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Abstract: The vertex coloring of graphs is a well-known coloring of graphs. In this coloring, all of the
vertices are assigned colors in such a way that no two adjacent vertices have the same color. We can
call this type of coloring P2 coloring, where P2 is a path graph. However, there are situations in which
this type of coloring cannot give us the solution to the problem at hand. To answer such questions, in
this article, we introduce a novel graph coloring called P3 coloring. A graph is called P3-colorable if
we can assign colors to the vertices of the graph such that the vertices of every P3 path are distinct.
The minimum number of colors required for a graph to have P3 coloring is called the P3 chromatic
number. The aim of this article is, in general, to prove some basic results concerning this coloring,
and, in particular, to compute the P3 chromatic number for different symmetric families of graphs.

Keywords: graph coloring; chromatic number; path graph; cycle graph; prism graph; ladder graph

1. Introduction

The history of graph coloring started with a problem that was about the maps of some
countries, such as the United States. A map was to be colored in such a way that any two
countries with the same border could not be colored with the same color. In 1971, an article
entitled “The Mathematics of Map Coloring” was published in the Journal of Recreational
Mathematics by H.S.M. (Donald) Coxeter, who proved that a “minimum of four colors
are required for the map of United States to color the common border states differently”
(see [1]). Since then, graph coloring has progressed immensely. When we talk about graph
theory and its applications, one of the most commonly used, studied, and applicable topics
in graph theory is graph coloring (see [2]). Graph coloring has many applications in various
fields of life, such as timetabling (see, for example, [3–6]), scheduling daily life activities,
scheduling computer processes (see [7,8]), registering allocations to different institutions
and libraries (see [6,9,10]), manufacturing tools (see [11]), printed circuit testing (see [12]),
routing and wavelength assignment (see [6]), bag rationalization for a food manufacturer
(see [13]), satellite range scheduling (see [14,15]), and frequency assignment (see [6,16]).
These are some applications out of the many that already exist and many to come. In fact,
coloring has inspired many other fields of graph theory.

Coloring theory is the theory of dividing sets with internally compatible conflicts, and
there are many different types of graph coloring; the history of graph coloring is provided
in a previous survey [2]. There are numerous conjectures about coloring problems that
are still unsolved and are being researched by mathematicians and computer scientists
internationally; some of these are noted in [17]. There are many research articles being
published about graph coloring. There are two types of categories of such articles: One
category gives different colors to a graph according to the rules of the topic of the article, and
the other is about the colored structures of graphs whose coloring cannot be controlled. For
further reading and a literature review about graph coloring, readers can refer to [18–21]. A
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historical review and some recent developments in graph coloring schemes are presented
in [22–24].

One way to understand the coloring of the vertices of a graph G is that we can see it
as a function f from the vertex set of G to positive integers such that if xy is an edge of G,
then f (x) 6= f (y). In other words, we assign colors to the vertices of G in such a way that
adjacent vertices have different colors. This is called graph coloring or, more precisely, the
vertex coloring of a graph. The minimum number of colors required for coloring a graph is
called its chromatic number. Thus, in a sense, one can say that the assignment of colors to
the vertices of a graph is called graph coloring if the colors of the vertices of all P2 paths
in the graph are distinct; that is, instead of using the word “edge”, we can use the term
“P2 path”.

Therefore, in this article, motivated by the above reasoning, we introduce the P3-
labeling of graphs, and we will discuss this labeling for some very well-known families of
graphs, such as path graphs, wheel graphs, cycle graphs, complete graphs, prism graphs,
ladder graphs, and star graphs.

Definition 1. A P3 coloring is a function f from the vertex set of G to the set of colors {c1, c2, c3, . . . ,
ck} such that for every P3 path on graph G, the colors of its vertices are distinct, that is, if xyz is a
P3 path on G, then f (x) 6= f (y) 6= f (z) 6= f (x). This is a natural generalization of P2 coloring.

Definition 2. The minimum number of colors required for a graph G to have P3 coloring is called
the P3 chromatic number, and it is denoted as χ3(G).

Note that every P3 coloring of a graph is also its P2 coloring. Therefore, we have

χ(G) ≤ χ3(G). (1)

In addition, it is clear from the definition that for all graphs G,

χ3(G) ≥ 3. (2)

2. Motivation

To place more emphasis on the motivation for our introduction of this type of coloring,
here, we will give an example in which we cannot apply P2 coloring, but only P3 coloring.
In addition, much in the field of mathematics is produced by the curiosity of the minds
of mathematicians when a question emerges while discussing something. In the field of
computer science, there are graphs that are associated with bit strings. Suppose that we
have a set S consisting of all bit strings of length n > 1. Then, a hypercube graph, which is
also known as a cube graph and denoted as Qn, is a graph consisting of the elements of S
as vertices, and there is an edge between two strings if they differ at exactly one position.
Now, if we want to assign different colors to the strings that are different by at most two
positions (or someone challenges us to color the strings (vertices) of Qn in such a way that
any two strings that differ by at most two positions have different colors), then what type
of coloring will we use? Moreover, what is the minimum number of colors required to
achieve this? It is very easy to see that we cannot use P2 coloring here, and we have to
apply P3 coloring to find a possible solution. For example, in Figure 1, we can see that
the usual P2 coloring of Q2 requires only two colors to color this graph, but for the above
question, we cannot color it with two colors. For this purpose, we have to use P3 coloring,
which gives us the solution with four colors for Q2. For the case in which n ≥ 3, χ3(Qn) is
given in the section of this article on open questions.
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Figure 1. Hypercube graphs of strings. Part (a) is of Q2 and part (b) is graph Q3.

