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Abstract: In this article, an application in the field of engineering graphics is presented for the design
of a geometric calculator generated as a macro in CATIA V5. The code of this macro is written in the
CATVBA language and utilizes the CATIA internal editor while taking advantage of the capabilities
offered by Visual Basic for Applications (VBA). The principal purpose of this application lies in the
possibility of creating the three main geometric elements (point, line, and plane) and in solving five
types of general geometric problems, and then comparing the results obtained with their equivalent
problems from analytical geometry. In particular, within these types of general geometric problems,
34 possible cases are solved: definition of lines (nine cases), definition of planes (12 cases), intersection
points (three cases), angles (three cases), and distances (seven cases). These new entities defined with
the geometric calculator can serve as support for the generation of new three-dimensional volumes,
the creation of auxiliary symmetries, and the dimensioning of various elements. It was verified that
the results of the designed macro and the solutions of the analytical equations coincided; therefore,
the procedure was validated. Likewise, the module employed herein in the CATIA V5 environment
is “Wireframe and Surface Design”, since it enables handling the three basic geometric elements
(point, line, and plane), which form the basis of the geometric calculator. Lastly, it is verified how
the geometric calculator allows their integration with three-dimensional solids, which represents a
notable advance as an aid in its geometric definition.

Keywords: macro; visual basic for applications; CATIA V5; geometric calculator; point; straight line;
plane; angle; distance

1. Introduction

Both in the educational and in the professional environment, the importance of un-
derstanding engineering graphics techniques holds the key to the performance of the
work of an engineer and, therefore, justifies its analysis. Understood as the set of graphic
techniques employed to solve engineering problems, they are applied in various fields,
such as geographic information systems (GIS) [1,2] and computer-aided design (CAD) [3].
Likewise, other applications have been developed to teach the fundamentals of engineering
graphics and geometric loci as tools to help in the engineering design process [4].

In the environment of university education, there are numerous subjects that com-
plement training in engineering graphics, such as descriptive geometry [5], analytical
geometry [6], technical drawing [7], and normalization [8]. In particular, geometry, or the
branch of mathematics that studies the properties of figures in space, acquires a prominent
role in the knowledge that university students must possess and, together with arithmetic,
constitutes the oldest part of mathematics [9]. Geometry was already developed in a totally
empirical way in ancient Mesopotamia in the second millennium BC, and it is precisely in
this period that the principles related to distances, angles, and areas began to be discovered.
These principles and their associated formulas were able to be developed mainly due to the
needs arising from architecture and astronomy [10]. However, it was not until the time of
ancient Greece (499 BC–323 BC) when its study was deepened, with well-known geometers
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appearing such as Thales of Miletus and Euclid with his famous work “The Elements”,
considered to be the most influential book in the history of mathematics [11].

This research has been largely based on the use of analytical geometry, a branch of
mathematics that uses algebraic methods and equations for the study of geometric problems
such as the study of figures, distances, areas, and points of intersection, as well as the use
of descriptive geometry, the branch of mathematics that is responsible for representing
three-dimensional objects using projections.

The review of related applications has enabled several examples of software to be
found that work with geometric environments. Of these, GEUP 3D [12] stands out the
most as a calculation and visualization software in spatial geometry and mathematics that
enables the study of figures obtained both analytically and from geometric construction,
and that can define and modify fundamental geometric elements such as points, lines,
planes, circles, conics, polygons, and polyhedral, as well as operations and calculations
on measures and angles. Secondly, Geogebra [13], a free application accessible from any
browser, and structured into several modules, among which the graphing and the 3D
calculator modules deserve special mention, with the latter showing a three-dimensional
Cartesian system together with an interactive keyboard and a library of functions that allow
the user to create practically any geometric entity, in addition to performing calculations,
transformations, developments, and intersections.

However, these applications do not allow their integration into currently available
CAD software; hence, the help that would be provided by working with a geometric calcu-
lator within said CAD software for the calculation of various magnitudes or angles is lost
when carrying out computer-aided design. Likewise, the concept of a geometric calculator
has been the subject of research in other scientific disciplines, such as chemistry [14].

There are numerous examples of computer-aided design and engineering software
available today, but CATIA (Computer-Aided Three-Dimensional Interactive Application)
is, without a doubt, the most widely used CAD in the field of engineering. For this reason,
many universities focus on teaching such software in engineering studies [15]. Likewise,
various macros have been developed in the CATIA V5 environment [16,17] that seek to
automate processes, using the Visual Basic for Applications (VBA) language, which is the
Microsoft Visual Basic macro language utilized for the design of macros in CATIA [18].

