]
E : E⊗

B
Ωn

B → E⊗
B

Ωn+1
B

by ∇[1]
E = ∇E and for n ≥ 2

∇[n]
E (e⊗ ξ) = ∇E e ∧ ξ + e⊗ dξ .

The curvature of E is the right bimodule map

RE = ∇[1]
E ∇E : E→ E⊗

B
Ω2

B

and then for e⊗ ξ ∈ E⊗B Ωn
B

∇[n+1]
E ∇[n]

E (e⊗ ξ) = RE(e) ∧ ξ .

The idea of a bimodule connection was introduced in [6–8] and used in [9,10]. It was
used to construct connections on tensor products in [11] (see Proposition 1).
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Definition 5. If E is an A-B bimodule, then (∇E, σE) is a right bimodule connection where ∇E is
a right connection and there is a bimodule map

σE : Ω1
A⊗

A
E→ E⊗

B
Ω1

B

so that
∇E(ae) = σE(da⊗ e) + a.∇E e .

2.2. Hilbert Bimodules

Note that, unlike most of the literature on Hilbert C∗-modules, we explicitly use
conjugate bundles and modules. This is required to make the usual tensor products and
connections work with inner products. Suppose that A and B are ∗-algebras. For a left
A-module E, Ē is the conjugate vector space with right A-action e.a = a∗e, and for a right
A module F, F̄ is the conjugate vector space with left A-action a. f = f .a∗. For our A-B
module E, Ē is a B-A bimodule with bē = eb∗ and ēa = a∗e.

Definition 6. A differential calculus (ΩA, d) on a ∗-algebra A is a ∗-differential calculus if there
are antilinear operators ∗ : Ωn

A → Ωn
A so that (ξ ∧ η)∗ = (−1)|ξ||η|η∗ ∧ ξ∗ where |η| is the degree

of η, i.e., η ∈ Ω|η|A and (dξ)∗ = d(ξ∗).

We now suppose that A and B have ∗-calculi. Then, for our right bimodule connection
(∇E, σE), we have a corresponding left bimodule connection (∇Ē, σĒ) on Ē given by∇Ē ē =
ξ∗⊗ f̄ where∇Ee = f ⊗ ξ (sum implicit) and σĒ(ē⊗ η) = k∗⊗ ḡ where σE(η

∗⊗ e) = g⊗ k.
We give a definition of inner product on an A-B bimodule E, where A and B are

∗-algebras. This is taken from the definition of Hilbert bimodules in [2], omitting norms
and completion as we will need smooth function algebras. Of course, the modules with
inner product we will talk about have completions which really are Hilbert bimodules.

Definition 7. A B-valued inner product on an A-B bimodule E is a B-bimodule map
〈, 〉 : Ē⊗A E → B obeying 〈ē′, e〉∗ = 〈ē, e′〉 for all e′, e ∈ E (the Hermitian condition) and
〈ē, e〉 ≥ 0 and 〈ē, e〉 = 0 only where e = 0.

Given an inner product 〈, 〉 : Ē⊗A E→ B the right connection ∇E preserves the inner
product if

(id⊗〈, 〉)(∇Ē⊗ id) + (〈, 〉 ⊗ id)(id⊗∇E) = d〈, 〉 . (2)

2.3. Line Bundles and Calculus in CPn−1

On CPn−1 we have homogenous coordinates vi ∈ C for 1 ≤ i ≤ n. We take v =
(v1, . . . , vn) to lie on the sphere S2n−1 in Cn, i.e., ∑i vi v̄i = 1. There is an action of the unit
norm complex numbers U1 on S2n−1 by

z . (v1, . . . , vn) = (zv1, . . . , zvn) .

We define CPn−1 as S2n−1 quotiented by this circle action, identifying points z . v ∼= v
for all z ∈ U1. We use notation [v] ∈ CPn−1 for the equivalence classes. We consider subsets
of continuous functions on S2n−1, defining for integer m

Cm(CPn−1) = { f ∈ C(S2n−1) : f (z . v) = zm f (v) for all z ∈ U1, v ∈ S2n−1}

and similarly C∞
m (CPn−1) to be smooth functions. Then, C∞

0 (CPn−1) is the usual smooth
functions on CPn−1. There is an alternative view given by grading monomials in vi and
v̄i by ||vi|| = 1 and ||v̄i|| = −1. Then, a monomial of grade m is in Cm(CPn−1). A grade
zero monomial such as v1v̄2 v̄3v4 is invariant for the circle action and so gives a function
on CPn−1.
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An element of the tautological bundle τ at [v] ∈ CPn−1 is given by αv ∈ Cn for α ∈ C
and the inner product on τ is given by

〈α v, βv〉 = ᾱβ ∈ C , (3)

noting the use of the conjugate bundle to give bilinearity and be consistent with the earlier
Hilbert C∗-bimodule inner product. A section of the tautological bundle is a function
r : CPn−1 → Rown(C) so that r

(
[v]
)

is a multiple of v. We have a 1− 1 correspondence
between continuous sections of τ and C−1(CPn−1). If f ∈ C−1(CPn−1), then ( f v1, . . . , f vn)
is a section, and if (r1, . . . , rn) is a section, then ri v̄i is in C−1(CPn−1).

Recalling that ∑i vi v̄i = 1 and applying d gives ∑i
(

dvi v̄i + vi dv̄i
)
= 0, and as we

require a complex calculus on CPn−1, we obtain both ∑i dvi v̄i = 0 and ∑i vi dv̄i = 0 as
relations on Ω1(CPn−1). Applying d again gives ∑i dvi ∧ dv̄i = 0 in Ω2(CPn−1).

2.4. Categories of Modules and Connections

For an algebra A, we takeMA to be the category of right A-modules and right module
maps. If A has a differential calculus, we take EA to be the category with objects (E,∇E),
where E is a right A-module and ∇E is a right connection on E. A morphism T from
(E,∇E) to be (F,∇F) consists of a right module map T : E→ F, which commutes with the
connections, i.e.,

∇FT = (T⊗ id)∇E : E→ F⊗
A

Ω1
A .

Proposition 1. For a right A-B bimodule connection (∇W , σW), there is a functor ⊗A W : EA →
EB sending (∇F, F) to (∇F⊗W , F⊗A W), where ∇F⊗W is

∇F⊗W( f ⊗ e) = (id⊗ σW)(∇F( f )⊗ e) + f ⊗∇W(e) .

