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Abstract: Let G be a graph with a given red-blue coloring c of the edges of G. An ascending Ramsey
sequence in G with respect to c is a sequence G1, G2, . . ., Gk of pairwise edge-disjoint subgraphs
of G such that each subgraph Gi (1 ≤ i ≤ k) is monochromatic and Gi is isomorphic to a proper
subgraph of Gi+1 (1 ≤ i ≤ k− 1). The ascending Ramsey index ARc(G) of G with respect to c is the
maximum length of an ascending Ramsey sequence in G with respect to c. The ascending Ramsey
index AR(G) of G is the minimum value of ARc(G) among all red-blue colorings c of G. It is shown
that there is a connection between this concept and set partitions. The ascending Ramsey index is
investigated for some classes of highly symmetric graphs such as complete graphs, matchings, stars,
graphs consisting of a matching and a star, and certain double stars.
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1. Introduction

One of the major topics in graph theory involving edge colorings takes place in
Ramsey theory where typically for each red-blue edge coloring of a given graph, one
of two prescribed monochromatic subgraphs occur. Here, our goal is to determine, for
each red-blue edge coloring of certain graphs, the existence of a maximum number of
monochromatic pairwise edge-disjoint subgraphs satisfying conditions that were initially
specified in what is now a well-known conjecture addressing graph decompositions. In
order to present a solution to this problem for two particular classes of graphs, we first
consider a question involving sets and then apply the symmetry of the resulting concepts.

Let S be a set such that |S| = (k+1
2 ) for some integer k ≥ 2. Since ∑k

i=1 i = (k+1
2 ), the set

S can be partitioned into k subsets S1, S2, . . . , Sk such that |Si| = i for i = 1, 2, . . . , k. Now,
suppose that we are given a partition {S′, S′′} of S into two subsets. A question here is
the following:

Is there also a partition of S into k subsets S1, S2, . . . , Sk such that |Si| = i for
i = 1, 2, . . . , k with the added property that either Si ⊆ S′ or Si ⊆ S′′ for each
integer i with 1 ≤ i ≤ k?

We show that this question has an affirmative answer. This is obvious if k = 2, in
which case |S| = (2+1

2 ) = 3. Let us assume such is the case for every set T with (k+1
2 )

elements and every partition {T′, T′′} of T. Let S be a set such that |S| = (k+2
2 ) and

let {S′, S′′} be an arbitrary partition of S into two subsets. Since k ≥ 2, it follows that
(k + 2)(k + 1) ≥ 4(k + 1) and so 1

2 (
k+2

2 ) ≥ k + 1. Consequently, in any partition of S into
two subsets S′ and S′′, at least one of these two sets contains at least k + 1 elements. We
may assume that S′ contains a subset Sk+1 of k + 1 elements. Let S∗ = S− Sk+1. Thus,
|S∗| = |S| − |Sk+1| = (k+2

2 )− (k + 1) = (k+1
2 ).

We now partition the set S∗ into two subsets S∗1 = S′ − Sk+1 and S∗2 = S′′. By the
induction hypothesis, S∗ contains k pairwise disjoint subsets S1, S2, . . . , Sk such that |Si| = i
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for i = 1, 2, . . . , k and either Si ⊆ S∗1 or Si ⊆ S∗2 for each integer i with 1 ≤ i ≤ k. Therefore,
for the partition {S′, S′′} of S into two subsets, there are k + 1 pairwise disjoint subsets
S1, S2, . . . , Sk+1 of S such that |Si| = i for 1 ≤ i ≤ k + 1 where either Si ⊆ S′ or Si ⊆ S′′ for
each integer i with 1 ≤ i ≤ k + 1.

If S is a set such that |S| = m for some integer m ≥ 3, then there is an integer k ≥ 2
such that (k+1

2 ) ≤ m < (k+2
2 ). By the discussion above, the following observation can now

be made.

Let S be a set with |S| = m ≥ 3 such that (k+1
2 ) ≤ m < (k+2

2 ) for some integer k ≥ 2
and let {S′, S′′} be a partition of S into two subsets. Then, there exist k pairwise
disjoint subsets S1, S2, . . . , Sk of S such that |Si| = i for i = 1, 2, . . . , k and either
Si ⊆ S′ or Si ⊆ S′′ for each integer i with 1 ≤ i ≤ k.

From this, a more general question arises.

Let S be a set with |S| = m ≥ 3 where (k+1
2 ) ≤ m < (k+2

2 ) for some inte-
ger k ≥ 2 such that there is some prescribed structure among the elements of S. If
{S′, S′′} is a partition of S into two subsets, do there exist k pairwise disjoint sub-
sets S1, S2, . . . , Sk of S such that (1) |Si| = i for i = 1, 2, . . . , k, (2) either Si ⊆ S′ or
Si ⊆ S′′ for each integer i with 1 ≤ i ≤ k, and (3) for each integer i with 2 ≤ i ≤ k,
there is a substructure of i− 1 elements of Si identical with that of Si−1? If there
exists no such k subsets of S with these properties, then what is the maximum
number of pairwise disjoint subsets of S having all three properties?

In order to investigate this problem, we turn to the area of graph theory.

2. Ascending Subgraph Sequences

A popular area of study in graph theory is graph decompositions. One problem
in this area involves determining graphs that can be decomposed into subgraphs, every
two of which are isomorphic, referred to as isomorphic decompositions. For example,
it is well known that every complete graph of odd order 3 or more can be decomposed
into Hamiltonian cycles and every complete graph of even order as well as every regular
bipartite graph can be decomposed into perfect matchings.

In [1], the question was posed for a graph G of determining the maximum number of
subgraphs (without isolated vertices) of G into which G can be decomposed where no two
subgraphs are isomorphic. One way to look at this problem is the following. For a positive
integer k, let f : E(G) → [k] = {1, 2, . . . , k} be a labeling of the edges of G such that each
label in [k] is assigned to at least one edge of G. For 1 ≤ i ≤ k, let Gi be the subgraph of G
induced by the edges labeled i. What is the maximum positive integer k of such a labeling
for which Gi 6∼= Gj for every pair i, j of integers? The maximum such positive integer k is
referred to as the irregular decomposition index of the graph G. For example, the irregular
decomposition indices of the graphs G = K4 − e and H = K7 in Figure 1 are 3 and 8,
respectively. The three subgraphs in the decomposition {G1, G2, G3} of G are G1 = 2K2,
G2 = P3, and G3 = K2, while the eight subgraphs in the decomposition {H1, H2, . . . , H8}
of H are H1 = K3, H2 = P3, H3 = K1,3, H4 = P3 + K2, H5 = 3K2, H6 = P5, H7 = 2K2, and
H8 = K2. In fact, G and H are the unique graphs of smallest order and smallest size having
irregular decomposition indices of 3 and 8, respectively.
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Figure 1. Irregular decompositions of K4 − e and K7.

