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Abstract: This review provides a detailed introduction to chiral gauge theories, renormalization
theory, and the application of dimensional regularization with the non-anticommuting BMHV scheme
for γ5. One goal was to show how chiral gauge theories can be renormalized despite the spurious
breaking of gauge invariance and how to obtain the required symmetry-restoring counterterms. A sec-
ond goal was to familiarize the reader with the theoretical basis of the renormalization of chiral gauge
theories, the theorems that guarantee the existence of renormalized chiral gauge theories at all orders
as consistent quantum theories. Relevant topics include BPHZ renormalization, Slavnov–Taylor
identities, the BRST formalism, and algebraic renormalization, as well as the theorems guaranteeing
that dimensional regularization is a consistent regularization/renormalization scheme. All of these,
including their proofs and interconnections, are explained and discussed in detail. Further, these
theoretical concepts are illustrated in practical applications with the example of an Abelian and a non-
Abelian chiral gauge theory. Not only the renormalization procedure for such chiral gauge theories is
explained step by step, but also the results of all counterterms, including the symmetry-restoring
ones, necessary for the consistent renormalization, are explicitly provided.

Keywords: renormalization; chiral gauge theories; dimensional regularization

PACS: 11.10.Gh; 11.15.-q; 12.15.Lk; 12.38.Bx

1. Introduction

Except for gravity, all known fundamental particles and interactions in nature are
described by quantum gauge theories. The Standard Model (SM) of particle physics
combines the theories for electromagnetic, weak, and strong interactions. It is based on
the gauge group SU(3) × SU(2) × U(1) and includes fermionic fields describing spin
1/2 quarks and leptons and bosonic fields describing the Higgs boson and electroweak
symmetry breaking.

Exact solutions for quantum gauge theories rarely exist. Often, SM predictions can
be successfully evaluated in a perturbative treatment. Based on known exact solutions of
the free non-interacting quantum field theory, higher-order corrections can be evaluated
step by step. The higher-order corrections lead to Feynman diagrams with closed loops
and momentum integrations, which lead to ultraviolet divergences. Therefore, the higher-
order amplitudes have to be regularized and renormalized. Equivalently, a mathematically
rigorous treatment has to inductively construct higher orders from lower orders, where
the construction has to respect fundamental requirements such as causality, Lorentz in-
variance, and the unitarity of the time evolution. Practical regularization/renormalization
prescriptions that agree with such a rigorous approach are called consistent schemes.
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For so-called vector gauge theories, in which left-handed and right-handed fermions
have the same gauge interactions, an essentially perfect regularization/renormalization
framework is provided by dimensional regularization [1–3]. It is not only consistent in
the sense above, but it also manifestly preserves the fundamental gauge invariance at all
steps of the calculations. Further, a useful practical tool is provided by the validity of the
quantum action principle [4], which enables the straightforward study of symmetries and
equations of motion on the level of Green functions. Alternative consistent schemes such
as analytic renormalization or Pauli–Villars regularization break gauge invariance. For the
status of further modern developments of alternative schemes, we refer to Reference [5].

However, a fundamental discovery of elementary particle physics is that electroweak
interactions act on chiral fermions, i.e., they treat left-handed and right-handed fermions
differently. Accordingly, the SM and all its extensions for potential new physics are chiral
gauge theories, in which left-handed and right-handed fermions interact differently with
gauge bosons. The presence of such chiral fermions and chiral interactions is manifested
through phenomena such as non-conservation of parity and charge conjugation invariance
of the weak interactions. Connected with chiral fermions is the possibility of chiral anoma-
lies [6–8], i.e., the possibility that classically conserved currents are not conserved in the full
quantum theory. Chiral anomalies lead to observed phenomena such as neutral pion decay
into two photons. Chiral gauge theories, however, can only be consistently renormalized if
chiral anomalies in currents coupling to gauge fields cancel. Although the cancellation is
valid in the SM [9–11], the potential presence of chiral anomalies makes it impossible to
define a consistent regularization/renormalization procedure that manifestly preserves all
symmetries involving chiral fermions. A particularly transparent analysis can be given in
terms of the non-invariance of the fermion path integral measure [12,13].

Within chiral models, dimensional regularization schemes meet the so-called “γ5-
problem”, which is a consequence of the fact that γ5 (similarly, the Levi-Civita tensor εµνρσ)
is an intrinsically four-dimensional quantity. The three basic properties, anticommutativity
of γ5 with other γµ matrices, cyclicity of traces, and the nonzero trace of products of γ5
with four different γµ-matrices, cannot be simultaneously retained without spoiling the
consistency of the scheme. The usage of the naive scheme [14], including the γ5 anticom-
mutativity, is the most common in practical calculations, but it is restricted to subclasses of
diagrams [14,15], and within it, the γ5-matrix is ambiguously defined. Giving up the cyclic-
ity of the trace, one has to introduce a consistent reading prescription defining combinations
of reading points for evaluations of noncyclic traces [16–18], which makes the mathematical
consistency of higher orders less transparent and questionable. Abandoning the anti-
commutativity of the γ5-matrix [1,2,19–21] leads to the mathematically most-rigorously
established dimensional regularization scheme, the so-called Breitenlohner–Maison/’t
Hooft–Veltman (BMHV) scheme, for which all basic quantum field theory properties were
proven to be valid [4,22–24].

Unfortunately, in the BMHV scheme with non-anticommuting γ5, some of the advan-
tages of dimensional regularization are lost. In particular, gauge invariance is not mani-
festly valid in chiral gauge theories, reflecting the possibility of anomalies. Even if the actual
anomalies cancel, as in the SM, gauge invariance is broken in intermediate steps, and the
breaking has to be compensated by a more complicated renormalization procedure. Instead
of the typical textbook approach of generating a bare Lagrangian and counterterms by a
renormalization transformation of fields and parameters, specific symmetry-restoring coun-
terterms of a more general structure need to be found and included. Several recent works
have begun to systematically investigate the practical application of the BMHV scheme to
chiral gauge theories and determine such counterterms [25–28]; see also Reference [29] for
a compact summary.

The present review provides a detailed introduction into chiral gauge theories, dimen-
sional regularization, renormalization theory, and the application of the BMHV scheme to
chiral gauge theories. Its intentions and motivations can be summarized as follows:
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• We aimed for a pedagogical review, starting at the level of typical quantum field theory
textbooks and containing detailed step-by-step explanations and illustrative examples.

• On a practical level, we show how chiral gauge theories can be renormalized employ-
ing the BMHV scheme for γ5 and how the required symmetry-restoring counterterms
can be obtained and used. Thus, we also provide an introduction to the recent litera-
ture mentioned above. The general motivation is an increasing need for high-precision
(multi-)loop calculations in the SM and beyond and an increasing interest in mathe-
matically rigorous treatments that avoid pitfalls such as inconsistencies, ambiguities,
or incorrect results.

• On a conceptual level, we discuss the theoretical basis of the renormalization of
chiral gauge theories. The existence of renormalized quantum gauge theories at
all orders, together with their physics interpretation, is a major result in theoretical
physics. It is based on a large set of complicated theorems and formalisms, rang-
ing from BPHZ theorems on causal and unitary renormalization to Slavnov–Taylor
identities and the BRST formalism, the theorems of algebraic renormalization, and to
the theorems guaranteeing that dimensional regularization is a consistent regular-
ization/renormalization scheme. All these relevant theorems, their role, and their
interconnections are discussed and explained in detail. The proofs are either given or
illustrated and explained.

• In line with the pedagogical goals, we used extensive cross-referencing between
sections. Wherever possible, introductory sections develop intuition and expectations
of later steps, and later sections refer back to simpler, more qualitative explanations
and illustrations. In our citations, we cite not only original works, but wherever
possible, we also cite textbooks or other reviews, where further details can be found.
References to the remarks made at the beginning of this Introduction can be found in
the appropriate sections.

In the following, we present an extensive outline of the individual sections.
In Section 2, the basic knowledge necessary for a discussion of chiral gauge theories in

dimensional regularization is presented:

• Beginning with key ingredients, first, non-Abelian Yang–Mills gauge theories and
spinors, chirality, and chiral fermions are introduced, including required notions
from Lie group theory and Poincaré group representations. BRST invariance and a
corresponding Slavnov–Taylor identity are discussed in detail already at the classical
level. Turning to the quantum level, the notions needed for discussions of Green
functions and their generating functionals are introduced. Then, Slavnov–Taylor
identities for Green functions and generating functionals are introduced, derived from
the path integral and interpreted in detail. The concluding subsection considers the
case of an Abelian gauge theory, and simplifications and additionally valid equations
compared to the non-Abelian case are shown.

Section 3 gives a detailed introduction to dimensional regularization as a mathemat-
ically well-defined regularization procedure, which allows efficient computations and
preserves basic properties of quantum field theory:

• As a preview and to set the stage, the general structure of dimensional regulariza-
tion, renormalization, and the counterterms, as well as corresponding notations are
presented. Then, D-dimensional extensions of four-dimensional quantities are dis-
cussed, starting with the notion of the quasi D-dimensional space. The core of the
method is D-dimensional integrals. After listing their properties relevant for practical
calculations, they are mathematically constructed in two ways, using parallel and
orthogonal spaces, as well as via Schwinger parametrization. The definition and
properties of the metric tensor and its inverse are given. Of particular importance for
chiral gauge theories are the definitions and properties of D-dimensional γ matrices.
Here, an explicit construction of quasi-D-dimensional γ matrices is provided, which is
optimized for the study of chiral gauge theories. The extension to D dimensions leads
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to the well-known γ5 problem; this problem is explained, and the BMHV scheme
is presented together with its definitions and properties of the γ5 matrix and the
εµνρσ symbol.

• In addition to defining the regularization and constructing its basic elements, the re-
lationship of regularized Feynman rules to Lagrangians in D dimensions via a D-
dimensional Gell–Mann–Low formula is discussed. Special emphasis is put on the
relation between kinetic terms and corresponding propagators and chiral fermion–
gauge boson interactions. As an outlook and somewhat orthogonal topic, the variants
HV, CDR, DRED, and FDH of dimensional regularization schemes are briefly dis-
cussed. Their distinctions are of particular importance in the context of infrared
divergences and in the context of supersymmetric gauge theories.

In Section 4, the quantum action principle and regularized quantum action principle
in dimensional regularization are introduced. This is a set of relations between variations
of the classical action and variations of the Green functions of the resulting quantum
theory, which allow expressing symmetries and symmetry violations of the regularized or
renormalized theory:

• First, an instructive, but formal derivation from the path integral is given, sidestep-
ping the need for regularization and renormalization. Then, an exact proof of the
regularized quantum action principle within dimensional regularization is presented.
This validity constitutes an important advantage of dimensional regularization. Its
role is illustrated by proving rigorously the all-order validity of the Slavnov–Taylor
identity for QCD and explaining the extent of the validity of supersymmetry in the
DRED scheme.

Section 5 is devoted to general renormalization theory, focusing on aspects not yet
specific to gauge theories. One goal is to explain the rigorous theorems guaranteeing
that the regularization, renormalization, and cancellation of divergences are possible, and
physically sensible quantum field theories can be constructed at all orders. A second goal
is to analyze conditions for consistent regularization/renormalization procedures and to
show how we know that dimensional regularization is one such consistent procedure:

• Renormalization is introduced as a mathematical construction of time-ordered prod-
ucts of free field operators in agreement with the unitarity and causality of the pertur-
bative S-matrix. The “main theorem” of renormalization relates the construction
and its ambiguities to reparametrizations. Importantly, the ambiguities and the
reparametrizations are local in a well-defined sense. The relationships between
the BPH approach and the R-operation, the BPHZ approach and the forest formula,
and the usual counterterm approach are explained. Further, analytic regularization is
discussed as a conceptually interesting non-dimensional regularization scheme that
can facilitate all-order proofs.

• In the second subsection, the main theorem on dimensional regularization is re-
viewed. First, an extensive discussion of the main statements is given; the most
important is the applicability of dimensional regularization as a consistent regulariza-
tion/renormalization framework. Then, the proof is sketched in detail. The first steps
set up Feynman graph theoretical notions, an organization of the loop integrations,
and an optimized forest formula. Then, the resulting integrals are investigated in
detail, and an inductive proof can be given. All steps are explained and illustrated
with examples.

With the fundamentals of regularization and renormalization thus established,
Section 6 goes on to consider the case of quantized gauge theories and their renormaliza-
tion. It focuses on the compatibility of BRST invariance and Slavnov–Taylor identities,
which are vital for the correct physical interpretation of gauge theories, and the regulariza-
tion/renormalization procedure, which may in general spoil symmetries:

• Revisiting first the familiar textbook case of a symmetry-preserving regularization
such as in QED or QCD reminds the reader of practically important concepts such as



Symmetry 2023, 15, 622 5 of 113

renormalization transformations and puts into context the symmetry-breaking case,
which is the central topic of this review.

• Focusing on this case of interest, the theory of algebraic renormalization is reviewed
as the framework in which rigorous and elegant proofs of the renormalizability of
gauge theories can be carried out, even if regularization procedures break symmetries.
The quantum action principle of BPHZ renormalization emerges as the main theo-
retical tool of this framework; hence, a brief exposition of this tool is given, and its
connection to the quantum action principle in dimensional regularization is explained.
The section then illustrates the inductive all-order proof of the restoration of the spuri-
ously broken symmetry by symmetry-preserving finite counterterms. It also includes a
brief discussion of anomalies, their cancellation conditions, and an outlook on further
applications of algebraic renormalization.

• Finally, coming to the practical goal of this review, the formalism is specialized to
dimensional regularization. Here, explicit equations for the computation of symmetry-
preserving counterterms are derived and the resulting structure of the counterterm
Lagrangian is discussed.

Section 7 gives a detailed illustration of the treatment of chiral gauge theories in the
BMHV scheme, using concrete examples:

• It focuses mainly on an Abelian example, a chiral QED model, discusses its structure,
symmetry breaking as the result of the scheme, and the required counterterm structure.
It explains and compares several ways to determine the required symmetry-restoring
counterterms in practical calculations.

• The symmetry restoration is illustrated in detail for the photon self-energy case, where
it becomes apparent how the quantum action principle and Ward identities have a
crucial practical role in the calculations.

• For the chiral QED model, the calculations are generalized to the full one-loop and the
full two-loop level, and the new features arising at the two-loop level are discussed.

• Finally, a detailed comparison of the Abelian chiral QED and a chiral non-Abelian
Yang–Mills theory is given at the one-loop level.

2. Setup

In this section, we collect background information on the main theoretical concepts
needed to discuss the renormalization of chiral gauge theories in dimensional regularization.
We begin with the general notions of Yang–Mills gauge theories and of spinors, γµ-matrices,
and chirality. On the level of classical field theory, gauge invariance is then extended to
BRST invariance, including gauge fixing and Faddeev–Popov ghosts, and BRST invariance
is formulated as a Slavnov–Taylor identity (Sections 2.1–2.3). In Section 2.4, the basic
objects of quantized field theories, Green functions, and generating functionals are defined.
Section 2.5 discusses the role and interpretation of the Slavnov–Taylor identity on the level
of the quantum field theory. Finally, Section 2.6 discusses the case of Abelian gauge theories,
which involves additional identities. Much of the material of this section can also be found
in standard textbooks such as References [30–36].

2.1. Yang–Mills Gauge Theories

We begin by summarizing the construction of general Yang–Mills gauge theories with
simple gauge groups such as SU(N) or SO(N) and with generic matter fields.

The first ingredient is the gauge group. It is a Lie group in which all group elements
can be written as continuous functions of a certain number Ngen of parameters. The Lie
group can be associated with a Lie algebra with Ngen generators, called ta, a = 1 . . . Ngen.
The generators satisfy the commutation relations:

[ta, tb] = i f ab
c tc (1)
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with antisymmetric structure constants f ab
c . There exists a set of generators for which the

structure constants are totally antisymmetric, such that we write f ab
c ≡ fabc ≡ f abc. This

is the case for sums of simple compact and U(1) subalgebras; see, e.g., [32]. Any set of
matrices Ta that satisfy the relation (1) is called a representation of the Lie algebra.

One special representation, the so-called adjoint representation, always exists. It is
defined by

(Ta
adj)ij = −i f aij (2)

and, thus, a representation in terms of Ngen × Ngen matrices. The commutation relation (1)
is fulfilled because of the Jacobi identity of commutators.

For any representation of the Lie algebra, we can form a representation of the Lie
group (at least locally in a region around the identity) by exponentiation:

U(θa) = e−igθaTa
(3)

where θa are real parameters and where g is the gauge coupling.
Once the Lie group and Lie algebra are defined, we assumed the existence of NF

so-called matter fields ϕi(x), i = 1 . . . NF. We collectively denote them as a tuple ϕ = (ϕi).
We further assumed that there exists a representation of the Lie algebra in terms of NF × NF
matrices Ta, and we define (local) gauge transformations of the matter fields as

ϕi(x)→ U(θa(x))ij ϕj(x) . (4)

The representation may be reducible or irreducible. To simplify the notation, we will
often suppress the indices and arguments and write the previous equation as

ϕ→ Uϕ . (5)

Next, we introduce the central elements of Yang–Mills gauge theories: the covariant
derivative Dµ and the gauge fields Aa

µ. They are related as

Dµ = ∂µ + igTa Aa
µ (6)

where g is the gauge coupling. As the notation indicates, there is one vector field Aa
µ for

each generator a = 1 . . . Ngen. The relation (6) is valid for any representation, and the vector
fields Aa

µ are independent of the chosen representation. It is often useful to define the
matrix-valued and representation-dependent gauge field Aµ ≡ Ta Aa

µ.
The fundamental requirement is that, under a gauge transformation, the covariant

derivative behaves as

Dµ ϕ→ UDµ ϕ . (7)

This is valid if and only if the matrix-valued gauge field transforms as

Aµ → UAµU−1 − 1
ig
[∂µU]U−1 . (8)

Finally, the field strength tensor can be defined as

Fµν =
1
ig
[Dµ, Dν] . (9)
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With this definition, the field strength tensor is matrix-valued and dependent on the
chosen representation. We can decompose it as Fµν = TaFa

µν and evaluate the previous
definition with the result:

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ − g f abc Ab

µ Ac
ν . (10)

Here, we see that the field strength tensors Fa
µν are independent of the chosen repre-

sentation and are generalizations of the field strength tensor of electrodynamics.
At this point, we collect all gauge transformations in compact and matrix-valued

form as

ϕ→ Uϕ , (11a)

Dµ ϕ→ UDµ ϕ , (11b)

Aµ → UAµU−1 − 1
ig
[∂µU]U−1 , (11c)

Fµν → UFµνU−1 , (11d)

where the last equation directly follows from the definition (9). We also record the gauge
transformations for the fundamental fields in more explicit form, by taking the parameters
θa to be infinitesimal, as

ϕ→ ϕ− igθaTa ϕ , (12a)

Aµ → Aµ + ∂µθ − ig[θ, Aµ] , (12b)

Aa
µ → Aa

µ + ∂µθa + g f abcθb Ac
µ , (12c)

where we also set θ = Taθa. The last of the previous equations is particularly important.
It holds universally for any representation. It also contains the gauge coupling g. This is
at the heart of the universality of the gauge coupling, i.e., the physical statement that one
single gauge coupling governs all interactions of the gauge bosons with other gauge bosons
and with any matter fields. Note that this statement relies on the assumption of a simple
non-Abelian gauge group.

The renormalizable gauge-invariant Lagrangian for this Yang–Mills theory can be
written as

Linv = LYM + Lmat , (13a)

LYM = −1
4

FaµνFa
µν , (13b)

Lmat = Lmat(ϕ, Dµ ϕ) . (13c)

The concrete form of the matter field Lagrangian depends on details such as the spin
of the matter field and interactions between different matter fields.

2.2. Chiral Fermions

In this subsection, we introduce the next ingredient: chiral fermions. A fundamental
discovery of elementary particle physics is that electroweak interactions fundamentally act
on chiral fermions, i.e., they treat left-handed and right-handed fermions differently. Chiral
fermions are also fundamental building blocks in many extensions of the Standard Model,
such as grand unified theories or supersymmetry.

Here, we will first summarize general properties of four-component, or Dirac or
Majorana spinors in four dimensions, and then, define the notion of chirality in this context.
Thereafter, we also introduce the two-component Weyl/van der Waerden spinor notation,
which allows an efficient understanding of many important relationships. We will then
collect such relationships.
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2.2.1. General Representation-Independent Relations for γ-Matrices and Four-Spinors

Spinors are defined via their properties under Lorentz transformations. Therefore, we
begin with the reminder that a Lorentz transformation of ordinary 4-vectors is defined by
a matrix Λµ

ν, which leaves scalar products of 4-vectors invariant. Infinitesimal Lorentz
transformations are given by matrices of the form Λµ

ν = δµ
ν + ωµ

ν with an infinitesimal,
antisymmetric matrix ωµν. A representation of the Lorentz group U(Λ) is (at least locally)
defined by specifying

U(δ + ω) = 1− i
2

ωµν Jµν (14)

with generators Jµν that must satisfy the commutation relations of the corresponding
Lie algebra:

[Jµν, Jρσ] = i(gνρ Jµσ − gµρ Jνσ + gµσ Jνρ − gνσ Jµρ) . (15)

Now, we can turn to spinors. The basic building blocks of four-component spinor theory
are the γµ-matrices. They are 4× 4 matrices satisfying the defining Clifford algebra relation:

{γµ, γν} = 2gµν
1 . (16)

Here and everywhere else, we use the mostly minus metric. The fundamental importance
of these matrices is that they generate a representation of the Lorentz group. Indeed, setting

Sµν =
i
4
[γµ, γν] , (17)

one can show that these Sµν satisfy the required commutation relations (15). Hence, we can
now define the notion of a four-component (Dirac or Majorana) spinor: a four-component
spinor ψ is an object whose Lorentz transformation properties are given by

ψ
Λ=δ+ω−→

(
1− i

2
ωµνSµν

)
ψ . (18)

In addition to the γµ-matrices, the γ5 matrix and projection operators PL,R are defined as

γ5 = iγ0γ1γ2γ3 = − i
4!

