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Abstract: We consider a Dirichlet problem, which is a perturbation of the eigenvalue problem for the
anisotropic p-Laplacian. We assume that the perturbation is (p(z)− 1)-sublinear, and we prove an
existence and nonexistence theorem for positive solutions as the parameter λ moves on the positive
semiaxis. We also show the existence of a smallest positive solution and determine the monotonicity
and continuity properties of the minimal solution map.
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1. Introduction

Let Ω ⊆ RN (N > 2) be a bounded domain with a C2-boundary ∂Ω. In this paper, we
study the following parametric anisotropic Dirichlet problem (Pλ){

−∆p(z)u(z) = λ|u(z)|p(z)−2u(z) + f (z, u(z)) in Ω,
u|∂Ω = 0, u > 0.

For p ∈ L∞(Ω) with 1 < ess inf
Ω

p, by ∆p(z) we denote the anisotropic p-Laplacian

differential operator defined by

∆p(z)u = div (|Du|p(z)−2|Du) ∀u ∈W1,p(z)
0 (Ω).

Problem (Pλ) is a perturbation of the eigenvalue problem for the anisotropic p-
Laplacian, with the perturbation f (z, x) being a Carathéodory function, which exhibits
(p(z)− 1)-sublinear growth as x → +∞.

Our goal in this paper is to give a complete description of the set of positive solutions
of problem (Pλ) as the parameter λ varies on the positive semiaxis (0,+∞).

In the past, such perturbed versions of eigenvalue problems, were studied only in
the context of isotropic equations. We mention the works of Papageorgiou–Rădulescu–
Repovš [1] (semilinear Robin problems), Papageorgiou–Rădulescu–Zhang [2] (nonlin-
ear Robin problems), Papageorgiou–Scapellato [3] (Dirichlet (p, 2)-equations), Gasiński–
Papageorgiou [4] (weighted (p, q)-equations). To the best of our knowledge there are no
such works for anisotropic equations.

The reason for this gap in the literature is that the spectrum properties of the p(z)-
Laplacian can be very ”bad” depending on the exponent p(·). This is illustrated in the work
of Fan–Zhang–Zhao [5]. These difficulties are a consequence of the fact that the anisotropic
p-Laplacian is not homogeneous and so many of the tools and techniques available in the
isotropic case fail in the anisotropic one. Nevertheless, under a monotonicity type condition
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on the exponent p(·) and using the results of Fan–Zhang–Zhao [5], we are able to give a
precise description with respect to the parameter λ > 0, of the set of positive solutions.
Moreover, we show that there exists a smallest positive solution and we determine the kind
of dependence on the parameter λ > 0 of this minimal solution.

The p(z)-Laplacian has many physical applications. This includes usage in electrorheo-
logical fluids, which are fluids that can solidify into a jelly-like state almost instantaneously
when subjected to an externally applied electric field of moderate strength with stiffness
varying proportionally to the field strength. This transformation is reversible and once
the applied field is removed, the original flow state is recovered (Winslow effect). Such
processes have been modelled by using anisotropic operators (see Rŭžička [6]).

Because we look for the positive solutions, the problem is by its nature asymmetric.
All the conditions on the reaction concern the positive semiaxis R+. However, even in its
framework we should mention another asymmetry of the problem. Namely, the reaction
f (z, ·) is (p(z)− 1)-sublinear near +∞, but (p(z)− 1)-superlinear near 0+. This different
behaviour of f (z, ·) at the two ends of R+, is the reason that leads to a complete description
of the set of positive solutions as the parameter λ > 0 varies.

2. Mathematical Background Hypotheses

The analysis of problem (Pλ) uses variable Lebesgue and Sobolev spaces. A com-
prehensive presentation of the theory of the spaces can be found in the books of Cruz
Uribe–Fiorenza [7] and of Diening–Harjulehto-Hästö–Růžička [8].

Let
E1 =

{
r ∈ C(Ω) : 1 < r(z) for all z ∈ Ω

}
.

For every r ∈ E1, we set

r+ = max
Ω

r, r− = min
Ω

r.

By L0(Ω), we denote the space of all measurable functions u : Ω→ R. As usual, we
identify two such functions which differ only on a Lebesgue-null set of Ω.

For every r ∈ E1, the variable Lebesgue space Lr(z)(Ω) is defined by

Lr(z)(Ω) =

{
u ∈ L0(Ω) : $r(u) =

∫
Ω
|u|r(z) dz < +∞

}
.

We endow this space with the so-called “Luxemburg norm” defined by

‖u‖r(z) = inf
{

ϑ > 0 : $r

(
u
ϑ

)
=
∫

Ω

(
|u|
ϑ

)r(z)

dz 6 1
}

.

With this norm, Lr(z)(Ω) becomes a separable Banach space which is reflexive (in fact
uniformly convex). Let p′ ∈ E1 be defined by

p′(z) =
p(z)

p(z)− 1
∀z ∈ Ω

(that is 1
p(z) +

1
p′(z) = 1 for all z ∈ Ω). Then we have

Lp′(z)(Ω) = Lp(z)(Ω)∗.