Thus, the research presented is completely original and genuinely helps in the 3D
design process, since no similar application has been developed in CATIA V5, which
underlines the importance of the developed application, since it could increase productivity.
Among its different functionalities are the generation of auxiliary elements such as axes of
revolution or symmetry, the finding new planes to make projections, and the finding of
geometric places with respect to three-dimensional solids.

The remainder of the paper is structured as follows: Section 2 shows the materials
and methods used in this investigation. Section 3 presents the main results and discussion,
while Section 4 states the principal conclusions and future developments.

2. Materials and Methods
2.1. CATIA and VBA

As occurs in most CAD software, CATIA allows the creation of different solids fol-
lowing a procedure that consists of making a two-dimensional sketch, using points, lines,
planes, and curves, to which various functions can be applied for its transformation into
a three-dimensional solid. Subsequently, other transformations can be applied to said
three-dimensional solid, or solids can be combined with each other through Boolean logic
operations (union, difference, and intersection).

CATIA presents a variety of modules for the execution of different operations. Of
these, “Wireframe and Surface Design” stands out, which is oriented toward the generation
of surfaces and is essential for the objective of this research, since it enables basic elements
of geometry, such as points, lines, and planes, to be handled.
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Likewise, in its V5 version, CATIA includes the possibility of adding new function-
alities through a macro programming module in VBA. Visual Basic for Applications is
a macro programming language that enables the addition of functionality to Windows-
based programs. In turn, a macro is a sequence of orders or commands that are executed
automatically to save the user time and work.

Within said programming module, one interesting option included in CATIA (and
most software with VBA) is that of the macro recorder. When this tool is activated, macro
codes are generated automatically, which replicate the actions carried out by the user
himself. This tool creates a file that can be saved in the macro library to be employed on
other occasions, thereby obviating the need of the user to iteratively carry out the actions
that have already been recorded. Furthermore, CATIA includes a Visual Basic editor that
enables existing codes to be changed, as well as the manual creation of macros.

It is interesting to note that the interaction between the end user and the macro is
carried out through forms, which are nothing more than text boxes that allow the user to
select options, enter values, and receive different outputs from the program.

In the particular case of the application developed herein, a shortcut icon has been
placed in the toolbar of the “Wireframe and Surface Design” module (Figure 1) to access
the geometric calculator, although it can also be accessed by selecting from the “Tools” tab
of the program menu bar and taking the “Macros” option.
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Figure 1. Shortcut icon (red circle) from the “Wireframe and Surface Design” module toolbar.

2.2. Geometric Calculator

The developed macro consists of two independent modules, with 14 forms and 38 dif-
ferent functions, which follow the hierarchy shown in the flowchart (Figure 2).

In said flowchart, both modules are clearly differentiated: in Module 1, the geometric
elements (points, lines, and planes) are generated; in Module 2, the five types of geometric
problems posed are solved (find the point of intersection, define a line or a plane, and
determine angles and distances).

2.2.1. Module 1: Generation of Geometric Elements

The objective of this first phase is to create the entities (geometric elements) with which
the geometric calculator will work. First, the user is asked if they want to generate points,
lines, or planes (Figure 3).



Symmetry 2023, 15, 547 4 of 26

Symmetry 2023, 15, 547 4 of 26 
 

 

 
Figure 2. Flowchart of the operation of the developed macro. 

2.2.1. Module 1: Generation of Geometric Elements 
The objective of this first phase is to create the entities (geometric elements) with 

which the geometric calculator will work. First, the user is asked if they want to generate 
points, lines, or planes (Figure 3). 

Figure 2. Flowchart of the operation of the developed macro.



Symmetry 2023, 15, 547 5 of 26
Symmetry 2023, 15, 547 5 of 26 
 

 

 
Figure 3. Main form of Module 1: generation of geometric elements. 

Thus, depending on the user’s choice, several situations can occur: 
• If the option to create a point is chosen, then its Cartesian coordinates (X, Y, Z) must 

be entered (Figure 4, left), and the geometric calculator will generate it automatically 
(Figure 4, right). 

 
Figure 4. Form for creating a point (left) and graphic result (right). 

To store the coordinates entered by the user, the following code is used: 
Sub CreateButton_Click() 
If “Create” is pressed, then the values are saved and the function CreatePoint is called 
X = TextBox1.Value 
Y = TextBox2.Value 
Z = TextBox3.Value 
Call CreatePoint(X,Y,Z) 
End Sub 

• If the creation of a line is selected (Figure 5, left) a form appears where the user must 
choose between creating it either depending on two points or with one point and the 
direction vector of said line (Figure 5, right). The code for the two cases is the same; 
in the case that a point and the direction of the line are specified, then the program 
calculates a second point of the line automatically: 
Sub CreateButton_Click() 

Figure 3. Main form of Module 1: generation of geometric elements.