2.5. Holomorphic Bundles

Let B be a ∗-algebra with a ∗-differential calculus. We use the noncommutative com-
plex calculi from [12,13]. Suppose we have a direct sum decomposition Ωn

B = ⊕p+q=nΩp,q
B

as bimodules, and that Ωp,q
B ∧Ωs,t

B ⊂ Ωp+s,q+t
B ; dΩp,q

B ⊂ Ωp+1,q
B ⊕Ωp,q+1

B ; and (Ωp,q)∗ =

Ωq,p. Using the projection operations for the direct sum πp,q : Ωp+q
B → Ωp,q

B , we can define

∂ = πp+1,q d : Ωp,q
B → Ωp+1,q

B ,

∂̄ = πp,q+1 d : Ωp,q
B → Ωp,q+1

B ,

which gives a holomorphic calculus. Given a right connection∇G : G → G⊗B Ω1
B, then we

define ∂̄G = (id⊗π0,1)∇G : G → G⊗B Ω0,1
B . The holomorphic curvature of G is defined to

be the curvature of the ∂̄G connection, i.e.,

(id⊗ ∂̄ + ∂̄G ∧ id)∂̄ : G → G⊗Ω0,2
B .

Definition 8. Suppose that we have a right connection ∂̄G : G → G⊗B Ω0,1
B with holomorphic

curvature zero. Then, (G, ∂̄G) is called a holomorphic right module.

3. The KSGNS Construction of the State Evaluation Map

For a subset X ⊂ S of the state spaces of a C∗-algebra A, the positive map δ : A→ C(X)
is given by δ(a)(φ) = φ(a) for a ∈ A and φ ∈ X. We use a standard construction of a
completely positive map using a Hilbert C∗-bimodule, and this is part of the KSGNS
construction [2]. We start with A⊗C(X) as an A-C(X) bimodule and the semi-inner
product 〈, 〉 : A⊗C(X)⊗A(A⊗C(X))→ C(X) defined by〈

a⊗ f , a′⊗ f ′
〉
= f ∗δ(a∗a′) f ′ . (4)
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Set N to be the space of zero length vectors, i.e., ∑ ai ⊗ fi so that〈
∑ ai ⊗ fi, ∑ aj⊗ f j

〉
= 0 .

Now, we define E = (A⊗C(X))/N. This has completion a Hilbert A-C(X) C∗-
bimodule, and given 1⊗ 1 ∈ E, we have〈

1⊗ 1, a.1⊗ 1
〉
= δ(a) .

3.1. The Matrix Algebra Case

The pure states on Mn(C) are parametrised by v ∈ Rown(C) by

φv(a) = vav∗ ∈ C, (5)

where v v∗ = 1 for normalisation [1]. Because scalar multiplication of v by a unit norm
complex number leaves the state unaffected the space of pure states is the quotient
X = CPn−1 of unit vectors in Rown(C), i.e., S2n−1 quotiented by the circle group U1. We
take the positive map δ : Mn(C)→ C(CPn−1) defined by δ(a)([v]) = φv(a) for v ∈ S2n−1.

There is a unitary symmetry of the matrix algebra by inner automorphisms a 7→ uau∗

for a ∈ Mn(C) and u ∈ Un. There is also a Un action on the pure state space X = CPn−1

given by v 7→ v u∗ for v ∈ S2n−1. The map δ : Mn(C) → C(CPn−1) intertwines
these actions.

We carry out the KSGNS construction given at the beginning of this section for
A = Mn(C). We write Mn(C)⊗C(CPn−1) as Coln(C)⊗C(CPn−1, Rown(C)), which are
isomorphic as Rown(C) is finite dimensional. For ci ⊗ ri ∈ Coln(C)⊗C(CPn−1, Rown(C)),
the inner product in (4) is

〈c1⊗ r1, c2⊗ r2〉([v]) = vr1([v])∗c∗1c2r2(v)v∗ ∈ C (6)

for v ∈ S2n−1, a row vector representing an element [v] of CPn−1.

Proposition 2. The quotient of Coln(C)⊗C(CPn−1, Rown(C)) by the length zero vectors N is
isomorphic to Coln(C)⊗ Γτ, where Γτ is the continuous sections of the tautological bundle τ.

Proof. For v ∈ S2n−1, we look at the conditions for ci ⊗ ri to be in N, which is
∑ij〈ci ⊗ ri, ci ⊗ ri〉 = 0 using (6). Using the projection matrix Pij = v̄ivj, we see that

〈c1⊗ r1, c2,⊗ r2〉 = 〈c1⊗ r1P, c2,⊗ r2P〉

just using the fact vi v̄i = 1 (summing over i). Thus, the null space N includes all c⊗ r(1− P),
and the only possible non-null elements are c⊗ rP, which is c⊗ s where s is a multiple of v.
A quick check shows that all these are not null (except 0).

The sections Γτ of τ are identified with C−1(CPn−1), and so we have
Coln(C)⊗C−1(CPn−1) with inner product

〈c1⊗ f1, c2⊗ f2〉 = c∗1c2 f ∗1 f2 ∈ C(CPn−1) (7)

and this a Hilbert Mn-C(CPn−1) C∗-bimodule. Finally, we consider
1⊗ 1 ∈ Mn(C)⊗C(CPn−1) and find e1⊗ 1 = [1⊗ 1] ∈ Coln(C)⊗C−1(CPn−1) under
our isomorphism from Proposition 2. Take hi to be the column vector with 1 in posi-
tion i and zero elsewhere. Then, in Coln(C)⊗C(CPn−1, Rown(C)) e1⊗ 1 = [1⊗ 1] corre-
sponds to hi ⊗ h∗i summing over i. Using the isomorphism from Section 2.3 between
Γτ and C−1(CPn−1), e1⊗ 1 = [1⊗ 1] corresponds to hi ⊗ v̄i ∈ Coln(C)⊗C−1(CPn−1)
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summing over i. Under the isomorphism, we adapt (5) to give φ : Mn → C(CPn−1),
for a = (aij) ∈ Mn

φ(a) = ∑
ij
〈hi ⊗ v̄i ⊗ ahj⊗ v̄j〉 = ∑

ij
viaijv̄j , (8)

and this is the state evaluation map.