3. Main Results

In this section, we present the main results of this article. Theorem 1, Lemma 1, and
its corollaries give us the P3 chromatic number of some general graphs. In Theorems 2–5,
closed formulas are found for the P3 chromatic number of path graphs, cycle graphs,
prism graphs, and ladder graphs. The next theorem gives us the P3 chromatic number of
path graph.

Lemma 1. Let G be a simple graph on n vertices and assume that there is a vertex v ∈ V(G) such
that v is adjacent to every vertex of G, then χ3(G) = n.

Proof. By contrast, suppose that χP3(G) < n. This means that there are two vertices in G
having the same color, e.g., x, y are those vertices. However, every two vertices of G are on
some P3 path having v as the middle vertex. Thus, we have a P3 path xvy, and this path
has the same color as that of its end vertices. This is a contradiction. Therefore, χ3(G) must
be |V(G)|.

The following corollaries directly result from the Lemma 1:

Corollary 1. Let Kn be the complete graph then χ3(Kn) = n for all n ≥ 3;

Corollary 2. Let Wn be the wheel graph on n vertices, then χ3(Wn) = n for all n ≥ 4;

Corollary 3. Let Sn be the star graph on n vertices, then χ3(Sn) = n for all n ≥ 3.

The following Theorem 1 also follows from the above definition:

Theorem 1. Let G be a graph and H be a subgraph of G then χ3(G) ≥ χ3(H);

Theorem 2. Let Pn be the path graph, then χ3(Pn) = 3 for all n ≥ 3;

Proof. Let Pn be a path graph on n vertices, where n ≥ 3 as shown in Figure 2.

Figure 2. P3 labeling of Pn.

To show that χP3(Pn) = 3, first, we show that the path graph has P3 coloring. For this
purpose, we define a function from the set of vertices of Pn to the set of colors {0, 1, 2}.
Thus, lets define a function as follows:

f (xi) =


0, if i ≡ 0 (mod 3);
1, if i ≡ 1 (mod 3);
2, if i ≡ 2 (mod 3).
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To prove that f is indeed a P3 coloring, we show that all P3 paths in Pn are of different
colors. Let Q be a P3 path in Pn as depicted in Figure 3; then, there are three possible cases.

Figure 3. An arbitrary P3 path in Pn.

Case I: If j ≡ 0(mod 3), then f (xj) = 0, f (xj+1) = 1, f (xj+2) = 2;
Case II: If j ≡ 1(mod 3), then f (xi+1) = 1, f (xi+2) = 2, f (xi+3) = 0;
Case III: If j ≡ 2(mod 3), then f (xi+2) = 2, f (xi+3) = 0, f (xi+4) = 1.

Thus, from all of the above possible cases, we can see that all P3 paths Q have different
colors of its vertices under the labeling f . Thus, f is a P3 coloring and by using Equation (2),
we reach our conclusion that is chiP3(Pn) = 3.

Theorem 3. Let Cn be the cycle graph and n 6= 5. Then, for all n ≥ 3

χ3(Cn) =

{
3, n ≡ 0(mod 3);
4, n 6≡ 2(mod 3).

Proof. Let Cn be the cycle graph on n vertices and n ≥ 3. This proof consists of three cases
on three different values of n under mod 3.

Case I: Suppose that n ≡ 0(mod 3). Let us define a function f on the vertices of Cn as
follows:

f (xi) =


1, if i ≡ 0 (mod 3);
2, if i ≡ 1 (mod 3);
3, if i ≡ 2 (mod 3),

where 1 ≤ i ≤ n− 4. Figure 4 represents the P3 coloring of C9 to explain this labeling. Let
Q1 : xixi+1xi+2 be an arbitrary P3 path in Cn, as shown in Figure 5, for 0 ≤ i ≤ n− 1.

1

3 2

1

3

23

2

1

Figure 4. The labeling of the vertices of C9 under f .

Xi

X

X

i+1

i+2

Figure 5. An arbitrary P3 path of C15.

Then, there are three possible cases.

(a). From Figure 5, we have,
if i ≡ 0(mod 3), then f (xi) = 1, f (xi+1) = 2, f (xi+2) = 3;

(b). If i ≡ 1(mod 3), then f (xi) = 2, f (xi+1) = 3, f (xi+2) = 1;
(c). If i ≡ 2(mod 3), then f (xi) = 3, f (xi+1) = 1, f (xi+2) = 2.
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Thus, from all of these cases, we can see that all P3 paths have different colors of their
vertices. Thus, f is a P3 coloring, and the result follows.

Case II: Suppose that n ≡ 1(mod 3). In this case, when we start a P3 coloring of Cn from
any vertex, e.g., x1, to the last, e.g., xn, with at most three colors, then the last vertex xn
cannot be assigned any color from the given three colors. Thus, we need at least four colors
to have a P3 coloring of this graph. For the reverse case, we define the P3-labeling function
as follows:
f (xn) = 1, f (xn−1) = 2, f (xn−2) = 3, f (xn−3) = 4 and for all 1 ≤ i ≤ n− 4 we have

f (xi) =


4, if i ≡ 1 (mod 3);
3, if i ≡ 2 (mod 3);
2, if i ≡ 0 (mod 3).