εµνρσγµγνγργσ , PL,R =
1
2
(1∓ γ5) , (19)

with the totally antisymmetric Levi-Civita (pseudo-)tensor εµνρσ with ε0123 = −1. These
matrices satisfy the additional equations:

{γµ, γ5} = 0 , (γ5)
2 = 1 , (PL,R)

2 = PL,R , PLPR = 0 . (20)

Though not required in general, in many representations (including the chiral repre-
sentation introduced below), the relations

(γµ)† = γ0γµγ0 , (γµ)∗ = γ2γµγ2 , (γµ)T = −C−1γµC , C = iγ0γ2 (21)

hold. In particular, γ2 is the only imaginary matrix. We will assume these relations in
the following.

For any four-spinor ψ, we can define an adjoint spinor ψ̄ and a charge-conjugated
spinor ψC by

ψ̄ = ψ†γ0 , ψC = Cψ̄T . (22)

In this way, ψC is also a four-spinor satisfying the transformation rule (18), and ψ̄
transforms with the inverse matrix. One can show that bilinear expressions such as ψ̄1ψ2,
ψ̄1γµψ2 transform as Lorentz scalars and four-vectors, respectively.
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2.2.2. Chirality and Chiral Fermions

At the level of four-component spinors, the concept of chirality is related to the γ5
matrix and the projectors PL,R. Let us define for any four-spinor ψ so-called left-handed
and right-handed spinors by

ψL = PLψ , ψR = PRψ . (23)

Then, we can make three observations:

• The matrix γ2
5 = 1. Hence, the eigenvalues of γ5 are ±1.

• The spinors ψL and ψR are eigenspinors of γ5 with eigenvalues −1, +1, respectively.
• The matrix γ5 and the projectors PL,R commute with the Lorentz generators Sµν.

Hence, the left-handed and right-handed spinors are proper spinors in the sense of
Equation (18), and they form two distinct invariant subspaces of the Lorentz representation:
the representation defined by Equations (17) and (18) is reducible.

We refer to the eigenvalue of γ5 as chirality; the left-handed and right-handed spinors
are chiral, or chirality eigenstates. In view of the above, chirality is a Lorentz-invariant
property, and its existence is linked to the structure of the Lorentz group representation
theory. For the general analysis, we refer to Reference [37] and, in particular, the textbooks
by Weinberg, Srednicki, and Ryder [31,35,38]. The spaces of the left-handed and right-
handed spinors each define an irreducible representation of the Lorentz group; these are
the simplest nontrivial representations, which are commonly known as the ( 1

2 , 0) and
(0, 1

2 ) representations.
Slightly reformulating the previous statements, we may say that the left-handed

and right-handed spinors have different, independent Lorentz transformation properties.
Hence, in a Lorentz-invariant field theory, left-handed or right-handed spinor fields may
appear independently. Specifically, gauge theories may be constructed in which left-handed
or right-handed spinor fields appear with different gauge group representations. This is
precisely what happens in the case of the electroweak interactions. Chiral fermions are the
fermions described by such field theories based on chiral spinor fields.

2.2.3. Chiral Representation and Two-Component Spinor Formalism

Although many important relationships hold independently of any specific represen-
tation of the γµ-matrices, it is useful to introduce here the so-called chiral representation,
which is given as follows by 2× 2 block matrices:

γµ =

(
0 σµ

σµ 0

)
, γ5 =

(
−1 0
0 1

)
, PL =

(
1 0
0 0

)
, PR =

(
0 0
0 1

)
. (24)

This representation uses the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(25)

and the following four-vectors of 2× 2 matrices:

σµ = (1, σk) , σµ = (1,−σk) . (26)

In this representation of γ-matrices, the Lorentz generators (17) take the form:

Sµν =

( i
4 (σ

µσν − σνσµ) 0
0 i

4 (σ
µσν − σνσµ)

)
. (27)

The block structure of all these matrices makes manifest that the Lorentz representation
is reducible and that the left-handed and right-handed spinor spaces are invariant under
Lorentz transformations.
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This block structure of the chiral representation suggests introducing individual two-
component spinors for the left-handed and right-handed parts. In the following, we will
briefly introduce the corresponding two-component spinor formalism, which allows a very
transparent formulation for many important and useful equations.

We mention that a systematic theory of the Lorentz group representations automat-
ically leads first to such 2-component spinors as the natural spinors for the ( 1

2 , 0) and
(0, 1

2 ) representations and that, in such a context, the 4-component spinors appear as sec-
ondary objects. We also refer to the review [39] for an excellent account of 2-spinors and
relationships between formalisms and relationships between different conventions.1

To avoid confusion, in the remainder of the present subsection, we will always denote
4-component spinors with capital Greek letters such as Ψ and 2-component spinors with
lower-case Greek letters such as χ, η. The relationship between a 4-component spinor Ψ
and 2-component spinors is given by the decomposition:

Ψ =

(
χα

η̄α̇

)
. (28)

Here, the indices α = 1, 2 and α̇ = 1, 2 and χα and η̄α̇ are two distinct two-component
spinors. For the two-component spinors, we define Hermitian conjugation as

χ̄α̇ = (χα)† , χα̇ = (χα)
† , (29)

and the raising and lowering of indices as

χα = εαβχβ , χα = εαβχβ , χα̇ = εα̇β̇χβ̇ , χα̇ = εα̇β̇χβ̇ , (30)

with the antisymmetric symbol:

εαβ = −εβα, εα̇β̇ = −εβ̇α̇, εαβ = εβα, εα̇β̇ = εβ̇α̇, ε12 = 1, ε1̇2̇ = 1. (31)

The Lorentz transformations of the original 4-spinors induce how the 2-spinors trans-
form. For an infinitesimal Lorentz transformation matrix Λ = δ + ω, we can define the
2× 2 matrix:

M(δ + ω)α
β ≡ 1− i

2
ωµν

(
i
4
(σµσν − σνσµ)

)

α

β (32)

in accordance with the general Equation (14). The explicit form of Sµν in Equation (27)
shows that this is the transformation matrix for two-spinors χα. The matrix M is a general
complex invertible matrix with det(M) = 1, i.e., M is an element of the group SL(2,C).
Elementary computations involving raising and lowering of indices and inspection of Sµν

show that, in total, the four kinds of two-spinors transform as follows:

χα → (M)α
β χβ, (33a)

η̄α̇ → (M−1†)α̇
β̇ η̄ β̇, (33b)

χα → χβ (M−1)β
α, (33c)

η̄α̇ → η̄β̇ (M†)β̇
α̇. (33d)

These relations highlight explicitly that the four types of spinors have four different
Lorentz transformation rules. The efficiency of the two-component spinor formalism is

1 In our presentation we have chosen to start from the 4-component spinors despite the fundamental nature
of 2-component spinors. Our most important reason is that we aim to consider DReg, where there is the
γ5-problem which precisely means that the treatment of chirality and specifically 2-component spinors is
problematic, while the treatment of ordinary γµ-matrices remains possible.
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strongly related to this use of the index notation to denote the different Lorentz repre-
sentations. The four representations are different, but not all inequivalent: The fact that
εαβ Mβ

γ εγδ = (M−1)δ
α shows that the spinors χα and χα transform in equivalent (i.e., uni-

tarily related) transformations—the ( 1
2 , 0) representation. Analogously, the representations

for η̄α̇ and η̄α̇ are both equivalent to the general (0, 1
2 ) representation.

The Lorentz transformation properties also suggest the following definitions for an
index-free notation for spinor products:

χη = χαηα , χ̄η̄ = χ̄α̇η̄α̇ , (34a)

χσµη̄ = χασ
µ
αα̇η̄α̇ , χ̄σ̄µη = χ̄α̇σ̄µα̇αηα . (34b)

The expressions in the first line are clearly Lorentz-invariant scalar quantities, and a
calculation shows that the expressions in the second line transform as Lorentz four-vectors.
The index-free notation and the conventions to denote the matrix indices of the σµ and
σ̄µ-matrices in this way reflect the Lorentz transformation properties of all these objects.

As announced, we will now use the two-component formalism to write useful spinor
relations in a transparent way. We begin with the spinors and their conjugates:

Ψ =

(
χα

η̄α̇

)
, Ψ = (ηα χα̇) , ΨC =

(
ηα

χα̇

)
, ΨC = (χα η̄α̇) , (35)

i.e., these conjugations simply exchange the two-component spinors and the index positions.
Chiral spinors take the forms:

ΨL =

(
χα

0

)
, ΨL = (0 χ̄α̇) , ΨR =

(
0

η̄α̇

)
, ΨR = (ηα 0) . (36)

Examples of useful bilinear expressions for anticommuting spinors (which allow
rearrangements such as χη = ηχ in view of ηαχα = −χαηα) are

Ψ1PLΨ2 = ΨC
2 PLΨC

1 = η1χ2, (37)

Ψ1PRΨ2 = ΨC
2 PRΨC

1 = χ1η̄2, (38)

Ψ1γµPLΨ2 = ΨC
2 (−PLγµ)ΨC

1 = χ1σµχ2 = −χ2σµχ1, (39)

Ψ1{1, γ5, γµ, γµγ5}Ψ2 = ΨC
2 {1, γ5,−γµ,−γ5γµ}ΨC

1 . (40)

Using the Hermiticity relations for two-spinors:

ψ
α̇
= (ψα)†, ψα̇ = (ψα)

†, (ψ1ψ2)
† = ψ2ψ1, (ψ1σµψ2)

† = ψ2σµψ1, (41)

directly leads to the following equations for Hermitian conjugation of four-component bilinears:

(Ψ1PLΨ2)
† = Ψ2PRΨ1, (42)

(Ψ1γµPLΨ2)
† = Ψ2PRγµΨ1, (43)

(Ψ1γµPRΨ2)
† = Ψ2PLγµΨ1, (44)

(Ψ1{1, γ5, γµ, γµγ5}Ψ2)
† = Ψ2{1,−γ5, γµ,−γ5γµ}Ψ1. (45)

At this point, we stress again that all equations of this section are valid in strictly
four-dimensional Minkowski spacetime. Later, we will use dimensional regularization
in which two-component spinors are not directly defined. However, all equations for
four-component spinors written in this section have been written in such a way that they
remain valid on the D-dimensional regularized level.
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2.3. BRST Invariance and Slavnov–Taylor Identity

Though the construction of the Yang–Mills Lagrangian (13) is elegant and predictive,
the Lagrangian cannot directly be quantized. On the level of canonical quantization,
the canonical conjugate momentum field corresponding to Aa

0 identically vanishes; on the
level of path integral quantization, the naively defined path integral is ill-defined due to
the integration over infinitely many gauge equivalent field configurations.

The well-known proposal by Faddeev and Popov modifies the path integral definition
of the quantum theory by separating off this divergent factor [40]. Via a clever manipulation,
the path integral can then be written in terms of a modified Lagrangian, which contains a
gauge-fixing term, as well as terms with Faddeev–Popov ghost fields. The interactions
of the Faddeev–Popov ghosts are determined by the choice of the gauge fixing. This path
integral formulation also allows deriving Slavnov–Taylor identities, which could then be
used in the first proofs of the renormalizability of Yang–Mills theories, as discussed later
in Section 6.

Historically, it was observed afterwards that the resulting Faddeev–Popov Lagrangian
is invariant under a new symmetry, the so-called BRST invariance [41–44]. Here, we will
directly start with this BRST invariance, which can be intrinsically motivated and which
provides an efficient formalism for setting up the quantization of Yang–Mills theories.
Our presentation has similarities to the presentation of the Kugo/Ojima formalism in
Reference [45] and the presentations of the BRST and Batalin/Vilkovisky formalisms in
References [32,46].

The main idea is that the concept of local gauge invariance means that physics is de-
scribed by equivalence classes. Precisely speaking on the classical level, field configurations
that are related by local gauge transformations by definition describe the same physical
state. The BRST formalism implements this idea in an elegant way. It first introduces the
notion of ghost number Ngh. All fields introduced so far have a vanishing ghost number,
but we shall introduce objects with positive or negative ghost numbers later. The BRST
formalism further postulates the existence of an operator s, the BRST operator, which acts
on classical fields and has the following properties and interpretations:

• It generalizes gauge invariance in the sense that: a field configuration X with ghost
number zero is “physical” if

sX = 0 . (46)

• It generalizes gauge transformations and gauge equivalence in the sense that: two
“physical” field configurations X1, X2 with ghost number zero are physically equivalent
if some Y exists with

X1 = X2 + sY . (47)

As a side note, objects X, which are total BRST transformations,

X = sY , (48)

are, therefore, “unphysical” in the sense that they are equivalent to the trivial field
configuration where all fields vanish (even if they also satisfy sX = 0).

• It is nilpotent:

s2 = 0 , (49)

and this nilpotency is important for the consistency of the previous two relations.
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• In general, s acts as a fermionic differential operator, which increases the ghost number
by one. Specifically, on products of fermionic and bosonic expressions Fi, Bi, it satisfies
the product rules corresponding to a so-called graded algebra:

s(B1B2) = (sB1)B2 + B1(sB2), (50a)

s(F1B2) = (sF1)B2 − F1(sB2), (50b)

s(F1F2) = (sF1)F2 − F1(sF2). (50c)

In order to define an operator with these properties, one first introduces ghost fields
ca(x), which are scalar fields with fermionic statistics and ghost number +1. As for the
gauge fields, there is one such ghost field for each gauge group generator a = 1 . . . Ngen,
and we can also write c = Taca with representation matrices Ta. On the ordinary
fields, the BRST operator is then defined as an infinitesimal gauge transformation (see
Equation (12)), but with the replacement θa → ca:

sAµ(x) = ∂µc(x)− ig[c(x), Aµ(x)] , (51a)

sAa
µ(x) = ∂µca(x) + g f abccb(x)Ac

µ(x) = (Dµc(x))a , (51b)

sϕ(x) = −igc(x)ϕ(x) . (51c)

Here, we also used the covariant derivative acting on ghost fields, which is defined by
using the adjoint representation for the generators. The BRST transformation of the ghost
fields themselves is defined via the structure constants of the Lie algebra:

sca(x) =
1
2

g f abccb(x)cc(x) , (52a)

sc(x) = −igc(x)2 . (52b)

In this way, the BRST operator is indeed nilpotent if it acts on any combination of
these fields, and it clearly generalizes the original gauge transformations.

In this formalism, introducing gauge fixing and associated ghost interaction terms
becomes very natural and transparent. The existence of two further kinds of fields is
postulated, the antighosts c̄a and the Nakanishi–Lautrup auxiliary fields Ba (with ghost
numbers −1 and 0, respectively). From the present point of view, these fields essentially
have the sole purpose of allowing the formulation of a gauge fixing. They form a so-called
BRST doublet, which means the following very simple BRST transformations:

sc̄a(x) = Ba(x) , (53a)

sBa(x) = 0 , (53b)

which are again consistent with nilpotency. It is known that introducing such a BRST
doublet does not change the cohomology classes of the BRST operator [47]. In terms of the
interpretation specified above, this means that introducing the BRST doublet does not not
change the physical content of the theory.

With these ingredients, we can discuss Lagrangians of the type:

Lfix,gh = s[c̄aXa] (54)

with some ghost number zero object Xa. Evaluating the BRST transformation on the right-
hand side produces terms of ghost number zero, which are allowed terms in a Lagrangian.
Given the interpretations listed above, such Lagrangians are “unphysical” since they are
total BRST transformations. Similarly, adding such a Lagrangian to the original gauge-
invariant Yang–Mills Lagrangian Linv + Lfix,gh does not change the physical content.
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Hence, we may use this possibility to design a Lagrangian of this type that can be
used for gauge fixing, allowing straightforward quantization of the theory. The common
choice is

Lfix,gh = s
[

c̄a
(
(∂µ Aa

µ) +
ξ

2
Ba
)]

= Ba(∂µ Aa
µ) +

ξ

2
(Ba)2 − c̄a∂µ(Dµc)a . (55)

The B-fields are auxiliary fields in the sense that they have no kinetic term and have
purely algebraic equations of motion. They can, hence, be eliminated by their equations
of motion:

Ba = −1
ξ

∂µ Aa
µ, (56)

Lfix,gh = − 1
2ξ

(∂µ Aa
µ)

2 − c̄a∂µ(Dµc)a . (57)

In this way, the Lagrangian contains the usual ξ-dependent gauge fixing term, and the
way it was constructed led to corresponding ghost kinetic terms and ghost–antighost–
gauge boson interactions. The result of this construction is the same as the result of the
Faddeev–Popov approach.

Before turning to quantization, there is one final useful extension of the classical
Lagrangian. We note that most of the BRST transformations are local products of fields,
i.e., constitute nonlinear field transformations. In a non-Abelian gauge theory, the only
exceptions are the BRST transformations sc̄a and sBa, which are linear or zero. In an Abelian
theory (where f abc would vanish), also the BRST transformations of ca and Aa

µ would be
linear. In the quantized theory, such field products will define composite operators that
require dedicated renormalization. It is useful to introduce “sources” for these composite
operators, i.e. classical fields ρaµ(x), ζa(x), Yi(x),2 which couple to the composite operators
in the Lagrangian. We, therefore, define

Lext = ρaµsAa
µ + ζasca + Yisϕi . (58)

Each source has a negative ghost number such that the Lagrangian has in total a zero
ghost number, and each source has the opposite statistics of the original field, such that
the Lagrangian is bosonic. The dimensions of the sources are such that the Lagrangian
has dimension four. Specifically, the sources ρaµ are fermionic with ghost number −1
and dimension 3, and the sources ζa are bosonic with ghost number −2 and dimension 4.
By convention, the BRST transformation of all sources vanishes.

In total, we can then define the full classical Lagrangian, which will be the basis of
quantization, as follows:

Lcl = Linv + Lfix,gh + Lext . (59)

Each of the three parts is individually BRST-invariant. The first part is the gauge-
invariant physical Lagrangian. It depends only on ordinary fields, on which BRST transfor-
mations act as gauge transformations. The second part contains the gauge fixing and ghost
terms, which allow quantization of the theory. Together, they are a total BRST transforma-
tion and, hence, BRST-invariant and unphysical. The third part is BRST-invariant in view
of the nilpotency s2 = 0. In total,

sLcl = 0 . (60)

2 These sources are not quantized and not integrated over in the path integral. These sources are also called
“external sources” or “external fields” or “antifields”. One may also regard them as local, x-dependent
parameters of the Lagrangian.
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The same statement can be rewritten in functional form. Defining the classical action:

Γcl =
∫

d4xLcl (61)

allows rewriting Equation (60) as the Slavnov–Taylor identity:

S(Γcl) = 0 (62)

with the Slavnov–Taylor operator:

S(F ) =
∫

d4x

(
δF

δρaµ(x)
δF

δAa
µ(x)

+
δF

δζa(x)
δF

δca(x)
+

δF
δYi(x)

δF
δϕi(x)

+ Ba(x)
δF

δc̄a(x)

)
. (63)

The Slavnov–Taylor identity (62) is the ultimate reformulation of the gauge invariance of the
classical action after introducing gauge fixing, ghost terms, and external sources for composite
operators. This identity will be a crucial ingredient in the renormalization procedure.3

2.4. Green Functions in Quantum Field Theory

In this subsection, we introduce the basic notation for quantum field theory required
for our discussion of higher orders and regularization and renormalization. We considered
a generic quantum field theory with dynamical fields φi(x) (these may be the gauge
fields, matter fields, or ghost or antighost fields introduced in earlier subsections) and a
Lagrangian L.

Fundamental objects of the full, interacting quantized theory are Green functions,
i.e., time-ordered expectation values of Heisenberg picture field operators φH

i in the full
vacuum |Ω〉 of the interacting theory:

Gi1 ...in(x1, . . . , xn) = 〈Ω|TφH
i1 (x1) . . . φH

in (xn)|Ω〉 . (64)

We also considered Green functions involving composite local operators O:

Gk1 ...km
i1 ...in (y1, . . . , ym, x1, . . . , xn) = 〈Ω|TOH

k1
(y1) . . .OH

km
(ym)φ

H
i1 (x1) . . . φH

in (xn)|Ω〉

≡ 〈TOk1(y1) . . .Okm(ym)φi1(x1) . . . φin(xn)〉 . (65)

Here, φ denotes a generic quantum field, and the above expressions may contain
different kinds of such fields. Where unambiguous, we shall write φi1(x1) ≡ φi1 . The second
line here introduces an alternative short-hand notation for such Green functions, where the
explicit symbols for the vacuum state and for the Heisenberg picture are suppressed. We
will often use this short-hand notation in the following.

Generally, Green functions are important since they encapsulate the essential infor-
mation of a given quantum field theory. We briefly remark how they particularly allow
constructing important observable quantities. The physical rest masses of one-particle
states are reflected in the poles of momentum-space two-point functions, as a result of
the Källen–Lehmann representation. S-matrix elements for scattering processes between

3 We remark that the choice of gauge fixing used in the present review is not the only option. Other options
include physical gauges such as the axial gauge, where no ghosts are required, or the background field
gauge; see, e.g., References [32,34] for textbook discussions. Of particular interest for the present discussion is
the application of the background field gauge to the electroweak SM, which includes chiral fermions (and
electroweak symmetry breaking) [48]. Later, in Section 6.2.4, we will further comment on the proofs of
renormalizability and physical properties such as charge universality in these different gauges. The central
point of the present review is the application of the BMHV scheme for non-anticommuting γ5 to chiral gauge
theories. Here, it is noteworthy that this application is essentially unchanged regardless of whether the gauge
fixing of the main text or the background field gauge is used. The corresponding discussion and the required
computation of symmetry-restoring counterterms were carried out in Reference [27]. The main technical
difference to the formalism presented here is that the dominant role of the Slavnov–Taylor identity is replaced
by a Ward identity reflecting gauge invariance with respect to background fields; the overall logic and detailed
calculational steps are essentially the same.
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asymptotically free states are obtained via the Lehmann–Symanzik–Zimmermann reduc-
tion formalism, which can be derived from Haag–Ruelle scattering theory (see, e.g., the
textbooks by Srednicki and Peskin/Schroeder [33,35] and the monograph by Duncan [49]
for a particularly detailed account). We note here an important subtlety. Green functions
are particularly defined in momentum-space for off-shell momenta, while physical ob-
servables are related to the on-shell limits, where Green functions may develop infrared
divergences. In the present review, we will not discuss the specifics of the on-shell limits of
Green functions.

A very useful tool for general discussions is the generating functional Z(J, K) for the
most-general Green functions with elementary fields and composite operators. It can be
written by introducing sources (or “external fields”, i.e., fields that always remain classical
and never are quantized) Ji(x) for the elementary fields and Ki(x) for the composite
operators such that

Gk1...km
i1...in (y1, . . . , ym , x1, . . . , xn) (66)

=
1

Z(0, 0)
δm+n Z(J, K)

δiKk1 (y1) . . . δiKkm (ym) . . . δi Ji1 (x1) . . . δi Jin (xn) . . .