The path P35 of order 35 and size 34 has an irregular decomposition index of 11, as
does the cycle C34. No path or cycle of smaller order has an irregular decomposition index
of 11. The eleven subgraphs in the decomposition F = {F1, F2, . . . , F11} of P35 are F1 = 4K2,
F2 = 2K2 + P3, F3 = 3K2, F4 = K2 + P4, F5 = 2P3, F6 = K2 + P3, F7 = 2K2, F8 = P5, F9 = P4,
F10 = P3, and F11 = K2. An irregular decomposition {G1, G2, . . . , G11} of C34, where Gi

∼= Fi
for 1 ≤ i ≤ 11, can be obtained from the decomposition F of P35 by identifying the two
end-vertices of P35 in Figure 2.

322176655

4

4 4 3 2 1 11 10 10 9 9 9

8

88876554321

1

Figure 2. An irregular decomposition of P35.

The question posed in [1] led to another concept introduced in [1]. A sequence G1,
G2, . . ., Gk of subgraphs (all without isolated vertices) of a graph G (without isolated
vertices) is an ascending subgraph sequence in G if Gi is isomorphic to a proper subgraph
of Gi+1 for i = 1, 2, . . . , k − 1. If {G1, G2, . . ., Gk} is also a decomposition of G, then this
is an ascending subgraph decomposition of G. If G has size m, then (k+1

2 ) ≤ m < (k+2
2 ) for

some positive integer k and k is the maximum possible length of an ascending subgraph
sequence in G. Furthermore, if G has an ascending subgraph sequence of length k, then
there is such a sequence G1, G2, . . ., Gk where Gi has size i for 1 ≤ i ≤ k. The following
conjecture was stated in [2].

Conjecture 1 (The Ascending Subgraph Decomposition Conjecture). Every graph has an
ascending subgraph decomposition.

Upon learning the statement of this conjecture, the famous mathematician Paul Erdős
doubted its truth and immediately offered USD 5 for a counterexample. He then partic-
ipated in a study of the conjecture (see [2]). This conjecture remains unresolved today.
Information on this conjecture is presented in [3,4].

3. Ascending Ramsey Sequences

We now change the topic briefly. A well-known area in graph theory is Ramsey
theory and one of the most familiar concepts in this theory is Ramsey numbers. In a
red-blue coloring of a graph G, every edge of G is colored red or blue. For two graphs F
and H (without isolated vertices), the Ramsey number R(F, H) is the minimum positive
integer n such that for every red-blue coloring of the complete graph Kn of order n, there
is either a subgraph of Kn isomorphic to F all edges of which are colored red (a red F) or
a subgraph of Kn isomorphic to H all edges of which are colored blue (a blue H). It is
a consequence of a theorem of Ramsey [5] that the number R(F, H) exists for every two
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graphs F and H. If F ∼= H, then R(F, H) = R(F, F) is the minimum positive integer n
such that every red-blue coloring of Kn results in a monochromatic F. If F and H are both
complete graphs, then R(F, H) is called a classical Ramsey number. For example, it is well
known that R(K3, K3) = 6, R(K4, K4) = 18, and R(K5, K5) are unknown. Not only does
every red-blue coloring of K6 produce a monochromatic K3, every red-blue coloring of K6
produces at least two monochromatic subgraphs K3. Additional information involving
edge colorings and Ramsey numbers is presented in [6–9], for example.

In [1], a concept was introduced that deals with both ascending subgraph sequences
and monochromatic subgraphs resulting from red-blue colorings of the edges of a graph.
Let G be a graph (without isolated vertices) of size m with a red-blue coloring c of G. An
ascending subgraph sequence G1, G2, . . ., Gk of subgraphs of G is an ascending Ramsey
sequence (with respect to c) in G if each subgraph Gi (1 ≤ i ≤ k) in the sequence is monochro-
matic. The ascending Ramsey index ARc(G) of G with respect to c is the maximum length of
an ascending Ramsey sequence of G. The ascending Ramsey index AR(G) of G itself is

AR(G) = min{ARc(G) : c is a red-blue coloring of G}.

This number exists for every graph without isolated vertices. Since (k+1
2 ) ≤ m < (k+2

2 )
for a unique positive integer k, it follows that 1 ≤ AR(G) ≤ k. It was shown in [1] that
AR(K4) = AR(3K2 + K1,7) = 3. The ascending Ramsey index of certain matchings and
stars were determined in [1] as well.

Theorem 1. For each positive integer n, AR
(
(n+1

2 )K2

)
= AR

(
K1,(n+1

2 )

)
= n.

The goal here is to investigate the ascending Ramsey index in more detail for some
classes of highly symmetric graphs such as complete graphs, matchings, stars, and graphs
consisting of a matching and a star. In order to illustrate a technique used to determine the
value of the ascending Ramsey index of a graph, we also present results on double stars
(trees of diameter 3) in which only one vertex has degree greater than 3. To prove for a
graph G without isolated vertices that the ascending Ramsey index of G has the value `, say,
it is required to show that (1) every red-blue coloring of G results in an ascending Ramsey
sequence G1, G2, . . . , G` of ` subgraphs of G where Gi has size i for i = 1, 2, . . . ` and (2) there
exists some red-blue coloring of G such that no such sequence of `+ 1 subgraphs exists.

4. Complete Graphs

If G is a graph of size (k+1
2 ) for some positive integer k, then, as we mentioned,

AR(G) ≤ k. In fact, if AR(G) = k, then G not only has an ascending sequence of length k, it
has an ascending Ramsey sequence of length k for every red-blue coloring of G. Perhaps the
best known class of graphs possessing such a size is that of complete graphs Kn which have
a size (n

2). Since Kn can be decomposed into stars K1,i for i = 1, 2, . . . , n− 1, these graphs
have an ascending sequence of length n− 1. This brings up the problem of determining
the value of AR(Kn). Clearly, AR(Kn) ≤ n− 1. We mentioned that it was shown in [1] that
AR(K4) = 3. We show that AR(Kn) = n− 1 when n = 5 as well.

Theorem 2. AR(K5) = 4.

Proof. Since the size of K5 is 10, it suffices to show that every red-blue coloring of G = K5
results in an ascending Ramsey sequence of length 4 in G. If the edges of G are assigned
the same color, then the statement is immediate since the decomposition of G into the
stars Gi = K1,i (i = 1, 2, 3, 4) form an ascending Ramsey sequence G1, G2, G3, G4 of G.
Hence, we may assume that there is at least one edge of each color. We may further assume
that the number of red edges in a red-blue coloring of G is at most the number of blue edges.
Let r be the number of red edges in a red-blue coloring of G. Thus, 1 ≤ r ≤ 5. Let GR be the
red subgraph in a red-blue coloring of G. Again, since G can be decomposed into stars, as
described above, it follows that if GR is a star, then there is an ascending Ramsey sequence
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of size 4 in G. Hence, we only need to address the situation where in any red-blue coloring
of G, the subgraph GR is not a star and r = 2, 3, 4, 5. We consider these four possibilities.
Let V(G) = {v1, v2, v3, v4, v5}.

Case 1. r = 2. Then, GR = 2K2, say E(GR) = {v2v5, v3v4}. Let G1 = K2 = (v2, v4),
G2 = GR, G3 = K2 + P3 where K2 = (v2, v3) and P3 = (v4, v1, v5), and let G4 = P5 =
(v2, v1, v3, v5, v4). Then, G1, G2, G3, G4 is an ascending Ramsey sequence of G.

