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Abstract: Camera surveillance is widely used in residential areas, highways, schools and other public
places. The monitoring and scanning of sudden abnormal events depend on humans. Human
anomaly monitoring not only consumes a lot of manpower and time but also has a large error in
anomaly detection. Video anomaly detection based on AE (Auto-Encoder) is currently the dominant
research approach. The model has a highly symmetrical network structure in the encoding and
decoding stages. The model is trained by learning standard video sequences, and the anomalous
events are later determined in terms of reconstruction error and prediction error. However, in the
case of limited computing power, the complex model will greatly reduce the detection efficiency,
and unnecessary background information will seriously affect the detection accuracy of the model.
This paper uses the AE loaded with dynamic prototype units as the basic model. We introduce an
attention mechanism to improve the feature representation ability of the model. Deep separable
convolution operation can effectively reduce the number of model parameters and complexity. Finally,
we conducted experiments on three publicly available datasets of real scenarios (UCSD Ped1, UCSD
Ped2 and CUHK Avenue). The experimental results show that compared with the baseline model,
the accuracy of our model improved by 1.9%, 1.4% and 6.6%, respectively, across the three datasets.
Compared with many popular models, the validity of our model in anomaly detection is verified.

Keywords: anomaly detection; attention mechanism; depthwise separable convolution; deep learning;
symmetrical structure

1. Introduction

Video anomaly detection [1] is unlike traditional anomaly detection [2–4], video
anomaly detection refers to the detection of behavior or appearance inconsistent with
expectations in a normal surveillance video or normal behavior or appearance in abnormal
time or space. At present, there are many solutions, which can be roughly divided into
reconstruction-based, prediction-based, classification-based and regression-based methods.
The method based on reconstruction and prediction is more mainstream, so it is introduced
as a key point. The reconstruction-based approach [5–9] involves constructing a model from
normal video sequences and then reconstructing the test dataset. The abnormal image does
not conform to the coding of the model. Researchers use the size of reconstruction error
to identify the abnormal image. Depth AE is the most common detection method based
on the reconstruction method. Researchers usually use an AE to learn the normal video
sequence mode to reconstruct the current frame. Hasan et al. [10] proposed two detection
methods based on AE, First, the feature extraction of the video sequence is carried out
according to the traditional manual method, and a fully connected AE is added. Secondly,
the convolutional neural network is introduced to construct a feedforward encoder to
learn the local features of the video sequence. However, this method relies too much on
normal data, so the sensitivity of the model to abnormal images is poor. To solve the
above problems, Park et al. [11] proposed the use of a neural network model with updated
memory to remember normal images. At the same time, the author introduces new features
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of compactness loss and separation loss to improve the training memory of the model.
Gong et al. [12] built a memory enhancement encoder, MemAE, to update the memory
content at the training stage. In the test phase, it is reconstructed from the storage memory
of normal data. The model has a high generalization ability. Ref. [13] couples the target
motion characteristics of pre-training with the anomaly scoring function based on the cosine
distance. Based on the reconstruction strategy, the author introduces additional constraints
to extend the previous method. The model has achieved good results in the abnormal target
locations. A temporal coherent sparse coding (TSC) is proposed in [14]. The model forces
the use of similar reconstruction parameters to encode similar neighbor video sequences.
Moreover, the stack recurrent neural network with a special type is used to map TSC, which
shows excellent results on real datasets. Luo et al. [15] used convolutional neural networks
to encode the appearance of video sequences. The convolution long and short time memory
is used to detect the anomaly corresponding to the motion information, and the validity of
the model is verified on a real dataset. However, when the reconstruction-based anomaly
detection method encounters new detection video sequences, it needs to carry out new
training to ensure that the appropriate model is obtained. Moreover, the spatial feature
extraction of the model for video sequences is poor, resulting in low detection accuracy.

