
Citation: Moaaz, O.; Abouelregal,

A.E.; Awrejcewicz, J. Theoretical

Investigation of a Rotating

Thermomagnetic Isotropic

Transverse-Constrained Annular

Cylinder with Generalized Ohm’s Law

Using the Moore–Gibson–Thompson

Model of Heat Transfer. Symmetry

2023, 15, 572. https://doi.org/

10.3390/sym15030572

Academic Editor: Sergei D. Odintsov

Received: 30 August 2022

Revised: 2 October 2022

Accepted: 22 December 2022

Published: 22 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Theoretical Investigation of a Rotating Thermomagnetic
Isotropic Transverse-Constrained Annular Cylinder with
Generalized Ohm’s Law Using the Moore–Gibson–Thompson
Model of Heat Transfer
Osama Moaaz 1,* , Ahmed E. Abouelregal 2,3 and Jan Awrejcewicz 4,*

1 Department of Mathematics, College of Science, Qassim University,
P.O. Box 6644, Buraydah 51482, Saudi Arabia

2 Department of Mathematics, College of Science and Arts, Jouf University, Al-Qurayat 77455, Saudi Arabia
3 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
4 Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology,

90-924 Lodz, Poland
* Correspondence: o.refaei@qu.edu.sa (O.M.); jan.awrejcewicz@p.lodz.pl (J.A.)

Abstract: On the basis of the analysis of thermoelastic motion, the current research develops a novel
model of modified thermoelasticity. The rotating long hollow cylinders with fixed surfaces are
considered in a generalized Moore–Gibson–Thompson thermoelastic model (MGTTE) framework,
including the modified Ohm’s law. The cylinders are made of a thermoelastic material that rotates
at a uniform rotational speed and is elastic in the transverse direction. The set of equations for the
MGT heat conduction in the new model is built under the influence of the electromagnetic field by
including a delay time in the context of Green–Naghdi of the third kind (GN-III). The inner boundary
of the hollow cylinder is not only restricted but also sensitive to heat loading. The outer surface, on
the other hand, is also restricted but insulates the heat. The Laplace transform method is utilized
to deal with the differential equations produced in the new domain and transfer the problem to
the space domain. The Dubner and Abate method is used to compute dynamically and graphically
depict the theoretical findings for an isotropic transverse material. After comparing the results of
several thermoelastic theories, the implications for the electromagnetic field are discussed.

Keywords: MGT thermoelasticity; Ohm’s law; transverse material; magneto-electro-thermo-elastic;
hollow cylinder

1. Introduction

In many engineering systems, cylindrical objects are often used, including discs, cylin-
ders, and rods. Therefore, predicting stress and displacement patterns in such geometries
is paramount. According to materials science and engineering requirement developments,
symmetric axle components have begun to be manufactured from different materials. Due
to their superior physical properties, composite materials have gained immense popularity
among researchers and technologists. In this regard, there is abundant literature on stress
assessments of axially symmetric components composed of different materials that are
subjected to diverse loading states.

An essential part of an effective design process is a comprehensive understanding of
the patterns of thermal stresses in the rotating discs. Rotating materials are also used in
many industrial applications, such as flywheel rotors, deflation installation, engineering
equipment, high-speed gear motors, turbines, computer hard disks, compressors, etc. The
use of elastic waves traveling through inertial space is somewhat diverse. It specifically
serves as the basis for designing sound wave solid-state gyroscopes, which have recently
received much attention. This can be explained using different gyroscopes in moving
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objects’ guidance and navigation systems. Gyroscopes based on sound waves offer higher
resistance to vibration and shock, are less expensive, and require less complex manufac-
turing processes. In the existence of collective forces of the Coriolis type, these waves are
characterized by motion equations. Numerical techniques can be utilized to solve these
equations. However, in this case, the accuracy of the wave process simulation deteriorates
steadily over time.

Temperature influences the thermomechanical characteristics of substances. A mate-
rials’ structural components are often subjected to high-temperature changes, and their
physical properties cannot be considered stable, so they are used for a variety of engineering
purposes. Thus, while analyzing the thermal stress of these components, the temperature
dependence of the physical properties must be considered. In recent years, the significance
of isotropic thermal stress difficulties for contemporary systems, such as nuclear reactors,
has increased. This is because there are more kinds of engineering designs, and more work
is conducted in places where it is very hot.

The concept of thermoelasticity explains the effect that thermomechanical disturbances
have on substances that are either elastic or viscous. The theory of heat transfer is based
on two equations. The first equation is about how heat moves and is transferred, and the
second equation is about how things move. There are two disadvantages to this idea in
the conventional approach. First, this derivation of heat transmission does not contain
any elastic components. The second issue is that, according to the parabolic heat transfer
equation, the temperature may continue to rise at a steady pace that cannot be slowed
down. This is an intractable problem. Experiments have shown that this is the case.

In traditional thermoelasticity, stresses, tensions, and deformations resulting from
observable thermal stress were anticipated. The old coupled thermoelasticity notion held
that heat signals would propagate at an unlimited pace, prompting the development of
generalized thermoelastic models. The concept of thermoelasticity can be applied to a
variety of physical processes. It is a modification of the traditional ideas of elasticity and
thermal conductivity, and today it is a fully formed scientific topic. Based on this concept,
there were some problems related to the propagation of thermoelastic waves, which were
addressed and solved. Biot [1] developed a theory that was later dubbed conventional
thermoelasticity based on the notions of irreversible thermodynamic systems. In the case
of classical coupled thermoelasticity, the distribution and amplitude of thermal stresses
and temperature change are immediately affected by the thermal shock effect throughout
the solution domain. Thus, thermoelastic turbulence can theoretically propagate at an
unlimited rate. On the basis of this analysis, improved thermoelastic models that incor-
porate finite wave propagation velocity are presented. Improved thermoelastic models
use either an improved Fourier law of heat transfer or a revised entropy formulation and
constitutive law.

Cattaneo [2] modified Fourier’s law of heat transfer by introducing a single relaxation
time. Then, the vibration-type equation was developed rather than the conventional Fourier
law. According to Lord and Shulman [3], the first alteration was made. Since the heat
conduction equation associated with this model is of the deterministic-type, the problem
of unlimited diffusion speed was solved. The rate-dependent thermoelastic concept, also
known as the two-time relaxation thermoelastic framework, is the second application of
the thermocouple idea. The authors of this second idea are Green and Lindsay [4]. As a
result of the existence of these two parameters, which play the role of “relaxation times”
and are an integral element of this system, the equations for heat transfer and motion need
to be modified in this particular instance.

Later, on the basis of the inequalities of the entropy balance, Green and Naghdi [5–7]
proposed three other inventive formulations of thermoelasticity. They use the GN-I, GN-II,
and GN-III types of thermoelasticity. Type I might become the standard heat equation in a
system of linear equations, whereas the type II and type III versions forecast the restricted
rate of thermal waves following linearization. There have been recent efforts by Abouelre-
gal [8–14] to use higher-order time derivatives to modify the traditional Fourier formula.
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When the traditional Fourier law is applied to the process of wave propagation, a
disagreement may be shown (for example, in [2–4]). This inconsistency is what causes the
issue of unlimited signal velocity. While constructing the sound wave equations as well
as the heat transfer equation, many different constitutive relationships for heat transfer
rate are taken into consideration as a consequence. A novel thermoelastic heat transfer
framework is being developed by Quintanilla [15] using the Moore–Gibson–Thompson
(MGT) equation. A brand new and better heat equation that incorporates a relaxation
parameter has been proposed by Quintanilla [16] for the Green–Naghdi concept of type
III. The Westervelt and Kuznetsov equation is an example of a traditional second-order in
time heavily damped theory of linear acoustics. There has been a lot of research conducted
on this topic since it has a wide variety of applications, such as high-intensity ultrasound
in the fields of health and extracorporeal shock wave therapy, light treatment, ultrasonic
washing, and many more applications. There has been a proliferation of research on this
topic ever since the MGT model came into existence [16–21]. In recent years, there has
been a significant application of the literature study of thermomechanical and structural
interactions across several systems [22–27].