Case 2. r = 3. Then GR ∈ {K3, K2 + P3, P4}. We construct an ascending Ramsey
sequence G1, G2, G3, G4 of G by considering three subcases.

Subcase 2.1. GR = K3, say E(GR) = {v1v2, v2v5, v5v1}. Let G1 = K2 = (v2, v4),
G2 = P3 = (v3, v1, v4), G3 = GR, and let G4 = K3 ? K1 (a graph obtained by adding a
pendant edge at a vertex of K3) with E(G4) = {v2v3, v3v4, v4v5, v5v3}.

Subcase 2.2. GR = K2 + P3, say E(GR) = {v1v2, v1v5, v3v4}. Let G1 = K2 = (v3, v5),
G2 = P3 = (v4, v2, v5), G3 = GR, and let G4 = P5 = (v2, v3, v1, v4, v5).

Subcase 2.3. GR = P4, , say E(GR) = {v2v3, v3v4, v4v5} . Let G1 = K2 = (v2, v5),
G2 = P3 = (v2, v1, v5), G3 = GR, and let G4 = P5 = (v2, v4, v1, v3, v5).

Case 3. r = 4. Then, GR ∈ {K3 ? K1, P5, S2,3, C4, K3 + K2}, where S2,3 is the double
star whose central vertices have degrees of 2 and 3. We construct an ascending Ramsey
sequence G1, G2, G3, G4 of G by considering five subcases.

Subcase 3.1. GR = K3 ? K1. The result follows from Subcase 2.1 by letting G4 = GR.
That is, let G1 = K2 = (v2, v4), G2 = P3 = (v3, v1, v4), G3 = K3 = (v1, v2, v5, v1), and let
G4 = GR with E(G4) = {v2v3, v3v4, v4v5, v5v3}.

Subcase 3.2. GR = P5. The result follows from Subcase 2.3 by letting G4 = GR.
That is, G1 = K2 = (v2, v5), G2 = P3 = (v2, v1, v5), G3 = P4 = (v2, v3, v4, v5), and let
G4 = GR = (v2, v4, v1, v3, v5).

Subcase 3.3. GR = S2,3, say E(GR) = {v1v2, v1v4, v1v5, v3v4}. Let G1 = K2 = (v4, v5),
G2 = P3 = (v1, v3, v2), G3 = P4 = (v3, v5, v2, v4), and let G4 = GR.

Subcase 3.4. GR = C4, say GR = (v2, v3, v4, v5, v2). Let G1 = K2 = (v2, v4), G2 = P3 =
(v2, v1, v5), G3 = P4 = (v4, v1, v3, v5), and let G4 = GR.

Subcase 3.5. GR = K3 + K2, say E(GR) = {v1v2, v2v5, v5v1, v3v4}. Let G1 = K2 =
(v2, v3), G2 = P3 = (v1, v4, v5), G3 = P3 + K2 with E(G3) = {v1v3, v3v5, v2v4}, and let
G4 = GR.

Case 4. r = 5. Then GR ∈ {C5, K4− e, C4 ?K1, F1, F2, F3}, where F1 is the graph obtained
by adding a pendant edge at two vertices of K3, F2 is the graph obtained adding a pendant
path P3 at a vertex of K3, and F3 is the graph obtained adding two pendant edges at a vertex
of K3. We construct an ascending Ramsey sequence G1, G2, G3, G4 of G by considering
six subcases.

Subcase 4.1. GR = C5, say GR = (v1, v2, v3, v4, v5, v1). Let G1 = K2 = (v2, v5), G2 =
P3 = (v2, v1, v5), G3 = P4 = (v2, v3, v4, v5), and let G4 = P5 = (v2, v4, v1, v3, v5).

Subcase 4.2. GR = K4 − e, say K4 = G[{v2, v3, v4, v5}] and e = v3v5. Let G1 =
K2 = (v3, v5), G2 = P3 = (v3, v2, v5), G3 = K1,3 with E(G3) = {v4v3, v4v2, v4v5}, and
let G4 = K1,4 with E(G4) = {v1v2, v1v3, v1v4, v1v5}.

Subcase 4.3. GR = C4 ? K1, say E(GR) = {v1v2, v2v3, v3v4, v4v5, v5v2}. Let G1 =
K2 = (v1, v5), G2 = P3 = (v2, v5, v4), G3 = P4 = (v1, v2, v3, v4), and let G4 = P5 =
(v2, v4, v1, v3, v5).

Subcase 4.4. GR = F1, say E(GR) = {v3v2, v2v1, v1v5, v5v4, v2v5}. Let G1 = K2 =
(v3, v4), G2 = P3 = (v2, v5, v4), G3 = P4 = (v5, v1, v2, v3), and let G4 = P5 = (v2, v4, v1,
v3, v5).

Subcase 4.5. GR = F2, say E(GR) = {v4v3, v3v2, v2v1, v1v5, v2v5}. Let G1 = K2 =
(v4, v5), G2 = P3 = (v2, v1, v5), G3 = P4 = (v4, v3, v2, v5), and let G4 = P5 = (v2, v4, v1,
v3, v5).

Subcase 4.6. GR = F3, say E(GR) = {v1v2, v2v5, v5v1, v3v5, v4v5}. Let G1 = K2 =
(v1, v3), G2 = P3 = (v3, v5, v4), G3 = K3 = (v1, v2, v5, v1), and let G4 = K3 ? K1 with
E(G4) = {v2v3, v3v4, v4v2, v4v1}.
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While it can be shown that AR(K6) = 5 using an extensive a case-by-case analysis,
whether AR(Kn) = n− 1 when n ≥ 7 is not known.

5. Matchings and Stars

Next, we determine the value of the ascending Ramsey index AR(mK2) for the match-
ing mK2 for every positive integer m. First, we make an observation.

Observation 1. If H and G are graphs without isolated vertices such that H ⊆ G, then AR(H) ≤
AR(G).

Theorem 3. Let m be a positive integer. If n is the integer such that (n+1
2 ) ≤ m < (n+2

2 ), then
AR(mK2) = AR(K1,m) = n.

Proof. Let G ∈ {mK2, K1,m}. Since m < (n+2
2 ), there exists no ascending subgraph sequence

of length n + 1 in G. Thus, there is no red-blue coloring of G that produces an ascending
Ramsey sequence of length n + 1. So, AR(G) ≤ n. Let there be given a red-blue coloring
of G.

? If G = mK2, then let H = (n+1
2 )K2.

? If G = K1,m, then let H = K1,(n+1
2 )

.

Since H ⊆ G, it follows by Theorem 1 and Observation 1 that AR(G) ≥ AR(H) = n.

The following is a consequence of Theorem 3.

Corollary 1. If G ∈ {mK2, K1,m} for some positive integer m, then

AR(G) =

⌊
−1 +

√
1 + 8m

2

⌋
.

Proof. Let G ∈ {mK2, K1,m} where n is the largest integer for which (n+1
2 ) ≤ m. By

Theorem 3, it follows that AR(G) = n. Thus, n2 + n ≤ 2m and so n =
⌊
−1+

√
1+8m

2

⌋
.