Moreover, the following Hölder-type inequality holds:

∫
Ω
|uh| dz 6

(
1

p−
+

1
p′−

)
‖u‖p(z)‖h‖p′(z) ∀u ∈ Lp(z)(Ω), h ∈ Lp′(z)(Ω).
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In addition, if q ∈ E1 and q(z) 6 p(z) for all z ∈ Ω, then the embedding Lp(z)(Ω) ⊆
Lq(z)(Ω) is continuous.

By using the variable Lebesgue spaces, we can define the corresponding variable
Sobolev spaces. Consequently, if p ∈ E, then the variable Sobolev space W1,p(z)(Ω) is
defined by

W1,p(z)(Ω) = {u ∈ Lp(z)(Ω) : |Du| ∈ Lp(z)(Ω)}

with Du being the weak gradient of u. We endow this space with the following norm

‖u‖1,p(z) = ‖u‖p(z) + ‖Du‖p(z),

where
‖Du‖p(z) = ‖|Du|‖p(z).

Let C0,1(Ω) denote the space of all Lipschitz functions from Ω into R. Let p ∈
E1 ∩ C0,1(Ω). We define

W1,p(z)
0 (Ω) = C∞

c (Ω)
‖·‖1,p(z) .

The spaces W1,p(z)(Ω) and W1,p(z)
0 (Ω) are both separable Banach spaces which are

reflexive (in fact uniformly convex). The Poincaré inequality holds for the space W1,p(z)
0 (Ω);

namely, we can find c0 = c0(Ω) > 0 such that

‖u‖p(z) 6 c0‖Du‖p(z) ∀u ∈W1,p(z)
0 (Ω).

Therefore, on W1,p(z)
0 (Ω) we can consider the following equivalent norm:

‖u‖ = ‖Du‖p(z) ∀u ∈W1,p(z)
0 (Ω).

Let p ∈ E1 ∩ C0,1(Ω). We set

p∗(z) =

{
Np(z)

N−p(z) if p(z) < N,
+∞ if N 6 p(z)

∀z ∈ Ω.

This is the critical variable Sobolev exponent corresponding to p. Let r ∈ C(Ω)
satisfy 1 6 r(z) 6 p∗(z) (respectively 1 6 r(z) < p∗(z)) for all z ∈ Ω. We have that
the embedding W1,p(z)

0 (Ω) ⊆ Lr(z)(Ω) is continuous (respectively compact). This is the
so-called “anisotropic Sobolev embedding theorem”. If p ∈ E1 ∩ C0,1(Ω), then

W1.p(z)
0 (Ω)∗ = W−1,p′(z)(Ω).

There is a close relation between the modular function $p(Du) =
∫

Ω
|Du|p(z) dz and

the norm ‖ · ‖, which we specify in the next theorem.

Theorem 1. If p ∈ E1, then
(a) ‖u‖ = ϑ⇐⇒ $p(

Du
ϑ ) = 1;

(b) ‖u‖ < 1 (respectively = 1, > 1)⇐⇒ $p(Du) < 1 (respectively = 1, > 1);
(c) ‖u‖ < 1 =⇒ ‖u‖p+ 6 $p(Du) 6 ‖u‖p− ;
(d) ‖u‖ > 1 =⇒ ‖u‖p− 6 $p(Du) 6 ‖u‖p+ ;
(e) ‖u‖ → 0 (respectively→ +∞)⇐⇒ $p(Du)→ 0 (respectively→ +∞);
(f) ‖uh − u‖ → 0⇐⇒ $p(Dun − Du)→ 0.
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Let Ap : W1,p(z)
0 (Ω)→W−1,p′(z)(Ω) be defined by

〈Ap(u), h〉 =
∫

Ω
|Du|p(z)−2(Du, Dh)RN dz ∀u, h ∈W1,p(z)

0 (Ω).

This operator has the following properties (see Gasiński–Papageorgiou [9]
(Proposition 2.5)).

Theorem 2. The operator Ap : W1,p(z)
0 (Ω) → W−1,p′(z)(Ω) is bounded (that is, maps bounded

sets to bounded sets), continuous, strictly monotone (thus, maximal monotone too) and of type
(S)+ (that is, if un

w−→ u in W1,p(z)
0 (Ω) and lim sup

n→+∞
〈Ap(un), un − u〉 6 0, then un → u in

W1,p(z)
0 (Ω)).

The anisotropic regularity theorem of Fan [10] will lead us to the space

C1
0(Ω) =

{
u ∈ C1(Ω) : u|∂Ω = 0

}
.

This is an ordered Banach space with positive (order) cone

C+ =
{

u ∈ C1
0(Ω) : u(z) > 0 for all z ∈ Ω

}
.

This cone has a nonempty interior given by

int C+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u
∂n

∣∣∣∣
∂Ω

< 0
}

,

where ∂u
∂n = (Du, n)RN with n being the outward unit normal on ∂Ω.

Next, we recall some basic facts about the spectrum of (−∆p(z), W1,p(z)
0 (Ω)). Conse-

quently, we consider the following nonlinear eigenvalue problem (Eλ){
−∆p(z)u(z) = λ̂|u(z)|p(z)−2u(z) in Ω,
u|∂Ω = 0.

We say that λ̂ ∈ R is an eigenvalue of the anisotropic p-Laplacian, if problem (Eλ) has
a nontrivial weak solution ûλ ∈W1,p(z)

0 (Ω). Evidently,

λ̂ =
$p(Dûλ)

ϕp(uλ)
> 0.