Thus, depending on the user’s choice, several situations can occur:

• If the option to create a point is chosen, then its Cartesian coordinates (X, Y, Z) must
be entered (Figure 4, left), and the geometric calculator will generate it automatically
(Figure 4, right).
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To store the coordinates entered by the user, the following code is used:
Sub CreateButton_Click()
If “Create” is pressed, then the values are saved and the function CreatePoint is called
X = TextBox1.Value
Y = TextBox2.Value
Z = TextBox3.Value
Call CreatePoint(X,Y,Z)
End Sub



Symmetry 2023, 15, 547 6 of 26

• If the creation of a line is selected (Figure 5, left) a form appears where the user must
choose between creating it either depending on two points or with one point and the
direction vector of said line (Figure 5, right). The code for the two cases is the same;
in the case that a point and the direction of the line are specified, then the program
calculates a second point of the line automatically:
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Sub CreateButton_Click()
If “Create” is pressed, then the values are saved and the CreateLine function is called
X1 = TextBox1.Value
Y1 = TextBox2.Value
Z1 = TextBox3.Value
X2 = CDbl(TextBox1.Value) + CDbl(TextBox4.Value)
Y2 = CDbl(TextBox2.Value) + CDbl(TextBox5.Value)
Z2= CDbl(TextBox3.Value) + CDbl(TextBox6.Value)
Call CreateLine(X1,Y1,Z1,X2,Y2,Z2)
End Sub

• If the creation of a plane is selected (Figure 6, left), then the Cartesian coordinates of
three nonaligned points or the four coefficients (A, B, C, and D) of the general equation
of the desired plane (Figure 6, right) are selected:
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Ax + By + Cz = D (1)

Once the values entered for the four coefficients have been accepted, the program
generates a plane according to the following code:

Sub CreateButton_Click()
If “Create” is selected, then the values are saved and the CreatePlane function is called
A = TextBox1.Value
B = TextBox2.Value
C = TextBox3.Value
D = TextBox4.Value
Call CreatePlane(A,B,C,D)
End Sub

2.2.2. Module 2: Geometric Calculator

This module solves geometric problems of various types, and asks the user first which
type of problem is to be solved from among the five options available:

• Find the point of intersection between lines and/or planes.
• Define a line that meets certain conditions.
• Define a plane that meets certain conditions.
• Calculate the angle between lines and/or planes.
• Calculate the distance between points, lines, and planes.

Figure 7 shows the main form of Module 2 (geometric calculator) where the option
buttons of Module 1 have been replaced by command buttons with integrated images
since they are more intuitive. These buttons lead the user to the appropriate form with the
corresponding subsections.
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Figure 7. Main form of Module 2: geometric calculator.

By pressing any of the five available buttons, which refer to each type of problem, a
new menu opens with the subsections corresponding to each specific geometric problem.
Each of the five buttons is assigned a name, and they are programmed with the following
code to automatically open the corresponding form:

Private Sub Point_Click()
UF_Calculator.Hide
UF_ProblemPoint.Show
End Sub
Private Sub Line_Click()
UF_Calculator.Hide
UF_LineProblem.Show
End Sub
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Private Sub Plane_Click()
UF_Calculator.Hide
UF_PlaneProblem.Show
End Sub
Private Sub Angle_Click()
UF_Calculator.Hide
UF_AngleProblem.Show
End Sub
Private Sub Distance_Click()
UF_Calculator.Hide
UF_ProblemDistance.Show
End Sub
To solve each specific geometric problem, the CATIA commands outlined in Table 1

are used.

Table 1. Commands used for solving geometric problems.

Type of Problem Commands

Intersection point AddNewIntersection

Line

AddNewLinePtDir
AddNewLinePtPt

AddNewLineNormal
AddNewLineAngle

AddNewIntersection
AddNewPlaneAngle
AddNewPlane2Lines

Plane

AddNewPlaneNormal
AddNewPlaneAngle

AddNewPlane1Line1Pt
AddNewPlane2Lines
AddNewPlane3Points
AddNewPlaneOffsetPt

AddNewLinePtPt
AddNewIntersection

Angle GetAngleBetween

Distance GetMinimumDistance

Find Point of Intersection

In this case, the point of intersection between two intersecting lines, between a line and
a plane that are not parallel, or between three nonparallel planes (Figure 8) is addressed.
The user must choose which option, and then select the geometric elements requested by
the geometric calculator.