We mentioned that it was shown in [1] that AR(3K2 + K1,7) = 3. We now determine
the ascending Ramsey index of a graph consisting of a matching of any size and a star of
any size, namely the graph aK2 + K1,b where a, b ≥ 1. Since aK2 + K1,1

∼= (a + 1)K2, we
may assume that b ≥ 2.

Theorem 4. For integers a ≥ 1 and b ≥ 2,

AR(aK2 + K1,b) =


AR((a + 1)K2) if b ≤ a

AR(K1,b) if b ≥ a + 2

AR(K1,b+1) if b = a + 1.

Proof. Let G = aK2 + K1,b. We consider three cases, according to whether (1) b ≤ a, (2)
b ≥ a + 2 or (3) b = a + 1.

Case 1. b ≤ a. Let ` be the largest integer such that (`+1
2 ) ≤ a + 1. Then, AR((a +

1)K2) = ` by Theorem 3. We show that AR(G) = `. Since (a + 1)K2 ⊂ G, it follows that
` = AR((a + 1)K2) ≤ AR(G). Next, we show that there is a red-blue coloring of G for
which there is no ascending Ramsey sequence of length `+ 1. Let c be the red-blue coloring
of G such that GR = aK2 and GB = K1,b. We show that ARc(G) = `. Let us assume, to the
contrary, that there is an ascending Ramsey sequence H1, H2, . . . , H`+1 of length `+ 1 in G.
Then, H1 = K2 and H2 ∈ {2K2, K1,2}. If H2 = 2K2, then each Hi = iK2 (2 ≤ i ≤ `+ 1) is a
red matching; while if H2 = K1,2, then each Hi = K1,i (2 ≤ i ≤ `+ 1) is a blue star. Hence,
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a = max{a, b} ≥
`+1

∑
i=2
|E(Hi)| =

`+1

∑
i=2

i =
(
`+ 2

2

)
− 1

and so (`+2
2 ) ≤ a + 1, which contradicts the choice of `. Thus, ARc(G) = ` and so

AR(G) ≤ `. Therefore, AR(G) = ` = AR((a + 1)K2) if b ≤ a.
Case 2. b ≥ a + 2. Let ` be the largest integer such that (`+1

2 ) ≤ b. Then, AR(K1,b) = `
by Theorem 3. We show that AR(G) = `. Since K1,b ⊂ G, it follows that ` = AR(K1,b) ≤
AR(G). Next, we show that there is a red-blue coloring of G for which there is no ascending
Ramsey sequence of length ` + 1. Let c be the red-blue coloring of G such that GR =
(a + 1)K2 and GB = K1,b−1. We show that ARc(G) = `. Let us assume, to the contrary,
that there is an ascending Ramsey sequence H1, H2, . . . , H`+1 of length `+ 1 in G. Then,
H1 = K2 and H2 ∈ {2K2, K1,2}. If H2 = 2K2, then each Hi = iK2 (2 ≤ i ≤ `+ 1) is a red
matching. Since

b− 1 ≥ a + 1 ≥
`+1

∑
i=2
|E(Hi)| =

`+1

∑
i=2

i =
(
`+ 2

2

)
− 1,

it follows that (`+2
2 ) ≤ b, which contradicts the choice of `. Thus, H2 = K1,2 and so

each Hi = K1,i (2 ≤ i ≤ `+ 1) is a blue star. Hence,

b− 1 ≥
`+1

∑
i=2
|E(Hi)| =

`+1

∑
i=2

i =
(
`+ 2

2

)
− 1

and so (`+2
2 ) ≤ b, which contradicts the choice of `. Thus, ARc(G) = ` and so AR(G) ≤ `.

Therefore, AR(G) = ` = AR(K1,b) if b ≥ a + 2.
Case 3. b = a + 1. Let ` be the largest integer such that (`+1

2 ) ≤ a + 2 = b + 1. Then,
AR(K1,b+1) = ` by Theorem 3. We show that AR(G) = `. First, we show that AR(G) ≤ `.
Let c be the red-blue coloring of G such that GR = aK2 and GB = K1,b. We show that
ARc(G) = `. Let H = K1,b+1 with E(H) = E(GB) ∪ {e}, where e ∈ E(GR) and where
the edges of H are colored the same as in G. Since AR(Kb+1) = `, there is an ascending
Ramsey sequence H1, H2, . . . , H` of length ` in H, where Hi = K1,i for 1 ≤ i ≤ `. If the
edge e belongs to some subgraph in this sequence, then E(H1) = {e} since e is the only red
edge in this red-blue coloring of H. In any case, this sequence is also an ascending Ramsey
sequence of length ` in G. Thus, ARc(G) ≥ `. It remains to show that ARc(G) ≤ `. Let us
assume, to the contrary, that there is an ascending Ramsey sequence G1, G2, . . . , G`+1 of
length `+ 1 in G. Then, G2 ∈ {2K2, K1,2}. If G2 = 2K2, then each Gi = iK2 (2 ≤ i ≤ `+ 1)
is a red matching in GR = aK2. Thus,

a ≥
`+1

∑
i=2
|E(Gi)| =

`+1

∑
i=2

i =
(
`+ 2

2

)
− 1

and so (`+2
2 ) ≤ a+ 1 = b. On the other hand, if G2 = K1,2, then each Gi = K1,i (2 ≤ i ≤ `+ 1)

is a blue star in GB = K1,b. Thus,

b ≥
`+1

∑
i=2
|E(Gi)| =

`+1

∑
i=2

i =
(
`+ 2

2

)
− 1 and so

(
`+ 2

2

)
≤ b + 1 = a + 2.

Hence, the maximum possible length of an ascending Ramsey sequence in G with the
red-blue coloring c is the largest integer ` such that (`+2

2 ) ≤ b+ 1 = a+ 2, which contradicts
the defining property of `. Therefore, ARc(G) ≤ ` and so ARc(G) = `. This implies that
AR(G) ≤ ARc(G) = `.

To show that AR(G) ≥ `, it is required to show that for every red-blue coloring distinct
from c, there is an ascending Ramsey sequence of length ` in G. Thus, let c′ be a red-blue
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coloring of G distinct from c. In this coloring, there are edges e ∈ E(aK2) and f ∈ E(K1,b)
that are colored the same, say red. Let f ′ be another edge in K1,b, where then f ′ 6= f . The
edge f ′ may be colored red or blue. Let F = (a + 2)K2 where E(F) = E(aK2) ∪ { f , f ′} and
where the edges of F are colored the same as in G. Since AR(F) = ` by Theorem 3, there is
an ascending Ramsey sequence F1, F2, . . . , F` of length ` in F, where Fi = iK2 for 1 ≤ i ≤ `.
If f and f ′ do not belong to the same subgraph in the sequence, then this sequence is also
an ascending Ramsey sequence in G.