By Λ, we denote the set of eigenvalues of (Eλ). In the isotropic case (that is, when p is
constant), then inf Λ = λ̂1(p) > 0, with λ̂1(p) being the first eigenvalue of (−∆p, W1,p

0 (Ω)).
In contrast, in the anisotropic case, it can happen that inf Λ = 0. In order for inf Λ > 0 and
therefore to have a first eigenvalue λ̂1(p) > 0, we need to impose a monotonicity condition
on the variable exponent p(·).

We introduce the following quantities:

λ̂1 = inf Λ,

µ1 = inf


∫

Ω
1

p(z) |Du|p(z) dz∫
Ω

1
p(z) |u|

p(z) dz
: u ∈W1,p(z)

0 (Ω), u 6= 0

, (1)

µ̃1 =

{
$p(Du)
$p(u)

: W1,p(z)
0 (Ω), u 6= 0

}
. (2)
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It is easy to see that

p−
p+

µ̃1 6 µ1 6
p+
p−

µ̃1 and µ̃1 6 λ̂1.

From Fan–Zhang–Zhao [5] (Lemma 3.1), we know that

λ̂1 > 0 ⇐⇒ µ1 > 0 ⇐⇒ µ̃1 > 0.

Moreover, if N > 2 and there exists d ∈ RN \ {0} such that for any z ∈ Ω the function
t 7−→ p(z + td) is monotone on Tz = {t : z + td ∈ Ω}, then λ̂1 > 0 (Fan–Zhang–Zhao [5]
(Theorem 3.3)).

Let u, v : Ω −→ R be measurable functions, such that u(z) 6 v(z) for almost all z ∈ Ω.
We introduce the following sets:

[u, v] = {h ∈W1,p(z)
0 (Ω) : u(z) 6 h(z) 6 v(z) for a.a. z ∈ Ω},

intC1
0(Ω)[u, v] − the interior of [u, v] ∩ C1

0(Ω) in C1
0(Ω).

Moreover, we define u+(z) = max{u(z), 0}, u− = max{−u(z), 0} for all z ∈ Ω. We
have u = u+ − u−, |u| = u+ + u− and if u ∈ W1,p(z)

0 (Ω), then u± ∈ W1,p(z)
0 (Ω). If

h1, h2 : Ω → R are measurable, then h1 ≺ h2 if for all compact sets K ⊆ Ω, 0 < cK 6
h2(z) − h1(z) for a.a. z ∈ K. Finally, if X is a Banach space and ϕ ∈ C1(X;R), then
Kϕ = {u ∈ X : ϕ′(u) = 0}.

Our hypotheses on the data of (Pλ) are the following:
H0 : p ∈ C0,1(Ω), 1 < p− 6 p+ < N and there exists d ∈ RN \ {0} such that for all z ∈ Ω,
the function t 7−→ p(z + td) is monotone on Tz = {t : z + td ∈ Ω}.

Remark 1. As we already mentioned, these hypotheses imply that λ̂1 > 0.

H1 : f : Ω×R −→ R is a nontrivial Carathéodory function, such that f (z, 0) = 0 for a.a.
z ∈ Ω and
(i) there exist a ∈ L∞(Ω), q ∈ C(Ω), q+ < p−, such that

0 6 f (z, x) 6 a(z)(1 + xq(z)−1) for a.a. z ∈ Ω, all x > 0;

(ii) we have that

lim
x→+∞

f (z, x)
xp(z)−1

= 0 uniformly for a.a. z ∈ Ω;

(iii) there exist τ ∈ C(Ω) with τ+ < p−, δ > 0 and c0 > 0 such that

c0xτ(z)−1 6 f (z, x) for a.a. z ∈ Ω, all 0 6 x 6 δ;

(iv) for every $ > 0, there exists ξ̂$ > 0 such that for a.a. z ∈ Ω, the map x 7−→ f (z, x) +
ξ̂$xp(z)−1 is nondecreasing on [0, $].

Remark 2. Because we look for positive solutions and the above hypotheses concern the positive
semiaxes (lack of symmetry) R+ = [0,+∞), we may assume without any loss of generality that
f (z, x) = 0 for a.a. z ∈ Ω, all x 6 0.

We introduce the following two sets:

L = {λ > 0 : problem (Pλ) has a positive solution},
Sλ = set of positive solutions of (Pλ).
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3. Positive Solutions

In this section, we prove an existence theorem for problem (Pλ), which describes the
set of positive solutions as λ varies in (0,+∞).

Proposition 1. If hypotheses H0 and H1 hold and λ > λ̂1, then λ 6∈ L.

Proof. Arguing by contradiction, suppose that λ ∈ L. Then we can find u ∈ Sλ. The
anisotropic regularity theory of Fan [10] implies that u ∈ C+ \ {0}. We have ∆p(z)u 6 0 in
Ω and so Proposition A2 of Papageorgiou–Rădulescu–Zhang [11], implies that u ∈ int C+.
Moreover, let û1 be a positive eigenfunction for λ̂1 (recall that λ̂1 > 0 ⇐⇒ µ1 > 0 ⇐⇒
µ̃1 > 0). Similarly, we have û1 ∈ int C+.