Once the geometric elements have been chosen, the calculator finds the intersection
point and displays its Cartesian coordinates on the screen using a text box. This is achieved
with the execution of the CATIA “Space Analysis” module, which enables dimensions to
be used and measurements of the elements of the work environment to be taken. The code
used is as follows:

Dim TheMeasurable As Measurable
Dim coords(2)
Dim ref1 As Reference
Set TheMeasurable = TheSPAWorkbench.GetMeasurable(ref1)
TheMeasurable.GetPoint coords
MsgBox “El punto intersección es: (“ & Round(coords(0), 2) & “; “ & Round(coords(1), 2) &

“; “ & Round(coords(2), 2) & “) mm”
Dim TheMeasurable As Measurable
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Dim coords(2)
Dim ref1 As Reference
Set TheMeasurable = TheSPAWorkbench.GetMeasurable(ref1)
TheMeasurable.GetPoint coords
MsgBox “The intersection point is: (“ & Round(coords(0), 2) & “; “ & Round(coords(1), 2) & “; “

& Round(coords(2), 2) & “) mm”
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Find Line

In this option, the user can choose between nine different problems. Each problem
finds a straight line that meets certain conditions, such as parallelism, perpendicularity,
and location within a plane (Figure 9).

Specifically, the nine problems are a line that passes through a point and is parallel to
another line, a line that passes through two points, a line that passes through a point and is
perpendicular to a plane, the intersection of two planes, a line that passes through a point
and is parallel to two planes, a line that passes through a point is parallel to a plane and
perpendicular to a line, a line that passes through a point and is perpendicular to two lines,
a line that intersects perpendicular to two crossing lines, and a line that passes through a
point and intersects perpendicular to a line.

By choosing one of these options and the necessary geometric elements from the
work environment, the new straight line is displayed on the screen. Furthermore, with
the GetPointsOnCurve and GetDirection commands, a function capable of generating the
equation of the found line has been programmed. This equation is shown on the screen so
that the user knows the definition of the generated line.

Likewise, to solve these problems, various automatic methods have been devised on
the basis of CATIA’s own options to generate a straight line (point–point, point–direction,
angle/normal to curve, tangent to curve, normal to surface, and bisecting), along with
other auxiliary commands such as Intersection.
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Figure 9. Form to find lines.

After drawing the desired line on the screen, the geometric calculator presents a text
message with its parametric equations, determined with the following code:

Dim TheMeasurable As Measurable
Dim dir(2)
Dim coords(8)
Dim ref1 As Reference
Set TheMeasurable = TheSPAWorkbench.GetMeasurable(ref1)
TheMeasurable.GetDirection dir
TheMeasurable.GetPointsOnCurve coords
MsgBox “The equation of the found line is: “ & vbNewLine & _
“X = “ & Round(coords(3), 2) & “ + t * “ & Round(dir(0), 2) & vbNewLine & _
“Y = “ & Round(coords(4), 2) & “ + t * “ & Round(dir(1), 2) & vbNewLine & _
“Z = “ & Round(coords(5), 2) & “ + t * “ & Round(dir(2), 2)
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Find Plane

This third option is the most extensive since it enables a choice among 12 different
ways of defining a plane. As in the previous case, the user must impose the conditions for
the program to calculate the corresponding plane (Figure 10).
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Figure 10. Form to find planes.

Specifically, the 12 problems are as follows: a plane that passes through a point and
is parallel to two lines; a plane that contains a line and is parallel to another; a plane that
passes through a point and contains a line; a plane that passes through two points and is
parallel to a line; a plane that passes through three non-aligned points; a plane that contains
two intersecting lines; a plane that contains two parallel lines, passes through a point and
is parallel to another plane; a plane that passes through a point and is perpendicular to a
line; a plane that passes through a point and is perpendicular to two planes; a plane that
passes through a point is perpendicular to a plane and parallel to a line; a plane that is
perpendicular to a plane and contains a line.

Likewise, as in the case of straight lines, these 12 problems are solved using the
internal commands that CATIA includes for planes (offset from plane, parallel through
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point, angle/normal to plane, through three points, through two lines, through a point
and line, through planar curve, normal to curve, tangent to surface, equation, and mean
through points), and they are adapted to perform the procedure automatically.