Figure 6 represents the P3 coloring of C10 to explain this labeling. Let Q2 be an arbitrary
path xixi+1xi+2 in Cn; then, there are four possible cases to discuss this labeling.

4

4 3

4

2

31

2

3

2

Figure 6. P3 labeling of C10.

(a). If i ≡ 0(mod 3), then f (xi) = 2, f (xi+1) = 4, f (xi+2) = 3;
(b). If i ≡ 1(mod 3), then f (xi) = 4, f (xi+1) = 3, f (xi+2) = 2;
(c). If i ≡ 2(mod 3), then f (xi) = 3, f (xi+1) = 2, f (xi+2) = 4;
(d). When the paths are of the forms x1x2xn, x1xnxn−1, xn−2xn−3xn−4 and xn−3xn−4xn−5;

(i) For the path x1x2xn, we have the labeling f (x1) = 4, f (x2) = 3, f (xn) = 1;
(ii) For the path x1xnxn−1, we have the labeling f (x1) = 4, f (xn) = 1, f (xn−1) = 2;
(iii) For the path xn−2xn−3xn−4, we have the labeling f (xn−2) = 3, f (xn−3) = 4,

f (xn−4) = 2 because n ≡ 1(mod 3);
(iv) For the path xn−3xn−4xn−5, we have the labeling f (xn−3) = 4, f (xn−4) = 2,

f (xn−5) = 3 because n ≡ 1(mod 3).
Thus, from all of these cases, we can see that all P3 paths have different colors of
their vertices. Thus, f is indeed a P3 coloring. This shows that χP3(Cn) ≤ 4. This
concludes the result.

Case III: When n ≡ 2(mod 3). In this case, to start a P3 coloring of Cn from vertex x1 to the
last with at most three colors, the last two vertices xn−1, xn cannot be assigned any color
from the given three colors. Therefore, we need at least four colors to have P3 coloring of
this graph. For the reverse case, we will define P3 labeling function as follows:
f (x1) = 1, f (x2) = 2, f (x3) = 3, f (x4) = 4, f (xn) = 4, f (xn−1) = 3, f (xn−2) = 2,
f (xn−3) = 1, and for all 5 ≤ i ≤ n− 4, the function is defined by

f (xi) =


2, if i ≡ 2 (mod 3);
3, if i ≡ 0 (mod 3);
4, if i ≡ 1 (mod 3).

To explain this labeling, Figure 7 shows a P3 coloring of C11 under f . Let Q3 be any arbitrary
P3 path in Cn; then, we have the following cases to discuss for the assertion of P3 coloring.



Symmetry 2023, 15, 521 6 of 15

(a). If i ≡ 0(mod 3) and 5 ≤ i ≤ n− 4, then f (xi) = 3, f (xi+1) = 4, f (xi+2) = 2;
(b). If i ≡ 1(mod 3) and 5 ≤ i ≤ n− 4, then f (xi) = 4, f (xi+1) = 2, f (xi+2) = 3;
(c). If i ≡ 2(mod 3) and 5 ≤ i ≤ n− 4, then f (xi) = 2, f (xi+1) = 3, f (xi+2) = 4;
(d). For the following paths, we have different labeling:

(i) For path x3x4x5, we have the labeling f (x3) = 3, f (x4) = 4, f (x5) = 2;
(ii) For path x4x5x6, we have the labeling f (x4) = 4, f (x5) = 2, f (x6) = 3;
(iii) For path xn−2xn−3xn−4, we have the labeling f (xn−2) = 2, f (xn−3) = 1,

f (xn−4) = 4 because n ≡ 2(mod3);
(iv) For path xn−3xn−4xn−5, we have the labeling f (xn−3) = 1, f (xn−4) = 4,

f (xn−5) = 3 because n ≡ 2(mod3).
Therefore, from all of these cases, we can see that all P3 paths have different
colors of their vertices. Thus, f is a P3 coloring and χ3(Cn) ≤ 4 for all n ≥ 8.
Hence, the proof is completed.

1

1 2

4

3

24

3

2

4 3

Figure 7. P3 labeling of C11.

Remark 1. The χ3(C5) = 5, and it is very easy to see that we cannot have P3-coloring of C5 with
less than 5 colors.

Remark 2. Note that for χ3(Cn) = 3 = χ3(Cn) for n = 3 and χ3(Pn) = 3 > 2 = χ(Pn) this
shows that for some graphs, the P3-chromatic number is equal to their chromatic number, and for
some graphs, this relation is strict.

Theorem 4. Let G ∼= Dn be the prism graph. Then

χ3(Dn) =


4, if n ≡ 0(mod 4) and n ≥ 4;
5, if n ≡ 1(mod 4) and n ≥ 9;
5, if n ≡ 2(mod 4) and n ≥ 10;
5, if n ≡ 3(mod 4) and n ≥ 15.

Proof. Let Dn be the prism graph as depicted in Figure 8. We shall discuss the proof in
four cases.