Since the eighteenth century, scientists have been searching for the phenomena of
thermomechanical and electromagnetic behaviors of solids. In the middle of the 20th
century, hydrophones were the first to use materials with piezoelectric properties. Before
the 1960s, researchers looked at something called the thermomagnetic flexibility theory [28].
This significant phenomenon may be utilized in a broad variety of contexts, such as in the
discipline of geophysics, where it is used to investigate how the Earth’s magnetic field
influences seismic waves and how it attenuates sound waves while they are contained
within the magnetic field. In addition, devices based on nuclear fission, the development of
a very sensitive magnetometer, advances in electrical power engineering and optics, and
other fields may all benefit from research into interactions between thermomechanical and
electromagnetic materials [29].

Over the past two decades, electromagnetic composite structures have been brought
to light. Unlike their homogeneous constituent materials, these compounds can display
field coupling. The use of so-called “smart” materials and combinations may be useful for
developing many components, including ultrasound imaging technologies, sensor systems,
electrical control devices, transducers, etc. These materials are utilized rather regularly in a
wide variety of different applications [30]. Because of their versatility in converting various
kinds of energy, these materials have found use in a variety of high-tech applications,
including lasers, supersonic devices, microwave ovens, and infrared applications (between
mechanical and electromagnetic energies). On the other hand, ferromagnetic materials
have impacts that are analogous to those of mechanical forces: electromagnetic fields [31].

On the basis of considering the thermal motion, the current work introduces a new
explanation of extended thermoelasticity. Additionally, this article addresses the problem
of thermoelastic–magnetic interactions occurring within a transverse isotropic circular
cylinder by using the concept of a novel theoretical formula for modified thermal conduc-
tivity (MGTTE), which incorporates the MGT equation. In the presence of a magnetic field
and according to the modified Ohm’s law, the equations are obtained from the previously
made framework that regulates the behavior of generalized thermoelastic. Theoretically,
thermoelastic waves will move through heat conduction at a finite speed. This is predicted
by the theory based on photothermal motion. Therefore, generalized thermoelastic theories
are more appropriate than classical thermoelastic concepts when dealing with experimental
and theoretical systems involving very short periods and high temperatures. Examples
of these types of problems include those that actually occur in lasers, power generation,
nuclear reactors, and other similar settings.

For the purpose of studying and clarifying the problem posed, it was taken into
consideration that the inner edge of the hollow cylinder is devoid of traction force and is
subject to a time-dependent thermal shock. On the other hand, it was assumed that the
border on the outer side of the cylinder is free of traction but acts as a heat insulator. The
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problem was solved by applying the Laplace transform methodology to convert the system
of equations into a normal system. Then, the reflections of the Laplace transforms were
calculated using one of the numerical methods. The results of the numerical simulation
of the material properties that are the focus of the research, such as temperature, thermal
stresses, and deformations, were compiled and compared with the corresponding previous
results through the use of graphs and tables. Computation was performed to evaluate how
the non-Fourier model influences the transmission of heat and thermoelastic vibrations
under thermal relaxation and the existence of an applied magnetic field. When the current
study was compared to earlier investigations, the numerical results were determined to be
broadly comparable.

The general structure of the paper is divided into the following sections: Moore–
Gibson–Thompson’s equations for basic thermoelasticity are presented in Section 2. While
the limit and starting conditions are provided in Section 4, and the problem statement,
which includes the transverse isotropic cyclic cylinder, is covered in Section 3. The Laplace
transform technique is used in Section 5 to obtain an answer to the question in the trans-
formed domain. Section 6 reflects the numerical findings of the Laplace transforms. The
numerical results of the research areas in Section 7 are compared in three separate scenarios,
and the main results are presented in Section 8.

2. Moore–Gibson–Thompson Thermoelasticity Fundamental Equations

The following are the constitutive, strain–displacement, and motion equations for a
homogeneous transversely isotropic material [24–26]:

σij = cijklekl − βijθ, (1)

eij =

(
uj,i + ui,j

)
2

, (2)

σij,j + Fi = ρ
∂2ui
∂t2 (3)

When the medium rotates symmetrically with rotation speed
→
Ω = Ω

→
n, where

→
n is

an input vector indicating the direction of the rotation axis, the equation of motion in the
rotating reference frame has two additional components [23]. When the only cause of

gravitational acceleration is the time-varying motion (ρ
→
Ω× (

→
Ω×→u)), and also assuming

that the Coriolis acceleration (2ρ(
→
Ω×→u)) is twice the centripetal acceleration, the equation

of motion in a rotating medium can be stated as [23]:

σji,j + Fi = ρ

[
..
u +

→
Ω×

(→
Ω×→u

)
+ 2
(→

Ω×→u
)]

i
(4)

After Equations (2) and (3) are entered into Equation (4), the final equation of motion
will take the following form:

(λ + µ)ui,ij + µui,jj − γθ,i − dnN,i = ρ

[
..
u +

→
Ω×

(→
Ω×→u

)
+ 2
(→

Ω×→u
)]

i
(5)

(
1 + τ0

∂

∂t

)
qi = −K θ,i (6)

By making use of the GN-III model, we can describe Fourier’s law by characterizing it
as [7]:

qi = −K θ,i − K∗ϑ,i,
.
ϑ = θ. (7)

As can be shown, type II (GN-II) may be attained when K = 0; however, kind I (GN-I)
can be returned when K∗ = 0.
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The formula for calculating the energy balance is stated as [3,4]:

ρCE
∂θ

∂t
+ T0

∂

∂t
(

βijeij
)
= −qi,i + Q. (8)

The problem with the modified version of Fourier’s law (7) is the same as the problem
with the normal Fourier model regarding predicting the speed at which heat transfer waves
propagate. The law of causation is ignored in this approach. As a result, a relaxation factor
was added to this guideline, which has also undergone a major update [15]. Quintanilla [16]
took the Green–Naghdi type III model and added the relaxation coefficient to work out the
proposed heat equation. The mathematical model for the new heat transfer is, thus, written
as [15,16]: (

1 + τ0
∂

∂t

)
qi = −K θ,i − K∗ϑ,i. (9)

The MGT equation for isotropic solids was used to develop a unique linear version
of the heat transport equation. Equations (8) and (9) are combined to obtain this equation.
This equation is referred to as MGTTE and takes the following form:(

1 + τ0
∂

∂t

)[
∂

∂t

(
ρCE

∂θ

∂t

)
+ T0

∂2

∂t2

(
βijeij

)
− ∂Q

∂t

]
=

(
∂

∂t
+ 1
)
(K θ,i),i. (10)

It was assumed that the primary magnetic field,
→
H, propagates in the surrounding

vacant space of the cylinder. This field creates generated electric and magnetic fields

(
→
E and

→
h ) to satisfy slow-moving matter and Maxwell’s magnetic formulas. Maxwell’s

equations listed below regulate the electromagnetic field in the absence of the influence of
displacement current and charge density [32]:

→
J = ∇×

→
h + ∂

→
D

∂t ,∇×
→
E = −µ0

∂
→
B

∂t ,
→
B = µ0

→
H,
→
H =

→
H0 +

→
h ,

→
D = ε0

→
E ,∇ ·

→
h = 0,∇ ·

→
D = 0.