A new function has also been programmed that automatically finds the equation of
the new plane thanks to the GetPlane command. Thus, at the end of the calculation, the
general equation of the found plane is shown, which is obtained as follows:

Dim TheMeasurable As Measurable
Dim coords(8)
Dim A, B, C, D As Double
Dim ref1 As Reference
Set TheMeasurable = TheSPAWorkbench.GetMeasurable(ref1)
TheMeasurable.GetPlane coords
A = coords(4) * coords(8) - coords(5) * coords(7)
B = coords(5) * coords(6) - coords(3) * coords(8)
C = coords(3) * coords(7) - coords(4) * coords(6)
D = A * coords(0) + B * coords(1) + C * coords(2)
MsgBox “The equation of the found plane is: “ & Round(A, 2) & “ * X + “ & Round(B, 2) & “

* Y + “ & Round(C, 2) & “ * Z = “ & Round(D, 2)

Calculate Angles

The geometric calculator allows the calculation of angles between different geometric
elements: between two lines (that intersect or cross); between a line and a plane: between
two planes (Figure 11).
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Likewise, for the calculation of angles, the CATIA “Space Analysis” module is used,
dedicated to the study of interferences and intersections and the analysis of measurements
and comparisons.

In addition to performing the calculation and displaying the result on the screen, the
geometric calculator automatically copies the value obtained to the clipboard for later use.

To this end, the following function has been programmed:
Function CopiarValor(varText As Variant) as String
Dim objCP As Object
Set objCP = CreateObject(“HtmlFile”)
objCP.ParentWindow.ClipboardData.SetData ”text”,varText
End Function
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Calculate Distances

The last option available is to calculate distances between the different combinations
of geometric elements (Figure 12). Thus, the distance between two points, between a point
and a plane, between a point and a line, between two parallel lines, between two crossing
lines, between two planes, or between a plane and a line can be evaluated as long as they
do not intersect each other, in which case the distance is zero.
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Figure 12. Form to calculate distances.

As with calculating angles, the geometry calculator saves the measured distance to
the clipboard for later use.

3. Results and Discussion

Lastly, in this section, certain geometric problems are solved in order to compare
the result of the geometric calculator with that obtained by analytical geometry, thereby
verifying the correct functioning of the developed application.

3.1. Calculation of Intersection Point
3.1.1. Point of Intersection between Two Lines

In this first case, it is necessary to define two straight lines r and s that intersect,
for example:

r ≡


x = 3λ
y = 2 + λ

z = 1

s ≡


x = 1− µ

y = 2
z = µ

(2)

Once these lines are generated in CATIA, the corresponding command button is
chosen, and the application returns the result (Figure 13).
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Figure 13. Point of intersection between two lines.

To check the result with that obtained by analytical geometry, it is enough to equalize
the equations of both lines:

x = 3λ = 1− µ

y = 2 + λ = 2
z = 1 = µ

→ P(0, 2, 1) (3)

3.1.2. Point of Intersection between a Line and a Plane

For this test, a line r and a plane π are defined randomly, which are not parallel,
for example:

r ≡


x = 3
y = 1− λ

z = 2λ
π ≡ x− 2y + 2z− 1 = 0

(4)

Once created in CATIA, the corresponding option is indicated, and the application
returns the result (Figure 14).
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In order to verify the analytical solution, the equation of the line is substituted into
the equation of the plane and the value of the parameter λ is obtained. Lastly, said value is
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substituted into the equations of the line, thereby obtaining the coordinates of the point
of intersection:

(3)− 2(1− λ) + 2(2λ)− 1 = 0→ λ = 0→ P(3, 1, 0) (5)

3.1.3. Point of Intersection between Three Planes

For this test, three planes that are not parallel, π1, π2, and π3, are to be defined two
by two:

π1 ≡ 2x− 3y + 4z− 1 = 0
π2 ≡ x− y− z + 1 = 0

π3 ≡ −x + 2y− z + 2 = 0
(6)

Once these planes are generated in CATIA, the corresponding command button is
chosen, and the application returns the result (Figure 15).
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In order to verify with the analytical solution, the system of three equations with three
unknowns that form the three planes is solved, and the point of intersection is obtained:

2x− 3y + 4z− 1 = 0
x− y− z + 1 = 0
−x + 2y− z + 2 = 0

→


x = −4
y = −3
z = 0

→ P(−4,−3, 0) (7)

3.2. Determination of Lines

In this second case, and since there are nine geometric problems solved by the geo-
metric calculator, only the resolution of one thereof is shown. In particular, we focus on
determining the line that passes through a given point P and is parallel to any two planes
π1 and π2:

P(0, 2, 1)
π1 ≡ x− 2y + 2z− 1 = 0

π2 ≡ x + y + z = 0
(8)

Thus, once these three geometric elements have been generated in CATIA, the corre-
sponding command button is selected, and the application returns the graphic result and
the equation of the sought line (Figure 16).
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As verification with the analytical solution, the two normal vectors of the planes
(
→
n 1 and