Consider the Picone function R(û1, u)(·) defined by

R(û1, u)(z) = |Dû1(z)p(z)| − |Du(z)|p(z)−1
(

Du(z), D
(

û1(z)p(z)

u(z)p(z)−1

))
RN

.

From Jaroš [12], we know that

0 6 R(û1, u)(z) ∀z ∈ Ω,

so

0 6 $p(Dû1)−
∫

Ω
(−∆p(z)u)

ûp(z)
1

up(z)−1
dz

(using the nonlinear Green’s identity), thus

0 6 λ̂1$p(û1)−
∫

Ω
λûp(z)

1 dz

(see (2) and recall that f > 0), hence

0 6 (λ̂1 − λ)$p(û1).

If λ > λ̂1, then we have a contradiction.
If λ = λ̂1, then R(û1, u)(z) = 0 for a.a. z ∈ Ω and so by Lemma 2.2 of Jaroš [12],

we have
û1Du = uDû1,

so

D
(

û1

u

)
= 0.

Hence, û1 = ϑu for some ϑ > 0, a contradiction since f 6= 0.

Let
η∗ =

p−
p+

µ̃1.

Proposition 2. If hypotheses H0 and H1 hold and λ < η∗, then λ ∈ L.

Proof. Let F(z, x) =
∫ x

0 f (z, s) ds and consider the C1-functional ϕλ : W1,p(z)
0 (Ω) −→ R

defined by

ϕλ(u) =
∫

Ω

1
p(z)
|Du|p(z) dz−

∫
Ω

λ

p(z)
(u+)p(z) dz−

∫
Ω

F(z, u+(z)) dz.

On account of hypotheses H1(i), (ii), given ε > 0, we can find c1 = c1(ε) > 0, such that

F(z, x) 6
ε

p(z)
|x|p(z) + c1 for a.a. z ∈ Ω, all x ∈ R. (3)
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For all u ∈W1,p(z)
0 (Ω), we have

ϕλ(u) >
∫

Ω

1
p(z)
|Du|p(z) dz−

∫
Ω

λ + ε

p(z)
|u|p(z) dz− c2

>
(

1
p+

+
λ + ε

µ̃1 p−

)
$p(Du)− c2 (4)

for some c2 > 0 (see (2) and (3)).
Because λ < η∗, we can choose ε > 0 small so that

λ + ε < η∗ =
p−
p+

µ̃1.

Consequently, from (4), we have

ϕλ(u) > c3$p(Du)− c2,

for some c3 > 0; thus, ϕλ is coercive (see Theorem 1).
By using the anisotropic Sobolev embedding theorem, we see that ϕλ is sequentially

weakly lower semicontinuous.
Consequently, we can find uλ ∈W1,p(z)

0 (Ω), such that

ϕλ(uλ) = inf{ϕλ(u) : u ∈W1,p(z)
0 (Ω)}. (5)

On account of hypothesis H1(iii), we have

c0

τ(z)
xτ(z) 6 F(z, x) for a.a.z ∈ Ω, all 0 6 x 6 δ. (6)

Let û1 ∈ int C+ be an eigenfunction corresponding to λ̂1 > 0. We choose t ∈ (0, 1)
small, so that

0 6 tû1(z) 6 δ ∀z ∈ Ω. (7)

From (6) and (7), we have

ϕλ(tû1) 6
tp−

p−
$p(Dû1)−

c0tτ+

τ+
$p(û1)

=

(
tp−

p−
− c0tτ+

λ̂1τ+

)
$p(Dû1)

=

(
1

p−
− c0

λ̂1τ+tp−−τ+

)
tp−$p(Dû1).

Because τ+ < p−, we see that if we choose t ∈ (0, 1) even smaller, we have

ϕλ(tû1) < 0,

so
ϕλ(uλ) < 0 = ϕλ(0)

(see (5)), thus uλ 6= 0.
From (5), we have

〈ϕ′λ(uλ), h〉 = 0 ∀h ∈W1,p(z)
0 (Ω),

so
〈Ap(uλ), h〉 =

∫
Ω

(
λ(u+

λ )
p(z)−1 + f (z, u+

λ )
)
h dz ∀h ∈W1,p(z)

0 (Ω). (8)
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In (8), we choose h = −u−λ ∈W1,p(z)
0 (Ω) and obtain

$p(Du−λ ) = 0,

so uλ > 0, uλ 6= 0.
Then from (8), we have

−∆p(z)uλ = λup(z)−1
λ + f (z, uλ) > 0 in Ω.

The anisotropic regularity theory (see Fan [10]) and the anisotropic maximum principle
(see Papageorgiou–Rădulescu–Zhang [11]), imply that uλ ∈ int C+.

Corollary 1. If hypotheses H0 and H1 hold, then L 6= ∅ and Sλ ⊆ int C+.

Next, we show that L is connected (an interval).

Theorem 3. If hypotheses H0 and H1 hold, 0 < µ < λ ∈ L and uλ ∈ Sλ, then µ ∈ L and there
exists uµ ∈ Sµ, such that uλ − uµ ∈ int C+.