Prediction-based methods [16–20] of default video sequences have certain context
information links. The model predicts the next frame by learning the original dataset, and
the prediction error of abnormal video sequences is large. In [21], a new convolutional
variational recurrent neural network (VRNN) is constructed to predict video sequences
by combining the variational AE with Conv-LSTM. To solve the problem of incomplete
feature extraction of a video sequence by the encoder. Wang [22] proposed a future
frame prediction method based on a generation antagonism network (GAN) and attention
mechanism. For the generation model, the author added the attention module in the
U-Net network. For the identification model, the Markov GAN model with the attention
mechanism improves the detection performance of the algorithm. Similarly, Liu [23]
proposes a hybrid framework HF2-VAD that integrates stream reconstruction and frame
prediction. First, the ML MemAE SC network is used to store the normal mode of optical
flow reconstruction to identify abnormal frames with large flow reconstruction errors. The
conditional variational automatic encoder is used to capture the correlation between the
video sequence and optical flow to predict the next frame; The reconstructed optical flow
of the abnormal frame further affects the quality of the predicted frame, thus identifying
the abnormal frame. However, many normal events are unpredictable, and if the abnormal
events occupy a small area of the picture, the prediction effect is also poor. Therefore, the
false alarm rate of anomaly detection relying solely on prediction is very high.

Other anomaly detection methods include the classification-based method [24] and
regression-based method [25]. Mehran et al. [26] proposed the use of the social force model
to detect and locate crowd videos. Place a particle mesh on the image and compare it with
the time-space average of the optical flow. Consider moving particles as individuals, and
use the social force model to evaluate their interaction forces. Then the force is mapped to
the image plane to obtain the force flow of each pixel, and the space-time volume of the
force flow is used to simulate the normal behavior of the crowd to identify the abnormal
frame. Ref. [27] trains a binary classifier based on unmaking to distinguish continuous
video sequences; however, it eliminates too many distinguishing features at each step to
distinguish abnormal events. Mahadevan [28] et al. proposed a new anomaly detection
framework for congestion scenarios. This method solves the limitations of potential visual
representation. The paper proposes that feature representation should jointly model the
dynamics and appearance of crowd patterns, and have the ability of spatiotemporal features
to ensure the integrity of feature extraction. Lu et al. [29] proposed an adaptive anomaly
detection algorithm for scenes with few shots. Based on meta-learning, a few-shot learner
is constructed to solve the problem of anomaly detection in multiple scenes. Cai et al. [30]
proposed an appearance-motion memory consistency network (AMMC-Net) using the
prior knowledge of the appearance signal and motion signal to capture their corresponding
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relationship in the high-level feature space. Then, they combined this with multi-view
features to increase the difference between normal and abnormal video sequences.

Among the research methods based on prediction and reconstruction, researchers are
keen to use the AE (Auto-Encoder) as the detection model and then reconstruct or predict
the test data by modeling the normal data. It is used to identify abnormal events based on
high error. However, the AE needs to encode the normal video frame during the training
process, which consumes a lot of memory, and it cannot process new scenarios in test data.
Therefore, Lv [31] develops a dynamic prototype unit (DPU) as a learning model of normal
features. The dynamic encoding of normal video frames is embedded into the encoder
as a prototype. In addition, meta-learning is introduced to create multi-scenario learners.
However, there are two main problems: in the case of limited computing power, complex
models will affect the detection efficiency. At the same time, computing unimportant video
background information will occupy a large amount of video memory.

To solve the above problems, this paper introduces an attention mechanism based on
DPU. The circular attention module is used to collect the spatial information of the video
sequence to improve the feature representation ability of the model. The depth separable
convolution operation is introduced to reduce the number of parameters and enhance the
model’s accuracy. The contributions of this paper are summarized as follows:

• An attention module is designed and introduced into the AE. The model obtains the
context information of video frames from horizontal and vertical directions to reduce
the interference of video background information. To improve the feature learning
ability of the neural network.

• We introduce a deep separable convolution operation into the decoder. It reduces the
parameters of the model and improves detection efficiency and accuracy.

• Compared with multiple video anomaly detection models in different periods, the
experimental results verify our model’s powerful learning ability in complex scenes.

The structure of this paper includes the introduction, which mainly introduces the
background of the paper and related research work. Next is the proposed method, focusing
on how our model works. Next is the experiment, which introduces the preparation and
implementation details of the experiment. Finally, we will discuss how the model works
and summarize its effectiveness on the model.

2. Proposed Method

We propose a video anomaly detection model based on the attention mechanism,
and the general framework is shown in Figure 1. Our approach consists of the following
four components: (1) Encoding stage: the video sequence (Ik − T + 1, Ik − T + 2..., Ik) is
fed into the encoder to obtain the feature encoding of the implicit layer. (2) Prototype
pool: The coding diagram in the hidden layer generates the prototype, Pm, through the
mapping function and constructs the prototype pool. (3) Attention mechanism: Inputs
the coding features obtained from the hidden layer into the attention unit. Obtains the
spatial information in the feature map to form a new coding feature. (4) Decoding stage:
Depth-wise (DW), a depth-separable convolution operation, is introduced to optimize the
anomaly detection model.