Case I. Assume that n ≡ 0(mod 4) and n ≥ 4. Since C4 is a subgraph of Dn, then from
Theorem 1, we have χ3(Dn) ≥ 4. To prove the reverse, we shall define a function g :
V(Dn)→ {1, 2, 3, 4} as follows:

g(αi) =


1, if i ≡ 1(mod 4), 1 ≤ i ≤ n;
2, if i ≡ 2(mod 4), 1 ≤ i ≤ n;
3, if i ≡ 3(mod 4), 1 ≤ i ≤ n;
4, if i ≡ 0(mod 4), 1 ≤ i ≤ n.

g(βi) =


3, if i ≡ 1(mod 4), 1 ≤ i ≤ n;
4, if i ≡ 2(mod 4), 1 ≤ i ≤ n;
1, if i ≡ 3(mod 4), 1 ≤ i ≤ n;
2, if i ≡ 0(mod 4), 1 ≤ i ≤ n.
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We will show that f is a P3 coloring. Let Q1 be any arbitrary P3 path in Dn; then, there are ten
possible types of P3 paths in Dn, and they are as follows: The paths are αiαi+1ai+2, αiαi+1βi+1,
αiβiβi+1, βiβi+1bi+2, βiαiαi+1, βiβi+1αi+1, αi+1αi+2βi+2, βi+1αi+1αi+2, αi+2βi+2βi+1 and
βi+2βi+1αi+1.

a1

a2

b1

an

b2bn

b3

bn-1

an-1

a3

Figure 8. The prism graph of Dn, where the vertices bi = βi.

(a). For i ≡ 0(mod 4), we have ten possibilities of the induced coloring of Q1 from g
as follows:

(i) If the path is αiαi+1αi+2, then we have g(αi) = 4, g(αi+1) = 1, g(αi+2) = 2;

(ii) If the path is αiαi+1βi+1, then we have g(αi) = 4, g(αi+1) = 1, g(βi+1) = 3;
(iii) If the path is αibiβi+1, then we have g(αi) = 4, g(βi) = 2, g(βi+1) = 3;
(iv) If the path is βiβi+1βi+2, then we have g(βi) = 2, g(βi+1) = 3, g(βi+2) = 4;
(v) If the path is βiaiαi+1, then we have g(βi) = 2, g(αi) = 4, g(αi+1) = 1;
(vi) If the path is βiβi+1αi+1, then we have g(βi) = 2, g(βi+1) = 3, g(αi+1) = 1;
(vii) If the path is αi+1αi+2βi+2, then we have g(αi+1) = 1, g(αi+2) = 2,

g(βi+2) = 3;
(viii) If the path is βi+1αi+1αi+2, then we have g(βi+1) = 3, g(αi+1) = 1,

g(αi+2) = 2;
(ix) If the path is αi+2βi+2βi+1, then we have g(αi+2) = 2, g(βi+2) = 4,

g(βi+1) = 3;
(x) If the path is βi+2βi+1αi+1, then we have g(βi+2) = 4, g(βi+1) = 3,

g(αi+1) = 1.

(b). For i ≡ 1(mod 4), we have ten possibilities of the induced coloring of Q1 from g
as follows:

(i) If the path is αiαi+1αi+2, then we have g(αi) = 1, g(αi+1) = 2, g(αi+2) = 3;
(ii) If the path is αiαi+1βi+1, then we have g(αi) = 1, g(αi+1) = 2, g(βi+1) = 4;
(iii) If the path is αibiβi+1, then we have g(αi) = 1, g(βi) = 3, g(βi+1) = 4;
(iv) If the path is βiβi+1βi+2, then we have g(βi) = 3, g(βi+1) = 4, g(βi+2) = 1;
(v) If the path is βiaiαi+1, then we have g(βi) = 3, g(αi) = 1, g(αi+1) = 2;
(vi) If the path is βiβi+1αi+1, then we have g(βi) = 3, g(βi+1) = 4, g(αi+1) = 2;
(vii) If the path is αi+1αi+2βi+2, then we have g(αi+1) = 4, g(αi+2) = 3,

g(βi+2) = 1;
(viii) If the path is βi+1αi+1αi+2, then we have g(βi+1) = 4, g(αi+1) = 2,

g(αi+2) = 3;
(ix) If the path is αi+2βi+2βi+1, then we have g(αi+2) = 2, g(βi+2) = 1,

g(βi+1) = 4;
(x) If the path is βi+2βi+1αi+1, then we have g(βi+2) = 1, g(βi+1) = 4,

g(αi+1) = 2.
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(c). For i ≡ 2(mod 4), we again have ten possibilities of the induced coloring of Q1 from
g as follows:

(i) If the path is αiαi+1αi+2, then we have g(αi) = 2, g(αi+1) = 3, g(αi+2) = 4;
(ii) If the path is αiαi+1βi+1, then we have g(αi) = 2, g(αi+1) = 3, g(βi+1) = 1;
(iii) If the path is αibiβi+1, then we have g(αi) = 2, g(βi) = 4, g(βi+1) = 1;
(iv) If the path is βiβi+1βi+2, then we have g(βi) = 4, g(βi+1) = 1, g(βi+2) = 2;
(v) If the path is βiaiαi+1, then we have g(βi) = 4, g(αi) = 2, g(αi+1) = 3;
(vi) If the path is βiβi+1αi+1, then we have g(βi) = 4, g(βi+1) = 1, g(αi+1) = 3;
(vii) If the path is αi+1αi+2βi+2, then we have g(αi+1) = 3, g(αi+2) = 4,

g(βi+2) = 2;
(viii) If the path is βi+1αi+1αi+2, then we have g(βi+1) = 1, g(αi+1) = 3,

g(αi+2) = 4;
(ix) If the path is αi+2βi+2βi+1, then we have g(αi+2) = 4, g(βi+2) = 2,

g(βi+1) = 1;
(x) If the path is βi+2βi+1αi+1, then we have g(βi+2) = 2, g(βi+1) = 1,

g(αi+1) = 3.