∣∣∣∣∣
J=K=0

.

In perturbation theory, the Green functions are given by Feynman diagrams obtained
from the well-known Gell–Mann–Low formula. Specifically, in perturbation theory, the
Lagrangian is split as L = Lfree + Lint, where the free part Lfree is bilinear in the quantum
fields, allowing quantization as a free field theory. This quantization then leads to free
field operators, which we denote as φi without the superscript, and to a free vacuum |0〉.
The Gell–Mann–Low formula for the perturbative evaluation of Green functions then
yields an explicit construction of the generating functional:

Z(J, K) =
〈0|T exp

(
i
∫

d4x(Lint + Jiφi + KiOi)
)
|0〉

〈0|T exp(i
∫

d4xLint )|0〉
. (67)

The evaluation of this formula via Wick contractions leads to Feynman rules and
Feynman diagrams. In Equation (67), we also introduce a short-hand notation, which we
will often use: all appearing fields and sources Ji, φi, Ki,Oi and the Lagrangian Lint have
the spacetime argument x, which is suppressed. Further, there is a summation over the
index i, and the summation range extends over all quantum fields in the term Jiφi and over
all composite operators with sources in the term KiOi.

Another representation of the generating functional is given by the path integral:

Z(J, K) =
∫
Dφ ei

∫
d4x(L+Jiφi+KiOi) , (68)

whereDφ is the measure of the integration over all field configurations and the quantities in
the exponent are number-valued fields (either sources or path integral integration variables).
The same short-hand notation suppressing the arguments is used. We stress that both
Equations (67) and (68) are formal and not yet fully defined: the literal application of the
Gell–Mann–Low formula leads to divergences unless the theory is regularized, and the
path integral formula requires a precise definition of the path integral measure. Both
formulas will become well-defined via the process of regularization and renormalization
(this process can also be regarded as a constructive definition of the path integral measure).

The full Green functions discussed so far are described by the most-general Feynman
diagrams, which are allowed to contain several disconnected components. It is possible
to define a second generating functional Zc that directly generates only connected Green
functions, i.e., the sums of connected Feynman diagrams. The relation is given by

Z(J, K) = eiZc(J,K) . (69)
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For a proof that this generates precisely the connected Green functions, see, e.g.,
References [50,51].4

For renormalization, one-particle irreducible (1PI) Feynman diagrams are most useful
since they are the smallest building blocks that suffice to discuss ultraviolet divergences
and counterterms. The corresponding 1PI Green functions can also be generated by a
generating functional. This 1PI generating functional is called Γ, or effective action. It is
defined by a Legendre transform of Zc, which replaces the sources by classical fields.

In order to prepare for the introduction of this 1PI generating functional Γ, we make
two remarks: First, we note that there is a mapping between the sources Ji and expectation
values of field operators φi. Specifically, the first derivatives of the generating functional Zc
have the special interpretation as the expectation values of the field operators:

φclass
i (x) ≡ δZc

δJi(x)
= 〈φi(x)〉J,K . (70)

In contrast to Equation (66), we have not set the sources to zero. Each choice of
the sources Ji(x) (for fixed Ki(x)), thus, defines expectation values of the quantum field
operators. These expectation values are number-valued, “classical” fields φclass

i (x). We
may regard these classical fields as functionals of the sources Ji(x) (for fixed Ki(x)), or we
may invert the relationship and regard the sources as functionals of the classical fields. In
the following, we will always assume that the vacuum expectation values of the operators
φi vanish. Here, this means that J = 0 is mapped to φclass = 0 and vice versa (for K = 0):

δZc

δJi(x)

∣∣∣∣∣
J=K=0

= 0 . (71)

The second remark is the following: In the classical limit, the path integral is dominated
by the classical field configuration minimizing the classical action. Hence, in the classical
limit (“cl.lim.”) and up to an irrelevant constant, we have

Z(J, K) = eiZc(J,K) cl.lim.−→ ei(Γcl(φ
class,K)+

∫
d4xJiφ

class
i )

∣∣∣
0=

δΓcl
δφclass±J

, (72)

where Γcl =
∫

d4x(L+ KiOi) is the classical action (including source terms for composite
operators) and where the ± signs apply for bosonic/fermionic fields φ, respectively.

This motivates the definition of a new functional Γ via the analogous, exact relation:

Zc(J, K) = Γ(φclass, K) +
∫

d4xJiφ
class
i

∣∣∣
J=∓ δΓ

δφclass

. (73)

This relation is a Legendre transformation, which can be inverted to

Γ(φclass, K) = Zc(J, K)−
∫

d4xJiφ
class
i

∣∣∣
φclass= δZc

δJ

. (74)

In the Legendre transformation, the sources Ki for composite operators act as specta-
tors, such that the relation:

δΓ(φclass, K)
δKi(x)

=
δZc(J, K)

δKi(x)
(75)

holds.

4 The conventions for the generating functionals differ slightly between most references. Our conventions are
essentially the same as in Reference [33], except that our connected functional Zc = −E there.
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The functional Γ defined in this way has two very important properties. First, it is
equal to the classical action plus quantum corrections, i.e.,

Γ(φclass, K) = Γcl(φ
class, K) +O(h̄) , (76)

where we reinstate explicit powers of h̄ to count the number of loops. This justifies the
name “effective action”. Second, Γ generates one-particle irreducible (1PI) Green func-
tions. For the full proofs of these statements, see, e.g., the textbooks by Zinn-Justin or
Itzykson/Zuber [50,51], and for detailed discussions including subtleties in cases with
spontaneous symmetry breaking, see, e.g., the textbooks by Weinberg or Brown [32,52].

Let us introduce further useful notation related to Green functions and Γ. First, in the
following and in general, we simplify the notation for Γ and write only φi instead of φclass

i
for its arguments if no misunderstanding is possible.

Next, we introduce the notation for specific 1PI Green functions. Such concrete 1PI
Green functions in position-space are obtained from derivatives of Γ with respect to the
classical fields as

Γφiφj ...(x1, x2, . . .) =
δΓ

δφi(x1)δφj(x2) . . .

∣∣∣
φ=0

= −i〈φi(x1)φj(x2) . . .〉 1PI . (77)

In terms of Feynman diagrams, iΓφiφj ... corresponds to the set of 1PI diagrams with
the indicated external fields. When passing to momentum-space via the Fourier transform,
we split off a δ-function corresponding to momentum conservation; symbolically:

Γφiφj ...

∣∣∣
F.T.

(p1, p2, . . .) = Γφiφj ...(p1, p2, . . .)(2π)4δ(4)(∑n
j=1 pj) . (78)

Equations (72) and (76) show that, naturally, the source terms for composite operators
combine with the Lagrangian; hence, it is motivated to absorb these source terms into the
Lagrangian. This is precisely what was performed in Section 2.3 for certain important
operators corresponding to nonlinear BRST transformations; see Equation (58). In this
way, the renormalization of such composite operators is fully integrated into the standard
renormalization procedure.

Sometimes, special operators need to be considered only in the simpler context of
single operator insertions. Let O be such an operator and KO the corresponding source,
treated as in Equations (67) or (68) or absorbed into the Lagrangian. The sources for all
remaining operators are collectively called K. Then, for single insertions of O, a special
notation is defined:

O(x) · Z(J, K) =
δZ(J, K, KO)
δ(iKO(x))

∣∣∣
KO=0

, (79a)

O(x) · Γ(φ, K) =
δΓ(φ, K, KO)

δKO(x)

∣∣∣
KO=0

. (79b)

For particular 1PI Green functions with a single operator insertion, we can write

(O(x) · Γ)φiφj ...
(x1, x2, . . .) = −i〈O(x)φi(x1)φj(x2) . . .〉 1PI . (80)

In terms of Feynman diagrams, i(O(x) · Γ)φiφj ...
corresponds to 1PI diagrams with the

indicated external fields and one insertion of a vertex corresponding to iO(x), where the
factor i results as usual from the exponential function in the Gell–Mann–Low formula (67).

An important consequence is the lowest-order behavior of the operator insertion
into Γ:

O · Γ(φ) = Oclass +O(h̄) , (81)
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where Oclass is the classical field product corresponding to the operator O. This is in line
with the interpretation of Γ as the effective action.

2.5. Slavnov–Taylor Identities for Green Functions and Their Interpretation

In Section 2.3, we introduced BRST invariance as a substitute for gauge invariance in
the presence of a gauge fixing, and we found the BRST-invariant classical action. The ques-
tion is now: How is this BRST invariance reflected in the full quantum theory? The
most-general answer is that the off-shell Green functions introduced in Section 2.4 sat-
isfy so-called Slavnov–Taylor identities. Here, we provide a formal derivation of these
Slavnov–Taylor identities. This derivation is simple and elegant and allows an efficient
understanding and interpretation of the structure of the Slavnov–Taylor identities. It is
however formal in the sense that it ignores the procedure of regularization and renormaliza-
tion; hence, we will later, in Section 6, need to discuss how this procedure might change the
identities. There, we will also discuss the important role of the Slavnov–Taylor identities
in establishing the renormalizability of Yang–Mills theories, including the decoupling of
unphysical degrees of freedom and the unitarity of the physical S-matrix.

We start from the BRST invariance of the classical action, which was already expressed
by Equation (60) and rewritten as the Slavnov–Taylor identity (62). Here, we rewrite it as
an invariance relation:

Γcl(φ, K) = Γcl(φ + δφ, K) (82)

where φ denote all dynamical fields (Aµ, ϕi, c, c̄, B) and K denote all sources (ρµ, Yi, ζ) and
where the field transformations are given as

δφ = θsφ (83)

with an infinitesimal fermionic parameter θ such that δφ always has the same
bosonic/fermionic statistics as φ itself. Equation (82) is meant at first order in θ, and
at this order, it is clearly equivalent to both Equations (60) and (62).

Now, we use this invariance as a starting point and derive the Slavnov–Taylor identities
for the generating functional (68) in the path integral formulation. We assumed that the path
integral measure is invariant under the same symmetry transformation φ→ φ + δφ ≡ φ′

and, therefore, write

Z(J, K) =
∫
Dφ′ ei(Γcl(φ

′ ,K)+
∫

d4xJiφ
′
i )

=
∫
Dφ ei(Γcl(φ,K)+

∫
d4xJiφi+Jiδφi) . (84)

The variation δφ only appears in the exponent. We can expand the right-hand side at
first order in δφ and subtract it from the left-hand side to obtain

0 =
∫
Dφ

(∫
d4xJiδφi

)
ei(Γcl(φ,K)+

∫
d4xJiφi) . (85)

This is already one basic version of the Slavnov–Taylor identity. We can rewrite it in
several ways to familiarize us with its interpretation:

• A first way is to replace the path integral with its interpretation as an operator expec-
tation value, in line with Equation (70). Then, we obtain

0 =
∫

d4xJi〈δφi〉J,K . (86)
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This can be further rewritten by replacing the sources Ji in terms of derivatives of Γ,
the effective action or generating functional of 1PI Green functions, via the Legendre
transform (73) such that

0 =
∫

d4x〈δφi〉J,K δΓ
δφi

, (87)

where, again, the sum over all fields i is implied and where the order of the factors
was exchanged to compensate the ± signs in the relation for Ji in Equation (73). Both
of these equations have the forms of typical infinitesimal invariance relations. We may
also rewrite the previous equation as

Γ(φ, K) = Γ
(

φ + 〈δφ〉J,K, K
)

, (88)

valid to first order in the variation. This equation is directly analogous to the starting
point (82). It clarifies the interpretation of the Slavnov–Taylor identity as an invari-
ance relation for the full effective action Γ under symmetry transformations given by
〈δφi〉J,K. An important distinction can now be made about these symmetry transfor-
mations. In general, the δφi are nonlinear products of fields (i.e., composite operators),
and generally, the expectation value of a product is different from the product of
expectation values. In other words, the symmetry transformations may receive non-
trivial quantum corrections. Hence, the symmetry transformation in Equation (88)
is in general different from the classical expression δφi (which becomes δφclass

i using
the more explicit notation of the previous section), which one might have expected to
appear. Only in the case where all δφi are linear in the dynamical fields, the symmetry
relation (88) corresponds to the same invariance as Equation (82).

• A second way to rewrite the Slavnov–Taylor identity (85) is by taking derivatives
with respect to the sources as in Equation (66) to obtain identities for specific Green
functions. In this way, Equation (85) leads to infinitely many identities of the kind:

0 = δ〈Tφi1(x1) . . . φin(xn)〉J,K (89)

≡ 〈T(δφi1(x1)) . . . φin(xn)〉J,K + . . . + 〈T(φi1(x1)) . . . δφin(xn)〉J,K ,

where the first line is defined as an abbreviation for the second line and the uniform +
signs of all terms are correct because the transformation δ as defined by Equation (83)
is of a bosonic nature. In these identities, Green functions involving ordinary fields
φi and the symmetry transformation composite operators δφi appear. In this form,
Slavnov–Taylor identities may be checked explicitly by computing Feynman diagrams
for such Green functions. We can illustrate this with a simple, but important ex-
ample. Taking the Yang–Mills theory of the previous subsections with fermionic
matter fields ψ, we can consider δ〈c̄ψiψ̄k〉 and use the BRST transformations in
Equations (51c) and (53) to obtain

0 = 〈TBψiψ̄k〉+ ig〈Tc̄(cψ)iψ̄k〉 − ig〈Tc̄ψi(ψ̄c)k〉 (90)

where the brackets indicate local composite operators. The auxiliary field B will
effectively be replaced by ∂µ Aµ via Equation (56). In Abelian QED, the ghosts are free
and can be factored out of the matrix elements. Hence, in QED, this identity simply
leads to the familiar Ward identity between the electron self-energy and the electron–
electron–photon vertex function. In non-Abelian Yang–Mills theories, the identity
also relates the fermion self-energy and the fermion–fermion–gauge boson three-point
function, but the relationship is more complicated and involves nontrivial composite
operators, which need to be renormalized.

• A final way to rewrite the Slavnov–Taylor identity is to write it as functional equations
for the generating functionals Z, Zc, or Γ. Since we coupled the nonlinear classical
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symmetry transformation (83) to the sources K in the classical action (58), the expecta-
tion values of nonlinear composite operators appearing in the previous equations may
be rewritten in terms of functional derivatives with respect to K. A slight technical
complication is that there are also linear symmetry transformations that we have
not coupled to sources, such as the BRST transformations of the c̄ and B fields. Pre-
cisely, we can, therefore, replace the nonlinear δφi by δ/δ(iKi) in the Slavnov–Taylor
identity (85), but the linear δφi remain. If we express the path integral in terms of the
connected functional, Equation (85) takes the schematic form:

0 =
∫

d4x ∑
δφi=nonlinear

Ji
δZc(J, K)

δKi
+
∫

d4x ∑
δφi=linear

Ji〈δφi〉J,K , (91)

where the expectation value in the last term really is a linear combination of the
expectation values of fundamental fields, i.e., a linear combination of φclass

j as used in

Equation (74) and, thus, equal to what we mean by δφclass
i , where the index class will

be dropped again. The previous equation can be rewritten as an equation for the 1PI
functional Γ by replacing the sources Ji via the Legendre transformation to Γ and by
using that the sources K are unaffected by the Legendre transformation, as expressed
by Equation (75). In this way, we obtain

0 =
∫

d4x ∑
δφi=nonlinear

δΓ(φ, K)
δKi

δΓ(φ, K)
δφi

+
∫

d4x ∑
δφi=linear

δφi
δΓ(φ, K)

δφi
. (92)

This is literally the same equation as the Slavnov–Taylor identity for the classical action
with the Slavnov–Taylor operator (63), but rewritten for the full effective action:

S(Γ) = 0 . (93)

This explains the reason why we rewrote the BRST invariance of the classical action in
Section 2.3 as the Slavnov–Taylor identity using Equation (63): This equation has the
potential of remaining valid without modification in the full quantum theory, provided the
above formal manipulations survive the regularization and renormalization procedure.

Finally, we comment on the validity of our derivation. The derivation assumed the
classical action to be symmetric, the path integral to be well-defined, and the path integral
measure to be invariant under the symmetry. A full treatment must define the quantum
theory via the procedure of regularization and renormalization, which may be viewed as
a constructive definition of the path integral and its measure and which might change
the action, e.g., by counterterms. An essential result of algebraic renormalization theory
(see below in Section 6) is that the above derivations are essentially correct up to local terms
in the following sense: If the above Slavnov–Taylor identity (93) is valid at some given loop
order, then at the next loop order, it can at most be violated by a local functional of the
fields. Hence, there is a chance that any such local violation can be canceled by adding
local, symmetry-restoring counterterms. If this is possible, the Slavnov–Taylor identity
indeed can be established at all orders in the renormalized theory.

In the present review, we mainly work in dimensional regularization. In this context,
the above derivation acquires a more literal meaning. In Section 4, we will discuss the
so-called regularized quantum action principle, which essentially states that all deriva-
tions remain literally valid in dimensional regularization if all quantities are defined via
regularized Feynman diagrams in D 6= 4 dimensions. In that case, however, it becomes
questionable whether the D-dimensional version of the classical action satisfies the same
symmetry (82) as the original four-dimensional version. If this is not the case, there is
again a violation of the Slavnov–Taylor identity at the regularized level, which needs to be
studied and which may be canceled by introducing symmetry-restoring counterterms.
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2.6. Peculiarities of Abelian Gauge Theories

So far, the discussions above focused on the non-Abelian case. However, there are
some peculiarities in the Abelian case that will be highlighted in this subsection (we assume
the absence of spontaneous symmetry breaking). Obviously, in an Abelian gauge theory,
there are less interactions than in the non-Abelian case, with corresponding implications
for higher-order corrections. However, there are also less restrictions by the gauge group,
which leads to the need for an additional symmetry condition to ensure a consistent renor-
malization of the Abelian coupling constant, as discussed below. For further information
of Abelian theories in this context, we refer the reader to [42,53–56], where they focused,
in contrast to the present section, on the Abelian case with spontaneous symmetry break-
ing, whereas the more general case of the Standard Model and extensions was discussed
in [57–59]. For a general overview, we refer to the textbook by Piguet/Sorella [47].

Starting with the classical Lagrangian of the Abelian gauge theory of quantum elec-
trodynamics, using the notation of Section 2.3, we may write it in the same form as in
Equation (59), this time, however, with

Linv = i ψi /Dijψj −
1
4

FµνFµν , (94)

with the covariant derivative Dµ
ij = ∂µδij + ieQiδij Aµ and the field strength tensor Fµν =

∂µ Aν − ∂ν Aµ, with the gauge-fixing and ghost Lagrangian:

Lfix,gh = s
[

c̄
(
(∂µ Aµ) +

ξ

2
B
)]

= B(∂µ Aµ) +
ξ

2
B2 − c̄∂µ∂µc , (95)

with B = −(∂µ Aµ)/ξ and with the Lagrangian of the external sources:

Lext = ρµsAµ + R̄isψi + Risψi , (96)

where we used the concrete name Ri for the matter field sources instead of the generic
name Yi of Section 2.3. The classical action is then, again, given by (61).

The BRST transformations in the Abelian case, already used in (95), are provided by

sAµ(x) = ∂µc(x) , (97a)

sψi(x) = −ieQic(x)ψi(x) , (97b)

sψi(x) = ieQic(x)ψi(x) , (97c)

sc(x) = 0 , (97d)

sc̄(x) = B(x) , (97e)

sB(x) = 0 . (97f)

It can be seen that, in the Abelian case, except from the BRST transformations for the
fermions ψi and ψi, all other BRST transformations are linear in dynamical fields. Recall
that, for a linear classical symmetry of the form:

δφi(x) = vi(x) +
∫

d4y tij(x, y)φj(y) (98)

with number-valued kernel tij, its expectation value is identical to the classical symmetry
transformation (see also the discussions around Equations (88), (91) and (92)), i.e.,

〈δφi(x)〉J,K = vi(x) +
∫

d4y tij(x, y)〈φj(y)〉J,K = δφclass
i . (99)

Hence, on the basis of Equations (87) and (88) from Section 2.5, the full effective
quantum action Γ is invariant under such linear classical symmetries as they do not receive
nontrivial quantum corrections. In other words, linear symmetry transformations of the
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classical action Γcl are automatically symmetry transformations of the full effective quantum
action Γ.

In particular, the BRST transformation of the photon Aµ is linear, and hence, sAµ does
not receive quantum corrections, and the expectation value 〈sAµ〉J,K is identical to the
classical expression (sAµ)class.

Further, Ri and R̄i are external sources, and the Abelian Faddeev–Popov ghost and
antighost completely decouple from the rest of the theory (cf. (95)). Hence, neither Ri and
R̄i nor the ghost c and antighost c̄ can occur in loops; they can only appear as external legs,
as there are no corresponding interactions and the external sources are not dynamical fields,
and thus cannot propagate. Consequently, none of the Abelian BRST transformations obtain
quantum corrections, or in other words, in the Abelian case, the BRST transformations do
not renormalize.

In a theory with a non-Abelian simple gauge group G with gauge coupling g, the gen-
erators Ta are uniquely determined by choosing a representation. For this reason, the cou-
plings of all matter fields to the gauge fields ∝ gTa and of all gauge boson self-interactions
∝ g f abc are uniquely determined up to one common, universal gauge coupling g.

In contrast to this, in an Abelian gauge theory, every diagonal matrix would be a
representation of the corresponding Lie algebra. Thus, the corresponding charges Qi of
the respective fermions could in principle be arbitrary real numbers. Group theory alone
would allow these charges to obtain quantum corrections, i.e., they could renormalize,
and could thus even take different values at every order in the perturbation theory. Hence,
due to the fact that the group structure of an Abelian gauge group is not as powerful as
the one of a non-Abelian gauge group, the Abelian couplings need to be determined, in all
orders, by an additional symmetry condition to the full effective quantum action, either by
the local Ward identity or by the so-called antighost equation.