Proof. We introduce the Carathéodory function k̂µ(z, x) defined by

k̂µ(z, x) =
{

µ(x+) + f (z, x+) if x 6 uλ(z),
µuλ(z) + f (z, uλ(z)) if uλ(z) < x.

(9)

Let K̂µ(z, x) =
∫ x

0 k̂µ(z, s) ds and consider the C1-functional ϕ̂µ : W1,p(z)
0 (Ω) −→ R

defined by

ϕ̂µ(u) =
∫

Ω

1
p(z)
|Du|p(z) dz−

∫
Ω

K̂µ(z, u) dz ∀u ∈W1,p(z)
0 (Ω).

We have
ϕ̂µ(u) >

1
p+

$p(Du)− c4, (10)

for some c4 > 0 (see (9)). By using Theorem 1, we infer that ϕ̂µ is coercive.
Moreover, the anisotropic Sobolev embedding theorem implies that ϕ̂µ is sequentially

weakly lower semicontinuous.
Therefore, we can find uµ ∈W1,p(z)

0 (Ω) such that

ϕ̂µ(uµ) = inf{ϕ̂µ(u) : u ∈W1,p(z)
0 (Ω)}. (11)

By using Proposition 4.1.22 of Papageorgiou–Rădulescu–Repovš [13] (p. 274), we can
find t ∈ (0, 1) small, such that

0 6 tû1(z) 6 min{uλ(z), δ} ∀z ∈ Ω.

Then, as in the proof of Proposition 2, because τ+ < p− and taking t ∈ (0, 1) even
smaller if necessary, we have

ϕ̂µ(tû1) < 0,

so
ϕ̂µ(uµ) < 0 = ϕ̂µ(0)

(see (11)); thus, uµ 6= 0.
From (11), we have

〈ϕ̂′µ(uµ), h〉 = 0 ∀h ∈W1,p(z)
0 (Ω),
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so
〈Ap(uµ), h〉 =

∫
Ω

k̂µ(z, uµ)h dz ∀h ∈W1,p(z)
0 (Ω). (12)

In (12), first we choose h = −u−µ ∈W1,p(z)
0 (Ω) and obtain uµ > 0, uµ 6= 0. Then, in (12)

we use the test function h = (uµ − uλ)
+ ∈W1,p(z)

0 (Ω). We have

〈Ap(uµ), (uµ − uλ)
+〉

=
∫

Ω

(
µup(z)−1

λ + f (z, uλ)
)
(uµ − uλ)

+ dz

6
∫

Ω

(
λup(z)−1

λ + f (z, uλ)
)
(uµ − uλ)

+ dz

= 〈Aλ(uλ), (uµ − uλ)
+〉

(see (9) and use the fact that uλ ∈ Sλ), so

uµ 6 uλ

(see Theorem 2). Consequently, we have proved that

uµ ∈ [0, uλ], uµ 6= 0. (13)

From (13), (9) and (12), it follows that

uµ ∈ Sµ ⊆ int C+,

and so µ ∈ L.
Let $ = ‖uλ‖∞ and let ξ̂$ > 0 be as postulated by hypothesis H1(iv). We have

−∆p(z)uµ + ξ̂pup(z)−1
µ = µup(z)−1

λ + f (z, uµ) + ξ̂$up(z)−1
µ

6 λup(z)−1
λ + f (z, uλ) + ξ̂$up(z)−1

λ

= −∆p(z)uλ + ξ̂$up(z)−1
λ (14)

(see (13), hypothesis H1(iv), and use the fact that uλ ∈ Sλ).
Note that 0 ≺ (λ− µ)up(z)−1

µ (since uµ ∈ int C+). Consequently, from (14) and Propo-
sition 2.5 of Papageorgiou–Rădulescu–Repovš [14], we infer that uλ − uµ ∈ int C+.

Next, we will produce a lower bound for the elements of Sλ. To this end, note that
hypotheses H1(i), (iii) implies that we can find c5 > 0, such that

f (z, x) > c0xτ(z)−1 − c5xp(z)−1 for a.a. z ∈ Ω, x > 0. (15)

This unilateral growth estimate leads to the following auxiliary problem{
−∆p(z)u(z) = c0u(z)τ(z)−1 − c5u(z)p(z)−1 in Ω,
u|∂Ω = 0, u > 0.

(16)

In the next theorem, we show the existence and uniqueness of solutions for prob-
lem (16).

Theorem 4. If p ∈ C0,1(Ω) with 1 < p− 6 p+ < N and τ ∈ C(Ω) with τ+ < p−, then
problem (16) has a unique positive solution u ∈ int C+.

Proof. First we show the existence of a positive solution. To this end, consider the C1-
functional σ : W1,p(z)

0 (Ω) −→ R defined by
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σ(u) =
∫

Ω

1
p(z)
|Du|p(z) dz +

∫
Ω

c5

p(z)
(u+)p(z) dz−

∫
Ω

c0

τ(z)
(u+)τ(z) dz

for all u ∈ W1,p(z)
0 (Ω). Because τ+ < p−, it is clear that σ is coercive. Moreover, it is

sequentially weakly lower semicontinuous. Consequently, we can find u ∈ W1,p(z)
0 (Ω),

such that
σ(u) = inf

{
σ(u) : u ∈W1,p(z)

0 (Ω)
}
< 0 = σ(0) (17)

(because τ+ < p−), so u 6= 0.
From (17), we have

〈σ′(u), h〉 = 0 ∀h ∈W1,p(z)
0 (Ω),

so
〈Ap(u), h〉 =

∫
Ω

(
c0(u+)τ(z)−1 − c5(u+)p(z)−1)h dz ∀h ∈W1,p(z)

0 (Ω).