(d). For i ≡ 3(mod 4), we have ten possibilities of the induced coloring of Q1 from g
as follows:

(i) If the path is αiαi+1αi+2, then we have g(αi) = 3, g(αi+1) = 4, g(αi+2) = 1;
(ii) If the path is αiαi+1βi+1, then we have g(αi) = 3, g(αi+1) = 4, g(βi+1) = 2;
(iii) If the path is αibiβi+1, then we have g(αi) = 3, g(βi) = 1, g(βi+1) = 2;
(iv) If the path is βiβi+1βi+2, then we have g(βi) = 1, g(βi+1) = 2, g(βi+2) = 3;
(v) If the path is βiaiαi+1, then we have g(βi) = 1, g(αi) = 3, g(αi+1) = 4;
(vi) If the path is βiβi+1αi+1, then we have g(βi) = 1, g(βi+1) = 3, g(αi+1) = 4;
(vii) If the path is αi+1αi+2βi+2, then we have g(αi+1) = 4, g(αi+2) = 1,

g(βi+2) = 3;
(viii) If the path is βi+1αi+1αi+2, then we have g(βi+1) = 2, g(αi+1) = 4,

g(αi+2) = 1;
(ix) If the path is αi+2βi+2βi+1, then we have g(αi+2) = 1, g(βi+2) = 3,

g(βi+1) = 2;
(x) If the path is βi+2βi+1αi+1, then we have g(βi+2) = 3, g(βi+1) = 2,

g(αi+1) = 4.

In all of these subcases, we can see that g is indeed a P3 coloring. Therefore, the P3-chromatic
number of prism graph Dn is 4 for all n ≥ 4 and n ≡ 0(mod 4).
Case II. Assume that n ≡ 1(mod 4) and n ≥ 9. Note that in any P3 coloring, if we color
the vertices of the Dn graph from a set of only four colors {a, b, c, d}, because graph C4 is
a subgraph of Dn, then all of the vertices of every C4 have different colors, as shown in
Figure 9.

b d

a c

Figure 9. An arbitrary C4 in Dn, when n ≡ 1(mod 4).

Therefore, when we apply any P3 coloring on Dn, for any C4 subgraph, its left and right
adjacent C4’s have the only possible P3 coloring, as shown in Figure 10.
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a

ab

b

c

c

d

d
b bbb

a a aa
i

i i+1

i+1

i-1

i-1 i+2

i+2

Left one Right one

Figure 10. Adjacent C4s when n ≡ 1(mod 4), where the vertices bi = βi.

Now, this process is continued until a P3-coloring with only four colors {a, b, c, d} is com-
pleted or produced. We define a C4 to be correctly colored if all its vertices have different
colors. Because n 6≡ 0(mod 4), and we have n number of C4s that covers Dn, eventually,
we will arrive at a situation displayed in Figure 11.

Figure 11. Covering of Dn by correctly colored C4s when n ≡ 1(mod 4).

Since n ≡ 1(mod 4), from Figure 11, we can easily see that the remaining two C4s cannot be
correctly colored with only four given colors. Thus, we have χ3(Dn) ≥ 5, and this shows
that we need at least five colors to produce a P3 coloring of Dn. For the reverse case, let us
define a function g from V(Dn) to {1, 2, 3, 4, 5} as follows:

g(αi) =


i, if 1 ≤ i ≤ 5;
1, if i ≡ 2 mod 4, 6 ≤ i ≤ n;
2, if i ≡ 3 mod 4, 6 ≤ i ≤ n;
3, if i ≡ 0 mod 4, 6 ≤ i ≤ n;
4, if i ≡ 1 mod 4, 6 ≤ i ≤ n,

g(β1) = 3, g(β2) = 5,

g(βi) =


i− 2, if 3 ≤ i ≤ 7;
1, if i ≡ 0 mod 4, 8 ≤ i ≤ n;
2, if i ≡ 1 mod 4, 8 ≤ i ≤ n;
3, if i ≡ 2 mod 4, 8 ≤ i ≤ n;
5, if i ≡ 3 mod 4, 8 ≤ i ≤ n.

Let Q2 be an arbitrary P3 path; then, as before, there will be ten possible P3 paths for
any given i ∈ {1, 2, . . . n}. It is enough to discuss the following possible P3 paths to
prove that g is indeed a P3 coloring: αiαi+1αi+2, αiαi+1βi+1, αi, βi, βi+1, βiβi+1βi+2, βiαiαi+1,
βiβi+1αi+1, αi+1αi+2βi+2, βi+1αi+1αi+2, αi+2βi+2βi+1 and the last one is βi+2βi+1αi+1, for
all 9 ≤ i ≤ n− 1.
It is clear from the above definition that the remaining paths satisfy the P3 coloring, as
depicted in Figure 12.
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Figure 12. P3 coloring of Dn when n ≡ 1(mod 4), where the vertices bi = βi.