The special simplicity of Abelian gauge theories and the existence of additional all-
order identities is technically reflected in several field derivatives of the classical action. We
begin with the antighost equation:

δΓcl
δc(x)

= �c̄(x) + ∂µρµ(x)− ieQiR̄i(x)ψi(x) + ieQiψi(x)Ri(x) . (100)

Additionally, varying Γcl with respect to the antighost and the external source of the
photon yields

δΓcl
δc̄(x)

= −�c(x) ,
δΓcl

δρµ(x)
= sAµ(x) = ∂µc(x) , (101)

which can be combined to obtain the so-called ghost equation:
(

δ

δc̄
+ ∂µ

δ

δρµ

)
Γcl = 0 . (102)

The gauge fixing condition is obtained by varying Γcl with respect to the Nakanishi–
Lautrup field B:

δΓcl
δB(x)

= ξB(x) + ∂µ Aµ(x) . (103)
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Importantly, it can be seen that all of the above Equations (100)–(103) are linear in
dynamical fields, e.g., δΓcl/δc(x) = (linear expression). In contrast, all other functional
derivatives of the classical action:

δΓcl

δRi(x)
= sψi(x) = ieQic(x)ψi(x) , (104a)

δΓcl
δψi(x)

= i∂µψi(x)γµ + eQiψi(x) /A(x) + ieQiR̄i(x)c(x) , (104b)

δΓcl

δR̄i(x)
= sψi(x) = −ieQic(x)ψi(x) , (104c)

δΓcl

δψi(x)
= i/∂ψi(x)− eQi /A(x)ψi(x)− ieQiRi(x)c(x) , (104d)

are nonlinear in dynamical fields. The special feature of linear Equations (100)–(103) is that
there are no quantum corrections expected, which could spoil these linear relations. Indeed,
for loop corrections, we need interactions and, thus, at least three dynamical fields, which
is not the case here.

Hence, we may require that these identities hold at all orders as part of the definition
of the theory, meaning that they also hold for the full effective quantum action Γ, i.e.,5

δΓ
δc(x)

!
=

δΓcl
δc(x)

,
δΓ

δc̄(x)
!
=

δΓcl
δc̄(x)

,
δΓ

δρµ(x)
!
=

δΓcl
δρµ(x)

,
δΓ

δB(x)
!
=

δΓcl
δB(x)

. (105)

The charges Qi of all fields explicitly occur in the antighost Equation (100), and (105),
thus, fixes the charges of the fields to all orders.

Additionally, we can derive the aforementioned Ward identity (which, in the present case
without spontaneous symmetry breaking and in the presence of the identities (105), is equivalent
to the Slavnov–Taylor identity). Starting with the Slavnov–Taylor identity for the Abelian case:

0 = S(Γ) =
∫

d4x
(

δΓ
δR̄i

δΓ
δψi

+
δΓ
δRi

δΓ
δψi

+
δΓ
δρµ

δΓ
δAµ

+ B
δΓ
δc̄

)
, (106)

cf. (63) for the non-Abelian case, varying it with respect to the Faddeev–Popov ghost c(x), i.e.,

0 =
δS(Γ)
δc(x)

=
∫

d4y

[(
δ

δc(x)
δΓ

δR̄i(y)

)
δΓ

δψi(y)
+

δΓ
δR̄i(y)

(
δ

δc(x)
δΓ

δψi(y)

)

+

(
δ

δc(x)
δΓ

δRi(y)

)
δΓ

δψi(y)
+

δΓ
δRi(y)

(
δ

δc(x)
δΓ

δψi(y)

)

+

(
δ

δc(x)
δΓ

δρµ(y)

)
δΓ

δAµ(y)
− δΓ

δρµ(y)

(
δ

δc(x)
δΓ

δAµ(y)

)

+ B
(

δ

δc(x)
δΓ

δc̄(y)

)]
(107)

=
∫

d4y

[(
δ

δR̄i(y)
δΓ

δc(x)

)
δΓ

δψi(y)
− δΓ

δR̄i(y)

(
δ

δψi(y)
δΓ

δc(x)

)

+

(
δ

δRi(y)
δΓ

δc(x)

)
δΓ

δψi(y)
− δΓ

δRi(y)

(
δ

δψi(y)
δΓ

δc(x)

)

−
(

δ

δρµ(y)
δΓ

δc(x)

)
δΓ

δAµ(y)
− B

(
δ

δc̄(y)
δΓ

δc(x)

)]

= −ieQiψi(x)
δΓ

δψi(x)
+ ieQi R̄i(x)

δΓ
δR̄i(x)

+ ieQiψi(x)
δΓ

δψi(x)

− ieQi Ri(x)
δΓ

δRi(x)
− ∂µ

δΓ
δAµ(x)

−�B(x) ,

5 In case of an Abelian gauge theory with spontaneous symmetry breaking, not all of these identities are valid, but one
may introduce background fields which allow obtaining a valid local Ward identity and/or an Abelian antighost
equation, see Refs. [54,56].
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where we used the fact that fermionic objects anticommute and that δ/δc(x) is a fermionic
functional derivative. After the third equality, we moved δ/δc(x) past the other respective
functional derivative and utilized the antighost Equation (100) (which is valid to all orders,
see Equation (105)). We dropped the penultimate term of the second equality, as the RHS
of the antighost Equation (100) does not contain a term depending on Aµ. Rearranging the
last line, we obtain the functional form of the local Abelian Ward identity:

(
∂µ

δ

δAµ(x)
+ ieQi ∑

Ψ
(−1)nΨ Ψ(x)

δ

δΨ(x)

)
Γ = −�B(x) , (108)

with Ψ ∈ {ψi, ψi, Ri, R̄i} and nΨ ∈ {0, 1, 0, 1}. The well-known Ward identity for the
relation of the electron self-energy and the electron–electron–photon interaction vertex may
then be deduced from this equation. Further discussions will be made later in Section 7
for the example of chiral QED. Again, the charges Qi of all fields are fixed as (108) is
established to all orders. Consequently, the above statements imply a nonrenormalization
of the field charges Qi, which means that a single counterterm is sufficient to renormalize
the Abelian coupling to all orders of the perturbation theory, thus guaranteeing a consistent
renormalization of the coupling constant.

The above identities, viewing them as part of the definition of the theory, constrain
the regularization and renormalization procedure. On the one hand, symmetry-preserving
(field and parameter) renormalization constants are constrained by the equations (meaning,
in particular, that certain combinations such as the gauge fixing term or terms such as R̄isψi
do not renormalize). On the other hand, the local Ward identity (108) particularly will be of
interest in determining symmetry-restoring counterterms. It can be used to interpret the
breaking and restoration of the Slavnov–Taylor identity.

3. Dimensional Regularization

In a perturbative quantum field theory, Feynman diagrams with closed loops corre-
spond to higher orders in h̄. They, hence, represent genuine quantum corrections and are of
fundamental interest. Such loop diagrams, however, are known to give rise to ultraviolet
(UV) divergences, which need to be handled. The reason for this can easily be understood
by imagining a loop made of a propagator with coinciding end points. Since the propagator
is a distribution, one may expect this object to be ill-defined, as is the product of distribu-
tions at the same spacetime point in general. In fact, such loops correspond to the exchange
of virtual particles, whose momenta are integrated over and which may run up to infinity,
hence the possibility of divergent integrals in momentum-space. In essence, the purpose
of renormalization is to remove all divergences and assign a meaning to such ill-defined
expressions and ultimately to define physically meaningful results.

In practice, this means that we first need to isolate the aforementioned divergences
before they can be subtracted. In the typical setting, isolating divergences is achieved via
regularization, while their subtraction is performed via counterterms, which are added to
the Lagrangian. The entire procedure constitutes the renormalization. Hence, in order to
obtain meaningful results at the quantum level, i.e., including higher-order corrections, one
needs regularization and renormalization, as already mentioned at the end of Section 2.5.

There are several regularization schemes; here, we focus on dimensional regularization
(DReg). In this present Section 3 and the subsequent Section 4, we provide an overview of the
main properties of DReg and of how to perform calculations using this regularization procedure.

Dimensional regularization and its variants are the most-common regularization
schemes in relativistic quantum field theories. These schemes have several key advantages
that make them particularly useful in practical, concrete computations. The structure of
integrals in formally D dimensions is essentially unchanged, allowing efficient integration
techniques. The divergent terms appear as 1/(D − 4) poles and can be isolated in a
transparent way. Lorentz invariance and gauge invariance of non-chiral gauge theories
is essentially kept manifest. Furthermore, fundamental properties such as equivalence to
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BPHZ renormalization, consistency with the unitarity and causality of quantum field theory,
and consistent applicability at all orders are rigorously established. The key disadvantage
is the problematic treatment of the γ5 matrix and the εµνρσ symbol. As a result, gauge
invariance is manifestly broken in chiral gauge theories. The treatment of such theories is
the main topic of the present review.

The previous statements are discussed in detail later in Section 5. That section will
explain that, based on DReg, local counterterms exist that can subtract the UV divergences.
It will also explain how the regularization/counterterm/renormalization procedure in
DReg amounts to a rigorous and physically sensible construction of higher orders. Then,
in Section 6, we will consider DReg applied to gauge theories and see that (under certain
conditions where chiral gauge anomalies are absent) the Slavnov–Taylor identity can
be established at all orders in the renormalized, finite theory. In case DReg breaks the
symmetry in intermediate steps, the existence of symmetry-restoring counterterms is
then guaranteed.

The basic idea of DReg is to replace the 4-dimensional spacetime and the 4-dimensional
momentum-space by formally D-dimensional ones, with parametrization D = 4− 2ε. In
this way, all integrals become formally D-dimensional. DReg was put forward in several
works by ’t Hooft and Veltman [1], by Bollini and Giambiagi [2], and by Ashmore [3]. Specif-
ically, Reference [1] already highlighted all key advantages and disadvantages mentioned
above and showed how to compute 1-loop and 2-loop Feynman diagrams using DReg.

In the following, we begin the section by introducing our notation for the dimen-
sionally regularized and renormalized effective quantum action and schematically sketch
its construction. This provides a short overview of the general structure of dimensional
regularization and renormalization (Section 3.1).

Then, we will explain what the properties of D-dimensional integrals are and how
these integrals can be consistently defined (Section 3.2). Together with the integrals, many
other quantities have to be formally continued to D dimensions, in particular momenta,
vector fields, metric tensors, and γ matrices. Section 3.3 will focus on such quantities and
delineate to what extent a purely D-dimensional treatment is correct and at which points
a distinction of four-dimensional and D-dimensional quantities needs to be made in the
calculations. In particular, it introduces the BMHV scheme for non-anticommuting γ5.

Section 3.4 describes an important feature of DReg, which is not shared by all regular-
ization methods: the precise expressions of regularized Feynman diagrams in D dimensions
may be encoded in a formally D-dimensional Lagrangian, from which Feynman rules are
obtained in the usual way. This relation is obviously useful in the study of symmetries
of regularized Feynman diagrams since the properties of diagrams can be obtained from
the properties of the regularized Lagrangian. In Section 3.5, we discuss several variants of
DReg such as regularization by dimensional reduction and further subvariants. We will
discuss the relationships between the variants on the level of the regularized Lagrangians
and on the level of Green functions and S-matrix elements.

3.1. General Structure of Dimensional Regularization and Renormalization

Before we discuss the properties of D-dimensional integrals and how to formally con-
tinue certain quantities to D dimensions, and thus perform calculations in DReg, we briefly
introduce our notation with respect to the dimensionally regularized and renormalized
effective quantum action, the key quantity of the theory, and sketch its construction.

As mentioned above, UV divergences in loop integrals are isolated as 1/(D− 4) poles
in DReg. These divergences must be subtracted using counterterms in order to renormalize
the theory. In general, such counterterms may not only contain these UV divergent but
also finite contributions.6 Here we sketch the renormalization procedure and introduce
useful notation.

6 The general counterterm structure of a dimensionally regularized theory using the BMHV scheme makes
use of further subdivisions of counterterms. This will be presented in Section 6 and illustrated in a practical
example in Section 7.
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The perturbative expansion is organized in terms of orders in h̄, equivalent to or-
ders in loops. The classical action of order h̄0 defining the theory is denoted S0 ≡ Γcl;
the counterterm action is denoted as Sct; the sum of the two is called the bare action Sbare.
In the following, symbols without an upper index denote all-order quantities, while for
perturbative expressions, an upper index i labels quantities of precisely order i, whereas
quantities up to and including order i are labeled with an upper index (i). Using this
notation, the bare and the counterterm actions may be written as

Sbare = S0 + Sct, Sct =
∞

∑
i=1

Si
ct, S(i)

ct =
i

∑
j=1

Sj
ct. (109)

In dimensional regularization and renormalization, the perturbative construction
of the effective action is performed iteratively at each order of h̄, i.e., at each loop order,
starting from the tree-level action S0. Then, a counterterm action Si

ct needs to be constructed
at each higher order i ≥ 1, which has to satisfy the two conditions that the renormalized
theory is UV-finite and in agreement with all required symmetries.

The subrenormalized quantum action of order i is denoted by

Γi
subren (110)

and obtained at order i by using Feynman rules from the tree-level action and counterterms
up to order i− 1. The counterterms Si

ct to be constructed at the order i are subdivided into
singular counterterms (which, by definition, contain only pole terms in (D− 4) and are
denoted by subscript sct) and finite counterterms (finite in the limit D → 4 and denoted by
subscript fct). By constructing and including singular counterterms of the order i, we obtain

lim
D→4

(
Γi

subren + Si
sct

)
= finite, (111)

which determines the singular counterterms unambiguously. If necessary, we may then
also include additional finite counterterms. Once the finite counterterms are determined,
we obtain

Γi
DRen ≡ Γi

subren + Si
sct + Si

fct. (112)

This quantity Γi
DRen is finite and essentially renormalized, but it may still contain the

variable ε = (4− D)/2 and so-called evanescent quantities, which vanish in strictly D = 4
dimensions. Thus, the completely renormalized quantum action is obtained by taking the
limit D → 4 and setting all evanescent quantities to zero. This procedure is denoted by7

Γi ≡ LIM
D→ 4

Γi
DRen. (113)

Some comments on the finite counterterms are in order. They can have two purposes.
On the one hand, it may happen that regularized quantum corrections spoil a symme-
try of the theory, such that, e.g., the Slavnov–Taylor identity is invalid on the level of
Equation (111). If the symmetry is part of the definition of the theory, finite counterterms
must be found and added such that the symmetry is valid on the renormalized level (113).
The purpose of counterterms is then not solely to remove UV divergences, but also to restore
symmetries if necessary (and if possible). If no finite counterterms can be found that restore
the symmetry, the symmetry is lost. This situation is called an anomaly, or anomalous
symmetry breaking. It signals an irreconcilable clash of the symmetry and the quantum
theory. If the symmetry is part of the definition of the theory or required for the consistency

7 We will sometimes synonymously refer to the completely renormalized and 4-dimensional quantum action as
Γi

ren, i.e. Γi ≡ Γi
ren, in order to emphasize that it is completely renormalized.
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of the theory, the theory must be abandoned. The later Section 6.2.3 will provide a detailed
discussion of the symmetry restoration using finite counterterms.

On the other hand, the finite counterterms can also be used in order to fulfil certain
renormalization conditions. In general, the choice of the finite counterterms (beyond sym-
metry restoration) is called a renormalization scheme. Popular examples of renormalization
schemes are on-shell or (modified) minimal subtraction schemes. In the present review we
will not further discuss renormalization schemes. For textbook-level discussions of this
important topic we refer to the books by Böhm/Denner/Joos and Srednicki [34,35].8

Finally, we reiterate that we only sketched the general procedure and introduced the
notation, but we have not yet proven that this procedure actually works. This will be
performed in the later Sections 5 and 6, and it is exemplarily illustrated in Section 7 for the
case where finite symmetry-restoring counterterms are required.9

3.2. Integrals in D Dimensions

In this subsection, we will discuss momentum integrations in DReg. As explained
above, in DReg, we replace four-dimensional spaces by formally D-dimensional ones.
In this way, all integrals become formally D-dimensional, and we can schematically write
for the loop integration measure:

∫ d4k
(2π)4 → µ4−D

∫ dDk
(2π)D , (114)

where µ denotes a new, artificial mass scale, the dimensional regularization scale. Though
the basic idea [1–3] is simple, care is needed to avoid incorrect or inconsistent results.
After the first detailed discussions in Reference [22,61,62], very systematic definitions and
analyses of D-dimensional integrals were given by Breitenlohner and Maison [4] and by
Collins [63].

3.2.1. Quasi-D-Dimensional Space

Before discussing integrals, we discuss the simpler concept of a D-dimensional space.
Let us denote the original four-dimensional Minkowski space as 4S and the formal, or quasi-
D-dimensional space as QDS. The question is which properties QDS can have and what its
relationship to the original space 4S can be.

Clearly, even on the regularized level, we need the usual properties of linear combina-
tions. If two momenta pµ and qµ are elements of QDS, then also apµ + bqµ is an element
of QDS for any real or complex a and b, with the usual properties of linear combinations.
Hence, QDS must constitute a proper mathematical vector space. However, there do
not exist mathematical vector spaces with dimensionality D if D is a non-integer real or
complex number.

8 Although the main focus of the review is on the renormalization of Green functions, we provide here a
remark on the extraction of physical S-matrix elements via LSZ reduction as mentioned in Section 2.4. LSZ
reduction involves the need for so-called wave function renormalization, which ties in with the discussion of
finite counterterms and renormalization schemes. In order to obtain properly normalized S-matrix elements,
Green functions need to be divided by

√
zi for each external line, where zi is the residue of the corresponding

two-point function at the pole corresponding to the rest mass of the considered external particle i. This may
be automatically achieved by choosing an on-shell renormalization scheme for renormalized fields, where
all such residues are equal to unity; see, e.g., the discussion in Reference [34]. If a different renormalization
scheme is chosen, the wave function factor

√
zi may be different from unity and needs to be explicitly taken

into account, such as in the scheme proposed in Reference [60] for the electroweak Standard Model. In practical
computations in DReg, it is actually often possible to carry out the renormalization program only partially,
such that quantum fields remain unrenormalized and the residue factors

√
zi remain divergent. After LSZ

reduction and proper wave function renormalization, nevertheless finite and correct S-matrix elements can
be obtained.

9 In textbooks and in practical computations, counterterms are often obtained by applying a so-called renor-
malization transformation onto the tree-level action. Section 4.3 and, in more generality, Section 6.1 will also
explain under which conditions this procedure is possible.
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The crucial observation [61] is that, on the regularized level, we need to accept that
arbitrary sets of momentum vectors may have to be treated as linearly independent. Hence,
we need to accept that QDS must actually be an infinite-dimensional vector space. Corre-
spondingly, what we call D-dimensional momentum vectors are actually elements of QDS
with infinitely many components (of course, in the case of physical momenta, only four of
them will be nonzero). It turns out to be possible to define objects and operations on QDS
with the desired properties, which resemble D-dimensional behavior, justifying the name
quasi-D-dimensional space.

An important consequence for practical applications is that the original space 4S is
always a subspace of QDS:

4S ⊂ QDS , (115)

regardless of whether D > 4, or D < 4, or D is complex, assuming the opposite relation
leads to mathematical inconsistencies, which will be discussed in the context of dimensional
reduction below in Section 3.5.

3.2.2. Properties of D-Dimensional Integrals

Now, we turn to integrals over functions of vectors defined on QDS. Clearly, the plethora
of successful calculations and available multi-loop techniques (see, e.g., the book [64]) pro-
vides ample evidence of the existence of D-dimensional integrals and of the consistency of
their evaluations. Still, as stressed in Reference [63], it is important to establish the existence
of D-dimensional integrals in general and to prove the uniqueness of the results. In the
literature, different constructive definitions have been proposed. Here, we will describe the
construction by Collins [63], which extends the earlier work by Wilson [61].

We begin by listing important properties of D-dimensional integration given in
Reference [63]. It is generally sufficient to discuss the case of the Euclidean metric. D-
dimensional Minkowski spacetime can then be treated as one fixed time dimension com-
bined with (D− 1)-dimensional Euclidean space, and in quantum field theory applications,
Minkowski space integrals can be converted to Euclidean space integrals via Wick rotation.
Depending on the context, either Minkowski space or Euclidean space notation can be more
convenient. For the following integrals, we assumed Euclidean space, with the Euclidean
metric for scalar products of vectors:

Property (a) Linearity: for all functions f1,2 and coefficients a, b:
∫

dDk
(

a f1(~k) + b f2(~k)
)
= a

∫
dDk f1(~k) + b

∫
dDk f2(~k) . (116)

Property (b) Translation invariance: for all vectors ~p ∈QDS:
∫

dDk f1(~k + ~p) =
∫

dDk f1(~k) . (117)

Property (c) Scaling: for all numbers s,
∫

dDk f1(s~k) = s−D
∫

dDk f1(~k) . (118)

Property (d) The D-dimensional Gaussian integral in D-dimensional Euclidean metric has
the value:

∫
dDke−~k

2
= πD/2 . (119)
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Using D-dimensional spherical coordinates to evaluate this rotationally symmetric
integral,

∫
dDk →

∫
dD−1Ω

∫ ∞
0 dkkD−1e−k2

, implies the result for the surface of a
D-dimensional sphere:

ΩD ≡
∫

dD−1Ω =
2πD/2

Γ(D/2)
(120)

which depends on the well-known Γ-function defined as Γ(z) =
∫ ∞

0 tz−1e−tdt for
Re(z) > 0 and by analytic continuation otherwise.

Remark: Properties a, b, c, and d may also be viewed as axioms on the integration. Taken
together, they uniquely fix the integration [61].

Property (e) Commutation with differentiation:

∂

∂~p

∫
dDk f1(~k,~p) =

∫
dDk

∂

∂~p
f1(~k,~p) . (121)

Property (f) Partial integration: The previous equation, together with translation invari-
ance (117), implies the possibility for partial integration:

∫
dDk

∂

∂~k
f1(~k) = 0 . (122)

Property (g) Two different integrations can be interchanged:
∫

dD p
∫

dDk f (~p,~k) =
∫

dDk
∫

dD p f (~p,~k) . (123)

Property (h) If an integral is finite in four dimensions, the D-dimensional version is ana-
lytic in a region for D around D = 4 and in the external momenta, and it reproduces
the original value for D = 4.

Remark: The explicit construction of References [61,63] guarantees the existence of the
D-dimensional integration and allows establishing general properties. Uniqueness
together with existence implies “consistency” in the sense that one initial expression
in DReg will always lead to one unique final expression, no matter how and in which
order the calculational steps are organized.

3.2.3. Uniqueness and Construction of D-Dimensional Integrals Using Parallel and
Orthogonal Spaces

For the full proofs of the properties listed above and for further properties, we refer to
Reference [63]. In the following, we summarize the uniqueness proof and then sketch the
integral constructions of References [61,63].