In particular, our model has a high degree of symmetry in the encoding and decoding
phases, with an overall implementation of an end-to-end connectivity architecture.
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Figure 1. Anomaly detection model based on attention mechanism.

2.1. Attention Prototype Pool

We take DPU as the baseline model and add a recursive attention unit to learn normal
features. The overall framework is shown in Figure 1. Assuming a set of training data
frames V = (Ik − T + 1, Ik − T + 2..., Ik) simplified to V, we feed V into the AE. This
outputs the result through encoding–attention model–decoding operation to predict the
next frame, Yk = Yk + 1. We represent the sequence of frames at moment k as the input-
output pair (Xk, Yk). The forward propagation mode of the model is: first, generate a
feature prototype pool. After that, the model is encoded normally by retrieving prototype
features to obtain hidden layer features. Finally, the input code is aggregated with the
normal code as the output.

First, the k-th coding graph extracted from AE, Xk = fθ(xk), is regarded as the C-
dimension vector

{
x1

k , x2
k ...xm

k
}

with N = w× h. The attention mapping function encodes
and assigns weights to each pixel position of the normal image. The weight normalization
calculation method is shown in Equation (1). After generating the prototype pool, use
the input vector of the AE code graph to search the prototype in the prototype pool. The
new coding diagram is obtained by vector summation Equation (2). Finally, the covariance
matrix is introduced. The independence of the prototype in the prototype pool based on
the independence of the input code is ensured, and then subsequent predictions are made
through the encoder to obtain accurate judgment results.

Where Pm
k means that the k-th coding diagram is generated by the m-th mapping

function. The prototype, P, is considered a set of N coding vectors, where N represents the
number of samples. ωn,m

k represents the weight value assigned by the k-th coding vector.
xn

k represents the k-th vector extracted from the AE. θn,m
k represents the correlation score

between the n-th coding vector and the m-th prototype in the prototype pool, and the sum
obtained is taken as the output vector.

Pm
k =

N

∑
n=1

ωn,m
k ∗ Xn

k /
N

∑
n′=1

ωn
′
,m

k (1)

Xn
k =

M̂

∑
m=1

θn,m
k pm

k (2)

2.2. Attention Unit

We introduced two repeated attention modules to collect the horizontal and vertical
contextual information of video sequences to enhance the feature extraction ability of
the model.
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We obtain two feature maps, Q and K, of the video sequence using two 1*1 convolution
kernels. At each pixel position S1 of the feature map Q, the feature vector q is obtained.
Meanwhile, the feature vector K is obtained from the pixel position S2 in the same row or
column as S in the feature map k. We calculate the weight value of each vector according
to the affinity operation. According to the weight coefficient, the value of the feature map
is weighted and summed to obtain feature map A with attention. To prevent a pixel from
not being closely related to its surrounding pixels. We set up two attention units to form
a circular attention structure. For the feature maps, A and A

′
, obtained by two attention

units, the weight mapping function is expressed as A
′
= f (A, S1, S2) .

That is, given the input video sequence X, the hidden layer characteristic graph H is
obtained through the AE. Then, we send the feature map H into the first attention unit
to generate a new feature map H

′
with attention. H and H

′
have the same size. H

′
has

information about the vertical and horizontal directions of each pixel in the video sequence.
To ensure that the information obtained is more abundant, we put H

′
into the attention

unit again and get the feature map H
′′

with dense context information. To avoid extra
parameter calculation, the front and back attention units share the same parameter. The
loop setting of the attention unit ensures that there is an information connection between
any position, S1, on the feature map H

′
and any position, S2, on the feature map H

′′
(S1

and S2 are in the same direction). Therefore, we can ensure that our structure can create
an informative feature map. Finally, we fuse the feature map H′′ with contextual with the
initial input video sequence X. The attention mechanism helps the model better focus on
the video subject. We ignore the impact of the video background on the encoder to reduce
the storage pressure of the model.