4. Connections on the Hilbert C∗-Bimodule

We now have a formula (8) for the state evaluation map using bimodules, and we
would like to ask whether it is differentiable. To do this, we use a bimodule connection.
The first thing to do is to take the smooth functions as a subset of our Hilbert C∗-bimodule
Coln(C)⊗C−1(CPn−1) by setting E = Coln(C)⊗C∞

−1(CPn−1).

4.1. Inner Product Preserving Connections on E = Coln(C)⊗C∞
−1(CPn−1)

We have generators of C∞
−1(CPn−1), the smooth sections of τ, given by v̄i and a

projection matrix Qij = vi v̄j so that v̄iQij = v̄j. We specify a right connection

∇E : Coln(C)⊗C−1(CPn−1)→ Coln(C)⊗C−1(CPn−1) ⊗
C∞(CPn−1)

Ω1(CPn−1)

for some Γpq
ij ∈ Ω1(CPn−1) and summing over repeated indices

∇E(hi ⊗ v̄j) = hp⊗ v̄q⊗ Γpq
ij . (9)

As

hp⊗ v̄q⊗ Γpq
ij = hp⊗ v̄sQsq⊗ Γpq

ij = hp⊗ v̄s⊗QsqΓpq
ij,

we can suppose without loss of generality that

Γpq
ij = QqsΓps

ij . (10)

Additionally, using v̄j = v̄qQqj

∇(hi ⊗ v̄jQjk) = hi ⊗ v̄j⊗ dQjk + hp⊗ v̄q⊗ Γpq
ijQjk

= ∇(hi ⊗ v̄k) = hp⊗ v̄q⊗ Γpq
ik ,

so we have

Γpq
ij(δjk −Qjk) = δpiQqj dQjk . (11)

Thus, for a right connection (9) we require (10) and (11) to be satisfied.

Proposition 3. The connection (9) is a bimodule connection with

σE : Ω1
uni(Mn(C)) ⊗

Mn(C)
E→ E⊗Ω1(CPn−1)

extending to a bimodule map

σ̂E : Mn(C)⊗Mn(C) ⊗
Mn(C)

E→ E⊗Ω1(CPn−1)

by the formula, for Eij the standard matrix with 1 in row i column j and zero elsewhere

σ̂E(Eab⊗ Est⊗ hi ⊗ v̄j) = δtiha⊗ v̄q⊗ Γbq
sj .
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Proof. The bimodule connection condition gives

σE(dEst⊗ hi ⊗ v̄j) = ∇E(Esthi ⊗ v̄j)− Est∇E(hi ⊗ v̄j)

= δti∇E(hs⊗ v̄j)− Est∇E(hi ⊗ v̄j)

= δtihp⊗ v̄q⊗ Γpq
sj − Esthp⊗ v̄q⊗ Γpq

ij

=
(
δtihpδsr − δtphsδri

)
⊗ v̄q⊗ Γpq

rj . (12)

Note that σ̂E is explicitly a left module map and is extended to a right C(CPn−1)
module map by multiplication on the rightmost factor. Then, for the universal calculus, we
obtain dEst = In⊗ Est − Est⊗ In, and summing over k

σ̂E(dEst⊗ hi ⊗ v̄j) = σ̂E(Epp⊗ Est⊗ hi ⊗ v̄j)− σ̂E(Est⊗ Epp⊗ hi ⊗ v̄j)

= δtihpv̄q⊗ Γpq
rjδsr − δtpδrihs⊗ v̄q⊗ Γpq

rj

which agrees with (12).

The curvature of the connection is given by

RE(hi ⊗ v̄j) = (id⊗ d +∇E ∧ id)∇E(hi ⊗ v̄j)

= hp⊗ v̄q⊗ d Γpq
ij + hs⊗ v̄t⊗ Γst

pq ∧ Γpq
ij

= hp⊗ v̄q⊗
(

d Γpq
ij + Γpq

st ∧ Γst
ij
)

.

We set Xpq
ij = dΓpq

ij + Γpq
st ∧ Γst

ij so

RE(hi ⊗ v̄j) = hp⊗ v̄q⊗Xpq
ij . (13)

Using (22) and where Ert is the matrix with 1 in row p column t and zero elsewhere

RE(Erthi ⊗ v̄j)− ErtRE(hi ⊗ v̄j) = δtihp⊗ v̄q⊗Xpq
rj − Erthp⊗ v̄q⊗Xpq

ij

= δtihp⊗ v̄q⊗Xpq
rj − δtphr ⊗ v̄q⊗Xpq

ij . (14)

We see that the curvature is not necessarily a left module map, though by general
theory it must be a right module map.

We require two additional properties of our connection: that it preserves the inner
product (7) and that it vanishes on e1⊗ 1. The inner product from (7) gives

〈hs⊗ v̄t, hi ⊗ v̄j〉 = δsivtv̄j (15)

and for the connection (9) to preserve the inner product, we require

δis d(vtv̄j) = 〈hs⊗ v̄t, hp⊗ v̄q〉Γpq
ij +

(
Γpq

st
)∗〈hp⊗ v̄q, hi ⊗ v̄j〉

= δspvtv̄qΓpq
ij +

(
Γpq

st
)∗

δpivqv̄j . (16)

We also need for ∇E(e1⊗ 1) = 0

0 = ∇E(hi ⊗ v̄i) = hp⊗ v̄q⊗ Γpq
ii (17)

so Γpq
ii = 0.