We begin with the uniqueness of the D-dimensional integral. It is sufficient to assume
the Euclidean metric, such that scalar products are given by ~p ·~k = p1k1 + p2k2 + . . . for D-
dimensional vectors ~p,~k. Reference [61] starts from the observation that any function of the
form f (~p1 ·~k, . . . ,~pn ·~k,~k2) can be obtained from suitable combinations of the derivatives
of the generating function:

g(s,~p,~k) ≡ e−s~k2+~p·~k . (124)

Indeed, derivatives with respect to ~p and s generate arbitrary polynomials in all
components of ~k and ~k2, multiplied by g(s,~p,~k). Ignoring convergence questions, any
function can be sufficiently approximated in this way.
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Using linearity (116), it is sufficient to prove the uniqueness of the integral over the
generating function g(s,~p,~k). Using translation invariance to complete the square, scaling,
and the D-dimensional Gaussian integral, we obtain

∫
dDkg(s,~p,~k)

(117)
=

∫
dDke−s~k2+~p2/4s (125a)

(118)
= s−D/2e~p

2/4s
∫

dDke−~k
2

(125b)

(119)
= s−D/2e~p

2/4sπD/2 . (125c)

The integral over the generating function is uniquely fixed given the four proper-
ties (116)–(119), establishing the general uniqueness of the integral.

Now, we sketch the D-dimensional integral construction proposed by
References [61,63]. Suppose the function f (~p1 ·~k, . . .~pn ·~k,~k2) is to be integrated over~k,
and we take seriously that all these vectors are elements of QDS, which is actually infinite-
dimensional. The result will depend on the n “external momenta” ~p1 . . .~pn, and these span
a subspace, which is at most n-dimensional. The basic idea is then that the space of all~k
can be split into a “parallel” space and an “orthogonal” space. The parallel space is defined
such that it contains all n external vectors ~p1 . . .~pn. It has a finite, integer dimensionality
np. Once the parallel space is fixed, we can uniquely decompose any loop momentum and
its scalar products as

~k =~k‖ +~k⊥ ~pi ·~k = ~pi ·~k‖ ~k2 =~k2
‖ +

~k2
⊥ . (126)

For this reason, the~k dependence of the integrand may be abbreviated as

f (~p1 ·~k, . . .~pn ·~k,~k2) ≡ f (~k‖,~k
2
⊥) , (127)

i.e., the~k dependence is separated: the vector~k‖ appears explicitly, but it is an element of
a finite-dimensional vector space where ordinary integrals are defined. The orthogonal
components appear only as the square~k2

⊥. This is the crucial simplification, which allows
the two-step definition, where first, the integral is split as

∫
dDk f (~p1 ·~k, . . .~pn ·~k,~k2) ≡

∫
dnp k‖

∫
dD−np k⊥ f (~k‖,~k

2
⊥) (128)

and second, the D− np-dimensional integral on the right-hand side is defined via spherical
coordinates, using Equation (120):

∫
dD−np k⊥ f (~k‖,~k

2
⊥) ≡ ΩD−np

∫ ∞

0
dkkD−np−1 f (~k‖, k2) . (129)

In these two steps, the original D-dimensional integral is defined in terms of a series of
ordinary integrals in one dimension and in np dimensions. The effect of the regularization
becomes manifest with the D-dependence in the exponent, which governs the behavior of
the integrand at large k and at small k. If the function f has at most a power-like divergence
at large/small k, there is a range of D for which the k-integral is well defined. Its value for
arbitrary D is then defined by analytical continuation.

Reference [63] provides detailed discussions of the independence of the choice of the
parallel space and its dimensionality np, of the analytical continuation in the variable D,
and of more general integrals.
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We will now discuss the computation of such integrals with two examples, which will
illustrate several important general points. The examples are (we, again, work in Euclidean
space and use a dimensionless integration variable~k)

Iall(D) =
∫

dDk~k2δ(~k2 − 1) , (130a)

I1(D) =
∫

dDkk2
1δ(~k2 − 1) . (130b)

Both integrals only depend on the dimensionality D. In both cases, we essentially
integrate over the surface of the unit sphere, in the first case multiplied by~k2 and in the
second case multiplied by k2

1. Since no direction is special, the second integral would not
change if we replaced k2

1 by any other k2
i with a fixed index i. We will discover a useful

relationship between the two integrals.
The first integral may immediately be computed by treating the entire~k as~k⊥. We can

apply the definition (129) and evaluate the integral as

Iall(D) =
ΩD

2
. (131)

For the second integral, we treat the first component as special and align the parallel
space along this first component (the explicit component k1 might also be regarded as the
scalar product ~p ·~k with a vector that happens to be ~p = (1, 0, 0, . . .)). Then, the integral
becomes by definition

I1(D) =
∫ ∞

−∞
dk1k2

1

∫
dD−1k⊥δ(~k2

⊥ − (1− k2
1)) . (132)

The D− 1-dimensional integral is now of the same type as Iall except in reduced di-
mensionality, and it is only nonzero if |k1| ≤ 1. Applying standard substitutions, we obtain

I1(D) =
∫ 1

−1
dk1k2

1
ΩD−1

2
(1− k2

1)
(D−3)/2 . (133)

The remaining integral can be related to the definition of the Beta function
B(3/2, (D− 1)/2) by the substitution x = k2

1, and the result is

I1(D) =
ΩD−1

2
Γ(3/2)Γ(D/2− 1/2)

Γ(D/2 + 1)
. (134)

As announced, these results illustrate important general points:

• The result (134) can be simplified by using the explicit result Γ(3/2) =
√

π/2, the re-
cursion relation zΓ(z) = Γ(z + 1), and the explicit result for ΩD in Equation (120).
After simplification, we obtain

I1(D) =
ΩD
2D

, (135)

where the (D − 1)-dimensional surface volume is replaced by the
D-dimensional one.

• As a result, we simply obtain the relation:

Iall(D) = DI1(D) , (136)

which agrees with the naive expectation from a D-dimensional space with D vector
components despite the construction of QDS as an infinite-dimensional vector space.
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• These two integrals Iall and I1 and their relationships will allow defining metric tensors
on the quasi-D-dimensional space QDS with appropriate properties resembling D-
dimensional behavior.

• Similar relationships are also the essence of the proof of the independence of the choice
of the parallel space in defining the integrals [63].

3.2.4. Construction of D-Dimensional Loop Integrals via Schwinger Parametrization

In addition to the integral construction via parallel and orthogonal spaces, we also
sketch a second way to construct D-dimensional integrals. This second way was carried
out and used, in particular, in References [4,22]. It also realizes the four basic properties
of linearity, translation invariance, scaling, and the generalization of the Gaussian inte-
gral (116)–(119), but otherwise, it is formulated specifically for loop integrals in Minkowski
space quantum field theory. It is based on the well-understood Schwinger parametrization,
which has been developed for arbitrary loop integrals and used, e.g., in BPHZ renormal-
izability proofs in References [65–67] and in the context of analytical regularization [68].
For general accounts, see also the books [64,69]. We present here, first, a simple example
and, then, indicate the general case.

The example is a standard one-loop two-point function with loop integrand

i2ei(uµ
1 (k+p)µ+uµ

2 kµ)

[(k + p)2 −m2 + iε][k2 −m2 + iε]
≡ i2ei(uµ

1 (k+p)µ+uµ
2 kµ)

D1D2
(137)

with loop integration momentum k and external momentum p, two equal masses, and the
customary +iε prescription. We also allowed for a generating function in the numerator
similar to Equation (124) with two vector-like parameters uµ

1 , uµ
2 such that the derivatives

at u1,2 = 0 can generate arbitrary polynomials of propagator momenta in the numerator.
The Schwinger parametrization, or α-parametrization, uses the following replacement for
generic propagators:

1
[p2 −m2 + iε]ν

=
1

iνΓ(ν)

∫ ∞

0
dααν−1ei(p2−m2+iε)α , (138)

which is derived by substitution and by using the definition of the Γ function. In this way,
the integrand (137) becomes

∫ ∞

0
dα1dα2ei(D1α1+D2α2)ei(u1·(k+p)+u2·k) (139)

and the appearing exponent is a quadratic polynomial in the loop momentum which, up to
the factor i, can be written as10

k2M + 2kµ Jµ + K + K′ , (140)

or, by completing the square, as

k′2M− J2M−1 + K + K′ , (141)

10 Note that in this particular case, the quantity M is a number, while in the general case of multiloop integrals
M will be a matrix.



Symmetry 2023, 15, 622 34 of 113

with

k′µ = kµ + M−1 Jµ , (142a)

M = α1 + α2 , (142b)

Jµ = pµα1 +
1
2
(u1 + u2)µ , (142c)

K = p2α1 + u1 · p , (142d)

K′ = (iε−m2)(α1 + α2) . (142e)

Using this rearrangement in the exponent, the loop integral over k becomes essentially
a Gaussian integral over eik′2 M. Using translation invariance and the scaling property (117)
and (118) and employing the Minkowski metric, we obtain

∫ dDk
(2π)D ei(k′2+iε)M = (4π)−D/2i1−D/2M−D/2 . (143)

The previous steps transform the integrand (137) into a product of a purely Gaussian
integrand and a remainder, which does not depend on the integration momentum. This
leads to the following definition:

∫ dDk
(2π)D

i2ei(u1·(k+p)+u2·k)

D1D2
=(4π)−D/2i1−D/2

×
∫ ∞

0
dα1dα2M−D/2ei(−J2 M−1+K+K′) . (144)

In this way, the D-dimensional integral is defined in terms of two standard integrals
over α1,2. The integrand depends on α1,2 via the exponential function and via the term
M−D/2, where the D dependence enters.

This example can be generalized to arbitrary loop integrals, and it may be generalized
to numerator polynomials in the integration momentum. We provide here the result for the
general case of a 1PI graph G with L loops, loop momenta ki, I internal lines with momenta
`k, a generating function with parameters uk, and a derivative operator Z(−i∂/∂u) with
respect to all the uk in the numerator (see, e.g., [4,64]):

TG =
∫

dDk1 . . . dDkLZ(−i∂/∂u)
iIeiuk ·`k

D1 . . . DI

∣∣∣∣∣
u=0

. (145)

Selecting specific choices of the operator Z and setting u = 0 after taking the derivative
produce specific numerators. Going through similar steps as before, the integrand can be
rearranged into the form of pure Gaussian integrals, leading to the result and D-dimensional
definition:

TG = cL
D

∫ ∞

0
dα1 . . . dαI Z(−i∂/∂u)U−D/2eiW

∣∣∣∣∣
u=0

, (146a)

cD = i1−D/2(4π)−D/2 . (146b)

By definition, the variables u have to be set to zero before performing the α integration.
The formula clearly corresponds to the one-loop example, where L = 1, I = 2, and Z = 1, and

U = M = α1 + α2 , (147a)

W =
p2α1α2 − α1u2 · p + α2u1 · p− 1

4 (u1 + u2)
2

U + K′ . (147b)

In the general case, the quantities in the result (146a) have the following properties:
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• U is the so-called Symanzik polynomial in the αs of degree L. All its terms have a
unity coefficient; hence, inside the α-integration range, U is positive.

• The ultraviolet divergences (including subdivergences) of the original loop integral are
mapped to the singularities of the α integrals at small α. As some of the αs approach
zero, U vanishes with a certain power-like behavior, depending on the original power
counting of the Feynman diagram. The D-dependence of U−D/2 then effectively
regularizes the divergences.

• The exponent W is a rational function in the αs and depends on the external momenta,
the masses, and the uk variables.

The definition of the general loop integral (145) via Equation (146a) provides not
only a second constructive definition of D-dimensional integration (which is of course
equivalent to the one in Section 3.2.2 thanks to the uniqueness theorem), but it also provides
a starting point for practical computations and allows rigorous proofs of renormalizability
and further renormalization properties [4,22].

For completeness, we present here briefly the full computation of the one-loop exam-
ple (144) for the scalar numerator case where u1,2 = 0. With the substitutions α = α1 + α2
and β = α1/α, we obtain

(144) = (4π)−D/2i1−D/2
∫ ∞

0
dα
∫ 1

0
dβα1−D/2e−iαQ(β) (148)

with

Q(β) = −p2β(1− β) + m2 − iε . (149)

The α-integration is given by the Γ function up to a substitution, so we obtain the final
expression:

(144) = −i(4π)−D/2Γ(2− D/2)
∫ 1

0
dβQ(β)D/2−2 , (150)

which is the well-known one-dimensional integral representation of the result.

3.3. Metric Tensors, γ Matrices, and Other Covariants in D Dimensions

In this subsection, we will discuss covariant objects used in DReg calculations, such
as momentum vectors kµ, vector fields Aµ(x), γµ-matrices, and the metric tensor gµν. We
first provide a summary of the basic properties, which are often sufficient in practical
calculations. Afterwards, we will give details on the explicit construction of the required
objects on the quasi-D-dimensional space QDS. As in the case of integrals, the explicit
construction is important to guarantee the consistency of the calculational rules.

In the context of Equation (115), we have seen that the original four-dimensional
Minkowski space is necessarily a subspace of QDS. Hence, strictly four-dimensional objects
always exist in addition to the quasi-D-dimensional ones, and we will discuss the relevant
relationships. At the end of the subsection, we will discuss the objects γ5 and εµνρσ, which
are tied to strictly four dimensions.

3.3.1. Properties of D-Dimensional Covariants and γ-Matrices

We begin with the main properties that can be used in the calculations:

• Vectors or more general objects Xµ on QDS with upper indices such as kµ, Aµ(x), γµ,
and gµν can be defined by the explicit values of their components. The index µ takes
infinitely many values and runs from 0, 1, 2, . . . to infinity.

• Indices can be lowered and raised with the D-dimensional metric tensor gµν and gµν as

Xµ = gµνXν Xµ = gµνXν . (151)

We reiterate that we used a mostly minus metric.
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• The D-dimensional metric tensor with a mostly minus signature satisfies the expected
relations:

gµν = gµν =





+1 for µ = ν = 0
−1 for µ = ν = 1, 2, . . .
0 forµ 6= ν

(152a)

gµνgµν = D . (152b)

These two relations extend the most-important and -obvious properties of the metric
tensor to D dimensions. They, however, seem contradictory since the indices take
infinitely many values, and naively, one might expect the contraction in the second
equation to diverge. The solution is to regard a contraction with the lower index
gµν as a linear mapping, acting on upper index quantities, instead of defining it
via summation over explicit index values. Below, we show in detail how this idea
reconciles the two equations (152) and gives meaning to general lower index quantities.

• Contraction with gµν commutes with D-dimensional integration, as, e.g., in

gµν

∫
dDkkµkν f (k) =

∫
dDkgµνkµkν f (k) =

∫
dDkk2 f (k) , (153)

and if a tensor Tµν has only a finite number of nonvanishing entries, the expected
result with an explicit summation is obtained:

gµνTµν =
∞

∑
µ,ν=0

gµνTµν = T00 −
∞

∑
i=1

Tii . (154)

• The γµ-matrices may also be defined on QDS, i.e., for µ = 0, 1, 2, . . . up to infinity,
such that they satisfy the basic relations:

{γµ, γν} = 2gµν
1 , γµγµ = D1 . (155)

A representation exists that satisfies the same relations for complex conjugation,
Hermitian conjugation, and charge conjugation as the ones of Equations (21) also for
all µ. Hence, it is also possible to define spinors on QDS and to use the definitions (22)
for adjoint and charge-conjugated spinors in D dimensions.
As a result, the following relations hold for bilinear expressions of anticommuting
spinors on QDS:

ψ̄1Γψ2 = ψC
2 ΓCψC

1 with ΓC = −CΓTC (156a)

(ψ̄1Γψ2)
† = ψ̄2Γψ1 with Γ = γ0Γ†γ0 (156b)

and

{1, γ5, γµ, γµγ5}C = {1, γ5,−γµ,−γ5γµ}, (157a)

{1, γ5, γµ, γµγ5} = {1,−γ5, γµ,−γ5γµ}. (157b)

For more details on the γ5 matrix, see Section 3.3.3.
• The quasi-D-dimensional space actually is infinite-dimensional and, hence, contains

the original four-dimensional Minkowski space, as expressed in Equation (115).
On the level of covariants, we therefore can define the purely 4-dimensional metric
tensor ḡµν by the 4-dimensional entries ḡ00 = −ḡii = +1 for i = 1, 2, 3 and ḡµν = 0
in all other cases. This tensor acts as a projector on the original Minkowski space.
It also allows defining a complementary projector, the metric tensor of the (D− 4)-
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dimensional complement as ĝµν = gµν − ḡµν. In summary, all these tensors satisfy the
following equations:

D-dim. : gµν = ḡµν + ĝµν 4-dim. : ḡµν (D− 4)-dim. : ĝµν (158)

with the dimensionalities expressed by

gµνgµν = D , ḡµν ḡµν = 4 , ĝµν ĝµν = D− 4 (159)

and the following contraction rules, expressing the projection and subspace relationships:

ḡµν ḡνρ = ḡµνgνρ = gµν ḡνρ = ḡ ρ
µ , (160a)

ĝµν ĝνρ = ĝµνgνρ = gµν ĝνρ = ĝ ρ
µ , (160b)

ḡµν ĝνρ = ĝµν ḡνρ = 0 . (160c)

• Since the metric tensors ḡµν and ĝµν act as projectors on the four-dimensional and
(D− 4)-dimensional subspaces, we can generally decompose any vector Xµ as

Xµ = X̄µ + X̂µ X̄µ = ḡµ
νXν X̂µ = ĝµ

νXν , (161)

such that, e.g., squares and scalar products behave as

X2 = X̄2 + X̂2 XµYµ = X̄µȲµ + X̂µŶµ X̄µŶµ = 0 . (162)

Similar relationships can be defined for tensors in obvious ways.
• As in Equation (161), we can define four-dimensional and (D− 4)-dimensional ver-

sions γ̄µ and γ̂µ, respectively, which satisfy

{γµ, γ̄ν} = {γ̄µ, γ̄ν} = 2ḡµν
1 γµγ̄µ = γ̄µγ̄µ = 41 , (163a)

{γµ, γ̂ν} = {γ̂µ, γ̂ν} = 2ĝµν
1 , γµγ̂µ = γ̂µγ̂µ = (D− 4)1 , (163b)

{γ̄µ, γ̂ν} = 0 , γ̄µγ̂µ = 0 . (163c)

Traces of γ-matrices are defined such that

Tr(1) = 4 Tr(γµ) = 0 . (164)

With these relations, all other traces of products of γ-matrices can be calculated.
• The properties of γ5 and εµνρσ are discussed below in Section 3.3.3.
• Generally, objects (covariants or operators) that vanish in purely four dimensions are

called evanescent. Examples of evanescent objects are all contractions with ĝµν such
as ĝµν itself, γ̂µ, or products such as γ̂µγ̂ν, γ̂µγ̄ν. Later, we will see that many objects
related to γ5 or related to Fierz identities are also evanescent.

3.3.2. Construction of D-Dimensional Covariants and γ Matrices

Now, we describe how objects may be defined that satisfy these relations. The main
difficulties are to define the lower index metric tensor and its contraction rules and the
γµ-matrices. We essentially follow Collins [63] in the construction of all these quantities.

As mentioned above, at first sight, it appears difficult to reconcile the different prop-
erties (152) of the D-dimensional metric tensor gµν. The basic idea is that, fundamentally,
tensors with lower indices can be viewed as multilinear forms, i.e., mappings of objects with
upper indices to numbers. In the case of infinite-dimensional vector spaces, it is not always
sufficient to specify their component values. For the Euclidean metric and for a general
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tensor T with components Tij, Collins proposed the definition of δijTij as an abbreviation
of a mapping δ(T). This mapping can be defined via a D-dimensional integral [63]:

δijTij = δ(T) = A
∫

dDkTijkik jδ(~k2 − 1) (165)

with normalization constant A = DΓ(D/2)/πD/2. For the integration momentum, we
simply take ki = ki such that δijkik j =~k2. The crucial point is that, by definition, the index
contraction is performed before evaluating the integral. As a special case, the definition
also contains a definition of the individual components:

δij = A
∫

dDkkik jδ(~k2 − 1) . (166)

The calculations of the integrals in Equations (130) leading to Equation (136) then
show that

δijδij = D , (167a)

δij = δij . (167b)

The first of these relations demonstrates the effective D-dimensional behavior of the
metric tensor, and the second holds componentwise and shows that the individual compo-
nents have the usual values. However, the equations also show, again, that contraction with
δij is not defined by summation over explicit component values, but via the integral (165),
where contraction and integration cannot be interchanged. Clearly,

∞

∑
i,j=1

δijδij = ∞ (168)

in contrast to the correct Equation (167a).
By treating the space-like components of gµν analogously to the definition of δij

discussed above, it is clear that we can define a metric tensor that indeed fulfills the
announced Equations (152). General tensor contractions of the form Tµνgµν are defined
via integrals such as Equation (165) and not via explicit summation over component
values; in general, summation over indices does not commute with integration (which
here defines contraction). The exception are cases of tensors with only a finite number
of nonvanishing components, in which case, Equations (152a) and (167b) immediately
establish the relation (154). In addition, the definition via an integral benefits from the
fact that different D-dimensional integrations can be interchanged; see Equation (123).
Therefore, gµν may be pulled inside or outside integrals as exemplified in Equation (153).
In this way, we established all desired properties of the D-dimensional metric tensor by
explicit construction.

Next, we discuss the construction of γµ-matrices that satisfy the formally
D-dimensional relations (155). We define them similarly to Reference [63]. We start from
any standard representation for the usual four-dimensional γµ-matrices such as the rep-
resentation (24) and denote these 4 × 4-matrices now as γ

µ

[4], µ = 0, 1, 2, 3. The usual

four-dimensional γ5-matrix is now denoted as γ[4]5 = iγ0
[4]γ

1
[4]γ

2
[4]γ

3
[4]. We assumed a

representation such as (24) in which the properties (21) hold, such that only γ2 is imaginary
and all others are real.
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Then, the formally D-dimensional γµ-matrices can be defined as infinite-dimensional
block matrices. Adapting the construction of Reference [63], we first set for µ = 0, 1, 2, 3

γµ =




γ
µ

[4] 0 0 · · ·
0 γ

µ

[4] 0 · · ·
0 0 γ

µ

[4] · · ·
. . .