→
n 2) are multiplied (

→
u) and after normalizing the target vector (

→
un), with the given

point P, the parametric equation of the line is obtained, which coincides with the result
obtained by the geometric calculator:

→
u =

→
n 1 ×

→
n 2 =

∣∣∣∣∣∣∣
→
i

→
j

→
k

1 −2 2
1 1 1

∣∣∣∣∣∣∣ = (−4, 1, 3)→

→
un =

→
u∣∣∣→u ∣∣∣ = (−4, 1, 3)√

(−4)2+12+32
= (−0.78, 0.2, 0.59)

r ≡


x = 0− 0.78λ

y = 2 + 0.2λ
z = 1 + 0.59λ

(9)

3.3. Determination of Planes

In this third case, since there are 12 geometric problems solved by the geometric
calculator, only the resolution of one thereof is shown. Specifically, it was decided to
calculate the equation of the plane that is perpendicular to a line and that contains a point.
For example, the following point P and line r are known:

P(0, 2,−1)

r ≡


x = 3
y = 1− λ

z = 2λ

(10)

Thus, once these two geometric elements have been generated in CATIA, the corre-
sponding command button is selected, and the geometric calculator returns the graphic
result and the equation of the sought plane (Figure 17).
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Figure 17. Plane that passes through a point and is perpendicular to a line, together with its paramet-
ric equation.

For verification with the analytical solution, it is obvious that the vector normal to the
plane will be the same as the normalized direction vector of the line (

→
un), since the line and

the plane are perpendicular; hence, the equation of the plane is

→
un =

→
u∣∣∣→u ∣∣∣ = (0,−1, 2)√

02 + (−1)2 + 22
= (0,−0.45, 0.89)→ π ≡ 0x− 0.45y + 0.89z + D = 0 (11)

By substituting the point P in Equation (11), the value of the parameter D is calculated;
therefore, the equation of the plane is determined:

−0.90− 0.89 + D = 0→ D = 1.79
π ≡ −0.45y + 0.89z + 1.79 = 0

(12)

3.4. Angle Calculation
3.4.1. Angle between Two Lines

In this case, the geometric calculator obtains the angle between the two direction
vectors of both lines; hence, it provides a solution regardless of whether both lines intersect
or not. Given any two lines,

r ≡


x = 3λ
y = 2 + λ

z = 1

s ≡


x = 1− µ

y = 2
z = µ

(13)

Once both lines are defined in CATIA, the geometric calculator returns the graphic
result and the angle between them (Figure 18).
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the plane (β), but its complementary angle (α). By carrying out the relevant operations, 
the result is attained: 

Figure 18. Angle between two lines.

To verify the result with that of the analytical solution, it is necessary to employ the
scalar product of the direction vectors of both lines (

→
n 1 and

→
n 2):

cos(α) =
→
n 1·
→
n 2∣∣∣→n 1

∣∣∣·∣∣∣→n 2

∣∣∣ = 3·(−1)+1·0+0·1√
32+12+02·

√
(−1)2+02+12

=
(

−3√
10·
√

2

)
→

→ α = arccos
(
−3√

20

)
= 132.13◦

(14)

3.4.2. Angle between a Line and a Plane

After randomly defining a line and a plane,

r ≡


x = 3λ
y = 2 + λ

z = 1
π ≡ x + y + z = 0

(15)

The geometric calculator returns the graphic result and the angle between the two
geometric elements (Figure 19).
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As verification with the analytical solution, the angle formed by the direction vector
of the line

→
u and the normal vector of the plane

→
n, is not the angle formed by the line and
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the plane (β), but its complementary angle (α). By carrying out the relevant operations, the
result is attained:

cos(β) =
→
u ·→n∣∣∣→u ∣∣∣·∣∣∣→n ∣∣∣ = 3·1+1·1+0·1√

32+12+02·
√

12+12+12 = 4√
10·
√

3
→

α = 90◦ − arccos
(

4√
30

)
= 46.91◦

(16)

3.4.3. Angle between Two Planes

Likewise, the angle between two planes π1 and π2 can also be measured. For example,

π1 ≡ x + y + z = 0
π2 ≡ x− 2y + 2z− 1 = 0

(17)

Once both planes are defined, and the option of the angle between two planes is
selected, the geometric calculator returns the graphic result and the angle between them
(Figure 20).
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Likewise, as verification, it is known that the angle between two planes is equal to the
angle formed by their normal vectors