4.2. A Simple Example of the Connection

Here, we find a simple example of a connection satisfying the previous conditions in
Section 4.1. From (10), we have Γpq

rs = vqCp
rs where Cp

rs = v̄jΓpj
rs. Now, (11) becomes

vq Cp
ij(δjk −Qjk) = δpivqv̄s d(vsv̄k)
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and as this is true for all q we deduce, using the relations for Ω1(CPn−1)

Cp
ij(δjk −Qjk) = δpi v̄s

(
dvsv̄k + vs dv̄k

)
= δpi dv̄k . (18)

Additionally, (16) gives

δis dQtj = δspvtv̄qvq Cp
ij + v̄q(Cp

st)
∗δpivqv̄j

= δspvt Cp
ij + δpi v̄j(Cp

st)
∗ = vt Cs

ij + v̄j(Ci
st)
∗. (19)

Thus, we have for a right connection (18), for metric preserving we obtain (19), and
for ∇(e1⊗ 1) = 0 we obtain Cp

ii = 0. The curvature is

RE(hi ⊗ v̄j) = hp⊗ v̄q⊗
(

d(vq Cp
ij) + vqvtCp

st ∧ Cs
ij
)
,

and using v̄q = v̄mvmv̄q

RE(hi ⊗ v̄j) = hp⊗ v̄m⊗ vmv̄q
(

dvq ∧ Cp
ij + vq dCp

ij + vqvt Cp
st ∧ Cs

ij
)

= hp⊗ v̄m⊗ vm
(

dCp
ij + vt Cp

st ∧ Cs
ij
)

. (20)

To simplify this further, from (18), we write

Cp
ik = Cp

ij(δjk −Qjk) + Cp
ij Qjk = δpi dv̄k + Cp

ij vjv̄k,

we set Dpi = Cp
ijvj, and then Cp

ik = δpi dv̄k + Dpi v̄k. Now, (18) is automatically true
and (19) becomes

δis(dvtv̄j + vt dv̄j) = vt(δsi dv̄j + Dsi v̄j) + v̄j(δis dv̄t + Disv̄t)
∗

= δis(vt dv̄j + v̄j dvt) + vtv̄j(Dsi + (Dis)
∗) .

We conclude that for matrix D, we have (19) if and only if D∗ + D = 0 as a matrix.
Next, we require

Cp
ii = δpi dv̄i + Dpi v̄i = dv̄p + Dpi v̄i = 0 . (21)

Finally, we put

Dpi = −dv̄pvi + dvi v̄p + Gpi .

Now, we have from (21)

Dpi v̄i = −dv̄p + Gpi v̄i,

so we have the condition Gpi v̄i = 0, and

(Dip)
∗ = −dvi v̄p + dv̄pvi + (Gip)

∗

so D∗ + D = 0 if and only if G∗ = −G. Now, we calculate the bracket in the formula for
the curvature in (20). This is

dCp
ij + Cp

st vt ∧ Cs
ij = v̄j

(
Gps ∧ Gsi − viGps ∧ dv̄s + v̄p dvs ∧ Gsi + dGpi − dvi ∧ dv̄p

)
.

We can simplify the curvature while satisfying all of our conditions simply by putting
G = 0, to give

RE(hi ⊗ v̄j) = hp⊗ v̄m⊗ vmv̄j dv̄p ∧ dvi = hp⊗ v̄j⊗ dv̄p ∧ dvi . (22)
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For completeness we calculate

Γpq
rs = vqCp

rs = vq
(
δpr dv̄s + Dpr v̄s

)
= vq

(
δpr dv̄s + v̄s(−dv̄pvr + dvr v̄p)

)
= vq

(
δpr dv̄s − v̄svr dv̄p + v̄sv̄p dvr

)
, (23)

and from (13)
Xpq

ij = δqj dv̄p ∧ dvi . (24)

5. Differentiating Positive Maps

We wish to extend the map φ : A → B defined by φ(a) = 〈ē, ae〉 in (8) to a map of
differential forms φ : Ωm

A → Ωm
B . A theory of how to do this is set down in [3], (using

left instead of right connections), but it assumes conditions on the curvature that we do
not have and results in a cochain map, so we need to be more careful and give a more
general account of the theory, beginning with how σE extends to a map of differential forms,
with general algebras A, B, and bimodule W.

5.1. General Theory of Extendability and Curvature

We begin with a right handed version of Lemma 3.72 in [3]. For algebras A, B with
calculi, we suppose that (∇W , σW) is a bimodule connection on an A-B bimodule W.
The curvature RW of a right bimodule connection must be a right module map but not
necessarily a bimodule map.

Lemma 1. Given an A-B bimodule W with a right bimodule connection ∇W : W → W⊗B Ω1
B

and σW : Ω1
A⊗A W →W⊗B Ω1

B, for the curvature, we have

RW(a e)− a RW(e) = (σW ∧ id)(da⊗∇W(e)) + (id⊗ d +∇W ∧ id)σW(da⊗ e)

cRW(ae)− caRW(e) = (σW ∧ id)(c da⊗∇We) + (id⊗ d +∇W ∧ id)σW(c da⊗ e)

−(σW ∧ id)(id⊗ σW)(dc⊗ da⊗ e) .

Proof. By definition of RW

RW(ae) = (id⊗ d +∇E ∧ id)∇W(ae)

= (id⊗ d +∇W ∧ id)
(
σW(da⊗ e) + a.∇We

)
= (id⊗ d +∇W ∧ id)σW(da⊗ e) + (σW ∧ id)(da⊗∇We) + a.RW(e) .

Now, multiply the first equation in the statement by c ∈ A to obtain

cRW(ae)− caRW(e) = (σ ∧ id)(c da⊗∇We) + c(id⊗ d +∇W ∧ id)σW(da⊗ e),

and use the definition of σW again to obtain the second equation.

The following definition is a right version of extendability from [3].

Definition 9. Given an A-B bimodule W with a right bimodule connection∇W : W →W⊗B Ω1
B

and σW : Ω1
A⊗A W → W⊗B Ω1

B, we say that (∇W , σW) is extendable if σW extends to a map
σW : Ωn

A⊗A W →W⊗B Ωn
B such that for all ξ, η ∈ ΩA

σW(ξ ∧ η⊗ e) = (σW ∧ id)(id⊗ σ)(ξ⊗ η⊗ e) . (25)

Corollary 1. The σW in Lemma 1 is extendable for the maximal prolongation calculus Ωn
A if and

only if, for all ci, ai ∈ A with ∑i ci dai = 0 ∈ Ω1
A

∑
i

(
ciaiRW(e)− ciRW(aie)

)
= 0 . (26)
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Proof. To define a map σ : Ω2
A⊗A W →W⊗B Ω2

B by (25) where ξ, η ∈ Ω1
A, we require the

RHS of (25) to vanish for all ξ ∧ η = 0 (summation implicit). This is easiest if we have as
few relations ξ ∧ η = 0 as possible; thus we consider the maximal prolongation. In more
detail, if we have ∑ ci dai = 0 in Ω1

A then ∑ dci ⊗ dai is in the kernel of ∧ and we then
have from Lemma 1

∑
(
ciaiRW(e)− ciRW(aie)

)
= ∑

i
(σW ∧ id)(id⊗ σW)(dci ⊗ dai ⊗ e) . (27)

Thus, we need to show that for all ∑ ci dai = 0 we have the LHS of (27) vanishing.