 (µ = 0, 1, 2, 3) , (169)

where each entry corresponds to a 4× 4 submatrix. To construct γµ with µ > 3, we define
the intermediate matrices γ̂(4k) by

γ̂(4) = γ[4]5 γ̂(4k+1) =




γ̂(4k) 0 0 0
0 −γ̂(4k) 0 0
0 0 −γ̂(4k) 0
0 0 0 γ̂(4k)


 (k ≥ 1) . (170)

In this way, γ̂(4k) is a real, Hermitian, 4k-dimensional matrix, which consists of ±γ[4]5-
blocks on the diagonal and which satisfies (γ̂(4k))

2 = 1. Using these matrices, we define,
for any µ ≥ 4, the 22µ+1-dimensional real, anti-Hermitian block matrix:

γ
µ

(2(2µ+1))
=

(
0 γ̂(4µ)

−γ̂(4µ) 0

)
(µ ≥ 4) (171)

and finally, the infinite-dimensional block matrix:

γµ =




γ
µ

(22µ+1)
0 . . .

0 γ
µ

(22µ+1)
...

. . .


 (µ ≥ 4) . (172)

The γµ-matrices defined in Equations (169) and (172) satisfy all properties announced
in Section 3.3.1; with the exception of the commutation relations of γ5 (see below), these are
identical to the purely four-dimensional properties listed in Equations (16), (19), (21) and (22).

We note that the construction of Reference [63] is different in that the Hermitic-
ity/reality/charge conjugation properties of the γµ-matrices are different from Equation (21).
Our construction corresponds essentially to a subset of the γµ-matrices of Reference [63].

3.3.3. Definition of γ5 and εµνρσ in DReg

A particularly problematic issue is the definition γ5 and the εµνρσ symbol in DReg;the
issue is often referred to as the “γ5-problem of DReg”. In four dimensions, three properties
hold for the γ5-matrix and traces:

{γ5, γµ} = 0, (173a)

Tr(γ5γµγνγργσ) = −4iεµνρσ, (173b)

Tr(Γ1Γ2) = Tr(Γ2Γ1) . (173c)

The last equality means that the traces are cyclic. In D 6= 4 dimensions, it is inconsistent
to require these properties simultaneously, and one has to give up one of them. To exhibit
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the problem, we consider the trace tµ1 ...µ4 = Tr(γµ1 . . . γµ4 γ5) and employ the following
series of steps, making use of Equation (173).

Dtµ1 ...µ4 = Tr
(
γαγαγµ1 . . . γµ4 γ5

)

= Tr
(
(2γαgαµ1 − γαγµ1 γα) . . . γµ4 γ5

)

= . . .

= 8tµ1 ...µ4 + Tr
(
γαγµ1 . . . γµ4 γαγ5

)

= (8− D)tµ1 ...µ4 . (174)

In the first step, the D-dimensional contraction rule is used, leading to the factor D;
in the intermediate steps, the γµ anticommutation rule is used four times, leading to the
factor of eight. In the last step, cyclicity and the anticommutation relation (173a) are used
to relate all terms to the initial trace. The outcome is that

(4− D)tµ1 ...µ4 = 0 ; (175)

hence, either D = 4 or the trace must vanish. In other words, for D 6= 4, two of the
Equations (173) imply that the third equation is wrong. In order to set up a consistent
regularization that allows a continuous limit to four dimensions, we need both D 6= 4 and
a nonvanishing trace at the same time, and therefore, we need to give up the validity of
some of the Equations (173).

As a result, there is a plethora of proposals for how to treat γ5. The standard one,
which is known to be mathematically well-defined and consistent, is the so-called BMHV
scheme [1,4]. This scheme gives up the anticommutation property of γ5; it is consistent
in the sense that it is compatible with the unitarity and causality of quantum field theory,
but it does not manifestly lead to the correct conservation/non-conservation properties of
currents and does not manifestly preserve the gauge invariance of chiral gauge theories.

In the BMHV scheme, γ5 is defined in the identical way as in four dimensions:

γ5 = iγ0γ1γ2γ3 . (176)

This clearly treats the first, original four dimensions differently from the remaining
(D− 4) dimensions. Accordingly, we obtain the modified anticommutation relations:

{γµ, γ5} = {γ̂µ, γ5} = 2γ̂µγ5 , (177a)

{γ̄µ, γ5} = 0 , (177b)

[γ̂µ, γ5] = 0 , (177c)

where, as in Equation (163), the split γµ = γ̄µ + γ̂µ into the four-dimensional and (D− 4)-
dimensional parts was used. Only the original matrices γ̄µ fully anticommute with γ5.
In this way, D-dimensional Lorentz invariance is effectively broken by the regularization.
Similarly, this modification leads to a breaking of gauge invariance in chiral gauge theories
on the regularized level in DReg. This is clearly a drawback and a central topic of the
present review.

Similarly, the Levi-Civita εµνρσ symbol, defined as a fully antisymmetric object with
four indices, is only well defined in purely four dimensions. Hence, using the split notation,
we may write, as stressed in Reference [4],

εµνρσ = ε̄µνρσ , ε̂µνρσ = 0 , (178)

and rewrite the definition of γ5 as

γ5 = − i
4!

ε̄µνρσγ̄µγ̄νγ̄ργ̄σ , (179)
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with the sign convention:

ε0123 = −ε0123 = +1 , (180)

which was already used in Equation (19). In practical computations, often, combinations of
two ε-symbols appear. The following four-dimensional identity remains valid:

ε̄µνρσ ε̄αβγδ = −ḡµ
α ḡν

β ḡρ
γ ḡσ

δ ± . . . (181)

where the dots denote 23 further similar terms leading to total antisymmetrization in
the indices. Some calculations, e.g., the prescription by Larin [70] propose to elevate this
identity to the level of D dimensions, i.e., to assume the validity of the corresponding
identity with formally D-dimensional metric tensors, i.e., effectively without the bars. Let
us remark that such a D-dimensional identity can ultimately lead to inconsistencies in the
sense that one initial expression could lead to different answers. To make this inconsistency
explicit, we denote the right-hand side of Equation (181) in D dimensions as pµνρσ

αβγδ. Then,
consider the product of four ε-symbols:

εµνρσεαβγδεµνρσεαβγδ . (182)

This can be evaluated in two ways with the two results:

either pµνρσ
αβγδ pαβγδ

µνρσ or pµνρσ
µνρσ pαβγδ

αβγδ . (183)

In strictly four dimensions, both expressions give 242 = 576, so there is no incon-
sistency. However, assuming the validity of these equations in D dimensions and using
D-dimensional metric tensors in the contractions, the two results are different:

either 24D(D− 1)(D− 2)(D− 3) or [D(D− 1)(D− 2)(D− 3)]2 . (184)

Hence, in an amplitude involving such contractions of ε-symbols, the result is am-
biguous, except for the leading poles in 1/(D− 4). For this reason, in a fully consistent
treatment, only the four-dimensional version of the identity (181) is valid [4].

In view of the drawbacks of the BMHV scheme, many alternative versions of DReg
have been proposed in the literature. For instance, Reference [14] proposed that a fully
anticommuting γ5 may be used in certain Feynman graphs, in spite of the inconsistency
between the Equation (173) mentioned above. Similarly, References [71,72] derived that, in
specific applications, the correct results can be also be obtained using simpler schemes with
anticommuting γ5. A well-known review of the situation was given by Jegerlehner [15],
where further arguments were presented that the “naive” anticommuting γ5 may be used
in many cases. Kreimer et al. [17] proposed a different kind of alternative to BMHV: out of
the three Equations (173), the cyclicity of the trace is given up, but the anticommutativity is
kept. In this case, special attention must be paid to “subdiagram consistency”, as described
in Reference [72]: “It should give unique results independently of whether some diagram
is considered as a subdiagram, and independently of the order in which subdiagrams
are calculated. Otherwise subdivergences could not be properly subtracted in multiloop
diagrams.” Reference [17] introduced so-called “reading-point” prescriptions to deal with
this difficulty.

All these alternative proposals have in common that their general applicability to
all cases has not been established; hence, the all-order proofs of the renormalizability
properties of, e.g., References [4,22,73,74] do not apply to them.

We also briefly comment on two recent investigations of the γ5-problem in alternatives
to DReg. Reference [75] considered dimensional schemes in various slightly different
implementations (e.g., the so-called four-dimensional helicity (FDH) scheme discussed
in more detail below in Section 3.5) from the point of view of practical one- and two-
loop calculations. At the two-loop level, there is no single scheme that stands out as
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computationally most efficient. Reference [76] considered strictly four-dimensional schemes
as alternatives to dimensional regularization, in the hope that these schemes might offer
practical advantages with respect to the treatment of γ5. The considered class of schemes
is wide and general, but contains only schemes that do not break gauge invariance as
immediately as, e.g., the Pauli–Villars scheme. This reference showed clearly that all these
schemes have very similar problems for γ5 as dimensional schemes. The reason is that, in
those schemes, the regularization is essentially performed by replacement rules, and those
replacement rules do not necessarily commute with applying, e.g., the cyclicity of traces.

3.4. Relation to the Lagrangian in D Dimensions

This subsection is devoted to a seemingly simple statement, which, however, con-
stitutes another important advantage of DReg. DReg can already be formulated at the
level of the Lagrangian, and regularized Feynman diagrams can literally be obtained
from a D-dimensional version of the Gell–Mann–Low formula with a D-dimensional La-
grangian. This fact allows a very efficient investigation of the properties of regularized
Green functions. Examples are the all-order proof of the regularized quantum action prin-
ciple (see Section 4.2) and the textbook derivation of renormalization group β functions
and anomalous dimensions from divergences in the counterterm Lagrangian (see, e.g., the
textbook by Srednicki [35]).

The explicit construction of formally D-dimensional objects in DReg provides all
objects needed to formulate a D-dimensional Lagrangian. Fields φ(x) are defined as
functions of D-dimensional vectors xµ, i.e., of elements of the quasi-D-dimensional space
QDS. Metric tensors, derivatives, vector fields, and γ-matrices have all been extended
to D dimensions as well. The construction of γ-matrices implies also a definition of D-
dimensional extensions of four-spinor fields (which have infinitely many components in
view of Equation (169)). For this reason, any Lagrangian of a four-dimensional quantum
field theory involving such fields can be naturally extended to D dimensions.11

If a Lagrangian involves the γ5-matrix or the εµνρσ symbol, e.g., in the case of chiral
fermion interactions, an extension to D dimensions remains possible, but the D-dimensional
version involves, e.g., γ5 with its modified anticommutation relations (177). Hence, in
such cases, the resulting D-dimensional Lagrangian will not be invariant under formally
D-dimensional Lorentz transformations. This, however, does not preclude the application
of DReg. In particular, even in such cases, it remains true that four-dimensional Lorentz
invariance is manifestly preserved.

This issue illustrates a more general point. Though there is often a preferred choice,
the extension of any Lagrangian to D dimensions is, in principle, never unique. It is always
possible to change so-called evanescent terms in the Lagrangian, i.e., terms that vanish in four
dimensions. If γ5 is present, this possibility is obvious, e.g., a four-dimensional expression
ψ̄γµPLψ may be extended to the following three inequivalent D-dimensional choices:

ψγµPLψ , or ψPRγµψ , or ψPRγµPLψ . (185)

In four dimensions, these terms are all equal, but in D dimensions, they are different
due to the modified anticommutation relations. However, even independently of γ5, one
may extend, e.g., an interaction term between a vector and a scalar field as

φ† Aµ∂µφ , or φ† Āµ∂̄µφ , (186)

where the second possibility involves only the purely four-dimensional part of the derivative.

11 Unfortunately, the 2-component spinor notation described in Section 2.2.3 is not known to be extendable
to D dimensions since it is explicitely tied to the representation theory of the 4-dimensional Lorentz group.
2-component spinor Lagrangians need to be rewritten in terms of 4-component spinors before an extension to
D dimensions and an application of DReg becomes possible.
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Despite the non-uniqueness, clearly, any field theory Lagrangian can be extended to
a D-dimensional version. This Lagrangian L(D) can then be split into a free part and a
remainder (the “interaction” part):

L(D) = L(D)
free + L

(D)
int , (187)

where the free part must be bilinear in the fields and contain the appropriate kinetic terms.
The non-uniqueness affects mainly the “interaction” part; a constraint we will always
impose is that the kinetic terms involve strictly D-dimensional derivatives. A reason for
this constraint will be illustrated below. It essentially fixes the “free” part of the Lagrangian,
such that we may schematically write the free Lagrangian as

L(D)
free =

1
2

φiD
(D)
ij φj (188)

with some differential operator D(D)
ij involving D-dimensional derivatives. The notation

is meant in a general sense, including the familiar expressions for complex scalar fields,
spinor fields, or vector fields. Standard free field theory quantization then leads to the
D-dimensional propagators:

P (D)
jk = 〈0|Tφjφk|0〉 (189)

which are the Green functions of the differential operators, i.e., which satisfy the inverse relation:

D̃(D)
ij P̃

(D)
jk = iδik (190)

in momentum-space in D dimensions.
Let us exemplify these relations and highlight the related subtleties, e.g., for spinor

fields, we take the straightforward D-dimensional free Lagrangian ψ̄(iγµ∂µ − m)ψ ≡
ψ̄D(D)ψ, leading to the momentum-space propagator:

P̃ (D) = 〈0|Tψψ̄|0〉F.T. =
i

/p −m
=

i(/p + m)

p2 −m2 (191)

where F.T. denotes Fourier transformation of the respective expression (x-arguments are
suppressed); the argument of the Fourier transformation is the momentum p; all appearing
momenta are D-dimensional, and the +iε prescription in the propagator denominator is
suppressed. Such propagator Feynman rules lead to loop integrals such as the ones of
Section 3.2.4 and denominator structures as in the example (137). The propagator (191) is
indeed the inverse of the momentum-space differential operator of the Lagrangian:

D̃(D) = (/p −m). (192)

Taking instead the purely four-dimensional derivative ∂̄µ in the free Lagrangian would
lead to

〈0|Tψψ̄|0〉F.T =
i

/̄p −m
=

i(/̄p + m)

p̄2 −m2 , (193)

which involves only the purely four-dimensional momentum in the denominator. The prob-
lem of this choice is that loop integrals would not be regularized; hence, such a choice is not
permitted. Similarly, one may propose a recipe where Dirac propagators are regularized as

〈0|Tψψ̄|0〉F.T → i(/̄p + m)

p2 −m2 , (194)
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which involves the purely four-dimensional momentum in the numerator and the D-
dimensional momentum in the denominator. Such a recipe cannot arise from a D-dimensional
Lagrangian; it will not be used, and statements such as the regularized quantum action
principle would not necessarily be valid.

As illustrated by this example, the general D-dimensional relationships for the free
Lagrangian and the propagators (188)–(190) can always be realized; they will always be
assumed, and they are nontrivial.

Once the free Lagrangian is chosen in agreement with the mentioned constraint
and the interaction Lagrangian is fixed, D-dimensional regularized Feynman diagrams can
be defined via the standard Gell–Mann–Low formula, suitably written in D dimensions.
One way to write it is to take the original formula (67) and replace the integrations by D-
dimensional ones. In this case, the parameters and fields must have appropriately modified
dimensionalities; see, e.g., [77] for a presentation that makes extensive use of this possibility.
A second way is to write

Z(J, K) =
〈0|T exp

(
iµD−4

∫
dDx(L(D)

int + Jiφi + KiOi)
)
|0〉

〈0|T exp
(

iµD−4
∫

dDxL(D)
int

)
|0〉

, (195)

where the regularization scale µ is introduced such that the regularized Lagrangian has
mass dimension four. Either way, if the Gell–Mann–Low formula is evaluated via Wick con-
tractions and Fourier transformed, the correct DReg expressions for regularized Feynman
diagram amplitudes are obtained. The variant (195) also generates a factor µ4−D accompa-
nying each loop integration, as indicated by Equation (114).

As mentioned in the beginning, this relation between the Lagrangian and regular-
ized Feynman diagrams has important consequences, some of which we will discuss in
subsequent sections. Here, we remark that the present discussion allows the possibility
that the Lagrangian contains 1/(D− 4) poles in coefficients; in particular, the discussion is
unaffected if the interaction Lagrangian L(D)

int is defined to include counterterms that are
defined order by order to cancel divergences or to restore symmetries.

3.5. Variants: Dimensional Reduction and CDR, HV, and FDH Schemes

DReg as defined so far still leaves room for different options, and there are other vari-
ants of dimensional schemes that share the idea of D-dimensional integrals. Here, we give
a brief overview of several schemes used in the literature. The overview essentially follows
the review [5], and we refer to this review for more details and the original references.

We remark that the following distinction between the schemes does not have much
influence on the discussion of chiral fermions and the treatment of γ5 in DReg. The remarks
of Section 3.3.3 apply to all the following schemes, and different alternative treatments of
γ5 have been employed in the literature. In the following discussion, we focus on aspects
independent of γ5.

All the following schemes treat integrals always in D dimensions. They differ in their
treatment of vector fields. In order to consistently define the different schemes, it has
turned out to be useful [78,79] to introduce the following spaces extending the original four-
dimensional space 4S. In Section 3.2.1, we already introduced the quasi-D-dimensional
space QDS, on which objects such as formally D-dimensional momenta pµ and momentum
integrations are defined. The explicit construction showed that this space necessarily is
infinite-dimensional and contains the original space 4S. Now, we introduce an even bigger
space QDsS (later, Ds = 4 will be taken, so this is often called a “quasi-4-dimensional”
space). It contains QDS and is formally Ds-dimensional. The relationships are thus

4S ⊂ QDS ⊂ QDsS (196)

regardless of the values of D and Ds.
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Before describing the scheme definitions, we note that vector fields can appear in
different roles in Feynman diagrams:

• There are vector fields appearing in propagators in loop diagrams or as propagators
or external fields in phase space regions, which lead to infrared, soft, or collinear
singularities. We call such vector fields singular vector fields. They may be treated in
either 4S, QDS, or QDsS.

• All other vector fields appear outside of 1PI diagrams and outside singular phase
space regions. We call them regular , and they may be treated differently from singular
vector fields.

To motivate the concrete scheme choices, we further list two simple observations:

• Gauge invariance relies on the gauge covariant derivative Dµ, which combines the
ordinary derivative (which is always D-dimensional) and vector fields. In order not
to directly break gauge invariance on the regularized level, there should be at least a
fully D-dimensional covariant derivative. Hence, the singular vector fields should be
treated at least as D-dimensional.

• Supersymmetry relies on an equal number of fermionic and bosonic degrees of free-
dom. The number of spinor degrees of freedom is essentially fixed via Tr1 = 4. Hence,
in order not to directly break supersymmetry, singular vector fields should be treated
as four-dimensional.

It appears difficult to reconcile the requirements of gauge invariance and supersym-
metry, and the different schemes are motivated by focusing on different aspects.

Now, we list the four schemes and refer to Table 1 for a summary:

• Dimensional regularization has two subvariants, called HV and CDR (’t Hooft/Veltman
and Conventional Dimensional Regularization). Both variants treat singular vector
fields as D-dimensional, i.e. in QDS. This is in line with D-dimensional gauge invari-
ance12 but leads to a direct breaking of supersymmetry. The HV scheme treats regular
vector fields without regularization, i.e. in 4S, and the CDR scheme treats all vector
fields in QDS. The space QDsS is not used.

• The other class of choices is dimensional reduction, originally introduced in the
context of supersymmetry [80]. It also has two subvariants, called FDH and DRED

(four-dimensional helicity scheme and dimensional reduction). Singular vector fields
are treated as Ds-dimensional, and in practical calculations, Ds is eventually set to
Ds = 4. Hence, singular vector fields are essentially treated as quasi-4-dimensional,
but the quasi-4-dimensional space contains the D-dimensional subspace, such that
both gauge invariance and supersymmetry are not immediately broken. FDH is
analogous to HV and treats regular vector fields as strictly four-dimensional, and DRED

treats all vector fields in QDsS.

Table 1. Treatment of singular and regular vector fields in the four different schemes. The table
indicates which metric tensor is to be used in propagator numerators and polarization sums. This
table is adapted from References [5,79].

CDR HV FDH DRED

singular vector
field g[D]

µν g[D]
µν g[Ds ]

µν g[Ds ]
µν

regular vector
field g[D]

µν g[4]
µν g[4]

µν g[Ds ]
µν

12 We stress again that here our definitions of the four schemes only refer to the treatment of vector fields. In prin-
ciple, in either scheme one would also have different options of treating γ5, of which the non-anticommuting
one is the most rigorous. The agreement with gauge invariance is meant on a superficial level. The existence of
a D-dimensional covariant derivative by itself does not prove the all-order preservation of gauge invariance,
and clearly gauge invariance of chiral gauge theories can be broken in dimensional schemes. For an example
rigorous statement on the preservation of gauge invariance see later Section 4.3.



Symmetry 2023, 15, 622 46 of 113

Technically, the schemes are expressed and summarized by Table 1 by specifying
which metric tensor is to be used in propagator numerators or in polarization sums for
squared matrix elements. In the table and in the remainder of this subsection, we use
a more explicit notation for metric tensors on the different spaces and use the symbols
g[dim]

µν, where dim denotes the respective space, i.e., dim = 4, D, Ds or dim = D− 4, Ds−D.
Our previous notation is rewritten as

ḡµν ≡ gµν

[4] , ĝµν ≡ gµν

[D−4] , gµν ≡ gµν

[D]
. (197)

The scheme differences for singular vector fields (which are sufficient for 1PI Green
functions) can be well explained by comparing the gauge covariant derivatives. In the CDR

and HV schemes, a generic covariant derivative is purely D-dimensional:

D[D]
µ = ∂[D]

µ + igA[D]
µ , (198)

and the regularized vector field A[D]
µ plays the role of a D-dimensional gauge field. In con-

trast, a covariant derivative in the DRED and FDH schemes can be split as

D[Ds ]
µ = ∂[D]

µ + igA[D]
µ + ige A[Ds−D]

µ . (199)

From a D-dimensional spacetime point of view, only the part A[D]
µ acts as a D-

dimensional gauge and vector field. In contrast, the field components A[Ds−D]
µ are extra

fields that behave like scalar fields in D dimensions; they are often referred to as “ε-scalars”.
The behavior under renormalization reflects this difference, and in general, the two coupling
constants ge, g renormalize differently.