2.3. Deeply Separable Convolution

We replace the standard convolution in the decoder with deep convolution (Depth-
wise (DW)) and Pointwise convolution (PW) to reduce the model parameters. The decoder
has a symmetric network structure to achieve internal end-to-end connectivity. The Depth
of Separable Convolution (Depth-wise Separable Convolution, DSC) architecture, as shown
in Figure 2, convolution layers after batch normalization and the Mish activation function
are used. The specific convolution layer is shown in Figure 3. In deep convolution, a 3× 3
convolution kernel is first used for convolution on the input channel, and the obtained
feature layer W × H is the same as the target feature layer. However, the number of
channels does not reach the output channel target. The model needs to use four groups of
1× 1 convolution cores to reach the target channel through point-by-point convolution. In
the standard convolution, assuming that the number of input channels is m and the number
of output channels is n, the size of standard parameters is m× 3× 3× n, while the depth
convolutional parameter is m× 3× 3, and the point-by-point convolutional parameter is
m× 1× 1× n. The total parameters used are m× 3× 3 + m× 1× 1× n. The number of
parameters decreases exponentially, and the depth convolution model also contributes to
the improvement in our accuracy. The Mish activation function is defined in Equation (3).

Mish = x ∗ tanh(ln(1 + ex)) (3)
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Figure 2. Depth-separable convolutional module architecture diagram.

Figure 3. Deeply separable convolutional structure map.

2.4. Abnormal Score

We use the feature reconstruction error and frame prediction error as the primary
basis for anomaly scoring. The reconstruction error is first obtained by calculating the
compactness error of the feature reconstruction term, and then the frame prediction error,
as described in [32], can also be used as a description of the anomaly score. We use the two
errors as the final anomaly score of the model by weighting the sum.

The total loss function of our model is obtained by weighting the frame prediction
loss, feature reconstruction loss, and feature distance loss, as shown in Equation (4). Where
the frame prediction loss is obtained by calculating the L2 distance between the actual
image yt and the predicted value yt

′, marked as L f ra, as shown in Equation (5). The
feature reconstruction loss is calculated from the reconstruction error obtained from the AE,
marked as L f ea, as shown in Equation (6). The feature distance loss is calculated from the
error between the prototype code Pm and the predicted code Pm

′, marked as Ldis, as shown
in Equation (7).

Ltotal = ω1L f ra + ω2L f ea + ω3Ldis (4)

L f ra =
∥∥y′t − yt

∥∥
2 (5)
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Lfea =
∥∥y′′t − yt

∥∥
2 (6)

Ldis =
2

M(M− 1)

M

∑
m=1

M

∑
m′
(−‖Pm − Pm′‖2) (7)

3. Experiment
3.1. Experimental Implementation

Experiments are conducted on three datasets, and the size of the input video image is
256 * 256 * 3. The circular attention mechanism is inserted behind the third layer of the AE.
The parameters of the loss function are ω1 = 1, ω2 = 1, ω3 = 0.001. After 3000 training
sessions for each training dataset, the loss value of the model tends to be stable, as shown
in Figure 4. Batchsize = 2, the learning rate is lr = 0.0001, and the optimizer is Adam. This
experiment was implemented under the deep learning framework PyTorch 1.6.0 on a 64-bit
Ubuntu 18.04 LTS system with an NVIDIA GeForce RTX 2080 Ti and 11 GB of memory.

Figure 4. Change in training loss value with training times.

3.2. Datasets and Evaluation Indicators

The model requires a large amount of training data to learn the deeper features of the
video sequence. The experimental data in this paper selects three public video anomaly
detection datasets, namely UCSD Ped1, Ped2 and CUHK Avenue. The UCSD Ped1 (denoted
by Ped1 in the following text) includes 6800 video frames for 34 training data, 7200 video
frames for 16 test data and 40 abnormal events. The UCSD Ped2 (denoted by Ped2 in the
following text) includes 16 training data with a total of 1920 video frames, 21 test data with
2160 video frames and 12 abnormal events. The CUHK Avenue (denoted by Avenue in the
following text) dataset consists of 16 training data, including 15,328 video frames, 21 test
data of 15,324 video frames and 47 abnormal events.

The dataset attributes are shown in Table 1, and the exception event case illustration is
shown in Figure 5. The Ped1 and Ped2 datasets are video scenes of school pavements, and
scenes with only pedestrians in the video are considered normal data. In contrast, actions
such as trucks, bicycles, wheelchairs, trampling on the lawn, and running are considered
abnormal events. The Avenue dataset scene is a Central Avenue scene captured by a
surveillance camera, where phenomena such as unusual movements of pedestrians, wrong
direction of action and the presence of unique objects are considered extraordinary events.
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Table 1. Dataset.

Dataset Number of Samples Training Set Testing Set Abnormal Events

Ped1 14,000 6800 7200 40
Ped2 4080 1920 2160 12

Avenue 30,652 15,328 15,324 47

Figure 5. Dataset exception case illustration.