Now, we will show that g is indeed P3 coloring in four cases, which are discussed below.

(a). For i ≡ 0(mod 4) and 9 ≤ i ≤ n− 1, all possibilities of Q2 are discussed as follows:

(i) If the path is αiαi+1αi+2, then we have g(αi) = 3, g(αi+1) = 4, g(αi+2) = 1;
(ii) If the path is αiαi+1βi+1, then we have g(αi) = 3, g(αi+1) = 4, g(βi+1) = 2;
(iii) If the path is αibiβi+1, then we have g(αi) = 3, g(βi) = 1, g(βi+1) = 2;
(iv) If the path is βiβi+1βi+2, then we have g(βi) = 1, g(βi+1) = 2, g(βi+2) = 3;
(v) If the path is βiaiαi+1, then we have g(βi) = 1, g(αi) = 3, g(αi+1) = 4;
(vi) If the path is βiβi+1αi+1, then we have g(βi) = 1, g(βi+1) = 2, g(αi+1) = 4;
(vii) If the path is αi+1αi+2βi+2, then we have g(αi+1) = 4, g(αi+2) = 1,

g(βi+2) = 3;
(viii) If the path is βi+1αi+1αi+2, then we have g(βi+1) = 2, g(αi+1) = 4,

g(αi+2) = 1;
(ix) If the path is αi+2βi+2βi+1, then we have g(αi+2) = 1, g(βi+2) = 3,

g(βi+1) = 2;
(x) If the path is βi+2βi+1αi+1, then we have g(βi+2) = 3, g(βi+1) = 2,

g(αi+1) = 4.

(b). For i ≡ 1(mod 4), all possibilities of Q2 are discussed as follows:

(i) If the path is αiαi+1αi+2, then we have g(αi) = 4, g(αi+1) = 5, g(αi+2) = 2;
(ii) If the path is αiαi+1βi+1, then we have g(αi) = 4, g(αi+1) = 5, g(βi+1) = 1;
(iii) If the path is αibiβi+1, then we have g(αi) = 4, g(βi) = 3, g(βi+1) = 1;
(iv) If the path is βiβi+1βi+2, then we have g(βi) = 3, g(βi+1) = 1, g(βi+2) = 4;
(v) If the path is βiaiαi+1, then we have g(βi) = 3, g(αi) = 4, g(αi+1) = 5;
(vi) If the path is βiβi+1αi+1, then we have g(βi) = 3, g(βi+1) = 1, g(αi+1) = 5;
(vii) If the path is αi+1αi+2βi+2, then we have g(αi+1) = 5, g(αi+2) = 2,

g(βi+2) = 4;
(viii) If the path is βi+1αi+1αi+2, then we have g(βi+1) = 2, g(αi+1) = 4,

g(αi+2) = 1;
(ix) If the path is αi+2βi+2βi+1, then we have g(αi+2) = 2, g(βi+2) = 4,

g(βi+1) = 1;
(x) If the path is βi+2βi+1αi+1, then we have g(βi+2) = 4, g(βi+1) = 1,

g(αi+1) = 5.

(c). For i ≡ 2(mod 4), all possibilities of Q2 are discussed as follows:

(i) If the path is αiαi+1αi+2, then we have g(αi) = 5, g(αi+1) = 2, g(αi+2) = 3;
(ii) If the path is αiαi+1βi+1, then we have g(αi) = 5, g(αi+1) = 2, g(βi+1) = 4;
(iii) If the path is αibiβi+1, then we have g(αi) = 5, g(βi) = 1, g(βi+1) = 4;
(iv) If the path is βiβi+1βi+2, then we have g(βi) = 1, g(βi+1) = 4, g(βi+2) = 5;
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(v) If the path is βiaiαi+1, then we have g(βi) = 1, g(αi) = 5, g(αi+1) = 2;
(vi) If the path is βiβi+1αi+1, then we have g(βi) = 1, g(βi+1) = 4, g(αi+1) = 2;
(vii) If the path is αi+1αi+2βi+2, then we have g(αi+1) = 2, g(αi+2) = 3,

g(βi+2) = 5;
(viii) If the path is βi+1αi+1αi+2, then we have g(βi+1) = 2, g(αi+1) = 4,

g(αi+2) = 1;
(ix) If the path is αi+2βi+2βi+1, then we have g(αi+2) = 3, g(βi+2) = 5,

g(βi+1) = 4;
(x) If the path is βi+2βi+1αi+1, then we have g(βi+2) = 5, g(βi+1) = 4,

g(αi+1) = 2.