In practical calculations, it is often not required to write the covariant derivative
as explicitly as in Equation (199). Often, it is sufficient to set Ds = 4 and ge = g such
that the vector field in the covariant derivative in DRED and FDH behaves essentially
four dimensionally. If this is possible, it constitutes an advantage of these schemes.
Specifically in supersymmetric theories, the symmetry leads to g = ge. In general, however,
the split (199) is, in principle, always possible and, sometimes, required. In the literature,
the split was often useful to understand scheme behaviors, to resolve inconsistencies, and
to derive scheme translation rules (for some examples, see Reference [5]).

We now give a brief overview of the theoretical status of the DRED and FDH schemes.
For a more practical description with example calculations in all schemes, we refer to
Reference [5]. DRED was introduced with the goal to preserve supersymmetry on the
regularized level [80,81]. Over time, however, several inconsistencies were reported in the
literature. Reference [82] found a mathematical inconsistency in the simultaneous applica-
tion of four-dimensional and D-dimensional algebra. The inconsistency is very similar to
Equations (182) and (184). It turned out that the inconsistency is due to the assumption
that the D-dimensional space is a proper subspace of the original four-dimensional space.
If one distinguishes between the original 4-dimensional space and the quasi-4-dimensional
space QDsS and uses the relationships (196), the inconsistency is resolved [78].

An important result is the all-order equivalence between all the schemes [83,84] (the
proof was given for Green functions without infrared divergences and, hence, does not
distinguish CDR/HV or DRED/FDH). For this proof, the split (199) and the independent
renormalization of couplings such as ge and g are essential. In this way, another incon-
sistency reported in Reference [85] was resolved. In that reference, couplings such as ge
and g were always assumed to be identical, and it was shown that the unitarity of the
S-matrix can be violated at higher orders. This necessity of the split (199) and its role for
renormalization, finiteness, and unitarity has also been stressed and exemplified by explicit
calculations in References [86,87]. In summary, DRED is established as a fully consistent
and applicable regularization for UV divergences.

The scheme properties for infrared divergences have also been investigated, in partic-
ular focusing on the computation of real and virtual higher-order corrections to physical
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processes. In the context of such calculations, the different treatments of regular vector
fields become important. The schemes HV and, in particular, FDH are motivated by the
potential to carry out much of the algebra in strictly four dimensions, allowing, e.g., pow-
erful spinor and helicity methods. It was shown that the CDR, HV, and FDH schemes are
equivalent at the next-to-leading (NLO) level, and elegant scheme transition rules have
been derived [88–90]. In a parallel development, several references observed an apparent
inconsistency in DRED with infrared factorization [91–93]. The resolution of this inconsis-
tency [79,94] is, again, based on the observation that the split (199) and a separate treatment
of D-dimensional gauge fields and ε-scalars is, in general, necessary. Further higher-order
extensions of these analyses were presented in References [95–97].

As discussed in Reference [79], some of the described results were somewhat ob-
scured by the fact that different authors used different names for equivalent schemes
and, sometimes, the same names for different schemes: The schemes called DR (dimen-
sional reduction) in References [88–90] are actually equivalent to the FDH scheme [98], but
References [91–93] used the term dimensional reduction in the same sense as we define
DRED here.

Finally, we comment on the question of supersymmetry preservation. In dimensional
regularization (regardless of whether CDR or HV), the number of bosonic and fermionic de-
grees of freedom on the regularized level is different. This immediately leads to a violation
of supersymmetry relations already at the one-loop level. Dimensional regularization may
still be used, but specific finite supersymmetry-restoring counterterms have to be added to
the Lagrangian. Such counterterms were evaluated and documented in [99–101].

For dimensional reduction (DRED or FDH), many studies have confirmed the compat-
ibility with SUSY and the absence of non-SUSY counterterms. Overviews of the results
can be found, e.g., in References [78,83,84,102]. References [78,103] made clear that, in the
consistent versions of DRED/FDH, supersymmetry will eventually be broken. The reason is
that the regularized Lagrangian is formulated not in the actual four-dimensional space, but
in QDsS, where the Fierz identities do not hold. The quantum action principle in DRED [78]
then implies a supersymmetry breaking on the level of Green functions; the reasoning
applied in Reference [78] is essentially the same as the strategy described in the present
review for restoring gauge invariance in chiral gauge theories. Because of this general
statement, the supersymmetry of DRED must be investigated on a case-by-case basis, and it
has turned out that, for a large set of relevant multi-loop calculations, supersymmetry is
preserved [86,102,104,105].

4. Quantum Action Principle in DReg

If Green functions of a quantum field theory are defined via the path integral (68) or
the Gell–Mann–Low formula (67), the properties of Green functions clearly reflect the prop-
erties of the underlying Lagrangian. Example properties are the Ward or Slavnov–Taylor
identities already discussed in Sections 2.5 and 2.6, which reflect symmetry properties of
the Lagrangian.

This section is devoted to a related, but more general relationship—the so-called quan-
tum action principle, specifically the regularized quantum action principle in DReg. This is
a very useful relationship, allowing, e.g., rigorous derivations of Slavnov–Taylor identities
or their breakings. The quantum action principle might appear obvious or straightforward,
and sometimes, its validity is taken for granted. However, actually, its validity and also its
precise meaning depend on the chosen regularization and renormalization procedure. For
DReg, it was proven in [4] both on the regularized and on the renormalized level; the proof
was extended to the consistent version of dimensional reduction in Reference [78]. We re-
mark that there is also a regularization-independent quantum action principle, established
in the context of BPHZ-renormalization in References [106–111]. We will discuss it and its
relation to the regularized quantum action principle of DReg later in Section 6.2.

Here, in this section, we will begin with a formal derivation to motivate the statement,
to highlight its simplicity, and to fix its interpretation (Section 4.1). Then, we will present
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a full proof of the regularized quantum action principle in DReg (Section 4.2). Finally,
Section 4.3 will illustrate how to use this regularized quantum action principle to establish
symmetry properties.

4.1. Formal Derivation of the Quantum Action Principle

The quantum action principle is a simple relation between the properties of the
Lagrangian and the full Green functions. Here, we will present a formal derivation using
the path integral (allowing general dimension D):

Z(J, K) =
∫
Dφ ei

∫
dD x(L+Jiφi) , (200)

where possible composite operator terms coupled to sources K have been absorbed into the
Lagrangian L. Similar to Section 2.5, we consider a variable transformation:

φ→ φ + δφ ; (201)

however, here, we do not assume that the action is invariant, but instead, we allow a
change of the Lagrangian:

L → L+ δL . (202)

By assuming the path integral measure to be invariant under the transformation, steps
analogous to the ones of Section 2.5 lead to

0 =
∫
Dφ

(∫
dDx i(δL+ Jiδφi)

)
ei
∫

dD x(L+Jiφi). (203)

This is the most-important basic version of the quantum action principle.
In an even simpler way, one may derive the following relations for derivatives with

respect to an external field K(x) or to a parameter λ appearing in the Lagrangian:

δZ(J, K)
δK(x)

=
∫
Dφ

(
δ

δK(x)

∫
dDx iL

)
ei
∫

dD x(L+Jiφi) , (204a)

∂Z(J, K)
∂λ

=
∫
Dφ

(
∂

∂λ

∫
dDx iL

)
ei
∫

dD x(L+Jiφi) . (204b)

These are further variants of the quantum action principle.
Similar to Section 2.5, it is instructive to rewrite the quantum action principle in

various ways. First, identities for explicit Green functions can be obtained by taking
suitable derivatives of the above identities with respect to sources J. In summary, the three
variants of the quantum action principle then read as follows:

• Variation of quantum fields: δ =
∫

dDxδφi(x) δ
δφi(x) .

i δ〈Tφ1 . . . φn〉 = 〈Tφ1 . . . φn∆〉 , (205)

where ∆ =
∫

dDx δL and the left-hand side is an abbreviation of Green functions
involving δφi as in Equation (89). Here, and generally in the present section, we use a
compact notation and suppress field arguments in a self-explanatory way such that,
e.g., φk ≡ φk(xk),

∫
dDxJiφi ≡

∫
dDxJi(x)φi(x), etc.

• Variation of an external (non-propagating) field K(x):

−i
δ

δK(x)
〈Tφ1 . . . φn〉 = 〈Tφ1 . . . φn∆〉 , (206)

with ∆ = δ
δK(x)

∫
dDxL.
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• Variation of a parameter λ:

−i
∂

∂λ
〈Tφ1 . . . φn〉 = 〈Tφ1 . . . φn∆〉 , (207)

with ∆ = ∂
∂λ

∫
dDxL.

An important further way to rewrite the quantum action principle is in terms of
the generating functional Γ. By suitable Legendre transformation and expressing δφ in
Equation (203) by derivatives with respect to sources K, we obtain, in particular, the form:

S(Γ) = ∆ · Γ , (208)

where S(Γ) is a Slavnov–Taylor operator as in Equation (93) or (62) and where ∆ = S
(∫

dDxL
)
.

Interestingly, this identity relates the Slavnov–Taylor identity for full Green functions on the
LHS with the Slavnov–Taylor identity for the action appearing in the path integral on the RHS.

4.2. Proof of the Quantum Action Principle in DReg

The derivation presented above is only heuristic because the path integral measureDφ
was assumed to be invariant under the variable transformation. This is precisely the point
where the regularization and renormalization enter. Hence, the quantum action principle
has to be established separately for each regularization. Here, we consider what is called
the regularized quantum action principle in DReg and present its proof. The proof was first
given in Reference [4]; here, we follow the presentation of Reference [78], where the proof
was extended to dimensional reduction.

Put simply, on the regularized level in DReg, all identities presented above are literally
valid, provided all equations are interpreted as identities between Feynman diagrams
regularized in DReg in D dimensions. A possible interpretation of this validity is that DReg
provides a concrete perturbative definition of the path integral in which the measure is
invariant under all field transformations of the form (201).

For the proof, we focus on the most-basic and most-complicated case, Equation (203)
equivalently rewritten for explicit Green functions in Equation (205). All other identities
can be treated similarly. To precisely formulate the statement, we rewrite Equation (205)
as an identity of Feynman diagrams regularized in DReg. As stressed in Section 3.4, the
Feynman diagrams regularized in DReg can be obtained from the Gell–Mann–Low formula
in D dimensions. We call the regularized Lagrangian simply L, omitting the superscript
(D), and split it again as

L = Lfree + Lint , (209)

where Lfree determines the propagators in Feynman diagrams and Lint may contain terms
coupling composite operators to sources K; it may contain counterterms involving coeffi-
cients with 1/(D− 4) poles. Then, Equation (205) is rewritten as

n

∑
k=1

i 〈Tφ1 . . . (δφk) . . . φn exp
(
i
∫

dDxLint
)
〉 = 〈Tφ1 . . . φn∆ exp

(
i
∫

dDxLint
)
〉 (210)

with

∆ =
∫

dDx(δLfree + δLint) , (211)

where both sides of Equation (210) are to be evaluated via Wick contractions in dimensional
regularization. This is the statement that needs to be proven.
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Let us write down the three parts of Equation (210) at some specific order with N
powers of Lint. Each term on the left-hand side becomes

i
N!

〈
Tφ1 . . . (δφk) . . . φn (i

∫
dDx1Lint) . . . (i

∫
dDxNLint)︸ ︷︷ ︸

N factors

〉
(212)

and the term involving δLint on the right-hand side becomes

1
(N − 1)!

〈
Tφ1 . . . φn(

∫
dDxδLint) (i

∫
dDx1Lint) . . . (i

∫
dDxN−1Lint)︸ ︷︷ ︸

N − 1 factors

〉
(213)

For the term involving δLfree, the discussion of Section 3.4 is crucial. The free La-
grangian in DReg contains fully D-dimensional derivative operators and can be schemati-
cally written as Lfree = 1

2 φiD
(D)
ij φj, such that δLfree = δφiD

(D)
ij φj. Hence, the corresponding

term in Equation (210) becomes

1
N!

〈
Tφ1 . . . φk . . . φn(

∫
dDxδφiD

(D)
ij φj)(i

∫
dDx1Lint) . . . (i

∫
dDxNLint)︸ ︷︷ ︸

N factors

〉
. (214)

Each term must be evaluated using Wick contractions. It will be sufficient to consider
all possible kinds of Wick contractions for the special field operator φj in δLfree as indicated
in Equation (214). This field operator can be Wick contracted either with δφi at the same
spacetime point (Contraction (a)), or with an external field operator φk (Contraction (b)),
or with a field operator inside one of the Lint factors (Contraction (c)).

For each contraction, we can use the crucial property (190), which means that the
Feynman diagram propagators are the inverse of the kinetic operators appearing in the
regularized Lagrangian:

D(D)
ij P

(D)
jk = iδik . (215)

This relation establishes the relationship between the Lagrangian and Feynman rules
and is the core reason why the quantum action principle holds. Using this relation, Con-
traction (a) produces a single-loop integral over D(D)

ij times the propagator P (D)
jl from φj to

some field φl within the composite operator δφi. The loop integrand is, therefore, simply a
constant δil , hence scaleless and, therefore, zero.

Contraction (b) with the external field φk produces the combination D(D)
ij P

(D)
jk = iδik.

In this way, the
∫

dDx integral is effectively canceled and the external field operator φk is
replaced by iδφk. Hence, the contractions of Type (b) in Equation (214) yield exactly the
same as Equation (212), and we have proven the first required cancellation.

Finally, a contraction of Type (c) between φj and some field φl within one of the Lint

factors results in the product D(D)
ij P

(D)
jl

δLint
δφl

. Using the inverse relation for the propagators
again, we found that all contractions of Type (c) in Equation (214) lead to

i2N
N!

〈
Tφ1 . . . φn(

∫
dDxδφl

δLint
δφl

) (i
∫

dDxLint) . . . (i
∫

dDxLint)︸ ︷︷ ︸
N − 1 factors

〉
. (216)

This is precisely the negative of Equation (213). In total, we have, therefore, shown the
equality (212) = (213) + (214), and we have established the quantum action principle (210).

In the same way, it is possible to prove all other identities presented in Section 4.1.
The essential point in the proof is the possibility to express Feynman diagrams in DReg
via the Gell–Mann–Low formula together with the relationship between regularized prop-
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agators and the regularized free Lagrangian. Reference [4] gave the proof using the
α-representation of all diagrams explained in Section 3.2.4, where the relationship for the
propagators is less obvious. Reference [78] extended the proof to the consistent version of
dimensional reduction.

4.3. Examples of Applications of the Quantum Action Principle

The quantum action principle is a very powerful tool to study symmetry properties of
Green functions. Here, we provide two example applications that illustrate this. The exam-
ples are very important in their own right, but they also provide a blueprint for the analysis
of chiral gauge theories discussed later.

The first example is gauge invariance in non-chiral gauge theories such as QED or
QCD. The gauge-invariant Lagrangian of QCD with one quark flavor is given by

Linv = −1
4

FaµνFa
µν + ψ̄i /Dψ , (217a)

Dµ = ∂µ + igTa Aa
µ , (217b)

where the generators Ta correspond to the triplet representation of SU(3) and the field
strength tensor is defined as in Equation (9). The full Lagrangian including gauge fixing
and ghost terms and source terms for BRST transformations is given by

Lcl =Linv + Ba(∂µ Aa
µ) +

ξ

2
(Ba)2 − c̄a∂µ(Dµc)a

+ ρaµsAa
µ + ζasca + Yψsψ + Yψsψ , (218)

where the BRST transformations are given as in Section 2.3.
All ingredients of the QCD Lagrangian can be interpreted as D-dimensional quantities

without any changes in the algebraic relations. The D-dimensional version of Linv is still
fully gauge-invariant, and the full BRST-invariant classical LagrangianLcl is BRST-invariant
in D dimensions. Likewise, the Slavnov–Taylor identity (62) is satisfied in D dimensions.

We therefore have

S
(∫

dDxLcl

)
= 0 , (219)

for the D-dimensional regularized theory. Now, we can use the quantum action principle
in the form of Equation (208), where now, the breaking term ∆ = 0. Accordingly, the
symmetry of the D-dimensional classical action implies that the regularized Green func-
tions represented by the generating functional ΓDReg satisfy the Slavnov–Taylor identity
S(ΓDReg) = 0 at all orders.

This is the precise form of the statement that DReg preserves gauge invariance of QCD
manifestly. The analogous statement is also true for QED or other non-chiral gauge theories.
One can go one step further and discuss the renormalized level. If counterterms are
generated from the classical Lagrangian by the standard procedure of field and parameter
renormalization, the bare Lagrangian Lbare = Lcl + Lct still satisfies the Slavnov–Taylor
identity, S(

∫
dDxLbare) = 0. For this reason, even the renormalized, finite functional ΓDRen

in the notation of Section 3.1, which is obtained from Lbare, satisfies the Slavnov–Taylor
identity without the need for special symmetry-restoring counterterms. The manifest
preservation of gauge/BRST invariance at all steps of the construction of QCD dramatically
simplifies practical calculations, as well as all-order proofs.

As our second example, we briefly sketch the situation of supersymmetry in regular-
ization by dimensional reduction. As explained in Section 3.5, the dimensional reduction
scheme treats vector fields in quasi-four dimensions and should, therefore, be better com-
patible with supersymmetry. Without going into the details, supersymmetry can also be
expressed in terms of a Slavnov–Taylor identity. If a supersymmetric Lagrangian is defined
in dimensional reduction as LDRed

SUSY and this scheme is defined mathematically consistently,
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it does not remain supersymmetric. Instead, applying the corresponding Slavnov–Taylor
operator yields S(

∫
dDxLDRed

SUSY) = ∆ 6= 0. The value of ∆ for a general supersymmetric
gauge theory was provided in Reference [78]. The reason for the nonvanishing value of ∆ is
that the quasi-four-dimensional space does not permit using Fierz identities. The nonvan-
ishing value of ∆ implies that, ultimately, supersymmetry is not preserved by dimensional
reduction at all orders.

Nevertheless, dimensional reduction preserves supersymmetry to a very large extent,
and the quantum action principle provides a succinct method to check the validity of
supersymmetry in concrete cases: The evaluation of concrete Green functions with an
insertion of the breaking, ∆ · Γ, directly determines the potential breaking of the super-
symmetric Slavnov–Taylor identity in a concrete sector. This method was used, e.g., to
verify that supersymmetry, indeed, is conserved in a variety of important cases, including
phenomenologically important 2-loop and 3-loop contributions to the Higgs boson mass
prediction in the minimal supersymmetric standard model [102,105].

5. Renormalization in the Context of DReg

In this section, we review the basic renormalization theory in the context of per-
turbative relativistic quantum field theories, from the point of view of applications of
dimensional regularization. Renormalization has both technical and physical aspects. On
the most-technical level, renormalization is a procedure to remove ultraviolet divergences
and generate finite Green functions, S-matrix elements, and other quantities of interest.
It effectively provides a definition of each term in the Gell–Mann–Low formula (67) and
may be viewed as a definition of the path integral measure (68). The removal of ultraviolet
divergences is not arbitrary, but subject to important physical constraints such as unitarity
and causality. In more physical terms, renormalization can be viewed as a reparametriza-
tion. This is reflected by the “main theorem of renormalization” (the name was coined in
Reference [112], where also a very general proof was given, which essentially relies on the
physical causality constraint), which states that all allowed renormalization procedures
differ by nothing but reparametrizations. It is also reflected by the customary practical
procedure of first regularizing the theory, then introducing counterterms that depend on
the regularization and cancel the divergences. These counterterms can be viewed as arising
from reparametrizations, or renormalizations, of Lagrangian parameters and fields.

The need for renormalization and the possibility of renormalization to generate a
finite theory also reflect further deep physical properties of quantum field theories. The
existence of ultraviolet divergences and the resulting need for subtractions and a renormal-
ization procedure result in the possibility of so-called anomalies. These are breakings of
symmetries, which are valid in the classical theory, but broken on the quantum level via
the regularization and renormalization procedure. Fundamentally, anomalies arise if the
unitarity and causality constraints on renormalization are incompatible with the symmetry
in question.

The possibility to successfully carry out the renormalization program and its relation
to reparametrizations reflects the physical phenomenon of decoupling. Physics at a certain
distance and energy scale is insensitive to physics at a much smaller distance and higher
energy scales, leading to the important concepts of effective field theories and the renor-
malization group. Ultra-short distance details influence long-distance physics only via
their effect on long-distance parameters. Since any regularization effectively changes the
short-distance behavior of the theory in a cutoff-dependent (but unphysical) way, it is not
too surprising that the cutoff dependencies, including divergences, can be compensated by
reparametrizations such that a finite and regularization-independent limit exists.

In the present section, we provide a brief review of the general theorems governing the
previous statements; this discussion has a strong focus on the so-called BPHZ approach to
renormalization, and an outcome is that the customary regularization/renormalization pro-
cedure is correct. Then, we review the main theorem stating that dimensional regularization
may be employed as one such consistent regularization/renormalization framework.
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5.1. General Renormalization Theory and Constraints from Unitarity and Causality

Here, we review the basic properties of renormalization as a means to eliminate
ultraviolet (UV) divergences and to generate finite relativistic quantum field theories.
The discussion is organized along four questions: What are the required properties of
any renormalization procedure? Which procedures satisfy these properties? What are the
possible differences between different allowed renormalization procedures? How does
the usual procedure of regularization and counterterms fit into the fundamental analysis
of renormalization?

As we will discuss, all these questions have rigorous and positive answers, first
obtained by Bogoliubov/Parasiuk [113] and Hepp [65], with important additional develop-
ments by Speer [22,68,114] and Zimmermann [115] and Epstein/Glaser [116]. We refer to
lectures by Hepp [117] (contained in [118]) for very detailed and pedagogical explanations
and to Reference [119] for an overview.

We begin by explaining the fundamental requirements on any renormalization proce-
dure. A minimal requirement would be that perturbative S-matrix elements become UV
finite; a very strong requirement would be the nonperturbative construction of well-defined
products of interacting field operators. Following the analysis of the mentioned references,
we choose an intermediate approach. In this approach, a renormalization is a procedure
that constructs all possible time-ordered products of free field operators, or equivalently, a
renormalization is a mapping that maps any Feynman diagram to a well-defined and UV
finite expression. In detail, the requirement can be efficiently formulated by writing an
interaction Lagrangian:

Lint(x) = ∑
i

Wi(x)gWi (x) , (220)

where Wi(x) are all local field monomials of interest (including all monomials appearing in
the actual Lagrangian of interest, but also possible further composite operators of interest,
similar to the discussion of composite operators in Sections 2.3 and 2.4), and where gWi (x)
are number-valued test functions (acting like the sources Ki in Sections 2.3 and 2.4 or in
Equation (58) or like localized coupling constants). This Lagrangian generates a perturba-
tive scattering operator S(g), where the argument g denotes the functional dependence on
all the gWi :

S(g) = 1 +
∞

∑
n=1

in

n!