Thus, we may assume that f and f ′ belong to the same subgraph Fj in the sequence
where then 2 ≤ j ≤ `. Since f is red and Fj is monochromatic, the edge f ′ is also red. If the
edge e belongs to no subgraph in this sequence, then we can replace f ′ by e, obtaining a
new red matching F′j of size j. Then, F1, F2, . . . , Fj−1, F′j , Fj+1, . . . , F` is an ascending Ramsey
sequence of length ` in G. Therefore, we may assume that e belongs to a subgraph Fi in
the sequence, where 1 ≤ i ≤ `. If i 6= j, then we may interchange the edges e and f ′

in Fi and Fj, obtaining new red matchings F′i and F′j , where the resulting sequence is an
ascending Ramsey sequence of length ` in G.

Therefore, we may assume that e ∈ E(Fj) where then 3 ≤ j ≤ `. Therefore, F1 and
Fj−1 are two distinct matchings in the sequence. If either of F1 and Fj−1 is red, then we
may interchange a red edge in one of them with the edge f ′ in Fj to produce an ascending
Ramsey sequence of length ` in G, where no matching contains both f and f ′. Hence, we
may assume that F1 and Fj−1 are both blue matchings. Let F′j be the blue matching where
E(F′j ) = E(F1)∪ E(Fj−1). Let F′1 be a red matching where E(F′1) = { f ′} and let F′j−1 be a red
matching where E(Fj−1) = E(Fj)− { f ′}. Then, F′1, F2, · · · , Fj−2, F′j−1, F′j , Fj+1, . . . , F` is an
ascending Ramsey sequence of length ` in G. Therefore, ARc′(G) ≥ ` and so AR(G) ≥ `.
Thus, AR(G) = `.

6. Double Stars

We saw in Theorem 3 that AR(K1,m) = n for the positive integer n with (n+1
2 ) ≤ m <

(n+2
2 ). The stars are those trees of diameter 2 (where only one vertex has degree greater

than 1). We now turn to another well-known class of trees, namely the double stars. A
double star is a tree of diameter 3. For integers a and b with 2 ≤ a ≤ b, let Sa,b denote
the double star of order n = a + b and size m = a + b− 1 whose central vertices u and v
have degrees a and b, respectively. In order to illustrate a technique that can be used to
determine the value of the ascending Ramsey index of graphs, we present results giving
the values of AR(S2,b) for all b ≥ 2 and AR(S3,b) for all b ≥ 3. We begin with a general
result on AR(Sa,b) for all integers a and b with 2 ≤ a ≤ b.

Proposition 1. For integers a and b with 2 ≤ a ≤ b, let Sa,b be the double star of size
m = a + b− 1. If k is the integer such that (k+1

2 ) + (a− 1) ≤ m < (k+2
2 ), then AR(Sa,b) = k.

Proof. Let G = Sa,b where 2 ≤ a ≤ b. Since m < (k+2
2 ), there exists no ascending subgraph

sequence of length k + 1 in G. Thus, there is no red-blue coloring of G that produces
an ascending Ramsey sequence of length k + 1. Hence, AR(G) ≤ k. On the other hand,
since K1,m−a+1 ⊂ G and (k+1

2 ) ≤ m − a + 1 < m < (k+2
2 ) for each integer a ≥ 2, it

follows by Observation 1 and Theorem 3 that k = AR(K1,m−a+1) ≤ AR(G). Therefore,
AR(G) = k.

For the double star S2,b of size m = b + 1 ≥ 3, it is evident that AR(S2,b) = 2 for
b = 2, 3, 4. Thus, we may assume that b ≥ 5. If k is the integer such that

(k+1
2 ) + 1 ≤ m = b + 1 < (k+2

2 ),

then AR(S2,b) = k by Proposition 1. We now consider AR(S2,b) when (i) m = b + 1 =

(k+1
2 ) ≥ 6 or (ii) m = b + 1 = (k+1

2 ) + 1 ≥ 6 for some integer k ≥ 3. We begin with the
first situation when m = b + 1 = (k+1

2 ) or b = (k+1
2 )− 1 ≥ 5. The double star S2,5 has a
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size m = 6 = (3+1
2 ) and so k = 3. In the red-blue coloring of S2,5 shown in Figure 3 where

a solid edge indicates a red edge and a thin edge indicates a blue edge, the maximum
length of an ascending Ramsey sequence in S2,5 is 2 and so AR(S2,5) = 2 = k− 1. In fact,
AR(S2,b) = k− 1 for all double stars S2,b where b = (k+1

2 )− 1 ≥ 5.

Figure 3. A red-blue coloring of S2,5.

Proposition 2. If b = (k+1
2 )− 1 ≥ 5 for some integer k, then AR(S2,b) = k− 1.

Proof. Let G = S2,b where b = (k+1
2 )− 1 ≥ 5. Thus, the size of G is (k+1

2 ). Since K1,b ⊂ G
and (k

2) ≤ b < (k+1
2 ), it follows by Observation 1 and Theorem 3 that AR(G) ≥ AR(K1,b) =

k− 1. It remains to show that AR(G) ≤ k− 1. That is, it is necessary to show that there
is a red-blue coloring of G for which there is no ascending Ramsey sequence of length k.
Let u and v be the central vertices of G where u is adjacent to the end-vertex w as well as v,
and v is adjacent to the b− 1 end-vertices v1, v2, . . . , vb−1. Define the red-blue coloring c
of G that assigns the color blue to uw and vv1 and the color red to the remaining edges
of G. This coloring is shown in Figure 3 for b = 5 where a solid edge indicates a red edge
and a thin edge indicates a blue edge. Thus, GB = 2K2 and GR = K1,b−1. Let us assume,
to the contrary, that there exists an ascending Ramsey sequence G1, G2, . . . , Gk of length k
with respect to the red-blue coloring c of G. Since the size of G is (k+1

2 ), it follows that
{G1, G2, . . . , Gk} is a decomposition of G. Thus, G1 = K2, G2 = GB = 2K2 and Gi = K1,i for
3 ≤ i ≤ k. However, then, G2 6⊂ G3, which is impossible. Therefore, AR(G) ≤ k− 1 and so
AR(G) = k− 1.

Next, we consider the situation where m = b+ 1 = (k+1
2 ) + 1 ≥ 6 and so b = (k+1

2 ) ≥ 5.

Proposition 3. If b = (k+1
2 ) ≥ 5 for some integer k, then AR(S2,b) = k.

Proof. Let G = S2,b where b = (k+1
2 ). Since the size of G is b + 1 = (k+1

2 ) + 1 < (k+2
2 ), it

follows that AR(S2,b) ≤ k. Next, we show that there is an ascending Ramsey sequence of
length k for every red-blue coloring of G. Let u and v be the central vertices of G where w
is the end-vertex of G that is adjacent to u and v1, v2, . . . , vb−1 are the end-vertices of G
adjacent to v. Let c be a red-blue coloring of G and let G′ = G − w. Since G′ = K1,b,
it follows by Observation 1 and Theorem 3 that there is an ascending Ramsey sequence
of length k in G′, which is also an ascending Ramsey sequence of length k in G. Thus,
AR(G) ≥ k and so AR(G) = k.

With the aid of Propositions 1–3, we are now able to present necessary and sufficient
conditions on the values of b for which AR(S2,b) = k for each integer b ≥ 2.

Corollary 2. Let b ≥ 2. Then AR(S2,b) = k if and only if(
k + 1

2

)
≤ b ≤

(
k + 2

2

)
− 1.