(d). For i ≡ 3(mod 4), all possibilities of Q2 are discussed as follows:

(i) If the path is αiαi+1αi+2, then we have g(αi) = 2, g(αi+1) = 3, g(αi+2) = 1;
(ii) If the path is αiαi+1βi+1, then we have g(αi) = 2, g(αi+1) = 3, g(βi+1) = 5;
(iii) If the path is αibiβi+1, then we have g(αi) = 2, g(βi) = 4, g(βi+1) = 5;
(iv) If the path is βiβi+1βi+2, then we have g(βi) = 4, g(βi+1) = 5, g(βi+2) = 2;
(v) If the path is βiaiαi+1, then we have g(βi) = 4, g(αi) = 2, g(αi+1) = 3;
(vi) If the path is βiβi+1αi+1, then we have g(βi) = 4, g(βi+1) = 5, g(αi+1) = 3;
(vii) If the path is αi+1αi+2βi+2, then we have g(αi+1) = 3, g(αi+2) = 1,

g(βi+2) = 2;
(viii) If the path is βi+1αi+1αi+2, then we have g(βi+1) = 2, g(αi+1) = 4,

g(αi+2) = 1;
(ix) If the path is αi+2βi+2βi+1, then we have g(αi+2) = 1, g(βi+2) = 2,

g(βi+1) = 5;
(x) If the path is βi+2βi+1αi+1, then we have g(βi+2) = 2, g(βi+1) = 5,

g(αi+1) = 3.

Thus, in this case, all of these subcases proved that g is a P3 coloring of Dn for n ≡ 1(mod 4).
Therefore, χP3(Dn) = 5.
Case III. Assume that n ≡ 2(mod 4) and n ≥ 10. Similarly, as in case II, when we apply
any P3 coloring on Dn with only four given colors {a, b, c, d}, for any C4 subgraph in Dn, its
left and right adjacent C4’s have the only possible P3 coloring labels, as shown in Figure 13.

abc d

b bb b

aa aai

i i+1

i+1

i-1

i-1 i+2

i+2

Left one Right one

a a

bb      

i-2 i+3

i-2 i+3

a c

Right oneLeft one

a bcdb d

Figure 13. Adjacent C4s when n ≡ 2(mod 4), where the vertices bi = βi.

We continue this process to complete (or produce) a P3 coloring with only four colors a, b, c
and d. Because n ≡ 2(mod 4), and we have n number of C4 subgraphs that covers Dn,
eventually, we will reach the situation displayed in Figure 14.
Thus, in the case when n ≡ 2(mod 4), from Figure 14, we can easily see that the remaining
three C4s cannot be correctly colored with only four given colors. Thus, we have χ3(Dn) ≥ 5.
Therefore, we need at least five colors to produce a P3 coloring of Dn. For the reverse case,
let us define a function g from V(Dn) to {1, 2, 3, 4, 5} as follows:
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g(αi) =



1, if i ≡ 1 mod 5, 1 ≤ i ≤ 10;
2, if i ≡ 2 mod 5, 1 ≤ i ≤ 10;
3, if i ≡ 3 mod 5, 1 ≤ i ≤ 10;
4, if i ≡ 4 mod 5, 1 ≤ i ≤ 10;
5, if i ≡ 0 mod 5, 1 ≤ i ≤ 10;
1, if i ≡ 3 mod 4, 11 ≤ i ≤ n;
2, if i ≡ 0 mod 4, 11 ≤ i ≤ n;
3, if i ≡ 1 mod 4, 11 ≤ i ≤ n;
4, if i ≡ 2 mod 4, 11 ≤ i ≤ n.

g(β1) = 3, g(β2) = 5.

g(βi) =



1, if i ≡ 3 mod 5, 3 ≤ i ≤ 12;
2, if i ≡ 4 mod 5, 3 ≤ i ≤ 12;
3, if i ≡ 0 mod 5, 3 ≤ i ≤ 12;
4, if i ≡ 1 mod 5, 3 ≤ i ≤ 12;
5, if i ≡ 2 mod 5, 3 ≤ i ≤ 12;
1, if i ≡ 1 mod 4, 13 ≤ i ≤ n;
2, if i ≡ 2 mod 4, 13 ≤ i ≤ n;
3, if i ≡ 3 mod 4, 13 ≤ i ≤ n;
5, if i ≡ 0 mod 4, 13 ≤ i ≤ n.

a

a

b

b

c

c

d

d
?

?

Rightly
colored

Rightly
colored

? ??

?

?

Figure 14. Covering of Dn by rightly colored C4s when n ≡ 2(mod 4).

Let Q3 be an arbitrary P3 path; then, similarly as in case I and case II, it is very easy to see
that g is indeed a P3 coloring. Together with the argument at the beginning of this case, this
proves that the P3-chromatic number of a prism graph Dn is equal to 5 for n ≡ 2(mod 4)
for all n ≥ 10.
Case IV. Assume that n ≡ 3(mod 4) and n ≥ 15. Similarly to case II, whenever we apply
any P3 coloring on Dn with only four colors {a, b, c, d}, for any C4 subgraph in Dn, its left
and right adjacent C4’s have the only possible P3-coloring labels, as shown in Figure 10.

We continue this process to complete (or produce) a P3 coloring with only four colors
a, b, c, and d. Because n ≡ 3(mod 4), and we have the n number of C4 subgraphs that
covers Dn, eventually, we will reach the situation displayed in Figure 11.