(11)

It is possible to represent the Maxwell stress tensor in the following manner:

τij = µ0
[
Hihj + Hjhi − Hkhkδij

]
. (12)

Generalized Ohm’s law may be expressed as follows when the temperature gradient
effect is ignored:

→
J = σ0

[
→
E +

∂
→
u

∂t
×
→
B

]
. (13)

Only a substance’s electrical conductivity can be used to determine how well it can
carry an electric current. Many materials show a wide range of electrical conductivity σ0
values, depending on how well electricity can flow through them. Many scientists assume
that the substance is totally conductive (has zero resistance) and that electrical conductivity
will, thus, go on infinity (i.e., σ0 → ∞ ). Physically, however, this is unacceptable because
all conductive materials have a finite electrical conductivity. Although there are no perfect
electrical conductors in reality, the idea can be used when the electrical resistance is very
small compared to other elements.

3. Problem Statement

In this article, it will be assumed that the problem under study is an infinite ther-
moelastic hollow cylinder consisting of an isotropic, homogeneous material with finite
conductivity (see Figure 1). At a constant temperature of T0, the body begins in an undis-
turbed state with no deformations or stresses. We will assume that the inner radius of this
cylinder is a, and its outer radius is b. The inner and outer surfaces are free of traction
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and constrained by certain thermal boundary conditions. A time-dependent symmetrical
thermal shock will be delivered to its inner surface, while the outer surface is thermally in-
sulated. Due to the characteristics of the problem at hand, the cylindrical polar coordinates
(r, ξ, z) will be taken into account in the study so that the z-axis corresponds to the cylinder
axis. Given the cylindrical symmetry of the problem, there will only be two variables to
consider: the variable representing the diagonal distance, r, and the variable representing
the passage of time, t.
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As a direct result of this assumption, the displacement vector consists of the
following components:

→
u =

(
ur, uξ , uz

)
= (u(r, t), 0, 0). (14)

Then, the corresponding strain components will be derived as:

err =
∂u
∂r

, eξξ =
u
r

, erξ = ezz = ezξ = erz = 0. (15)

Consequently, the cubic dilatation, e, can be expressed as:

e = err + eξξ + ezz =
∂u
∂r

+
u
r
=

1
r

∂

∂r
(ru). (16)

The following can be inferred about the parts that make up the mechanical stress
tensor, σij: σrr

σξξ

σzz

 =

c11 c12 −βrr
c12 c11 −βξξ

c13 c13 −βzz

 ∂u
∂r
u
r
θ

 , (17)

where σrr, σξξ , and σzz represent the normal thermal stresses.
It will be taken into account that the rotation will occur around the z-axis so that the

angular velocity vector is
→
Ω = (0, 0, Ω). Thus, the motion Equation (5) under the influence

of the Lorentz force (Fr) and the force that is exerted on the body as a direct consequence of
its rotation

(
ρΩ2u

)
can be reformulated as follows:

∂σrr

∂r
+

σrr − σξξ

r
+ Fr + ρΩ2u = ρ

∂2u
∂t2 (18)
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The following relationship determines Fr, which stands for the Lorentz force brought
on by the existence of the magnetic field:

Fr =

(→
J ×

→
B
)

r
(19)

Here, both the components of the externally supplied starting magnetic field (
→
H0) and

the components of the internally generated magnetic field are taken into consideration
→
h :

→
H0 = (0, 0, H0 ),

→
h = (0, 0, h ). (20)

These equations unequivocally demonstrate that only the ξ-direction contains the

non-vanishing components of the vectors
→
J and

→
E , i.e.,:

→
J = (0, J, 0),

→
E = (0, E, 0 ). (21)

A linearization of Ohm’s law (13) yields:

J = σ0

[
E− µ0H0

∂u
∂t

]
. (22)

The following two equations can be obtained in our case from Equation (11):

∂h
∂r = −

[
J + ε0

∂E
∂t

]
,

1
r

∂
∂r (rE) = −µ0

∂h
∂t .

(23)

In the space outside the cylinder, we can derive the two equations shown below:

∂h0

∂r = −ε0
∂E0

∂t ,

1
r

∂
∂r
(
rE0) = −µ0

∂h0

∂t .
(24)

where E0 and h0 stand for, respectively, the intensity of the electric field and the magnetic
field induced, both in the ξ-direction, in the open space around the cylinder.

When the variable J is taken out of Equations (22) and (23), we obtain:

∂h
∂r

= σ0µ0H0
∂u
∂t
−
[

σ0E + ε0
∂E
∂t

]
. (25)

Again, when we remove E from Equations (23) and (25), we obtain:[
∇2 − σ0µ0

∂

∂t
− ε0µ0

∂2

∂t2

]
h = σ0µ0H0

∂e
∂t

. (26)

where ∇2 = ∂2

∂r2 +
1
r

∂
∂r is the Laplace operator.

The Maxwell stress tensor τij in our situation has a radial component that is specified by:

τrr = −µ0H0h. (27)

The body force, also known as the Lorentz force, may be described in the radial
direction with the help of the following equation:

Fr =

(→
J ×

→
B
)

r
= −µ0H0

∂h
∂r

. (28)
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The motion equation has the form when Equations (17), (18), and (28), respectively,
are employed:

c11

(
∂

∂r
+

1
r

)(
∂u
∂r

)
− βrr

∂θ

∂r
− µ0H0

∂h
∂r

+ ρΩ2u =
(

βrr − βξξ

) θ

r
+ ρ

∂2u
∂t2 . (29)

By using the div operator on both sides, we can obtain the following equation, where
βrr = βξξ for a transversely isotropic body:

c11∇2e− βrr∇2θ − µ0H0∇2h + ρΩ2e = ρ
∂2e
∂t2 . (30)

The modified MGT heat conduction equation (MGTTE) (10) can also be expressed
as follows: (

1 + τ0
∂

∂t

)[
ρCE

∂2θ

∂t2 + T0βrr
∂2e
∂t2

]
= K

∂

∂t
∇2θ + K∗∇2θ. (31)

The system equations will be made simpler by using the non-dimensional variables
listed below:

{u′, r′, a′, b′} = ϑω{u, r, a, b},
{

t′, τ′0
}
= ϑ2ω{t, τ0}, θ′ = θ

T0
, σ′ij =

σij
c11

,

Ω′ = Ω
ϑ2ω

, τ′ij =
τij
c11

, h′ = ωϕ
σ0µ0 H0

h, E′ = ωϕ

ϑσ0µ2
0 H0

E, ϑ2 = c11
ρ , ω = ρCE

K

(32)

Having done away with the dashes for simplicity, (24)–(26), (29), and (30) become:

∂h
∂r

=
∂u
∂t
−
[

m0E + V2 ∂E
∂t

]
, (33)

[
∇2 −m0

∂

∂t
−V2 ∂2

∂t2

]
h =

∂e
∂t

, (34)

∂h0

∂r = −V2 ∂E0

∂t ,

1
r

∂
∂r
(
rE0) = − ∂h0

∂t ,
(35)

∇2e− δ1∇2θ −m0δ2∇2h + Ω2e =
∂2e
∂t2 , (36)(

1 + τ0
∂

∂t

)[
∂2θ

∂t2 + δ1
∂2e
∂t2

]
=

∂

∂t
∇2θ + δ3∇2θ, (37)

where:
m0 =

σ0µ0

ω
, V =

ϑ

cL
, cL =

1
µ0ε0

δ1 =
T0βrr

c11
, δ2 =

H0µ0

ρϑ2 , δ3 =
K∗

ϑ2K
. (38)

The parameter m0 indicates light speed, while the parameter cL indicates magnetic
viscosity. The generalized thermoelasticity equations are simplified in the following formu-
lations by leaving out magneto-electric effects if m0, V2, and δ2 are all equal to zero.