Choosing h = −u− ∈W1,p(z)
0 (Ω), we obtain u > 0, u 6= 0. Consequently, we have

−∆p(z)u = c0uτ(z)−1 − c5up(z)−1 in Ω.

From the anisotropic regularity theory, (see Fan [10]), we have u ∈ C+ \ {0}. We have

−∆p(z)u + c5up(z)−1 > 0 in Ω,

so u ∈ int C+ (see Papageorgiou–Rădulescu–Zhang [11]).
Now we will show the uniqueness of this positive solution. Suppose that v ∈

W1,p(z)
0 (Ω) is another positive solution of (16). For this solution, we also have v ∈ int C+.

Then, by using Proposition 4.1.22 of Papageorgiou–Rădulescu–Repovš [13] (p. 274),
we have

u
v
∈ L∞(Ω) and

v
u
∈ L∞(Ω). (18)

We introduce the integral functional j : L1(Ω) −→ R = R∪ {+∞} defined by

j(u) =

{ ∫
Ω

1
p(z) |Du

1
τ+ |p(z) dz if u > 0, u

1
τ+ ∈W1,p(z)

0 (Ω),
+∞ otherwise.

Let dom j = {u ∈ L1(Ω) : j(u) < +∞} (the effective domain of j). From Takáč–
Giacomoni [15], we know that j is convex. Let h = uτ+ − vτ+ ∈ C1

0(Ω). Then, by using (18)
we see that for t ∈ (0, 1) small we have

uτ+ + th ∈ dom j, vτ+ + th ∈ dom j.

Consequently, we can compute the directional derivatives of j at uτ+ and at vτ+ in the
direction h. A direct computation using the chain rule and Green’s identity gives

j′(uτ+)(h) =
1

τ+

∫
Ω

−∆p(z)u

uτ+−1 h dz

=
1

τ+

∫
Ω

(
c0 − c5up(z)−τ+

)
h dz,

j′(vτ+)(h) =
1

τ+

∫
Ω

−∆p(z)v

vτ+−1 h dz

=
1

τ+

∫
Ω

(
c0 − c5vp(z)−τ+

)
h dz.
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The convexity of j implies the monotonicity of j′. Consequently, we have

0 6
∫

Ω
c5
(
vp(z)−τ+ − up(z)−τ+

)
(uτ+ − vτ+) dz,

and thus u = v. This implies the uniqueness of the positive solution of problem (16).

This solution provides a lower bound for the elements of Sλ, λ ∈ L, as shown in the
next proposition.

Proposition 3. If hypotheses H0, H1 hold, then u 6 u for all u ∈ Sλ.

Proof. Let u ∈ Sλ ⊆ int C+ and introduce the Carathéodory function l(z, x) defined by

l(z, x) =

{
c0(x+)τ(z)−1 − c5(x+)p(z)−1 if x 6 u(z),
c0u(z)p(z)−1 − c5u(z)p(z)−1 if u(z) < x.

(19)

We set
L(z, x) =

∫ x

0
l(z, s) ds

and consider the C1-functional w : W1,p(z)
0 (Ω) −→ R defined by

w(u) =
∫

Ω

1
p(z)
|Du|p(z) dz−

∫
Ω

L(z, u) dz

>
1
p

$p(Du)− c6

for some c6 > 0 (see (19)); consequently, w is coercive (see Theorem 1).
Moreover, w is sequentially weakly lower semicontinuous. Consequently, we can find

ũ ∈W1,p(z)
0 (Ω) such that

w(ũ) = inf{w(u) : u ∈W1,p(z)
0 (Ω)}. (20)

Given v ∈ int C+, because τ+ < p− for t ∈ (0, 1) small so that tv 6 u (recall that
u ∈ int C+ and use Proposition 4.1.22 of Papageorgiou–Rădulescu–Repovš [13] (p. 274)),
we obtain

w(tv) < 0,

so
w(ũ) < 0 = w(0)

(see (20)), and thus ũ 6= 0.
From (20), we have

〈w′(ũ), h〉 = 0 ∀h ∈W1,p(z)
0 (Ω),

so
〈Ap(ũ), h〉 =

∫
Ω

l(z, ũ)h dz ∀h ∈W1,p(z)
0 (Ω). (21)

We choose h = −ũ− ∈W1,p(z)
0 (Ω) and obtain ũ > 0, ũ 6= 0.

Next, in (21) we use the test function h = (ũ− u)+ ∈W1,p(z)
0 (Ω). We have

〈Ap(ũ), (ũ− u)+〉 =
∫

Ω

(
c0uτ(z)−1 − c5up(z)−1)(ũ− u)+ dz

6
∫

Ω
f (z, u)(ũ− u)+ dz

6 〈Ap(u), (ũ− u)+〉
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(see (15), (19), and use the fact that u ∈ Sλ), so ũ 6 u (see Theorem 2). Consequently,
we have

ũ ∈ [0, u], ũ 6= 0. (22)

Then, (19), (21), (22) and Theorem 4 imply that ũ = u, so

u 6 u ∀u ∈ Sλ.