In video anomaly detection, we selected the Area Under the receiver operating charac-
teristic Curve (AUC) as the final evaluation metric of the algorithm. The receiver operating
characteristic curve (ROC) is a curve. Its abscissa and ordinate are false positive rate (FPR)
and true positive rate (TPR). As the curves do not allow for a comparison of good and
bad models, the AUC values below are used as specific evaluation indicators. Accord-
ing to the prediction result confusion matrix (Table 2), the calculation process is shown
in Formulas (8)–(12). In general, the closer the ROC curve is to the upper left (the more
significant the actual case rate), i.e., the closer the AUC score is to 1, the better the detection
performance of the algorithm is demonstrated.

Table 2. Prediction result confusion matrix.

Real Label
Forecast Label

Positive Negative

Positive TP FN
Negative FP TN

FPR =
FP

FP + TN
(8)

TPR =
TP

TP + FN
(9)

xi+1 =


FPR , i = 0

xi +
1

m− , i > 0 and xi ∈ FP
xi , i > 0 and xi ∈ TP

(10)

yi+1 =


TPR , i = 0

yi +
1

m+ , i > 0 and yi ∈ TP
yi , i > 0 and yi ∈ FP

(11)

AUC =
∑m−1

i=1 (xi+1 − xi)× (yi+1 − yi)

2
(12)

where xi and yi are the abscissa and ordinate of the i-th sample point, and i is a positive
integer. m is the total number of samples, m+ is the number of positive samples and m− is
the number of negative samples.
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3.3. Parameter Sensitivity Analysis

We analyzed the influence of feature differentiation loss weight on model accuracy
through experiments.

In our model, the loss function is derived from a weighted sum of three components:
frame prediction loss, feature reconstruction loss and feature distance loss, with the weights
of the first two losses assigned traditionally. In terms of feature distance loss, the Euclidean
distance is used to calculate the feature distance. The calculation of this part has a tremen-
dous fluctuation influence on abnormal detection results, so we set 0.0001, 0.001, 0.01, 0.10
and 1.00, respectively, for ω3 to carry out comparative experiments, and the experimental
results are shown in Figure 6. The experiments show that our model has the highest
accuracy when ω3= 0.001.

Figure 6. Sensitivity analysis of feature distance loss weights.

3.4. Time Complexity Analysis

The algorithm’s primary time consumption is the attention mechanism’s computa-
tional phase. In the attention unit module, the output of each encoding stage corresponds
to an intermediate state ci of the video frame, which is used to record the relationship
between the previous output result si−1 and the state of the implicit layer. To calculate the
state ci, we need to calculate the n weights obtained by attentional encoding each time. n
denotes the number of images that go to the encoding state, and the decoder has a total of
n states, so the time complexity is O(n*n).

3.5. Results and Analyses

We have compared popular algorithms in different periods. The specific detection
accuracy is shown in Table 3. The data in the table is obtained from the original paper. Since
our model performs best on dataset Ped2; we have carried out experimental verification
on it using abnormal scores. As shown in Figure 7, the part with a high abnormal score
represents the abnormal picture. We marked the abnormal part with a red detection box.
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Figure 7. Results of abnormal scores of some frames in Ped2.

The attention mechanism helps our model pay more attention to the main part of
the video frame. After two attention unit modules, the main body of the video frame
is gradually clear. Our model can better learn video features to achieve better detection
results. Figure 8 shows the effect of the attention unit on datasets Ped1 and Ped2. The first
column is the real ground map, and the second and third columns are the feature map after
the attention unit. It can be seen that the model pays more attention to the main body of
the picture after circulating the attention unit. The model can better learn the features of
the subject so as to achieve higher detection accuracy.

Figure 8. Example of the effect of attention mechanism in the detection process.

Some interesting information can be found in Table 3.
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Table 3. Comparison of the experimental results with those of advanced algorithms.