Additionally, this equation can be used to express the non-dimensional constitutive equations:σrr
σξξ

σzz

 =

 1 c1 −δ1
c1 1 −δ1
c2 c2 −δ4

 ∂u
∂r
u
r
θ

 , (39)

τrr = −δ2m0h, (40)

where:
c1 =

c12

c11
, c2 =

c13

c11
, δ4 =

T0βzz

c11
. (41)
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4. Problem Constraints

For the sake of this investigation, we will presume that the problem’s underlying
conditions are uniform from the outset, i.e.,:

u = 0 =
∂u
∂t

, σij = 0 =
∂σij

∂t
, θ = 0 =

∂θ

∂t
at t = 0. (42)

To complete the solution to the problem, it will be assumed that the behavior of long
hollow cylinders with some boundary conditions imposed on the inner and outer surfaces
is investigated. First, it will be assumed that the inner boundary (r = a) is thermal shock
and constrained. The resulting boundary conditions are the following:

θ(r, t) = θ0H(t) at r = a, (43)

u = 0 at r = a, (44)

where θ0 is constant. Additionally, the outer boundary of the cylinder (r = b) is thought to
be thermally insulated, i.e.,:

K
∂θ

∂r
= 0 at r = b. (45)

The inner and outer surfaces of the hollow cylinder are supposed to be constrained,
and then, we have:

u = 0 at r = b. (46)

Along the inner and outer surfaces of the cylinder, the vector E’s continuous transverse
components lead to the following:

E = E0 at r = a, b. (47)

Additionally, we take:

h(r, t) = h0(r, t) at r = a, b, (48)

5. Problem-Solving Approach

The Laplace transform method has major advantages in many applications of practical
mathematics. It can be made from various objects, including functions, measurements, and
distributions. Equations (33) through (40) are transformed, and the following equations are
acquired by using the Laplace transform under the initial conditions stated in Equation (42):

dh
dr

= su− ϕ1E, (49)

dh0

dr = −sV2E0,

1
r

d
dr

(
rE0
)
= −sh

0
,

(50)

σrr
σξξ

σzz

 =

 1 c1 −δ1
c1 1 −δ1
c2 c2 −δ4

 du
dr
u
r
θ

 , (51)

τrr = −δ2m0h, (52)(
∇2 −

(
s2 + Ω2

))
e = δ1∇2θ + m0δ2∇2h, (53)

qδ1e =
(
∇2 − q

)
θ, (54)[

∇2 − ϕ2

]
h = se, (55)
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where:

ϕ1 = m1 + sV2, ϕ2 = sϕ1, q =
s2(1 + τ0s)
(s + δ3)

(56)

After eliminating θ and h from Equations (53)–(55), e solves the following sixth-order
differential equation: (

∇6 − A∇4 + B∇2 − C
)

e = 0, (57)

where:

A = q + α1 +
α3
α4

, B = α1q + α2 +
ϕ2α3

α4
, C = qα2,

α1 = s2 + Ω2 + ϕ2 + sm0δ2, α2 =
(

s2 + Ω2
)

ϕ2, α3 = sδ1, α4 = s
qδ1

.
(58)

The factorization of Equation (38) yields:(
∇2 −m2

1

)(
∇2 −m2

2

)(
∇2 −m2

3

)
e = 0, (59)

where m1
2, m2

2, and m2
3 denote the solutions to the characteristic polynomial:

m6 − Am4 + Bm2 − C = 0. (60)

The following is a legitimate illustration of Bessel’s Equation (59) solution, which is
written as:

e =
3

∑
i=1

[Ai I0(mir) + BiK0(mir)], (61)

where the parameters Ai and Bi, with i = 1, 2, 3 are some parameters that only rely on s, and
I0(mir) and K0(mir) are zero-order-modified Bessel functions of types 1 and 2, respectively.

The following solutions can be expressed similarly:

θ =
3

∑
i=1

[
A′i I0(mir) + B′i K0(mir)

]
, (62)

h =
3

∑
i=1

[
A′′i I0(mir) + B′′i K0(mir)

]
. (63)

Equations (52) and (53) yield:

{
A′i, B′i

}
=

(
qδ1

m2
i − q

)
{Ai, Bi},

{
A′′i , B′′i

}
=

(
s

m2
i − ϕ2

)
{Ai, Bi}, i = 1, 2, 3. (64)

The following is the outcome of substituting Equation (61) into Equation (16), which is
integrated with respect to r:

u =
3

∑
i=1

1
mi

[Ai I1(mir)− BiK1(mir)]. (65)

The well-known relations of the Bessel function, which are as follows, are used to
determine the displacement u:

I′n(x) = In+1(x) + n
x Kn(x), I′n(x) = In−1(x)− n

x Kn(x),

K′n(x) = −Kn+1(x) + n
x Kn(x), K′n(x) = −Kn+1(x)− n

x Kn(x).
(66)
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Equation (49), when the values from Equations (63) and (65) are entered, yields:

E =
3

∑
i=1

−s2

mi
(
m2

i − sϕ2
) [Ai I1(mir)− BiK1(mir)]. (67)

In order to obtain the induced fields in free space, E0 and h
0
, one must remove E0

from Equation (50), which results in:(
∇2 − s2V2

)
h

0
= 0. (68)

The solution of Equation (51) is given by:

h
01

= A4 I0(sVr). (69)

h
02

= A5K0(sVr). (70)

where A4 and A5 denote the integration parameters.
By utilizing connection (66) and adding Equation (67) into Equation (50), we obtain:

E01
= − 1

V
A4 I1(sVr), (71)

E02
=

1
V

A4K1(sVr), (72)

Additionally, we can arrive at:

du
dr

=
3

∑
i=1

(
Ai

[
I0(mir)−

1
mir

I1(mir)
]
+ Bi

[
K0(mir) +

1
mir

K1(mir)
])

(73)

When Equations (62), (65), and (73) are replaced with (51), the components of the
stress tensor are

σrr =
3
∑

i=1
Ai

[(
1− qδ2

1
m2

i −q

)
I0(mir)− (1−c1)

mir
I1(mir)

]
+

3
∑

i=1
Bi

[(
1− qδ2

1
m2

i −q

)
K0(mir) +

(1−c1)
mir

K1(mir)
]

,

(74)

σξξ =
3
∑

i=1
Ai

[(
c1 −

qδ2
1

m2
i −q

)
I0(mir) +

(1−c1)
mir

I1(mir)
]

+
3
∑

i=1
Bi

[(
c1 −

qδ2
1

m2
i −q

)
K0(mir)− (1−c1)

mir
K1(mir)

] (75)

σzz =
3
∑

i=1
Ai

[(
c2 −

qδ2
1

m2
i −q

)
I0(mir)− (c2−c1)

mir
I1(mir)

]
+

3
∑

i=1
Bi

[(
c2 −

qδ2
1

m2
i −q

)
K0(mir) +

(c2−c1)
mir

K1(mir)
]

.

(76)

After substituting Equation (65) into (52), we obtain:

τrr = −δ2m0

3

∑
i=1

(
s

m2
i − ϕ2

)
[Ai I0(mir) + BiK0(mir)]. (77)
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The boundary conditions (43)–(48) are changed into the following after using the
Laplace transforms:

θ =
θ0

s
at r = a, (78)

dθ

dr
= 0 at r = b, (79)

u = 0 at r = a, (80)

u = 0 at r = b, (81)

E = E01 at r = a, (82)

h = h
01

at r = a. (83)

E = E02 at r = b. (84)

h = h
02

at r = b. (85)

Substituting the solution functions into Equations (62), (63), (67), (69)–(72), and (74)
in the above boundary conditions gives a linear system of equations in the unknown
parameters, Ai, i = 1, 2, . . . , 5 and Bi, i = 1, 2, 3. The values of these constants can be set
by resolving this system. As a result, the Laplace transform field achieves an integrated
solution to the issue. The next stage is to identify the inverse transformations of the
examined domains of the system and their transformation into the space–time domain.

6. Numerical Inversion

The numerical inversion of the Laplace transform on the real axis has been notoriously
difficult to solve for a long time. This is a popular subject in the field of numerical computa-
tion, as seen by the vast number of publications that have been written on the subject. This
inverse dilemma can be resolved in several ways (see, for example, [33–36]). One or more
adjustment factors influence the computation’s accuracy and precision in most numerical
approaches. One might use these tuning or scaling parameters to check the correctness.
Because the computation shifts depending on the tuning parameters, it is possible to test
how accurately the outcome will be predicted by doing the same computations using a
variety of tuning or scaling values.