Let λ∗ = supL. From Propositions 1 and 2, we see that

η∗ =
p−
p+

µ̃1 6 λ∗ 6 λ̂1.

It is natural to ask about the admissibility of the critical parameter value. On this issue,
we have only some partial answers.

First, directly from Proposition 1, we have the following result.

Proposition 4. If hypotheses H0, H1 hold and λ∗ = λ̂1, then λ∗ 6∈ L.

Another result in this direction is the following one.

Proposition 5. If hypotheses H0, H1 hold and λ∗ < µ1, then λ∗ ∈ L.

Proof. Let {λn}n∈N ⊆ L be such that λn ↗ λ∗. From the proof of Theorem 3, we know
that we can find un ∈ Sλn ⊆ int C+, n ∈ N, such that

ϕλn(un) < 0 ∀n ∈ N,

so ∫
Ω

1
p(z)
|Dun|p(z) dz 6

∫
Ω

λn

p(z)
up(z)

n dz +
∫

Ω
F(z, un) dz ∀n ∈ N. (23)

Hypotheses H1(i), (ii) imply that given ε > 0, we can find c7 = c7(ε) > 0, such that

F(z, x) 6
ε

p(z)
xp(z) + c7xq(z) for a.a. z ∈ Ω, all x > 0. (24)

We use (24) in (23) and obtain∫
Ω

1
p(z)
|Dun|p(z) dz 6

∫
Ω

λ∗ + ε

p(z)
up(z)

n + c8$q(u) ∀n ∈ N,

for some c8 > 0, so∫
Ω

1
p(z)
|Dun|p(z) dz 6

∫
Ω

1
p(z)

λ∗ + ε

µ1
|Dun|p(z) dz + c8$q(un)

(see (1)), and thus (
1− λ∗ + ε

µ1

) ∫
Ω

1
p(z)
|Dun|p(z) dz 6 c8$q(un). (25)

Our aim is to show that the sequence {un}n∈N ⊆W1,p(z)
0 (Ω) is bounded. So, without

any loss of generality, we may assume that

‖un‖ > 1, ‖un‖q(z) > 1 ∀n ∈ N.
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Recall that by hypothesis λ∗ < µ1. Consequently, we can choose ε > 0 small so that
λ∗+ ε < µ1. Then, from (25), Theorem 1 and because the embedding W1,p(z)

0 (Ω) ⊆ Lq(z)(Ω)
is continuous, we have

‖un‖p− 6 c9‖un‖q+ ∀n ∈ N,

for some c9 > 0. Thus the sequence {un}n∈N ⊆W1,p(z)
0 (Ω) is bounded (since q+ < p−).

Consequently, we may assume that

un
w−→ u∗ in W1,p(z)

0 (Ω), un −→ u∗ in Lp(z)(Ω). (26)

Because un ∈ Sλn , n ∈ N, we have

〈Ap(un), h〉 =
∫

Ω

(
λnup(z)−1

n + f (z, un)
)
h dz ∀h ∈W1,p(z)

0 (Ω). (27)

In (27), we use the test function h = un− u∗ ∈W1,p(z)
0 (Ω), pass to the limit as n→ +∞

and use (26). We obtain
lim

n→+∞
〈Ap(un), un − u∗〉 = 0,

so
un −→ u∗ in W1,p(z)

0 (Ω) (28)

(see Theorem 2). From Proposition 3, we know that

u 6 un ∀n ∈ N,

so
u 6 u∗, (29)

and so u∗ 6= 0.
In (27), we pass to the limit as n→ +∞ and use (28). We have

〈Ap(u∗), h〉 =
∫

Ω

(
λ∗up(z)−1

∗ + f (z, u∗)
)
h dz ∀h ∈W1,p(z)

0 (Ω),

so u∗ ∈ Sλ∗ ⊆ C+ (see (29)) and so λ∗ ∈ L.

Remark 3. Propositions 4 and 5 are consistent with what is known in the isotropic case (when p is
constant). For that case, we have 0 < λ̂1 = µ1 = µ̃1 and L = (0, λ̂1) (using Picone’s identity, see
Papageorgiou–Rădulescu–Repovš [1]).

It is an open question what can be said about λ∗ > 0 when

µ1 < λ̂1 and µ1 6 λ∗ < λ̂1.

Consequently, we can state the following existence theorem for problem (Pλ).

Theorem 5. If hypotheses H0 and H1 hold, then there exists λ∗ ∈ [ p−
p+ µ̃1, λ̂1], such that

(a) for all λ ∈ (0, λ∗) problem (Pλ) has at least one positive solution uλ ∈ int C+;
(b) for all λ > λ∗, problem (Pλ) has no positive solution;
(c) if λ∗ = λ̂1, then λ∗ 6∈ L and if λ∗ < µ1, then λ∗ ∈ L.

4. Minimal Positive Solution

In this section, we show that for every λ ∈ L, problem (Pλ) has a smallest positive
solution and we determine the continuity and monotonicity properties of the minimal
solution map.