Method Ped1 Ped2 Avenue

SF [26] 67.5 55.6 -
MDT [28] 81.8 82.9 -

Unmasking [27] 68.4 82.2 80.6
TSC [14] - 89.1 80.6

Mem-AE [12] - 94.1 83.3
Conv-AE [10] 75.0 85.0 70.2

Conv-LSTM [15] 75.5 86.1 77.0
r-GAN [29] 83.7 95.9 85.3

AMMC-Net [30] - 96.6 85.6
DPU [31] 78.9 96.5 79.3

Ours 80.5 97.9 85.9

(1) Our models are relative to SF, MDT, Unmasking, conv-AE, conv-LSTM, r-GAN and
the baseline model DPU. On the Ped1 dataset, the AUC values of the samples were elevated
by 13%, −1.3%, 12.1%, 5.5%, 5%, −3.2% and 1.6%, respectively. On the Ped2 dataset, the
values were 42.3%, 15%, 15.7%, 8.8%, 3.8%, 12.9%, 11.8%, 2%, 1.3%, 1.4% compared to
SF, MDT, Unmasking, TSC, Mem-AE, conv-AE, conv-LSTM, r-GAN, AMMC-Net and the
baseline model, respectively. On the Avenue dataset, the improvements over Unmasking,
TSC, Mem-AE, conv-AE, conv-LSTM, r-GAN, AMMC-Net and the baseline model were
5.3%, 5.3%, 2.6%, 15.7%, 8.9%, 0.6%, 0.3% and 6.6%, respectively.

(2) The attention mechanism does obtain the complete spatial information of the video
sequence, helping us to get better video frame features and thus achieve higher accuracy.
Especially on the Avenue dataset, the advantages of our model are more prominent. We
hypothesized that the Avenue dataset is significant, and the attention mechanism is more
advantageous for feature extraction in large datasets. Compared to other datasets and
models, our model has the best lift on this dataset.

(3) We introduced separable convolution operation in the decoding stage. As can
be seen from Tables 4 and 5, we improved the detection accuracy while reducing model
parameters, which verified our model’s effectiveness in video anomaly detection.

Table 4. Comparison of ablation results.

Module Ped1 Ped2 Avenue

base 78.9 96.5 79.3
+DSC 80.5 96.6 82.6
+Attention 80.1 97.3 82.4
+DSC+Attention 80.8 97.9 85.9

To verify the influence of our depth-separable convolution operation on model param-
eters, we calculated model parameters and Floating point operations per second (Flops),
and the specific results are shown in Table 5. The number of parameters in our model is
reduced by more than four times. That is, the complexity of the model can be reduced
while the accuracy can be further improved.

Table 5. Comparison of model complexities.

Module Params Flops

Base 13.19 M 49.11 GMac
Ours 3.27 M 35.31 GMac
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Ablation Study

We added attention mechanisms and depth-separable convolution operations to the
baseline model DPU. To verify the effectiveness of each part of the model, we conducted
ablation studies on three datasets, and the experimental results are shown in Table 4
and Figure 9. Four model combinations, baseline model, baseline model + attention,
baseline model + depth-separable convolution and baseline model + attention + depth-
separable convolution, are compared and investigated. The operation with depth-separable
convolution improves the accuracy by 1.6%, 0.1% and 3.3% on the three datasets. The
models with the attention mechanism improved accuracy by 1.2%, 0.8% and 3.1% on
the three datasets, respectively. In contrast, the combined model improved accuracy
by 1.9%, 1.4% and 6.6% on the three datasets, respectively. Both the deep separable
convolution operation and the attention mechanism provide performance improvements
to the original model, while the combined model offers the best performance improvement
to the original model.

Figure 9. Histogram of ablation experiment results.

4. Discussion and Summary

In this paper, we first propose two main problems in video anomaly detection. Then
we introduce the attention mechanism into the DPU model to improve the model detection
accuracy. Then we introduce separable convolution operation to reduce the complexity of
the model. Finally, we perform experimental research on three public datasets to prove the
effectiveness of our algorithm in video detection. In addition, we also conducted ablation
experiments to verify the effectiveness of the methods used in the model. Finally, we
discuss the influence of feature distance loss weight on the detection ability of the model.

The excellent performance of the model in video anomaly detection mainly comes
from the following two aspects:

(1) Our model eliminates the influence of the video background through dual attention
units, thus facilitating the model to extract the main features. This improves the detection
accuracy of the model.

(2) The separable convolution operation reduces the model parameters by nearly four
times and accelerates the detection speed of the model. This improves the efficiency of
model detection.
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From the above analysis, we can understand that compared with the baseline model;
our proposed model has excellent detection accuracy and speed. However, our model
performs poorly on Ped1 and Avenue datasets. This means that the model is not very
universal, which is also the common fault of almost all video anomaly detection models. In
the future, we will consider combining more advanced deep learning methods to study
more general detection models. It is convenient to solve more complex video data in the
real world.
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