This section presents a numerical procedure for computing the inverse Laplace trans-
form of real data. We shall reverse Laplace’s transformation using a numerical reversal
method based on the Fourier series. Using the Fourier series to calculate inverse Laplace
transformations was studied by Dubner and Abate [36]. The following formula can be used
to obtain an approximation of the original function f (r, t):

f (r, t) =
eξt

t

(
1
2

f (r, ξ) + Re
m

∑
n=1

(−1)n f
(

r, ξ +
inπ

t

))
. (86)

The best outcomes, according to Durbin [37], occurred when ξt = 5 to 10 and m was
between 50 and 5000.

7. Discussion and Graphical Representation

For the purposes of computation, a physical substance was proposed with equidistant
physical constants. A numerical example will be considered, and numerical solutions will
be provided to illustrate the analytical technique presented earlier in this article and to
compare the theoretical results. Mathematica computer programs were used to perform the
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numerical calculations. The following is a listing of the physical parameters for magnesium
(Mg) [28]:

c11 = 4.96× 1014 kg m−1s−2, c12 = 1.15× 1014 kg m−1s−2, ρ = 8954 kg m−3,
βrr = βξξ = 1.718× 108 kg m−2s−2, CE = 2× 102 J/kgK, T0 = 298 K, θ0 = 1,

ε0 = 10−9/(36π) Fm−1, µ0 = 10−7 × (4π) Hm−1, H0 = 107/(4π) Am−1,
σ0 = 10−7 × (4π)Ω−1m−1, K = 96 W m−1K−1, K∗0 = 2 W m−1K−1s−1,

In the computations, we assume that the inner radius of the cavity is equal to one
(a = 1) and that the outside radius is equivalent to two (b = 2) concerning the center of
the hole. We also assume that one value of time (t = 0.12) is used unless anything other
is given.

In three separate scenarios, we perform calculations utilizing the aforementioned phys-
ical parameters. In the first situation, we will look at how the non-dimensional physical
field variables respond to the change in the applied magnetic field. At the same time, the
time, relaxation time, and rotation remain fixed. The second aim of the discussion is to in-
vestigate how non-dimensional temperature (denoted by θ), radial displacement (indicated
by u), and thermal stresses (characterized by σrr and σξξ), as well as other electromagnetic
fields, change (h, E, and τrr) in the case of applying a variety of thermosetting models. The
third case study examines how the investigated field variables vary with the variation in
the angular velocity of rotation while keeping the values of all other effective parameters
constant. The numerical results obtained from several research areas will be presented in
tables and figures to facilitate a comparison and discussion of the issue at hand.

7.1. The Influence of Magnetic Field

This section examines thermoelasticity waves in a hollow elastic cylinder with a
stress-free boundary and electrical conductivity. A magnetic field is positioned around the
inside surface of the cylinder. The first case is an investigation of non-dimensional studied
fields using the suggested generalized MGT thermoelastic model (MGTTE) in the existence(

H0 = 107

4π = H1 and H0 = 108

4π = H2

)
and absence (H0 = 0). Figures 2–5 depict alterations

to the spatial coordinates.
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It is clear from looking at the graphs that the variance behavior of the fields changes
over a period of time. The results evidently demonstrate that the applied magnetic field
considerably impacts each investigated field. The phenomena of restricted propagation
velocity are another aspect that can be seen in all graphics. On the other hand, the speed of
propagation of linked and uncoupled conventional thermoelasticity theories is unlimited.
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Anywhere in the medium away from heat sources and thermal disturbances, all associated
functions have finite possible values.

Figure 2 depicts the fluctuation in temperature θ throughout the radial distance r.
As seen in Figure 2, the initial magnitudes of the temperature variations are larger and
decrease with time to guarantee that they match the boundary criteria. Additionally, for
all H0 values, it decreases rapidly as the distance from the center grows. The heat wave
front advances at a constant rate throughout time. At a particular time, the temperature
is non-zero in just a limited spatial field, as indicated by the figure. There is evidence of
thermal oscillation in the area that is immediately next to the heat shock, but the level
of turbulence decreases as one moves further away from this location. In several areas,
the non-zero area fluctuates constantly and continuously. Although the magnetic field
has little impact on the temperature change θ, it contributes to a rise in the quantity of
temperature variation.

Figure 3 depicts the relationship between the radial displacement u and the radial
distance r for various magnetic field strengths. As shown in Figure 3, the displacement
variations at the side walls of the hollow cylinder with r = 1 and r = 2 conform to the
boundary conditions since they always begin and terminate at zero. This distortion is due
to a dynamic occurrence. When the values of the magnetic field H0 grow, the magnitudes
of the displacement u decrease. Figure 3 demonstrates that the wave action restricts the
temperature to the non-zero area of the radial displacement at a particular instant. There
seems to be a rate restriction for heat transmission to the deeper layers of the medium over
time. Thermal vibration and radial displacement area both increase proportionally to the
examined moment.

Figure 4 illustrates the relationship between radial tension σrr and radial distance
r for each sample. Observe that the radial stress σrr increases fast to zero values after
immediately reducing to a minimal value. It is clear from the graph that the heat stress
starts with its largest positive value at the inner boundary and then decreases after that
until it reaches its lowest negative value at the outer boundary of the medium. The values
of the primary magnetic field H0 increase the pressure σrr, which is another finding from
the graph. The material on the inside boundary of the solid is affected by thermal stress.
This change corresponds to the radial expansion deformation of the medium, which can be
seen in Figure 4. It can also be seen that with time, the tensile stress region is stretching,
while the compressive stress region is contracting. This phenomenon is consistent with
the dynamic stretching effect that has been discussed in several previous studies. Figure 4
provides further evidence that the non-zero stress region is constrained at a point relatively
close to the temperature shock effect region. It also demonstrates how temperature waves
affect the stress current oscillation.

Figure 5 shows the response of the stress distribution, σξξ , with the change in distance r
in the existence and absence of the influence of the initial magnetic field, H0. The transverse
isotropic material shows circumferential compressive stress, as shown in the schematic
diagram. It is also evident from the picture that the thermal stress, σξξ , acts similarly to
the radial stress, σrr, except that the ring stress begins with larger positive values. It can
also be seen from Figures 4 and 5 that stress occurs in one area of the cylinder while stress
occurs in another. The area near the inner surface of the cylinder is subjected to increased
tensile stress as it diminishes on the other side. The amount of stress increases with the
height of the magnetic field surrounding the cylinder, as shown in Figure 4. This indicates
that in addition to the thermal shock effect, the effect of the parameter H0 extends to the
hollow cylinder.

Figures 6–8 demonstrate the distributions of induced magnetic field h, induced electric
field E, and the Maxwell stress τrr in the hollow cylinder with three different values of the ax-
ial magnetic field (H0, 10H0, and 20H0). The accompanying thermoelastic–electromagnetic
interactions are conveniently shown in Figures 6 and 7. The electromagnetic material,
which is originally contained within a magnetic field, undergoes distortion due to thermal
shock. As a result, the magnetic field strength across the cross-section of the cylinder
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changes. As a direct consequence of this, the medium possesses both an induced magnetic
field and an induced electric field. The magnetic and electric fields that are produced by
the heat wave will undergo transformations as it travels further inside the cylinder. This is
another piece of evidence that temperature changes may cause wave responses.

Symmetry 2022, 14, x FOR PEER REVIEW 15 of 27 
 

 

with the height of the magnetic field surrounding the cylinder, as shown in Figure 4. This 
indicates that in addition to the thermal shock effect, the effect of the parameter 𝐻଴ 
extends to the hollow cylinder. 

 
Figure 5. The variation in the thermal stress, 𝜎కక , versus values of the field, 𝐻଴. 