→
n 1 and

→
n 2; therefore, by applying the scalar product,

cos(α) =
→
n 1·
→
n 2∣∣∣→n 1

∣∣∣·∣∣∣→n 2

∣∣∣ →
α = arccos

(
1.1+1·(−2)+1.2√

12+12+12·
√

12+22+22

)
= arccos

(
1√

3·
√

9

)
= 78.9◦

(18)

3.5. Distance Calculation
3.5.1. Distance between Two Points

This is the simplest of the seven distance problems implemented in the geometric
calculator. Thus, any two points P and Q are defined:

P(3, 1, 0)
Q(−3, 0, 2)

(19)

Once both points are defined in CATIA, the geometric calculator returns the result
(Figure 21).
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As an analytical verification, the distance between the two points is the magnitude of
the vector that joins them. Thus,

→
PQ = (−6,−1, 2)→ |

→
PQ| =

√
(−6)2 + (−1)2 + 22 =

√
41 = 6.4 units (20)

3.5.2. Distance between a Point and a Plane

In this case, any point P and any π plane are defined. For example,

P(3, 1, 0)
π ≡ x + y + z = 0

(21)

The geometric calculator returns the result shown in Figure 22.
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As an analytical verification, the distance between the point and the plane is given by
the following expression:

d =
|Ax1 + By1 + Cz1 + D|√

A2 + B2 + C2
=
|3.1 + 1.1 + 0.1 + 0|√

12 + 12 + 12
=

4√
3
= 2.31 units (22)

3.5.3. Distance between a Point and a Line

In this case, any point P and any line r are defined. For example,

P(3, 1, 0)

r ≡


x = 2 + λ

y = −λ
z = 2λ

(23)
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The geometric calculator returns the result shown in Figure 23.
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To verify the result with the analytical solution, it is known that the distance between
a point and a line is given by the application of the vector product between two vectors.
First, a vector is formed between the given point P and any point Q on the line r, and the
direction vector (

→
u) of the line r is then multiplied.

Q(2, 0, 0)→
→

PQ = (−1,−1, 0)

→
PQ×→u =

∣∣∣∣∣∣∣
→
i

→
j

→
k

−1 −1 0
1 −1 2

∣∣∣∣∣∣∣ = (−2, 2, 2)
(24)

Lastly, applying the expression to ascertain the distance between a point and a line, it
is necessary to conduct the following calculation:

d =
|
→

PQ×→u |∣∣∣→u ∣∣∣ =

√
(−2)2 + 22 + 22√
12 + (−1)2 + 22

=

√
12√
6

=
√

2 = 1.41 units (25)

3.5.4. Distance between Two Parallel Lines

In this case, any two parallel lines r and s are defined. For example,

r ≡


x = λ

y = 2λ
z = 0

s ≡


x = −µ+ 2
y = −2µ− 1

z = 2

(26)

Once both lines are defined, the geometric calculator returns the result shown in
Figure 24.

To obtain this analytically, the procedure of the previous case is followed. First, a point
is obtained from each line, P and Q, and then the vector product is employed:

P(0, 0, 0); Q(2,−1, 2)→
→

PQ = (2,−1, 2) (27)
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By applying the previous Equation (25) with the direction vector (
→
u) of the first line:

d =
|
→

PQ×→u |∣∣∣→u ∣∣∣ =

∣∣∣∣∣∣∣
→
i

→
j

→
k

2 −1 2
1 2 0

∣∣∣∣∣∣∣
√

12 + 22 + 02
=
|(−4, 2, 5)|√

5
=

√
(−4)2 + 22 + 52

√
5

=

√
45√
5

=
√

9 = 3 units (28)
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3.5.5. Distance between Two Crossing Lines

In this case, the second line of the previous case has been modified so that it cross with
the first, instead of making the lines parallel:

r ≡


x = λ

y = 2λ
z = 0

s ≡


x = 1 + µ

y = −1
z = 1 + µ

(29)

In this case, the geometric calculator returns the result shown in Figure 25.
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As analytical verification, the method that is followed consists of forming a vector with
two arbitrary points P and Q of the two lines, while forcing said vector to be perpendicular
to the direction vectors (

→
u and

→
v) of the two lines (scalar product equals to zero):

→
PQ = (1 + µ− λ,−1− 2λ, 1 + µ− 0)

→
PQ·→u = 1(1 + µ− λ) + 2(−1− 2λ) + 0(1 + µ) = 0
→

PQ·→v = 1(1 + µ− λ) + 0(−1− 2λ) + 1(1 + µ) = 0

(30)

With these last two equations, the parameters are cleared and substituted to obtain the
magnitude of the vector that joins the two lines:

λ = −4
9

;µ = −11
9
→ d = |

→
PQ| =

√
9
81

=
1
3
= 0.33 units (31)

3.5.6. Distance between Two Planes

Obviously both planes must be parallel. Let any two planes be π1 and π2.