Corollary 2. Either of the following conditions imply the condition (26) in Corollary 1:

(a) RW is a left module map,
(b) Ω1

A is the universal calculus.

Proof. (a) is obvious from Corollary 1. For (b), by definition of the first order universal
calculus, we have

∑ ci dai = ci ⊗ ai − ciai ⊗ 1 ∈ A⊗ A

and if this vanishes, then so does the LHS of (27).

Now, we assume extendability for σW and work out the consequences.

Proposition 4. Given the conditions of Lemma 1 and assuming that σW is extendable, the map
SW : Ωn

A⊗A W →W⊗B Ωn+1
B defined by

SW(ξ⊗ e) = (σW ∧ id)(ξ⊗∇We)− (id⊗ d +∇W ∧ id)σW(ξ⊗ e)(−1)|ξ|

+ σW(dξ⊗ e)(−1)|ξ| (28)

is a well defined bimodule map, and

SW(ξ ∧ κ⊗ e) = (σW ∧ id)(id⊗ SW)(ξ⊗ κ⊗ e) + (−1)|κ|(SW ∧ id)(id⊗ σW)(ξ⊗ κ⊗ e) . (29)

For the derivative of SW , we have

∇[|ξ|+1]
R SW(ξ⊗ e)− SW(dξ⊗ e) = −(−1)|ξ|(SW ∧ id)(ξ⊗∇We)

+ (−1)|ξ|
(
(σW ∧ id)(id⊗ RW)− (RW ∧ id)σW

)
.(30)

Proof. To check that it is well defined, we use

SW(ξa⊗ e)− SW(ξ⊗ ae) = −(σW ∧ id)(ξ⊗ σW(da⊗ e))

+ σW
(
(d(ξa)− (dξ)a)⊗ e

)
(−1)|ξ|

= −σW(ξ ∧ da⊗ e) + σW(ξ ∧ da⊗ e) = 0

by Definition 9. To check that it is a right module map we use, where σW(ξ⊗ e) = f ⊗ η

S(ξ⊗ ea)− S(ξ⊗ e)a = (σW ∧ id)(ξ⊗ e⊗ da)− (id⊗ d)(σW(ξ⊗ e)a)(−1)|ξ|

+
(
(id⊗ d)σW(ξ⊗ e)

)
a(−1)|ξ|

= f ⊗ η ∧ da− f ⊗ d(ηa)(−1)|ξ| + f ⊗ dη.a(−1)|ξ| .
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To check that it is a left module map we use

(−1)|ξ|
(
S(aξ⊗ e)− aS(ξ⊗ e)

)
= −(∇W ∧ id)(a.σW(ξ⊗ e)) + a(∇W ∧ id)(σW(ξ⊗ e))

+ σW(d(aξ)⊗ e)− σW(a. dξ⊗ e)

= −∇W(a f ) ∧ η + a∇W( f ) ∧ η + σW(da ∧ ξ⊗ e)

= −σW(da⊗ f ) ∧ η + σW(da ∧ ξ⊗ e) = 0 .

To verify the product rule for SE, consider

SW(ξ ∧ κ⊗ e)− (σW ∧ id)(id⊗ SW)(ξ⊗ κ⊗ e),

and use the Leibniz rule for d and extendability. For the last formula (30), we use

SW(da⊗ e) = RW(ae)− aRW(e) (31)

and standard manipulations. Recall that RW is not necessarily a left module map, but use
of (29) shows that (30) is well defined on ΩA⊗A W.

Now suppose that A and B are ∗-algebras with ∗-calculi. Given an inner product 〈, 〉 :
W⊗A W → B, which is preserved by ∇W , we extend φ : A→ B defined by φ(a) = 〈ē, a e〉
where ∇W e = 0 to φ : Ωn

A → Ωn
B by

φ(ξ) = (〈, 〉 ⊗ id)(ē⊗ σW(ξ⊗ e)) . (32)

Under the more restrictive conditions where RW is a bimodule map [3] φ would be a
cochain map. However, more generally we find a correction term.

Proposition 5. Assume the conditions of 1 and that σW is extendable. If ∇We = 0 and ∇W
preserves the inner product then

dφ(ξ) = φ(dξ)− (−1)|ξ| (〈, 〉 ⊗ id)(ē⊗ SW(ξ⊗ e)) . (33)

Proof. Apply (28) to the formula obtained by differentiating (32).

In Proposition 1, we see that under the condition of Lemma 1 there is a functor ⊗W
from EA to EB, using the specified connection on the tensor product. We would like to
calculate the curvature of this tensor product connection, but as we noted before the
curvature of W is not necessarily a left module map, so we need more generality than in [3].

Proposition 6. If F ∈ EA and (∇W , σW) is an extendable right bimodule connection on W ∈
AMB then the curvature of the tensor product connection is

RF⊗W = id⊗ RW + (id⊗ σW)(RF ⊗ id) + (id⊗ SW)(∇F ⊗ id)) . (34)

Note: The first and last terms are not well defined on F⊗A W, only their sum is.

Proof. Standard manipulation.

5.2. Applications to the State Map on Matrices

We return to our specific case of matrices, projective space and bimodule E. As we are
using the universal calculus for matrices, by Corollary 2 we know that σE from Section 4.1
is extendable. It will be convenient to extend the domain of definition of σE given in
Proposition 3 from Ω1

uni(Mn) to Ωm−1
uni (Mn), etc.
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Proposition 7. Regarding Ωm−1
uni (Mn(C)) as a subset of Mn(C)⊗m, we find the formula

σ̂E : M⊗m
n ⊗

Mn(C)
E→ E⊗Ωm−1(CPn−1)

which restricts to the extension of

σE : Ωm−1
uni (Mn(C)) ⊗

Mn(C)
E→ E⊗Ωm−1(CPn−1)

from Section 4.1 given by

σ̂E
(
Ea1b1 ⊗ Ea2b2 ⊗ . . .⊗ Eambm ⊗ hi ⊗ v̄j

)
= δbmi ha1 ⊗ v̄q1 ⊗ Γb1q1 a2q2 ∧ Γb2q2 a3q3 ∧ . . .