Figures 6–8 demonstrate the distributions of induced magnetic field ℎ , induced 
electric field 𝐸, and the Maxwell stress 𝜏௥௥ in the hollow cylinder with three different 
values of the axial magnetic field (𝐻଴, 10𝐻଴, and 20𝐻଴). The accompanying thermoelastic–
electromagnetic interactions are conveniently shown in Figures 6 and 7. The 
electromagnetic material, which is originally contained within a magnetic field, 
undergoes distortion due to thermal shock. As a result, the magnetic field strength across 
the cross-section of the cylinder changes. As a direct consequence of this, the medium 
possesses both an induced magnetic field and an induced electric field. The magnetic and 
electric fields that are produced by the heat wave will undergo transformations as it 
travels further inside the cylinder. This is another piece of evidence that temperature 
changes may cause wave responses. 

This study shows that the axial magnetic field coefficient 𝐻଴  of variation has a 
considerable impact on the conduct of all induced fields, including electric and magnetic 
ones, highlighting the significance of taking into account the influence of 𝐻଴. Figures 6–8 
show that when 𝐻଴  is equal to ଵ଴వସ஠  and ଵ଴ఴସ஠ , the numerical values of all of the field 

variables are greater than they are when 𝐻଴ is equal to ଵ଴ళସ஠ . The many engineering uses 
of this type of material and piezo plates include applications such as turbine membranes, 
marine construction, and nuclear reactors. It also contains other uses, such as building 
ships and cars, spacecraft, and others. 

 
Figure 6. The variation in the induced magnetic field, h, versus values of the field, H0.

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 27 
 

 

Figure 6. The variation in the induced magnetic field, ℎ, versus values of the field, 𝐻଴. 

 
Figure 7. The variation in the induced electric field, 𝐸, versus values of the field, 𝐻଴. 

 
Figure 8. The variation in the Maxwell stress, 𝜏௥௥, versus values of the field, 𝐻଴. 

7.2. Thermoelastic Models 
The behavior of thermal, mechanical, and electromagnetic field variables in relation 

to radial distance 𝑟 will be investigated in the context of various thermoelastic theories 
in the second scenario of this debate. Axial magnetic field 𝐻଴  and 𝑡  time will stay 
unchanged in this scenario. To show the distinctions between the various theories of 
thermoelasticity and how they relate to one another, Figures 9–15 each show a distinct 
variation in the physical fields. Numerous earlier models in general thermoelastic theory 
will be shown as special instances in the model described in this article. 

When 𝜏଴ = 𝐾∗ = 0, one can derive the coupled dynamical thermoelasticity theory 
(CTE), whereas 𝐾∗ = 0  results in Lord Shulman’s model (LS). When the term that 
contains the parameter 𝐾 is equal to zero and there is no thermal relaxation factor, the 
second sort of Green–Naghdi theorems, which are denoted by the notation GN-II, can also 
be produced. On the other hand, if one disregards the thermal relaxation period, it is 
possible to produce the third kind, denoted by the GN-III. When thermal relaxation 𝜏଴, 𝐾∗ and 𝐾 parameters are present, the MGT extended heat conduction theory is valid 
(MGTTE). 

Tables 1–7 and Figures 9–15 in this subsection’s results presentation, which aim to 
make it easier to compare various thermoelastic models, provide the findings. Future 
scientists can use the tables in this page to compare their findings. It is clear from the tables 
and figures that the temperature parameters have a significant impact on the distribution 
of the investigated field values, 𝜏଴ and 𝐾∗. It is also obvious that the different thermal 

Figure 7. The variation in the induced electric field, E, versus values of the field, H0.

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 27 
 

 

Figure 6. The variation in the induced magnetic field, ℎ, versus values of the field, 𝐻଴. 

 
Figure 7. The variation in the induced electric field, 𝐸, versus values of the field, 𝐻଴. 

 
Figure 8. The variation in the Maxwell stress, 𝜏௥௥, versus values of the field, 𝐻଴. 

7.2. Thermoelastic Models 
The behavior of thermal, mechanical, and electromagnetic field variables in relation 

to radial distance 𝑟 will be investigated in the context of various thermoelastic theories 
in the second scenario of this debate. Axial magnetic field 𝐻଴  and 𝑡  time will stay 
unchanged in this scenario. To show the distinctions between the various theories of 
thermoelasticity and how they relate to one another, Figures 9–15 each show a distinct 
variation in the physical fields. Numerous earlier models in general thermoelastic theory 
will be shown as special instances in the model described in this article. 

When 𝜏଴ = 𝐾∗ = 0, one can derive the coupled dynamical thermoelasticity theory 
(CTE), whereas 𝐾∗ = 0  results in Lord Shulman’s model (LS). When the term that 
contains the parameter 𝐾 is equal to zero and there is no thermal relaxation factor, the 
second sort of Green–Naghdi theorems, which are denoted by the notation GN-II, can also 
be produced. On the other hand, if one disregards the thermal relaxation period, it is 
possible to produce the third kind, denoted by the GN-III. When thermal relaxation 𝜏଴, 𝐾∗ and 𝐾 parameters are present, the MGT extended heat conduction theory is valid 
(MGTTE). 

Tables 1–7 and Figures 9–15 in this subsection’s results presentation, which aim to 
make it easier to compare various thermoelastic models, provide the findings. Future 
scientists can use the tables in this page to compare their findings. It is clear from the tables 
and figures that the temperature parameters have a significant impact on the distribution 
of the investigated field values, 𝜏଴ and 𝐾∗. It is also obvious that the different thermal 

Figure 8. The variation in the Maxwell stress, τrr, versus values of the field, H0.

This study shows that the axial magnetic field coefficient H0 of variation has a consid-
erable impact on the conduct of all induced fields, including electric and magnetic ones,



Symmetry 2023, 15, 572 17 of 28

highlighting the significance of taking into account the influence of H0. Figures 6–8 show
that when H0 is equal to 109

4π and 108

4π , the numerical values of all of the field variables
are greater than they are when H0 is equal to 107

4π . The many engineering uses of this
type of material and piezo plates include applications such as turbine membranes, marine
construction, and nuclear reactors. It also contains other uses, such as building ships and
cars, spacecraft, and others.

7.2. Thermoelastic Models

The behavior of thermal, mechanical, and electromagnetic field variables in relation to
radial distance r will be investigated in the context of various thermoelastic theories in the
second scenario of this debate. Axial magnetic field H0 and t time will stay unchanged in
this scenario. To show the distinctions between the various theories of thermoelasticity and
how they relate to one another, Figures 9–15 each show a distinct variation in the physical
fields. Numerous earlier models in general thermoelastic theory will be shown as special
instances in the model described in this article.
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When τ0 = K∗ = 0, one can derive the coupled dynamical thermoelasticity theory
(CTE), whereas K∗ = 0 results in Lord Shulman’s model (LS). When the term that contains
the parameter K is equal to zero and there is no thermal relaxation factor, the second sort of
Green–Naghdi theorems, which are denoted by the notation GN-II, can also be produced.
On the other hand, if one disregards the thermal relaxation period, it is possible to produce
the third kind, denoted by the GN-III. When thermal relaxation τ0, K∗ and K parameters
are present, the MGT extended heat conduction theory is valid (MGTTE).