Therefore, in the case when n ≡ 3(mod 4), from Figure 11 and the above argument,
we can easily see that the remaining two C4 cannot be correctly colored with only four
colors. Thus, we must have χ3(Dn) ≥ 5, that is, we need at least five colors to produce (or
obtain) a P3 coloring of Dn. For the reverse case, let us define a function g from V(Dn) to
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{1, 2, 3, 4, 5} as follows:

g(αi) =



1, if i ≡ 1 mod 5, 1 ≤ i ≤ 15;
2, if i ≡ 2 mod 5, 1 ≤ i ≤ 15;
3, if i ≡ 3 mod 5, 1 ≤ i ≤ 15;
4, if i ≡ 4 mod 5, 1 ≤ i ≤ 15;
5, if i ≡ 0 mod 5, 1 ≤ i ≤ 15;
1, if i ≡ 0 mod 4, 16 ≤ i ≤ n;
2, if i ≡ 1 mod 4, 16 ≤ i ≤ n;
3, if i ≡ 2 mod 4, 16 ≤ i ≤ n;
4, if i ≡ 3 mod 4, 16 ≤ i ≤ n.

g(β1) = 3, g(β2) = 5.

g(βi) =



1, if i ≡ 3 mod 5, 3 ≤ i ≤ 17;
2, if i ≡ 4 mod 5, 3 ≤ i ≤ 17;
3, if i ≡ 0 mod 5, 3 ≤ i ≤ 17;
4, if i ≡ 1 mod 5, 3 ≤ i ≤ 17;
5, if i ≡ 2 mod 5, 3 ≤ i ≤ 17;
1, if i ≡ 2 mod 4, 18 ≤ i ≤ n;
2, if i ≡ 3 mod 4, 18 ≤ i ≤ n;
3, if i ≡ 0 mod 4, 18 ≤ i ≤ n;
5, if i ≡ 1 mod 4, 18 ≤ i ≤ n.

Let Q4 be an arbitrary P3 path in Dn; then, as in case I and case II, it is very easy to
see that g is indeed a P3 coloring. This, combined with the argument at the beginning
of this case, proves that the P3-chromatic number of a prism graph Dn is equal to 5 for
n ≡ 3(mod 4), ∀n ≥ 15.

Thus, the proof of this theorem is completed.

Theorem 5. Let Ln be the ladder graph; then, χ3(Ln) = 4 for all n ≥ 2.

Proof. Let Ln be the ladder graph with n ≥ 2. Then, by Theorem 1 and Theorem 3, we
have χ3(Ln) ≥ 4. To show that χ3(Ln) ≤ 4, we will define a labeling g on V(Ln) to the
color set {1, 2, 3, 4}.

g(αi) =


1, if i ≡ 1 mod 4, 1 ≤ i ≤ n;
2, if i ≡ 2 mod 4, 1 ≤ i ≤ n;
3, if i ≡ 3 mod 4, 1 ≤ i ≤ n;
4, if i ≡ 0 mod 4, 1 ≤ i ≤ n.

g(βi) =


3, if i ≡ 1 mod 4, 1 ≤ i ≤ n;
4, if i ≡ 2 mod 4, 1 ≤ i ≤ n;
1, if i ≡ 3 mod 4, 1 ≤ i ≤ n;
2, if i ≡ 0 mod 4, 1 ≤ i ≤ n.

For the reader, this labeling is explained in Figure 15. Let Q be any arbitrary path of
Ln; then, there are ten possible types of P3 paths in Ln, and they are as follows. The
paths are αiαi+1αi+2, αiαi+1βi+1, αiβiβi+1, βiβi+1βi+2, βiαiαi+1, βiβi+1αi+1, αi+1αi+2βi+2,
βi+1αi+1αi+2, αi+2βi+2βi+1, and βi+2βi+1αi+1. Then, similarly to the first case of Theorem 4,
its clear that f is indeed a P3 coloring. Thus, we achieve the result.
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Figure 15. A P3 coloring of Ln, where the vertices bi = βi.

4. Open Problems and Time Complexity

It is well known that graph coloring and, in particular, vertex coloring is an NP-hard
problem. Since our P3 coloring is also a vertex coloring problem, one could speculate that
this is also an NP-hard problem. We proved that for some families of graphs, this problem
can be solved in polynomial time, which is clear from Theorem 2 to Theorem 5. For future
research, we plan to list a few of the open problems concerning this new coloring scheme,
which include the following objectives:

Problem 1: Prove or disprove the conjecture that “The P3 coloring is an NP-hard problem”;
Problem 2: Discuss all types of time complexity of P3 coloring as an NP-hard problem;
Problem 3: Find stronger upper and lower bounds of the P3 coloring;
Problem 4: Find χ3(Qn) for n ≥ 3.

5. Conclusions

In this article, we introduced a new type of graph coloring scheme, and we called it P3
coloring. A graph having P3 coloring is also a vertex-colorable graph (in a normal sense).
We proved that when a graph has a vertex that is adjacent to all other vertices of the graph,
its P3-chromatic number is the cardinality of the vertices of the graph. Then, we computed
the P3 chromatic number of some well-known families of graphs. To this end, we computed
the P3-chromatic number of path, cycle, prism, and ladder graphs. It is clear from the above
discussion and results that the P3-chromatic number of a graph is greater than or equal to
its chromatic number. Graph coloring always raises strong interest among mathematicians
and other related researchers. Therefore, any new and novel coloring technique is always
followed by numerous graph-coloring studies in the literature. We gave an example of a
challenge that can be countered only by using P3 coloring. This also gives us the reasons for
why this type of coloring should exist. We presented some future plans and open problems
to further advance in this topic and extend its application.
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