· · · ∧ Γbm−1 qm−1 am j .

Proof. By induction. From Proposition 3, the formula works for m = 2. Assume that it
works for m, and then for m+ 1, given ξ ∈ Ω1

uni(Mn(C)) and η = Eaib1 ⊗ Ea2b2 ⊗ . . .⊗ Eambm

∈ Ωm−1
uni (Mn(C))

σE(ξ ∧ η⊗ hi ⊗ v̄j) = (id⊗∧)σE(ξ ∧ η⊗ hi ⊗ v̄j)

= (σE ∧ id)(ξ⊗ σE(η⊗ hi ⊗ v̄j))

= δbmi σE(ξ⊗ ha1 ⊗ v̄q1) ∧ Γb1q1 a2q2 ∧ Γb2q2 a3q3 ∧ · · · ∧ Γbm−1 qm−1 am j .

Now, put ξ = Eab⊗ Est to obtain

σE(ξ ∧ η⊗ hi ⊗ v̄j) = δbm i σ̂E(Eab ⊗ Est ⊗ ha1 ⊗ v̄q1 ) ∧ Γb1q1 a2q2 ∧ Γb2q2 a3q3 ∧ · · · ∧ Γbm−1 qm−1
am j

= δbm i δta1 ha ⊗ v̄q0 ⊗ Γbq0 sq1 ∧ Γb1q1 a2q2 ∧ · · · ∧ Γbm−1 qm−1
am j

and this is exactly what the formula gives on applying σ̂E to ξ ∧ η⊗ hi ⊗ v̄j given

Eab⊗ Est ⊗
Mn(C)

ξ = δta1 Eab⊗ Esb1 ⊗ Ea2b2 ⊗ . . .⊗ Eambm .

We can now extend the state evaluation map φ : Mn(C)→ C(CPn−1) from (5) and (8)
to forms by using (32).

Corollary 3. The function φ : Ωm−1
uni (Mn(C))→ Ωm−1(CPn−1) is given by

φ(Ea1b1 ⊗ . . .⊗ Eambm) = va1 v̄q1 Γb1q1 a2q2 ∧ · · · ∧ Γbm−1qm−1 ambm

summing over q1, . . . , qm−1.

Proof. Summing over i, j,

φ(Ea1b1 ⊗ . . .⊗ Eambm) = (〈, 〉 ⊗ id)(id⊗ σ̂E)
(
hj⊗ v̄j⊗ Ea1b1 ⊗ . . .⊗ Eambm ⊗ hi ⊗ v̄i

)
= δbmi〈hj⊗ v̄j, ha1 ⊗ v̄q1〉Γ

b1q1 a2q2 ∧ Γb2q2 a3q3 ∧ · · · ∧ Γbm−1qm−1 ami

= δbmiδja1 vjv̄q1 Γb1q1 a2q2 ∧ Γb2q2 a3q3 ∧ · · · ∧ Γbm−1qm−1 ami .

Proposition 8. Similarly to σ̂E, we can calculate an extension ŜE of SE to Mn⊗Mn instead of
just Ω1

uni(Mn), giving

ŜE(Eab⊗ Ert⊗ hi ⊗ v̄j) = δtiha⊗ v̄q⊗Xbq
rj
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and this extends to higher forms by

ŜE
(
Ea1b1 ⊗ Ea2b2 ⊗ . . .⊗ Eambm ⊗ hi ⊗ v̄j

)
= δbmi ha1 ⊗ v̄q1 ⊗ Γb1q1 a2q2 ∧ Γb2q2 a3q3 ∧ · · · ∧ Xbm−1 qm−1 am j + . . .

+(−1)m−3Γb1q1 a2q2 ∧ Xb2q2 a3q3 ∧ · · · ∧ Γbm−1 qm−1 am j
+(−1)m−2Xb1q1 a2q2 ∧ Γb2q2 a3q3 ∧ · · · ∧ Γbm−1 qm−1 am j

,

where the wedge products alternate in sign and contain exactly one X factor.

Proof. We use (14) and (31) to find the first equation, using

EabSE(dErt⊗ hi ⊗ v̄j) = ŜE
(
(Eab⊗ Ert − Eat⊗ 1δbr)⊗ hi ⊗ v̄j

)
. (35)

The rest is a proof by induction, similar to Proposition 7 using Proposition 4.

6. Matrix Modules and Sheaves on CPn−1

6.1. Differentiating the State Evaluation Map

We would like the state evaluation map extended to forms in Corollary 3 to be a
cochain map, i.e., dφ(ξ) = φ(dξ). However, Proposition 5 gives an additional term that
we must evaluate.

Proposition 9. For the usual calculus on projective space, the state evaluation map (8) is not a
cochain map to the standard d calculus on CPn−1.

Proof. Using Proposition 8 and (24), we evaluate the last term in (33)

(〈, 〉 ⊗ id)
(
e1⊗ 1⊗ SE(Eab⊗ Ert⊗ e1⊗ 1)

)
= (〈, 〉 ⊗ id)

(
hk⊗ v̄k SE⊗(Eab⊗ Ert⊗ hi ⊗ v̄i)

)
= 〈hk⊗ v̄k, ha⊗ v̄q〉δti Xbq

ri

= vav̄qδqt dv̄b ∧ dvr = vav̄t dv̄b ∧ dvr ,

which is nonzero. Now, if b 6= r, then Eab⊗ Ert ∈ Ω1
uni(Mn).

This may seen disappointing, but it is an opportunity to consider the holomorphic
structure or projective space. From Definition 8 and using (22), we see that
E = Coln(C)⊗C−1(CPn−1) with the connection in Section 4.1 is a holomorphic bundle
over CPn−1.

Theorem 1. For the ∂̄ calculus on CPn−1 and the universal calculus on Mn the state evaluation
map (2) and its extension to forms in Corollary 3 is a cochain map.

Proof. Proposition 5 will give the result if the SE then gives zero in the ∂̄ calculus. This can
be seen from Proposition 8 and (24).