Tables 1–7 and Figures 9–15 in this subsection’s results presentation, which aim to
make it easier to compare various thermoelastic models, provide the findings. Future
scientists can use the tables in this page to compare their findings. It is clear from the tables
and figures that the temperature parameters have a significant impact on the distribution of
the investigated field values, τ0 and K∗. It is also obvious that the different thermal models
have a different impact on the values of the fields. When the boundary conditions imposed
by the proposed problem are present, the behavior near the inner cylinder surface is very
comparable for both the coupled (CTE) and generalized (LS, GNII, GNIII, and MGTTE)
thermoelastic models. The results are comparable as the distance increases and agree with
generalized thermoelasticity theories.
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Table 1. The change in temperature, θ, against thermoelastic models.

r CTE LS GN-II GN-III MGTTE

1 1.00044 1.00044 1.00044 1.00044 1.00044

1.1 0.597595 0.593569 0.597255 0.596261 0.601104

1.2 0.371839 0.361535 0.368386 0.37157 0.369132

1.3 0.242463 0.226677 0.235691 0.243853 0.231557

1.4 0.166825 0.146895 0.157228 0.169858 0.148436

1.5 0.122379 0.0991342 0.110324 0.126986 0.0975217

1.6 0.0973101 0.0706815 0.0826966 0.103618 0.0662292

1.7 0.0855046 0.0544909 0.0676868 0.0939183 0.047359

1.8 0.0835348 0.0465571 0.0615236 0.094635 0.0367446

1.9 0.0881153 0.0441997 0.0613447 0.102208 0.031853

2 0.0925115 0.0444245 0.0629155 0.108362 0.0307197

Table 2. The variation in displacement, u, against thermoelastic models.

r CTE LS GN-II GN-III MGTTE

1 0 0 0 0 0

1.1 0.309492 0.261252 0.283681 0.339433 0.241621

1.2 0.412296 0.346567 0.377117 0.453125 0.319846

1.3 0.423468 0.353950 0.386234 0.466744 0.325758

1.4 0.402106 0.333389 0.365248 0.445075 0.305656

1.5 0.378058 0.309865 0.341393 0.421024 0.282561

1.6 0.364591 0.294368 0.326711 0.409299 0.266551

1.7 0.361869 0.287267 0.321483 0.40991 0.258061

1.8 0.351445 0.274557 0.309688 0.401473 0.244776

1.9 0.277137 0.213707 0.242602 0.318748 0.189343

2 0 0 0 0 0

Table 3. The thermal stress, σrr, against thermoelastic models.

r CTE LS GN-II GN-III MGTTE

1 0.4743340 0.2675650 0.3025860 0.5720640 0.2525630

1.1 0.1868100 0.1012270 0.1156660 0.2273770 0.0950539

1.2 0.0516443 0.0240023 0.0285367 0.0651377 0.0220870

1.3 −0.00435166 −0.00796819 −0.0076281 −0.00172485 −0.00806811

1.4 −0.0193867 −0.0173043 −0.0180985 −0.0187555 −0.0168943

1.5 −0.0140532 −0.0158891 −0.0162342 −0.0106598 −0.0156415

1.6 −0.00164442 −0.0107555 −0.0100923 0.00616721 −0.0109093

1.7 0.0036358 −0.00816247 −0.00714135 0.0132221 −0.00845855

1.8 −0.0236931 −0.0179052 −0.019461 −0.0238994 −0.0171604

1.9 −0.1386660 −0.0601873 −0.0722491 −0.1804000 −0.0552107

2 −0.4622610 −0.1788460 −0.2203410 −0.6222390 −0.1620350
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Table 4. The thermal stress, σξξ , against thermoelastic models.

r CTE LS GN-II GN-III MGTTE

1 1.09977 0.620363 0.701559 1.32636 1.09977

1.1 0.699359 0.382735 0.436211 0.849315 0.699359

1.2 0.44485 0.233394 0.268771 0.54602 0.44485

1.3 0.298144 0.146448 0.171273 0.372655 0.298144

1.4 0.22683 0.101077 0.120899 0.291474 0.22683

1.5 0.205907 0.0821154 0.100804 0.272902 0.205907

1.6 0.211807 0.077071 0.0966993 0.287822 0.211807

1.7 0.209851 0.0708065 0.090497 0.290891 0.209851

1.8 0.129818 0.0361596 0.0487621 0.187413 0.129818

1.9 −0.183483 −0.0842301 −0.0999158 −0.23434 −0.183483

2 −1.07177 −0.414664 −0.510872 −1.44269 −1.07177

Table 5. The induced magnetic field, h, against thermoelastic models.

r CTE LS GN-II GN-III MGTTE

1 −7.9 × 10−11 −5.43 × 10−11 −5.75 × 10−11 −8.46 ×10−11 −5.36 × 10−11

1.1 −1.19367 −0.738949 −0.825664 −1.374290 −0.700176

1.2 −1.51734 −0.939097 −1.04946 −1.746870 −0.889730

1.3 −1.45953 −0.901517 −1.00788 −1.681730 −0.853944

1.4 −1.25435 −0.771548 −0.863231 −1.448130 −0.730580

1.5 −1.00748 −0.615906 −0.689814 −1.166580 −0.582932

1.6 −0.760565 −0.462100 −0.518067 −0.883454 −0.437171

1.7 −0.525192 −0.319008 −0.357611 −0.61056 −0.301813

1.8 −0.303880 −0.188684 −0.210670 −0.350236 −0.178823

1.9 −0.110024 −0.0757309 −0.0831138 −0.120875 −0.072296

2 −1.05 ×
10−11 −3.44 × 10−12 −4.42 × 10−12 −1.462 ×

10−11 −3.05 × 10−12

Table 6. The induced electric field, E, against thermoelastic models.

r CTE LS GN-II GN-III MGTTE

1 0.300645 0.206085 0.225343 0.334063 0.300645

1.1 0.235749 0.162109 0.177135 0.261679 0.235749

1.2 0.185187 0.127732 0.139477 0.205346 0.185187

1.3 0.14572 0.100815 0.110011 0.16142 0.14572

1.4 0.11485 0.0797025 0.086914 0.12709 0.11485

1.5 0.0906455 0.0631116 0.0687737 0.100188 0.0906455

1.6 0.0716109 0.0500457 0.0544937 0.0790358 0.0716109

1.7 0.056586 0.0397292 0.0432213 0.0623325 0.056586

1.8 0.044668 0.0315579 0.0342924 0.0490667 0.044668

1.9 0.0351526 0.0250596 0.0271885 0.0384492 0.0351526

2 0.0274877 0.0198645 0.0215033 0.0298613 0.0274877
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Table 7. The radial Maxwell stress, τrr, against thermoelastic models.

r CTE LS GN-II GN-III MGTTE

1 6.97 × 10−12 4.75 × 10−12 5.03 × 10−12 7.40 × 10−12 4.68 × 10−12

1.1 0.104384 0.0646198 0.0722029 0.120179 0.0612292

1.2 0.132689 0.0821224 0.0917732 0.152761 0.0778053

1.3 0.127634 0.0788361 0.0881376 0.147065 0.0746759

1.4 0.109691 0.0674706 0.075488 0.126636 0.063888

1.5 0.0881028 0.0538599 0.0603231 0.102015 0.0509764

1.6 0.0665101 0.0404098 0.0453041 0.0772565 0.0382299

1.7 0.0459271 0.0278967 0.0312725 0.0533924 0.026393

1.8 0.0265737 0.0165001 0.0184227 0.0306275 0.0156377

1.9 0.00962142 0.00662253 0.00726815 0.0105703 0.00632216

2 9.16 × 10−13 3.01 × 10−13 3.87 × 10−13 1.28 × 10−12 2.67 × 10−13

According to the coupled theoretical model, in contrast to the extended thermoelastic
theories, which suggest that heat waves travel at a finite pace, heat waves move at an
infinite speed. Furthermore, the numerical analysis results make it clear that the heat wave
moves from the inside to the outside of the cylinder because the thermal shock is only
given to the inside edge of the solid.

Tables 1–4 and Figures 1–3 illustrate the discrepancy between the GN-III and MGTE
model predictions (9–15). The results show that the statistical results and curve fields
for the GN-III version are larger than those for the MGTE model. It is also pointed out
that both the LS and MGTE models exhibit the same numerical findings and behaviors.
This is due to the presence of a thermal relaxation period. The results of the GN-III heat
conduction model by Green and Naghdi demonstrate a clear departure from the reduced
energy dissipation type II heat transfer ideas (GN-II). Significant temperature values and
distribution differences exist between the GN-II model and the other models.