Theorem 6. If hypotheses H0, H1 hold and λ ∈ L, then problem (Pλ) has a smallest positive
solution ûλ ∈ int C+.
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Proof. From Filippakis–Papageorgiou [16] (Lemma 4.1), we know that Sλ is downward-
directed (that is, if u1, u2 ∈ Sλ, then we can find ũ ∈ Sλ, such that ũ 6 u1, ũ 6 u2).
Consequently, invoking Theorem 5.109 of Hu–Papageorgiou [17] (p. 309), we can find a
decreasing sequence {un}n∈N ⊆ Sλ, such that

inf Sλ = inf
n∈N

un.

We have

〈Ap(un), h〉 =
∫

Ω

(
λup(z)−1

n + f (z, un(z))
)
h dz ∀h ∈W1,p(z)

0 (Ω), n ∈ N, (30)

so
u 6 un 6 u1 ∀n ∈ N (31)

(see Proposition 3). From (30) and (31), we see that the sequence {un}n∈N ⊆W1,p(z)
0 (Ω) is

bounded. Consequently, we may assume that

un
w−→ ûλ in W1,p(z)

0 (Ω), un −→ ûλ in Lp(z)(Ω). (32)

In (30), we use the test function h = un− ûλ ∈W1,p(z)
0 (Ω), pass to the limit as n→ +∞

and use (32). We have
lim

n→+∞
〈Ap(un), un − ûλ〉 = 0

so
un −→ ûλ in W1,p(z)

0 (Ω) (33)

(see Theorem 2). From (30), in the limit as n→ +∞, we have

〈Ap(ûλ), h〉 =
∫

Ω

(
λûp(z)−1

λ + f (z, ûλ)h dz ∀h ∈W1,p(z)
0 (Ω)

(see (33)), so
u 6 ûλ

(see (31)) and hence
ûλ ∈ Sλ ⊆ int C+, ûλ = inf Sλ.

We consider the minimal solution map ϑ̂ : L −→ C1
0(Ω) defined by

ϑ̂(λ) = ûλ ∀λ ∈ L.

We say that ϑ̂ is strictly increasing if

0 < µ < λ =⇒ ûλ − ûµ ∈ int C+.

The next theorem indicates some monotonicity properties of ϑ̂.

Theorem 7. If hypotheses H0 and H1 hold, then
(a) ϑ̂ is strictly increasing; and
(b) ϑ̃ is left continuous.

Proof. (a) Let 0 < µ < λ 6 λ∗ and let ûλ ∈ Sλ ⊆ int C+ be the minimal positive solution
of (Pλ). According to Theorem 3, we can find uµ ∈ Sµ ⊆ int C+, such that

ûλ − uµ ∈ int C+.
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Because ûµ 6 uµ, we have
ûλ − ûµ ∈ int C+,

so ϑ̂ is strictly increasing.
(b) Let λn > 0, λn ↗ λ 6 λ∗. Consider the corresponding minimal solutions ûλn ⊆ Sλn ⊆
int C+, n ∈ N. From (a), we know that the sequence {ûλn}n∈N is increasing. We have

〈Ap(ûλn), h〉 =
∫

Ω

(
λnûp(z)−1

λn
+ f (z, ûλn)

)
h dz ∀h ∈W1,p(z)

0 (Ω), n ∈ N, (34)

and
u 6 ûλn 6 ûλ ∀n ∈ N (35)

(see Proposition 3). From (34) and (35), it follows that the sequence {ûλn}n∈N ⊆W1,p(z)
0 (Ω)

is bounded.
Then, from Fan–Zhao [18] (Theorem 4.1) (see also Papageorgiou–Rădulescu–Zhang

[11]) (Proposition A1), we have that

{ûλn}n∈N ⊆ L∞(Ω), ‖ûλn‖∞ 6 c10 ∀n ∈ N,

for some c10 > 0. The anisotropic regularity theory of Fan [10], implies that there exists
α ∈ (0, 1) and c11 > 0, such that

ûλn ∈ C1,α
0 (Ω), ‖ûλn‖C1,α

0 (Ω)
6 c11 ∀n ∈ N. (36)

From (36), the compactness of the embedding C1,α
0 (Ω) ⊆ C1

0(Ω) and the monotonicity
of the sequence {ûλn}n∈N, we have

ûλn −→ ũλ in C1
0(Ω). (37)

We claim that ũλ = ûλ. If not, then there is z0 ∈ Ω, such that

ûλ(z0) < ũλ(z0),

so
ûλ(z0) < ûλn(z0) ∀n > n0

(see (37)), which contradicts part (a). Consequently, ũλ = ûλ, and we conclude that ϑ̂ is left
continuous.

Remark 4. Closing this work, we mention an open problem. Are the results of this paper valid if
we replace hypothesis H1(iii) by the weaker one

lim
x→0+

f (z, x)
xp(z)−1

= 0 uniformly for a.a. z ∈ Ω?

5. Conclusions

In this paper, we have examoned a superlinear perturbation of the anisotropic eigen-
value problem, and we were able to provide a complete description of the set of positive
solutions as the parameter changes. Moreover, we established the existence of a minimal
positive solution ûλ and examined the continuity and monotonicity properties of the map
λ 7→ ûλ.
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