Using the ∂̄ calculus on CPn−1 raises the possibility that the bimodule E = Coln(C)
⊗C−1(CPn−1) could be use to give a functor from Mn modules on CPn−1. First, we need
to consider Mn modules with connection.

6.2. Connections on Right Modules over Mn(C)
In this subsection and the next, we take ri ∈ Rown(C) to be the row vector with 1 in

position i and zero elsewhere.

Proposition 10. Take the right Mn(C) module F = V⊗Rown(C) for a vector space V, with ac-
tion given by the matrix multiplication

(v⊗ ri) / Ejk = v⊗ rkδij .
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Then, a general right connection ∇F for the universal calculus on Mn is

∇F(v⊗ ri) ∈ V⊗Rown(C) ⊗
Mn

Ω1
uni(Mn) ⊂ V⊗Rown(C) ⊗

Mn
Mn⊗Mn

and using the fact that every 1-form on Mn can be written as a sum of Esj. dEpi, we can write

∇F(v⊗ ri) = ∑
pj

Ljp(v)⊗ rj⊗ dEpi (36)

for linear Ljp : V → V with ∑j Ljj(v) = v. The curvature of the connection is

RF(v⊗ ri) = ∑
abjp

Lab
(

Ljp(v)
)
⊗ ra⊗ dEbj ∧ dEpi .

Proof. By using the Rown(C)⊗Mn Mn ∼= Rown(C), we obtain

(V⊗Rown(C) ⊗
Mn

Ω1
uni(Mn) ∼= V⊗K,

where K = ker · : Rown(C)⊗Mn → Rown(C). We write summing over j, p, q,

∇F(v⊗ ri) = Sijpq(v)⊗ rj⊗ Epq

and for this to be in V⊗K we need Sijpq(v)⊗ δjprq = 0, i.e., ∑j Sijjq = 0 for all i, q. We will
also write

∇F(v⊗ ri) = Sijpq(v)⊗ rj⊗ dEpq .

and these are the same under the isomorphism as

Sijpq(v)⊗ rj(In⊗ Epq − Epq⊗ I) = Sijpq(v)⊗ rj⊗ Epq − Sijjq(v)⊗ rq⊗ I .

The condition to be a right connection is, for all i, s, t,

∇F(v⊗ riEst) = ∇(v⊗ ri)Est + v⊗ ri ⊗ dEst

which gives, summing over j, p, q

δisStjpq(v)⊗ rj⊗ Epq = Sijpq(v)⊗ rj⊗ EpqEst + v⊗ ri ⊗ Est − δisv⊗ rt⊗ I .

This has general solution

Sijpq(v) = −vδijδpq + δiqLjp(v),

where ∑j Ljj(v) = v.

If we take MnM to be the category of left Mn modules and module maps, then there is
a functor MnM→ EMn to the category of right Mn modules with right connections for the
universal calculus. This is given by V 7→ V⊗Rown(C), and this is given the connection in
Proposition 10, where we define Lij(v) by the right action Eij . v = Lij(v). The condition
∑j Ljj(v) = v is simply In . v = v. Note that this will not give the most general Lij for
Proposition 10, but the restriction to certain Lij is what we need in the next part.

6.3. Induced Holomorphic Bundles on CPn−1

From Proposition 1, we know that there is a functor ⊗ E from EMn to EC(CPn−1). At the
end of the last section, we had a functor from MnM to EMn , and of course these can be
composed. However, we know that the state evaluation map φ is not a cochain map for
the ordinary calculus on CPn−1 (using the choice of connection in Section 4.2), but it is for
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the ∂̄ calculus. It is then natural to ask if we obtain a functor into holomorphic bundles on
CPn−1. We use πi,j for the projection from Ωi+j to Ωi,j.

Given a connection for the calculus Ωn(CPn−1), we can obtain a ∂̄ connection
(see Section 2.5) simply by composing with π0,1. Then, to ensure that F⊗Mn E is a ho-
momorphic bimodule, we require that the Ω0,2 part of its curvature RF⊗ E vanishes.

Proposition 11. The Ω0,2 component of the curvature of F⊗Mn E is

(id⊗π0,2)RF⊗ E(v⊗ rt⊗ hi ⊗ vj)

= ∑
abs

LcaLbs(v)⊗ v̄j⊗ δtivavs⊗ dv̄g ∧ dv̄b −∑
a

Lca(v)⊗ v̄j⊗ vavi ⊗ dv̄g ∧ dv̄t

+ ∑
ab

LcgLba(v)⊗ v̄j⊗ vavi ⊗ dv̄b ∧ dv̄t,

and in particular, if LcgLes = δgeLcs then (id⊗π0,2)RF⊗ E = 0.

Proof. From Proposition 6, RF⊗ E splits into three bits, and the id⊗ RE term does not have
a dv̄i ∧ dv̄j part as computed in (22). By Proposition 8 and Equation (24), the last term in
the formula for RF⊗ E in Proposition 6 does not have a Ω0,2 part either, so we are left with

(id⊗π0,2)RF⊗ E = (id⊗π0,2)
(
(id⊗ σE)(RF ⊗ id)

)
.

Using (12) twice, we obtain

(id⊗π0,2)σ
(

dEab ∧ dEst ⊗ hi ⊗ v̄j
)

= ∑
pqge

(
δtiδsrδbpδaehg − δtiδsrδbgδepha − δtpδriδbsδaehg + δtpδriδbgδesha

)
⊗ v̄ f ⊗π0,2(Γg f

eq ∧ Γpq
rj)

= ∑
pge f r

(
δtiδsrδbpδaehg − δtiδsrδbgδepha − δtpδriδbsδaehg + δtpδriδbgδesha

)
⊗ v̄ f ⊗ v f ve dv̄g ∧ (−δpr dv̄j + v̄jvr dv̄p)

= ∑
g

hg ⊗ v̄j ⊗
(
δtivavs dv̄g ∧ dv̄b − δbsvavi dv̄g ∧ dv̄t + δagvsvi dv̄b ∧ dv̄t

)
= ∑

ge f
hg ⊗ v̄j ⊗

(
δtiδegδb f vavs − δbsδegδt f vavi + δagδbeδt f vsvi

)
dv̄e ∧ dv̄ f (37)

taking only the dv̄ ∧ dv̄ component.
We are left with, using (37)