We now turn our attention to the double stars S3,b of size m = b + 2 ≥ 5. It can be
shown that AR(S3,3) = 2 and AR(S3,4) = 3. Thus, we assume that b ≥ 5. If k is the integer
such that

(k+1
2 ) + 2 ≤ m = b + 2 < (k+2

2 ),
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then AR(S3,b) = k by Proposition 1. We now consider AR(S3,b) when (i) m = b + 2 = (k+1
2 )

or (ii) m = b + 2 = (k+1
2 ) + 1. We begin with the first situation when m = b + 2 = (k+1

2 )

and so b = (k+1
2 )− 2 ≥ 5. Since b ≥ 5, it follows that (k+1

2 ) ≥ 10 and so k ≥ 4.

Proposition 4. If b = (k+1
2 )− 2 ≥ 5 for some integer k, then AR(S3,b) = k− 1.

Proof. Let u and v be the central vertices of G = S3,b where u is adjacent to the two
end-vertices u1 and u2 and v is adjacent to the b− 1 end-vertices v1, v2, . . . , vb−1. Let us
define the red-blue coloring c of G that assigns the color blue to uu1 and vv1 and the color
red to the remaining edges of G. Thus, GB = 2K2 and GR = S2,b−1. We claim that there
is no ascending Ramsey sequence G1, G2, . . . , Gk of length k with respect to this red-blue
coloring c of G. Let us assume, to the contrary, that there exists such a sequence. Since the
size of G is b + 2 = (k+1

2 ), it follows that {G1, G2, . . . , Gk} is a decomposition of G, where
G1 = K2 and G2 = GB = 2K2. Then, E(G2) = {uu1, vv1} and G3 ∈ {P4, K1,2 + K2}.
? If G3 = P4, then {uu2, uv} ⊆ E(G3) and so G − [E(G1) ∪ E(G2) ∪ E(G3)] is a star.

Thus, G4 is star. Since G3 = P4 6⊂ G4, this is a contradiction.
? If G3 = K1,2 + K2, then uu2 ∈ E(G3) and so G − [E(G1) ∪ E(G2) ∪ E(G3)] is a star.

Thus, G4 is a star. Since G3 = K1,2 + K2 6⊂ G4, this is a contradiction.

Therefore, AR(G) ≤ k− 1. Next, we show that AR(G) ≥ k− 1. Since K1,b ⊂ G = S3,b and
b = (k+1

2 )− 2 > (k
2), it follows by Observation 1 and Theorem 3 that AR(G) ≥ AR(K1,b) =

k− 1. Thus, AR(G) = k− 1.

Next, we consider the situation where m = b + 2 = (k+1
2 ) + 1 and so b = (k+1

2 )− 1 ≥ 5
for some integer k. Since b ≥ 5, it follows that (k+1

2 ) ≥ 6 and so k ≥ 3.

Theorem 5. If b = (k+1
2 )− 1 ≥ 5 for some integer k, then AR(S3,b) = k.

Proof. Let b = (k+1
2 ) − 1 ≥ 5 where k ≥ 3. The size of S3,b is m = b + 2 = (k+1

2 ) + 1.
Since S2,b ⊂ S3,b and m < (k+2

2 ), it follows by Observation 1 and Proposition 2 that
k− 1 ≤ AR(S3,b) ≤ k. Let G = S3,b with central vertices u and v, where u is adjacent to the
two end-vertices u1 and u2 and v is adjacent to the b− 1 ≥ 4 end-vertices v1, v2, . . . , vb−1.
Let g = uv, f1 = uu1, f2 = uu2, and ei = vvi for 1 ≤ i ≤ b− 1. We show that AR(S3,b) = k.
Thus, it is necessary to show that for every red-blue coloring of G, there is an ascending
Ramsey sequence of length k in G. Let c be a red-blue coloring of G. We may assume that g
is colored red.

Let F = K1,b+2 be the star whose central vertex v is adjacent to the b + 2 end-vertices u,
u1, u2, v1, v2,. . ., vb−1, where the b+ 2 edges of F are denoted by g = uv, f1 = uu1, f2 = uu2,
and ei = vvi for 1 ≤ i ≤ b− 1. Let the edges of F be colored the same as these edges of G,
producing a red-blue coloring c of F. Since (k+1

2 ) < (k+1
2 ) + 1 = b + 2 < (k+2

2 ), it follows by
Theorem 3 that AR(K1,b+2) = k. Thus, there is an ascending Ramsey sequence of length k
in F. Let X = { f1, f2} and Y = {e1, e2, . . . , eb−1}. If there is no subgraph in this sequence
that contains both an edge in X and an edge in Y, then this sequence is also an ascending
Ramsey sequence in G. Thus, we may assume that there is at least one subgraph in this
sequence that contains at least one edge in X and at least one edge in Y. There are two
possibilities, namely

(1) Both f1 and f2 appear in every ascending Ramsey sequence of length k in F;
(2) One of f1 and f2 does not appear in some ascending Ramsey sequences of length k

in F.

We consider these two cases.
Case 1. Both f1 and f2 appear in every ascending Ramsey sequence of length k in F. Let

F1, F2, . . . , Fk be an ascending Ramsey sequence of length k in F. Let c(Fi) denote the color
of Fi for 1 ≤ i ≤ k. Necessarily, Fi = K1,i for 1 ≤ i ≤ k. Then, (i) both f1 and f2 appear in this
sequence and (ii) there is an edge e in {g}∪Y that does not appear in this sequence. We refer
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to this edge e as the missing edge of the sequence. Our goal here is to replace each Fi 6∼= K1,i
in G by a new subgraph F∗i ∼= K1,i in G (where possibly F∗i = Fi) in such a way to produce
an ascending Ramsey sequence of length k in G. We now make three observations.

(A) If c(e) = c( f1) or c(e) = c( f2), say the former, then we can interchange e and f1 to
produce a new ascending Ramsey sequence of length k in F that does not contain f1,
which is impossible in this case. Thus, c(e) 6= c( fi) for i = 1, 2 and so c( f1) = c( f2).

(B) If E(F1) ∪ E(F2) = { f1, f2, g}, or E(F2) = { f1, f2}, or E(F3) = { f1, f2, g}, then this
sequence is also an ascending Ramsey sequence in G. Therefore, we can assume that

E(F1) ∪ E(F2) 6= { f1, f2, g}, E(F2) 6= { f1, f2}, and E(F3) 6= { f1, f2, g}.

(C) If { f1, f2} ⊂ E(Fp) where 3 ≤ p ≤ k and c(F2) = c(Fp), then we can interchange E(F2)
and { f1, f2} to produce F∗2 ∼= K1,2 and F∗p ∼= K1,p in G. Therefore, we can assume that
c(F2) 6= c(Fp).

We consider two subcases, according to whether f1 and f2 belong to the same subgraph
in the sequence or f1 and f2 belong to two different subgraphs in the sequence.

Subcase 1.1. f1, f2 ∈ E(Fp) where 3 ≤ p ≤ k. Thus, c(e) = c(F2) 6= c(Fp) by (A) and (C).
We consider two possibilities here according to whether p = 3 or p = 4.