These examples unequivocally demonstrate that, in the expanded Moore–Gibson–
Thompson thermoelasticity theory, the wave propagation rates are constrained (MGTTE).
Outside of a time-varying, finite region, we observe that all variables vanish evenly. In
contrast to what most people believe, coupled thermoelasticity (CTE) and Green and
Naghdi type III demonstrate non-vanishing values for all values of r due to the fact that
heat waves spread at an unlimited rate. In contrast to prior modified theories of heat
conduction, the findings of GN-IIII suggest convergence with the conventional elasticity
concept (CTE) findings, which do not instantaneously diminish under the heat action that
occurs within the cylinder. The new model is suggested in this article since it completely
matches the data given by Quintanilla [22].

7.3. The Influence of Rotation

In problems of thermoelasticity, it often seems that the investigation of the spread of
planar thermoelastic waves in rotational media may receive little attention. In general, the
topic of the vibration response of flexible rotating structural systems, including beams, discs,
and membranes, has not been covered in the literature published so far. However, when
we consider how fast most large objects, such as the Earth, the Moon, and other planetary
systems, rotate, it is more likely that thermoplastic or thermoelastic waves can move
through rotating matter with thermal relaxation. The present article obtained the equation
of motion, which is more general for the spread of coupled thermal and electromagnetic
waves in a rotating cylindrical solid and which includes the output forces due to the effect
of rotation.

To our knowledge, thermomagnetic waves generated by the modified MGTTE ther-
moelastic model in the rotating medium have not been studied. This is what the current sub-
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section intends to analyze. For this reason, in this scenario, how different non-dimensional
physical fields change in response to the spin parameter change will be investigated in the
context of the MGTTE-thermoelastic theory involving relaxation time. It was taken into
account that other effective parameters, such as pulse time t, relaxation time τ0, and axial
magnetic field parameter H0, remain constant throughout the numerical calculations. A
graphic representation of the numerical results for the different domains can be seen in
Figures 16–22.
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In the case of rotation, Ω = 3 and 5 will be taken, and in the case of non-rotation, we
put the value Ω = 0. It can be noted from the figures that when the different mechanical
distributions are taken into account, we see that thermomechanical waves travel through
the solid at a confined rate. The rotating comparison point causes the material to respond
as if it were distributed and deformable because gravitational acceleration and Coriolis
are included in the system of equations. It is clear that the rotating terms, Coriolis and
centrifugal acceleration, modify the motion equation and Maxwell’s equations, as well as
Ohm’s law.
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Figure 22. The radial Maxwell stress, τrr, versus different rotating speed parameters, Ω.

It is evident from Figure 16 that the rotational velocity Ω has a small influence on the
temperature variation. The temperature difference becomes smaller as time passes and the
distance from the heat source grows. As can be observed in Figure 17, the fluctuation of
the displacement, u, correlates to the varied values in the rotation index Ω. We also see
that displacement increases as rotation increases. Raising the rotation coefficients lowers
displacement significantly. In addition, Figure 17 demonstrates that the beginning points
of the displacement profile for Ω = 0, 3, 5 correspond to a zero value, which conforms to
the imposed boundary conditions. After that, it climbs to the highest value and then drops
steadily until it reaches zero.

Figure 18 depicts the fluctuation of thermal stress, σrr, versus the radius, r, and
various rotation parameters. We can observe that the rotational speed coefficient, Ω, has a
considerable impact on the distribution of radial stress, σrr. As can be seen in Figure 18,
the curve of the thermal stress, σrr, reaches its greatest value at the boundary r = 1, then
gradually declines with the increasing radial distance until the steady state is attained.
The thermal stress, σrr, rises as the parameter, Ω, rises between r = 1 and r = 1.2, then
reduces between r = 1.2 and r = 1.8 and then rises again between r = 1.8 and r = 2.
Figure 19 shows how the speed of rotation affects the hoop stress field, σξξ , in three different
situations. There is decreasing hoop stress with a larger radius, r. The hoop stress, σξξ ,
is also greatly influenced by the angular velocity factor. It is evident from the graph that
the stress, σξξ , curves increase with increasing rotational speed, Ω, in the first period of
thickness and decrease in the last period.
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Figures 20–22 depict the fluctuation in the induced magnetic field h, the induced
electric field E, and the radial Maxwell stress τrr corresponding to the modified Ohm’s law
and thermal shock for various rotating speed parameter Ω values. All field variables are
analyzed for the variation caused by the various parameters of rotation speed. Away from
the inner and outer boundary of the solid, the effect of the angular velocity, Ω, is shown on
the induced magnetic field, h, and Maxwell’s radial stress, τrr, while the effect of rotation,
Ω, is evident along the radius of the cylinder on the induced electric field, E.

In addition to the huge structural applications of smart materials, such as thermoelastic,
piezoelectric, or thermoelectric mediums, waves traveling in the presence of rotation have
attracted the attention of many investigators.

8. Conclusions

In this work, the effect of the improved Moore–Gibson–Thompson model of thermoe-
lasticity (MGTTE) on the thorough characterization of thermally generated and mechanical
vibrations of transversely thermoelastic materials was investigated. Using the expanded
Ohm’s law, Lord Shulman’s theory (LS), and Green–Naghdi type III, the mathematical
formula for the newly proposed model was formulated (GN-III). The conventional ther-
moelasticity model, the extended Lord-Shulman model, and Green–Naghdi types II and III
could be derived as instances.

As an illustration of the new model, the issue of a rotating long hollow cylinder with
isotropic transverse characteristics, a limited inner surface, and thermal shock was explored.
Moreover, the outside was fixed and thermally insulated. The solid, hollow cylindrical shell
with rounded edges rotated about its axis of symmetry with a constant angular velocity.
The Laplace transform method calculated physical fields by solving the system’s governing
equations. In order to facilitate discussion and comparison, graphs and tables showing the
deformation fields, temperature fluctuations, and distribution of thermal stresses, as well
as produced electromagnetic fields, were shown.

Findings from this study suggest that changes in the analyzed field variables were
significantly influenced by the applied axial magnetic field and rotation through the use of
thermoelastic materials. On the other hand, its effect on the nondimensional temperature
was quite small. The conventional thermoelastic theory assumes that thermal waves
propagate through a transversely isotropic material at infinite velocities, while the larger
Moore–Gibson–Thompson thermoelasticity model assumes that they propagate at finite
velocities. Additionally, convergence and similarity between the GN-III and CTE models
were observed, demonstrating the validity and application of the given thermoelasticity
models. Furthermore, it could be seen that the calculated values of both the LS and MGTE
systems yield similar results and behave similarly. The reason for this was the thermal
relaxation time.

In conclusion, the many thermodynamic issues covered in this article have solutions
that can be implemented using the methods that were presented. These findings will prove
useful to scientists and theorists working in this field.
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Notations and Symbols
λ, µ Lam’e’s constants K Thermal conductivity
αkl Thermal expansion ρ Density
CE Specific heat Ω Angular velocity
γ = (3λ + 2µ)αt Coupling coefficient Cijkl Elastic constants

T0 Reference temperature
→
J Electric current density

θ = T − T0 Temperature change
→
E Induced electric field

T Absolute temperature i, j, k 1, 2, 3
ui Displacements Q Heat source

e = uk,k Cubical dilatation
→
h Induced magnetic field

σij Thermal stresses
→
B Magnetic induction

eij Strain tensor
→
D Electric induction

δij Kronecker’s delta
→
q Heat flux

ϑ Equilibrium carrier concentration µ0 Magnetic permeability
K Thermal conductivity ε0 Electric permeability
K∗ Thermal conductivity rate σ0 Electric conductivity
→
x Position vector τ0 Relaxation time
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