(id⊗π0,2)RF⊗ E = (id⊗π0,2)
(
(id⊗ σE)(RF ⊗ id)

)
= (id⊗π0,2)(id⊗ σE)

(
RF(v⊗ rt)⊗ hi ⊗ v̄j

)
= (id⊗π0,2)

(
LcaLbs(v)⊗ rc⊗ σE(dEab ∧ dEst⊗ hi ⊗ v̄j)

)
= ∑

ge f absc

(
LcaLbs(v)⊗ rc⊗ hg⊗ v̄j⊗(

δtiδegδb f vavs − δbsδegδt f vavi + δagδbeδt f vsvi
)

dv̄e ∧ dv̄ f , (38)

and for this to vanish, we need for all t, i, j, g, c,

∑
e f abs

(
LcaLbs(v)⊗ v̄j⊗

(
δtiδegδb f vavs − δbsδegδt f vavi + δagδbeδt f vsvi

)
dv̄e ∧ dv̄ f = 0

= ∑
abs

LcaLbs(v)⊗ v̄j⊗ δtivavs⊗ dv̄g ∧ dv̄b −∑
a

Lca(v)⊗ v̄j⊗ vavi ⊗ dv̄g ∧ dv̄t

+ ∑
ab

LcgLba(v)⊗ v̄j⊗ vavi ⊗ dv̄b ∧ dv̄t . (39)
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If LcgLes = δgeLcs; then, the result of (38) is

∑
e f abs

Lcs(v)⊗ δab
(
δtiδegδb f vavs − δbsδegδt f vavi + δagδbeδt f vsvi

)
dv̄e ∧ dv̄ f

= ∑
e f as

Lcs(v)⊗
(
δtiδegδa f vavs − δasδegδt f vavi + δagδaeδt f vsvi

)
dv̄e ∧ dv̄ f

= ∑
f as

Lcs(v)⊗ vs
(
δtiδa f va − δasδt f vi + δagδt f vi

)
dv̄g ∧ dv̄ f

= δti ∑
f s

Lcs(v)⊗ vsv f dv̄g ∧ dv̄ f = 0 .

Note that the conditions ∑i Lii(v) = v, and that in Proposition 11 they correspond
to Lij being the left action of the matrix unit Eij in a representation of Mn(C) . Set F =
V⊗Rown(C) as in Proposition 10, then

F ⊗
Mn(C)

E = V⊗Rown(C) ⊗
Mn(C)

Coln(C)⊗C−1(CPn−1) .

For w ∈ V, using (9), Proposition (10) and (12)

∇F⊗ E(w⊗ ra⊗ hi ⊗ v̄j) = (id⊗ σE)
(
∇F(w⊗ ra)⊗(hi ⊗ v̄j) + w⊗ ra⊗∇E(hi ⊗ v̄j)

)
= Lps(w)⊗ rp⊗ σE(dEsa⊗ hi ⊗ v̄j) + w⊗ ra⊗ hp⊗ v̄q⊗ Γpq

ij

= Lps(w)⊗ rp⊗(δaihtδsr − δathsδri)⊗ v̄q⊗ Γpq
ij

+ w⊗ ra⊗ hp⊗ v̄q⊗ Γpq
ij

= δaiLpr(w)⊗ rp⊗ htv̄q⊗ Γtq
rj + w⊗ ra⊗ hp⊗ v̄q⊗ Γpq

ij

− Lps(w)⊗ rp⊗ hs⊗ v̄q⊗ Γaq
ij

=
(
δaiLpr(w)⊗ rp⊗ ht + w⊗ ra⊗ htδri

− δriδtaLps(w)⊗ rp⊗ hs
)
⊗ v̄q⊗ Γtq

rj.

Note Rown(C)⊗Mn Coln(C) ∼= C by ra⊗ hi 7→ δai ∈ C. Look at the last two terms of
the last line of (40) using this isomorphism(

w δatδri − δriδtaLps(w)δps
)
⊗ v̄q⊗ Γtq

rj =
(
w δat − δtaδpsLps(w)

)
⊗ v̄q⊗ Γtq

ij = 0

by Proposition (10). Thus, we can use the isomorphism to give a connection on F⊗Mn E ∼=
V⊗C−1(CPn−1) given by

∇(w⊗ v̄j) = Lpr(w)⊗ v̄q⊗ Γpq
rj .

Corollary 4. For the special case of the connection in (23), we find

∇(w⊗ v̄j) = Lpr(w)⊗ v̄q⊗ vq
(
δpr dv̄j − v̄jvr dv̄p + v̄jv̄p dvr

)
= w⊗ v̄q⊗ vq dv̄j + Lpr(w)⊗ v̄q⊗ vqv̄j(v̄p dv̄r − vr dv̄p)

= w⊗ v̄q⊗ vq dv̄j + Lpr(w)⊗ v̄j(v̄p dv̄r − vr dv̄p), (40)

and this splits into a ∂ and a ∂̄ connection

∂V(w⊗ v̄j) = Lpr(w)⊗ v̄j⊗ v̄p dvr

∂̄V(w⊗ v̄j) = w⊗ v̄q⊗ vq dv̄j − Lpr(w)⊗ v̄j⊗ vr dv̄p . (41)
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Proposition 12. The composition of the given functor ⊗ E : EMn → EC(CPn−1) and the functor
in Section 6.2 MnM→ EMn gives a functor from MnM to holomorphic bundles on CPn−1. It is
given by V mapping to V⊗C−1(CPn−1) with the ∂̄V connections given in Corollary 4.

Proof. The category of holomorphic bundles is given morphisms being module maps
commutating with ∂̄ operators as in Section 2.4. Most of this has been proved in the
discussion previously. We explicitly check that we have a functor, i.e., that a Mn module
map θ : V → Y gives a commutating diagram

V⊗C−1(CPn−1)

θ⊗ id
��

∂̄V // V⊗C−1(CPn−1)⊗C(CPn−1) Ω0,1(CPn−1)

θ⊗ id⊗ id
��

Y⊗C−1(CPn−1)
∂̄Y

// Y⊗C−1(CPn−1)⊗C(CPn−1) Ω0,1(CPn−1)

which happens because the Lpr maps commute with θ in the formula (41).
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