Subcase 1.1.1. f1, f2 ∈ E(F3). We may assume that E(F3) = { f1, f2, er} by (B), where
er ∈ Y.

? First, suppose that the missing edge e = g. Since g is red, it follows by (A) that F2 is
red and F3 is blue. We construct F∗2 ∼= K1,2 in G with E(F∗2 ) = { f1, f2} and F∗3 ∼= K1,3
in G with E(F∗3 ) = E(F2) ∪ {g}.

? Next, suppose that the missing edge e = et ∈ Y. First, let us suppose that F3 is red.
Since the red edge g appears in this sequence, say g ∈ E(Fi) where i ∈ [k]− {3}, we
can interchange g and er to produce F∗3 ∼= K1,3, F∗i ∼= K1,i, and an ascending Ramsey
sequence of length k in G. Next, suppose that F3 is blue. Therefore, et and F2 are red.
Then, we construct F∗1 in G with E(F∗1 ) = {er}, F∗2 ∼= K1,2 in G with E(F∗2 ) = { f1, f2},
and F∗3 = K1,3 in G with E(F∗3 ) = {et} ∪ E(F2). Thus, in this situation as well, there is
an ascending Ramsey sequence of length k in G.

Subcase 1.1.2. f1, f2 ∈ E(Fp) for some p ≥ 4. Thus, E(Fp) = { f1, f2} ∪ Z where Z ⊂
{g} ∪Y with |Z| = p− 2. Let e ∈ {g} ∪Y be the missing edge. Then, c(e) = c(F2) 6= c(Fp)
by (A) and (B). We may now assume that c(e) = c(F2) is blue and c(Fp) is red (since
the proof for the situation when c(e) = c(F2) is red and c(Fp) is blue is the same by
interchanging red and blue).

? First, suppose that Fp−1 is red. Let q be the largest integer in {2, 3, . . . , p− 2} such
that Fq is blue. Since c(Fp−1) = c(Fp) is red, it follows that c(Fq+1) = c(Fq+2) is red.
Let er, es ∈ E(Fq+2). We define F∗2 ∼= K1,2 in G with E(F∗2 ) = { f1, f2}, F∗q ∼= K1,q in G
with E(F∗q ) = E(Fq+2)− {er, es}, F∗q+2

∼= K1,q+2 in G with E(F∗q ) = E(Fq) ∪ E(F2), and
F∗p ∼= K1,p in G with E(F∗p ) = (E(Fp)− { f1, f2}) ∪ {er, es}.

? Next, suppose that Fp−1 is blue.

◦ If Fp−2 is blue, then we define F∗2 ∼= K1,2 in G with E(F∗2 ) = { f1, f2}, F∗p−2
∼=

K1,p−2 in G with E(F∗p−2) = E(Fp) − { f1, f2}, F∗p ∼= K1,p in G with E(F∗p ) =

E(Fp−2) ∪ E(F2). Thus, we may assume that Fp−2 is red. Thus, p ≥ 5.
◦ If Fp−3 is blue, then we define F∗2 ∼= K1,2 in G with E(F∗2 ) = { f1, f2}, F∗p−3

∼=
K1,p−3 in G with E(F∗p−3) = E(Fp) − { f1, f2, z} where z ∈ E(Fp) − { f1, f2},
F∗p ∼= K1,p in G with E(F∗p ) = E(Fp−3) ∪ E(F2) ∪ {e}. Here, z is the missing
edge. Thus, we may assume that Fp−3 is red. Thus, p ≥ 6.

Let q be the largest integer in {2, 3, . . . , p− 4} such that Fq is blue. Since c(Fp−2) =
c(Fp−3) is red, it follows that c(Fq+1) = c(Fq+2) is red. Let er, es ∈ E(Fq+2). We define
F∗2 ∼= K1,2 in G with E(F∗2 ) = { f1, f2}, F∗q ∼= K1,q in G with E(F∗q ) = E(Fq+2)− {er, es},
F∗q+2

∼= K1,q+2 in G with E(F∗q+2) = E(Fq) ∪ E(F2), and F∗p ∼= K1,p in G with E(F∗p ) =
(E(Fp)− { f1, f2}) ∪ {er, es}. The edge e remains the missing edge.
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Thus, there is an ascending Ramsey sequence of length k in G where f1, f2 ∈ E(Fp) for
p ≥ 4.

Subcase 1.2. f1 ∈ E(Fa) and f2 ∈ E(Fb) where 1 ≤ a < b ≤ k. Thus, c(Fa) = c(Fb) 6= c(e).
If a = 2, say E(F2) = { f1, er}, then we can interchange er and f2 to produce F∗2 = K1,2 in G
with E(F∗2 ) = { f1, f2} and F∗b

∼= K1,b in G with E(F∗b ) = (E(Fb)− { f2}) ∪ {er}. Thus, we
can assume that a 6= 2 and so a = 1 or a ≥ 3. We consider these two subcases.

Subcase 1.2.1. a = 1. Then, E(F1) = { f1}. If f2 ∈ E(F2), then E(F2) = { f2, h} where
f ∈ {g} ∪ Y. Since c(F1) = c(F2), we can interchange h and f1 to produce F∗1 in G with
E(F∗1 ) = {h} and F∗2 ∼= K1,2 in G with E(F∗2 ) = { f1, f2}. Thus, we may assume that
f2 ∈ E(Fb) where 3 ≤ b ≤ k. Since c(e) 6= c(F1) = c(Fb), we may further assume that
e is red and c(F1) = c(Fb) is blue (since the proof for the situation where e is blue and
c(F1) = c(Fb) is red is the same by interchanging red and blue).

? First, suppose that F2 is blue with E(F2) = {er, es}. Define F∗1 with E(F∗1 ) = {er},
F∗2 ∼= K1,2 in G with E(F∗2 ) = { f1, f2}, and F∗b

∼= K1,b in G with E(F∗b ) = (E(Fb) −
{ f2}) ∪ {es}.

? Next, let us suppose that F2 is red. Let q be the largest integer in {2, 3, . . . , b − 1}
such that Fq is red. If q = b− 1, then we define F∗b−1

∼= K1,b−1 in G with E(F∗b−1) =
E(Fp)− { f2} and F∗b = K1,b in G with E(F∗b ) = E(Fb−1) ∪ {e}. If 2 ≤ q ≤ b− 2, then
Fq+1 is blue. Let us define F∗q+1

∼= K1,q+1 in G with E(F∗q+1) = E(Fq) ∪ {e}, F∗q ∼= K1,q

in G with E(F∗q ) = E(Fq+1) − {ej} where ej ∈ E(Fq+1), and F∗b
∼= K1,b in G with

E(F∗b ) = (E(Fb)− { f2}) ∪ {ej}.
Subcase 1.2.2. a ≥ 3. First, we make an observation.