π1 ≡ x + y + z = 0
π2 ≡ 2x + 2y + 2z− 3 = 0

(32)

Once both planes are defined, the geometry calculator returns the result shown in
Figure 26.
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To calculate the distance between the two planes analytically, any point P on the first
plane π1 is considered, and the corresponding formula is applied:

P(1,−2, 1)
d =

|A2x1+B2y1+C2z1+D2|√
A2

2+B2
2+C2

2
= |2.1+2·(−2)+2.1−3|√

22+22+22 =
√

3
2 = 0.87 units (33)

3.5.7. Distance between a Line and a Plane

Obviously, the two elements must be parallel to each other. To this end, by reusing
the geometric elements that are parallel to each other, previously created in Section 3.2, the
distance between the line and the plane can be measured:

r ≡


x = 4λ
y = 2− λ

z = −1− 3λ
π ≡ x + y + z = 0

(34)
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In this case, the application shows the result presented in Figure 27.
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As analytical verification, it is known that the distance between the plane and the line
is the same as that between the plane and any point thereon. Therefore, the point with
which the line was defined (Section 3.2.) can be employed:

P(0, 2,−1)
π ≡ x + y + z = 0

(35)

By applying the expression that determines the distance between the point and
the plane,

d =
|Ax1 + By1 + Cz1 + D|√

A2 + B2 + C2
=
|0.1 + 2.1 + (−1)·1 + 0|√

12 + 12 + 12
=

√
3

3
= 0.58 units (36)

3.6. Analysis of Errors

It is interesting to consider what happens in the event when a value not accepted by
the application is entered. In this scenario, a non-numeric value could be entered in some
form; alternatively, when generating the line, the direction vector could be null, or the three
points given to create a plane could be aligned, among other cases.

For all these examples, CATIA would show an error message of the geometric type
itself, not due to the programming of the macro; hence, the addition of redundant error
messages has not been considered.

3.7. Integration with Three-Dimensional Solids

Lastly, the source code of the geometric calculator was modified so that it could also
work with three-dimensional models designed in CATIA with the “Part Design” module.
These models present the particularity of working with vertices, edges, and faces, instead
of with points, lines, and planes, which were the elements utilized by the surfaces. To this
end, the possibility of selecting these entities has been included in the source code of the
geometric calculator.

In this way, the geometric calculator enables the measurement of the angles that exist
between the faces of the part, the distance between faces, and the distance between vertices,
among other elements.

In Figure 28, an example can be appreciated of how the geometric calculator creates
new entities in the environment of a three-dimensional solid, to continue modeling new
parts of the piece, for dimensioning reasons, or for another reason.
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4. Conclusions and Future Developments

This article presented the design and development of an application consisting of
a geometric calculator developed as a macro in CATIA V5R21. Said macro consists of
two independent modules: one that contemplates the creation of the three geometric
elements (point, line, and plane), and another module that solves five types of general
geometric problems (points of intersection, definition of lines, and definition of planes,
angles, and distances).

The scientific contribution of the research lies in the fact that it is the only geometric
application currently in existence that is integrated into a 3D CAD environment such
as CATIA V5, unlike existing software such as GEUP 3D and Geogebra which work in
geometric environments other than CAD 3D. Its novelty makes this application a very
powerful tool in the 3D design process in the CATIA V5 environment.

The macro is developed with the Visual Basic for Applications (VBA) language, and it
is highly useful, not only from the educational point of view as a support in the teaching
of subjects related to engineering graphics (including graphic expression, descriptive
geometry, and technical drawing), but also from a professional point of view, since it allows
its integration with real three-dimensional models, which helps in the metric consultation
of angles and distances. Likewise, it was verified how all the results obtained with the
macro coincide with the results obtained through analytical geometry, which led to the
validation of the developed application.

The work module utilized in the CATIA V5R21 environment is “Wireframe and Surface
Design” since it makes it possible to work with the three geometric elements (point, line,
and plane), and the aforementioned macro was programmed within said module. The
macro makes it possible to enter data easily through forms with an illustrative graphic
appearance and intuitive images.

As for future developments, the following can be established:

• The incorporation of new geometric problems that involve curved surfaces, surfaces
of revolution, and three-dimensional solids.

• The integration of new operational modules such as intersections between solids or
surfaces and their two-dimensional development.
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• The representation of the results obtained as dihedral projections utilizing the CATIA
V5 “Drafting” module, which would enable problems to be solved in a simple and
semi-automatic way.
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