(D) If c(F2) = c(Fa) = c(Fb), say E(F2) = {e1, e2}, then we can define F∗2 ∼= K1,2 in G
with E(F∗2 ) = { f1, f2}, F∗a ∼= K1,a in G with E(F∗a ) = (E(Fa) − { f1}) ∪ {e1}, and
F∗b
∼= K1,b in G with E(F∗b ) = (E(Fb) − { fb}) ∪ {e2}. Thus, we can assume that

c(F2) 6= c(Fa) = c(Fb) and so c(e) = c(F2).

? If f1 ∈ E(F3), say E(F3) = { f1, g, er} or E(F3) = { f1, er, es}, then we define F∗2 = K1,2
in G with E(F∗2 ) = E(F3) − { f1} and F∗3 = K1,3 in G with E(F∗3 ) = {e} ∪ E(F2),
producing an ascending Ramsey sequence of length k in G.

? If f1 ∈ E(Fa) where a ≥ 4, then we construct a new ascending Ramsey sequence F∗1 ,
F∗2 , . . ., F∗k of length k in F by defining F∗a with E(F∗a ) = (E(Fa)− {z}) ∪ { f2} where
z ∈ E(Fa)− { f1}, F∗b with E(F∗b ) = (E(Fb)− { f2}) ∪ {z}, and F∗i = Fi if i 6= a, b and
1 ≤ i ≤ k. Thus, f1, f2 ∈ F∗a where a ≥ 4. The argument used in Subcase 1.1.2 shows
that there is an ascending Ramsey sequence of length k in G.

Case 2. One of f1 and f2 does not appear in some ascending Ramsey sequence of length k in F.
Let H1, H2, . . . , Hk be an ascending Ramsey sequence of length k in F where Hi = K1,i for
1 ≤ i ≤ k such that one of f1 and f2 does not appear in this sequence, say f1 is the missing
edge and f2 ∈ E(Hp) where 1 ≤ p ≤ k. First, we make two observations.

(E) If E(H1) = { f2} or E(H2) = { f2, g}, then this sequence is also an ascending Ramsey
sequence of length k in G. Thus, we may assume that p ≥ 2 and E(H2) 6= { f2, g}.

(F) If c(H1) = c(Hp) where E(H1) = {z} and p ≥ 2, then we can interchange z and f2 to
produce an ascending Ramsey sequence of length k in G. Thus, we may assume that
c(H1) 6= c(Hp).

We consider two cases, according to whether c( f1) = c( f2) or c( f1) 6= c( f2).
Subcase 2.1. c( f1) = c( f2). Since f2 ∈ E(Hp) where p ≥ 2, there is z ∈ E(Hp)− { f2}.

We interchange z and f1 to define H∗p ∼= K1,p in G such that f1, f2 ∈ E(H∗p) = (E(Hp)−
{z}) ∪ { f1} and z is the missing edge. We now consider the ascending Ramsey sequence
H∗1 , H∗2 , . . . , H∗k in F where H∗i = Hi for 1 ≤ i ≤ k and i 6= p. We may assume that
E(H∗2 ) 6= { f1, f2}, E(H∗1 ) ∪ E(H∗2 ) 6= { f1, f2, g}, and E(H∗3 ) 6= { f1, f2, g} (for otherwise,
H∗1 , H∗2 , . . . , H∗k is also an ascending Ramsey sequence in G). Thus, p ≥ 3. If c(H∗2 ) = c(H∗p),
then we can interchange E(H∗2 ) and { f1, f2} ⊂ E(H∗p) to produce an ascending Ramsey
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sequence of length k in G. Thus, we may assume that c(H∗2 ) 6= c(H∗p). Hence, c(H∗1 ) =
c(H∗2 ) 6= c(H∗p) by (F).

? First, let us suppose that p = 3. Let E(H∗3 ) = { f1, f2, er} where er ∈ Y. Since c(H∗1 ) =
c(H∗2 ), we can define H′1 with E(H′1) = {er}, H′2 ∼= K1,2 with E(H′2) = { f1, f2}, and
H′3 ∼= K1,3 with E(H′3) = E(H∗1 ) ∪ E(H∗2 ), producing an ascending Ramsey sequence
H′1, H′2, . . . , H′k of length k in G where H′i = H∗i for 3 ≤ i ≤ k.

? Next, let us suppose that p ≥ 4. Let us recall that c(H∗1 ) = c(H∗2 ) 6= c(H∗p) =
c(z) where z is the missing edge. Let E(H∗1 ) = {e}. We now interchange e and
z such that E(H′1) = {z} and e is the missing edge in the new ascending Ramsey
sequence H′1, H′2, . . . , H′k of length k in G where H′i = H∗i for 2 ≤ i ≤ k. Hence,
c(e) = c(H′2) 6= c(H′p) where p ≥ 4 and f1, f2 ∈ E(H′p) (which are the conditions in
the proof of Subcase 1.1.2). Therefore, the argument used in Subcase 1.1.2 shows that
there is an ascending Ramsey sequence of length k in G.

Subcase 2.2. c( f1) 6= c( f2). Since f2 ∈ E(Hp) where p ≥ 2 and c(H1) 6= c(Hp) by (E)
and (F), it follows that c(H1) = c( f1) 6= c(Hp).

? First, let us suppose that p = 2. Then, E(H2) = { f2, er}where er ∈ Y by (E). Let g ∈ Ht
where t 6= 2. If c(g) = c(H2), then we can define H∗2 = { f2, g} and H∗t ∼= K1,t in G
with E(H∗t ) = (E(Ht)− {g}) ∪ {er}. Thus, we may assume that c(g) 6= c(H2) and
so c(g) = c(H1) = c( f1). If E(H1) = {g}, then we can define H∗1 with E(H∗1 ) = { f2},
H∗2 = { f1, g}, and er is the missing edge. If g ∈ E(Ht) where t ≥ 3, then we can
define H∗1 = { f2}, H∗2 = { f1, g}, E(H∗t ) = (E(Ht) − {g}) ∪ E(H1), and er is the
missing edge.

? Next, suppose that p ≥ 3. We may assume that c( f1) is blue and c(Hp) is red
(since the proof for the situation when c( f1) is red and c(Hp) is blue is the same by
interchanging red and blue). Let us recall that c( f1) = c(H1) is blue and c(Hp) is
red. Let q ∈ {1, 2, . . . , p− 1} be the maximum integer such that c(Hq) is blue. Thus,
c(Hq+1) = c(Hp) is red where possibly Hq+1 = Hp. Let h ∈ E(Hq+1). We now define
H∗1 with E(H∗1 ) = { f2}, H∗q ∼= K1,q with E(H∗q ) = E(Hq+1)−{h}, H∗q+1

∼= K1,q+1 with
E(H∗q+1) = E(Hq) ∪ E(H1), and H∗p ∼= K1,p with E(H∗p) = (E(Hp)− { f2}) ∪ {h}.

Therefore, there is an an ascending Ramsey sequence of length k in G in Subcase 2.2.
The following is a consequence of Propositions 1 and 4 and Theorem 5.

Corollary 3. Let b ≥ 3 be an integer such that (k+1
2 ) ≤ b ≤ (k+2

2 )− 1 for some integer k.

? If (k+1
2 ) ≤ b ≤ (k+2

2 )− 2, then AR(S3,b) = k.
? If b = (k+2

2 )− 1, then AR(S3,b) = k + 1.
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