∫
∑

i1 ...in

Ti1 ...in(x1, . . . , xn)gWi1
(x1) . . . gWin

(xn)d4x1 . . . d4xn , (221)

where, formally, the appearing T-products would be given by

Ti1 ...in(x1, . . . , xn) = T(Wi1(x1) . . . Win(xn)) . (222)

However, the expressions in Equation (222) are, in general, ill-defined if n > 1 and
several of the xi coincide. Hence, a renormalization is a construction of the T-products
and, thus, of Equation (221), which satisfies the following properties, adapted from
References [112,116]:

Initial conditions:

S(0) = 1 , (223a)

Ti(x) = Wi(x) . (223b)

Unitarity:

S(g)†S(g) = S(g)S(g)† = 1 (224)
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for all Hermitian WigWi . Here, S(g)† must be written in terms of anti-T-products
T̄ii ...in , which also must be constructed.

Translational invariance:

U(1, a)S(g)U(1, a)† = S(ga) , (225)

where U(1, a) is the representation of translations on the respective free Fock space
and ga(x) = g(x− a).

Causality:

S(g + h) = S(g)S(h) if supp(g) & supp(h) , (226)

where supp(g) & supp(h) means that all points in the support of h are outside the
support of g and its future light cone, such that the points in supp(h) cannot be
causally influenced by the points in supp(g).

Via the expansion (221), these requirements translate into constraints on the T-products
and T̄-products. For instance, the causality requirement is particularly powerful [112] and
translates into the relation:

Ti1 ...in(x1, . . . , xn) =Tij1
...ijm

(xj1 , . . . , xjm)Tijm+1
...ijn

(xjm+1 , . . . , xjn)

if {xj1 , . . . , xjm} & {xjm+1 , . . . , xjn}
and {j1, . . . , jn} = {1, . . . , n} (227)

for T-products.
A construction fulfilling all these constraints, thus, amounts to a construction of

all T-products of possible field monomials Wi and, thus, of all terms appearing in the
Gell–Mann–Low formula (67) and ultimately of Feynman diagrams and Green functions,
including Green functions of composite operators. Similar sets of requirements can also be
found in the Bogoliubov/Shirkov textbook [120] and, for Feynman diagrams, in Hepp’s
lectures [117].

Let us briefly comment on the central role of unitarity and causality. Both requirements
allow expressing T-products with a certain number of operator factors in terms of T-
products (or T̄-products) with fewer factors, such as in Equation (227). Hence, higher-order
T-products and, thus, the entire renormalization procedure are not arbitrary, but largely
fixed. The only ambiguity arises when all arguments are equal, xi1 = . . . = xin , in which
case, causality and unitarity do not imply a relation to lower-order T-products.

This clarifies that renormalization is not unique and there can be different renormal-
ization schemes with different choices to fix these ambiguities. However, it also gives an
indication that the ambiguities affect only local terms, such that different schemes differ
only by reparametrizations of local terms in the Lagrangian (220). Further, it is in line with
the fact that UV divergences are local in position-space and can be canceled (in the presence
of a regularization) by adding local counterterms to the Lagrangian.

The local nature of the ambiguities and possible scheme differences can be formulated
as a rigorous theorem: The statement is that any two constructions satisfying all require-
ments listed above differ only in a finite reparametrization (often called finite renormalization
in the original literature); conversely, if an allowed renormalization is changed by a finite
reparametrization, another allowed renormalization is obtained. In our formulation, two
different renormalizations may be expressed as ST(g) and ST′(G), where T and T′ denote
the two different constructions of T-products, and g and G represent two different sets
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of the prefactors gWi in the Lagrangian (220). A finite reparametrization may be written
as [112]

GWi (x) = gWi (x) +
∞

∑
n=1

GWi ,n(g, Dg)(x) , (228)

which is a reparametrization of the couplings expressed in terms of GWi ,n, which are
local functions of all gWj(x) and their derivatives. The index n denotes the order in
perturbation theory. On this level, the statement is that, if both ST(g) and ST′(G) are
allowed renormalizations, then they can be related as

ST(g) = ST′(G) (229)

with a suitable finite reparametrization of the form (228), and conversely, if ST′(G) is
allowed, then any finite reparametrization of the form (228) effectively defines another
allowed renormalization via requiring (229). Reference [112] gave a very general proof
based directly on the causality requirement of renormalizations, and Reference [117] gave a
proof on the level of Feynman diagrams.

Since reparametrizations do not change the physical content of a theory, this also shows
that any two allowed renormalizations are equivalent, i.e., describe the same physics.

Now, we turn to the question about which renormalization procedures exist and how
they are related to the counterterm approach often used in practical computations, giving
a brief survey of the approaches and results. Historically, the BPH theorem constitutes
the first rigorous proof that all the above properties can be established [65,113]. These
references used a recursive, so-called R-operation and an intermediate regularization.
Though successful, Hepp [117] assessed the approach as “hideously” complicated and
noted that a cleaner approach is provided by analytic regularization [62,68]. Working on the
level of Feynman diagrams, the idea of analytic regularization is to replace the propagator
denominator of any internal line with index k as

1
`2

k −m2
k + iε

→ 1
(`2

k −m2
k + iε)λk

(230)

with complex parameters λk. Similar to DReg, there is a domain for λk where all integrals
are well defined, and analytic continuation leads to poles at the physical value λk = 1. It is
then possible to define the renormalized expressions via Laurent expansion in (λk − 1) and
keeping only the zeroth-order term.

In this approach, the finiteness of the construction, as well as the validity of all required
properties including causality and unitarity are comparatively easy to prove [117]. The
equivalence to the counterterm method was at first only established indirectly by using the
equivalence to BPH, but later also directly [68]. A drawback of analytic regularization is
that the relation to the Lagrangian is obscured. In contrast to, e.g., DReg (see Section 3.4),
the regularization cannot be expressed in terms of a regularized Lagrangian.

Though technically more complicated, the BPH approach and the BPH theorem are
very instructive, most importantly since they establish the connection with the customary
procedure of regularization and counterterms. In this approach, first, every Feynman
diagram is regularized, e.g., using the Pauli–Villars prescription. Then, the renormalization
procedure is carried out via the so-called recursive R-operation. For any 1PI graph G,
a subrenormalized amplitude is defined by

RG = G + ∑
H1 ...Hs

G/H1∪...∪Hs · C(H1) . . . C(Hs) , (231)

where the sum runs over all possible sets of disjoint 1PI subgraphs Hi of G (excluding G
itself). The object in the sum denotes the amplitude for the graph, where all the disjoint
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subgraphs H1 . . . Hs are shrunk to points and replaced by the counterterms C(H1) . . . C(Hs).
The fully renormalized result and the counterterms are defined as

RG = RG + C(G) , (232a)

C(G) = −TRG , (232b)

where T denotes the operation to extract the divergent part. In the BPH approach, T is de-
fined via a Taylor expansion in external momenta of a graph and, therefore, by construction,
a polynomial in momentum space.

The BPH theorem [65,113] states that the renormalized graphs RG are finite (in the
sense of distributions in momentum-space) and that all required properties are valid.
The difficult part of the proof is the proof of finiteness. The big advantage of the R-
operation is its relationship to the usual counterterm approach. Indeed, it is easy to
see that the formula (231) combinatorically corresponds to the prescription to add to G
all possible counterterm Feynman diagrams with all possible insertions of counterterm
vertices; furthermore, the counterterms are local in position space and, therefore, can be
obtained from a local counterterm Lagrangian. For a detailed discussion of the R-operation
and a full proof of its relationship to counterterm diagrams and counterterm Lagrangians,
we also refer to the monograph [63], Chapter 5.7.

Since both the BPH procedure and analytic regularization constitute allowed renor-
malizations, they must be physically equivalent in the sense defined above, i.e., they differ
only by reparametrizations/finite renormalization. This equivalence has also been directly
established in References [68,117], where it was also shown that the required finite renor-
malization only involves counterterms whose power-counting degree is bounded by the
superficial degree of divergence of the original Feynman diagrams.13

A further instructive and important renormalization procedure was developed by
Zimmermann [115], leading to the notion of BPHZ renormalization. Its main virtue is
that it completely eliminates the need for any regularization, but directly constructs finite
momentum-space loop integrals. Its technical tool is the famous forest formula, which
is a direct solution of the recursive R-operation. It allows constructing loop integrals via
repeated applications of Taylor subtractions on the integrand level. A technical obstacle
is that care must be taken to avoid ambiguities from different loop momentum routings
in case the same subdiagram is inserted into different higher-order diagrams. While the
proof of the finiteness of the construction is highly nontrivial, the proof of equivalence to
the BPH approach is rather straightforward if an intermediate regularization is employed.

Already, Reference [65] on the BPH theorem and References [62,68,117] on analytic
regularization made essential use of the α-parametrization (see Section 3.2.4) in their
proofs. The idea of using the α-parametrization was combined with the forest formula in
References [66,67,114] to strongly simplify the finiteness proof. These references applied
subtractions via Taylor expansions with respect to the αs such that directly finite α integrals
were obtained.

5.2. Theorem on Divergences and Renormalization in DReg
5.2.1. Statement of the Theorem

Here, we discuss the central theorem of dimensional regularization, most rigorously
established as Theorem 1 in the paper by Breitenlohner/Maison, Reference [4]. In essence,
it implies the following: the renormalization of relativistic quantum field theories can
be performed using DReg as an intermediate regularization, the renormalized answer is
correct and equivalent to the results from other consistent schemes discussed in the previous
subsection, and the required subtractions can be implemented as counterterm Lagrangians.

13 Such a renormalization was called “minimal” in Reference [117], but we stress that this is a different notion of
minimality than, e.g., in the so-called minimal subtraction prescription within DReg.
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In more detail, it can be formulated as follows. Let G be a 1PI Feynman graph (in
Reference [4], a theory without massless particles is required; References [23,24] considered
the case with massless particles). The corresponding regularized Feynman integral TG is
defined as discussed in Section 3, making use of the consistently constructed formally D-
dimensional covariants and D-dimensional integrals. Reference [4] specifically employed
the α-parametrization introduced in Section 3.2.4.

Then, it is possible to apply a subtraction algorithm to the graph that defines first a
subrenormalized Feynman integral T G and, finally, a fully renormalized Feynman integral
RG. Assuming four-dimensional quantum field theory and writing D = 4− 2ε, these
objects have the following properties:

• The regularized, but not-yet-renormalized amplitude TG is a meromorphic function of
D or, equivalently, of ε.

• The subrenormalized amplitude T G may have singularities in ε, which are poles of
the form:

1
ε

P(1)
G + . . . +

1
εLG

P(LG)
G , (233)

where LG is the number of closed loops in the graph G. The coefficients P(k)
G are

polynomials in the external momenta and the masses appearing in G (corresponding
to local terms in position-space). The degree of all these polynomials is bounded by
the superficial power-counting degree of the graph ωG = 4LG − 2IG + rG with IG the
number of internal lines in G and rG the power-counting degree of the numerator.

• RG is finite, i.e., it is an analytic function of ε in a region around ε = 0.

The theorem provides several crucial additional details:

• The subtraction is organized according to a forest formula, which is equivalent to
Bogoliubov’s recursive R-operation (we also refer to the monograph [63] for a detailed
explanation). For this reason, the subtraction algorithm is equivalent to adding
counterterm Feynman diagrams.

• The subtractions corresponding to subgraphs H of G, called CH , are given by T H with
analogous properties to T G as explained above.

• The subtractions corresponding to a subgraph H are independent of the surrounding
graph G; they really only depend on H itself (and, of course, its subgraphs).

• The renormalized results for all graphs RG are equivalent to the results obtained
in the BPHZ framework (before Reference [4], this point had been established also
in Reference [22]). This means they differ from the BPHZ results at most by finite,
local counterterms at each order, in line with the general theorem discussed around
Equations (228) and (229).

The previous, rather technical details have very important consequences for practical
calculations and physical interpretations:

• The combinations of all subtractions of all graphs can be written as a counterterm
Lagrangian, which is local and contains only terms of dimensionalities limited by the
power-counting of the original graphs.

• The renormalized amplitudes constructed in DReg provide a finite quantum field
theory, which is consistent with unitarity and causality in the sense analyzed by
References [65,113,115,116,120].

We provide even further details:

• Initially, all propagators in the integrals are defined via the +iε prescription in
momentum-space (which corresponds to time-ordering in position-space) with ε > 0.
As long as ε > 0, the dependence ofRG on external momenta and masses is infinitely
differentiable, i.e., of the C∞ type. After the limit ε → 0 has been taken, the depen-
dencies take the character of tempered distributions. In this regard, DReg behaves
identically to, e.g., BPHZ [65].
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• The setup of the subtractions requires that all 1/ε poles are subtracted, even if the coef-
ficients happen to be evanescent in the sense defined in Section 3.4. In the coefficients
P(k)

G in Equation (233), a four-dimensional limit is not permitted during the subtraction
procedure. For the counterterm Lagrangian, this implies that evanescent operators
(operators that have no four-dimensional counterpart since they would vanish either
in view of Fierz identities or γ5 identities or because of contractions with ĝµν) must be
included in case they are needed to cancel 1/ε poles.

5.2.2. Overview of the Proof

The full proof of the theorem explained above requires many ingredients, which need
to be analyzed in detail. Most of them are largely independent of the regularization scheme,
but related to Feynman graph theory, relationships between graphs and subgraphs, and
the structural properties of the α-parametrization. Several key ideas for the proof are
common to proofs for BPHZ renormalization. The specific aspects of DReg enter in a very
localized form.

Here, we first list the most-important ingredients of the proof:

• The α-parametrized integral can be decomposed into sectors.
• A particularly elegant forest formula holds for each sector of the α-parametrization.
• In each sector, clever variable substitutions can be made, which lead to an explicit

general formula for the integral.
• There is a general relationship between the integrand for a certain graph and the

integrands for corresponding subgraphs and reduced graphs.
• There are a few simple observations for typical integrals and functions encapsulating

the 1/ε poles.

The following subsections will illustrate each of these ingredients with the help of
suitable examples and will motivate the general statements, which can all be found in
Reference [4]. A further subsection will sketch the essential steps of the proof by induction.

5.2.3. Ingredient 1: Sectors of the α Integration

In Equation (144), we already considered a simple one-loop integral transformed into
Schwinger or α-parametrization. For each internal line of the diagram, there is one αl
parameter, and all αl are integrated in the range from 0 to ∞. It is easy to compute one
integral explicitly, and the second integral could be computed as well. For the general proof
of renormalization, we neither want nor need an explicit computation of all loop integrals.
We rather need to transform all integrals into a uniform structure from which we are able
to read off the required properties. It turns out that decomposing the α integrations into
sectors is extremely helpful in this regard.

The strategy of similar sector decompositions of the α integrations has been employed
also in the important proof of the BPH theorem in Reference [65] and in simplified proofs of
the BPHZ theorem in References [66,67] and is the basis of modern numerical evaluations of
multiloop integrals [121,122]. For the integral (144), the sector decomposition is very simple:

∫ ∞

0
dα1dα2 =

∫

sector 1
dα1dα2 +

∫

sector 2
dα1dα2 , (234a)

where the two sectors are defined as

sector 1 = {α1 ≤ α2} , (234b)

sector 2 = {α2 ≤ α1} . (234c)

Let us describe the sector decomposition used for the proof in Reference [4] with the
following six-loop example diagram:



Symmetry 2023, 15, 622 59 of 113

3

4

1211

10

987

65

4

3

21

1

2

5

8

11

12

9

6

7 10
13

14

15

16

17

(235)

with line labels and vertex labels as indicated. One particular sector is constructed by the
following algorithm. First, we chose one particular one-loop subdiagram. As an example,
we chose the diagram consisting of the lines 14, 15 and call it H1. Next, we chose either a
second, disjoint 1-loop subdiagram, or a 2-loop subdiagram, which contains H1. Let us
choose the diagram consisting of Lines 3, 4 and call it H2. Next, we chose a subdiagram H3
such that H3 either contains H1 and/or H2 or is disjoint and such that, overall, the union
of H1,2,3 contains three loops. We might choose H3 as the two-loop diagram with Lines
2, 3, 4, 5, 6, 7. We continued this way until we reached the six-loop diagram H6 ≡ G itself.
An example choice of subgraphs C = {H1, H2, . . . , H5, H6} is illustrated in the diagram of
Figure 1.
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H3 H4
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7 10
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14

15

16

17

Figure 1. The same diagram as in Equation (235), with additional indications of subdiagrams Hi

(i = 1 . . . 6), which define an example maximal forest.

In this way, we can generally construct what is called a maximal forest. In general,
the definition of a forest is a set of 1PI subgraphs of G, which are non-overlapping, i.e.,
either disjoint or nested. A maximal forest is thus a maximal set of 1PI subgraphs that
are non-overlapping. The above construction illustrates how one can construct all such
maximal forests, and it illustrates that each maximal forest contains as many elements as
there are loops in G.

The example also illustrates that each subgraph Hi in a maximal forest contains at
least one line that is specific to it, i.e., that is not contained in any smaller subgraphs of the
maximal forest. We may define a mapping, called “labelling” in Reference [4], of the form

Hi 7→ σ(Hi) = one of the lines specific to subgraph Hi. (236)
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In the example, we can choose

σ(H1) = 14 σ(H2) = 3 σ(H3) = 7 (237a)

σ(H4) = 11 σ(H5) = 8 σ(H6) = 16. (237b)

The labeled lines are illustrated in blue color in the diagram of Figure 2.
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Figure 2. The same diagram as in Figure 1, with additional indications of the labeled lines σ(Hi) for
each subgraph, according to Equation (237).

For any such choice of a maximal forest together with a labeling for specific lines,
(C,⊃), we define an integration sector for the αl variables in the following way: in each
subgraph Hi, the α for the specific labeled line is the largest, i.e.,

αl ≤ ασ(Hi)
∀ l ∈ Hi . (238)

For the example, the integration sector defined by (C,⊃) is

α15 ≤ α14 α4 ≤ α3 α2,3,5,6 ≤ α7 (239a)

α10,12 ≤ α11 α7,11,9 ≤ α8 α1,14,8,13,17 ≤ α16 . (239b)

Note that this does not imply a fixed ordering of all the αl .
It is elementary to prove a variety of useful properties of maximal forests and labelings.

In particular, this way of defining sectors leads to a partitioning of the entire α integration
region of any Feynman graph loop integral:

∫ ∞

0
dα1 . . . dαI = ∑

(C,⊃)

∫

(C,⊃)
dα1 . . . dαI . (240)

Using the notation TG for the regularized amplitude of the graph G, we can therefore write

TG = ∑
(C,⊃)

TG,(C,⊃) , (241)

with an obvious meaning and where the sum extends over all maximal forests of G and all
possible labelings (C,⊃). This construction of sectors is the essential content of Lemma 3 in
Reference [4].

5.2.4. Ingredient 2: Forest Formula after Decomposition into Sectors

In the all-order investigation of renormalization, the graphical language of Feynman
diagrams with counterterms has to be formalized in terms of subtractions of divergent inte-
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grals. In the historical development of the rigorous BPHZ renormalization, this formaliza-
tion was first performed via Bogoliubov’s recursive definition of the so-called R-operation.
This recursive definition was later rewritten into Zimmermann’s forest formula [115].
The sector decomposition described above permits a very elegant and powerful alternative
version of the forest formula, which simplifies the proof. Such simplified forest formulas
were also discussed and applied in the context of BPHZ, e.g., in References [66,114,123].

To explain these relations, we begin with the recursive R-operation, defined in
Equations (231) and (232). We recall the main equation, the definition of a subrenormalized
amplitude:

RG = G + ∑
H1 ...Hs

G/H1∪...∪Hs · C(H1) . . . C(Hs) , (242)

where the counterterms are defined as C(H) = −TRH .
This R-operation is recursive because the definition of the subrenormalized ampli-

tude depends on lower-order counterterms, which in turn are defined via lower-order
subrenormalized amplitudes. One may work out the recursion and obtain a direct, non-
recursive formula. To illustrate this, consider the case where the full graph G has one
2-loop subgraph γ2, which in turn has a 1-loop subgraph γ1. Then, one term in RG is
given by

RG = . . . + G/γ2 · C(γ2)

= . . . + G/γ2 · [−TR(γ2)]

= . . . + G/γ2 · [−T(γ2 + γ2/γ1 · C(γ1) + . . .)]

= . . . + G/γ2 · [−Tγ2 + T(γ2/γ1 · Tγ1) + . . .] . (243)

Hence, working out the recursion leads to subtraction operators T acting on unrenor-
malized (potentially multiloop) graphs like γ2 and to iterated subtractions. If we introduce
a new notation Tγ · G ≡ G/γ · Tγ for the operation “replace γ within G by Tγ”, where
products are defined as, e.g., Tγ2 · Tγ1 · G = G/γ2 · T(Tγ1 · γ2), then we can rewrite the
above terms as

. . . + G− Tγ2 · G + Tγ2 · Tγ1 · G . (244)

We note that both the subgraph {γ2}, as well as the chain of subgraphs {γ1, γ2}
constitute forests in the sense defined above.

In general, if γ1 and γ2 are subgraphs and elements of a forest of G, we define

γ2 ) γ1: Tγ2 · Tγ1 · G = G/γ2 · T(Tγ1 · γ2) (245a)

γ1, γ2 disjoint: Tγ2 · Tγ1 · G = G/γ1∪γ2(Tγ1)(Tγ2) (245b)

while the product Tγ2 · Tγ1 is undefined for the case when γ2 is subgraph of γ1. Working
out the recursion formula, in general, leads to the following forest formula [115]:

R(G) = ∑
F=forest

of G

∏
γi∈F

(−Tγi ) · G , (246)

where the forests may contain the full graph G and where also the empty set is an allowed
forest F = ∅. The formula for R(G) is similar, but the forests may not contain the full
graph G. The Tγi -operators are by definition always ordered as in Equations (244) and (245)
according to nesting. Simply put: operators with bigger subgraphs act on the left, and
operators with subgraphs contained in the bigger subgraphs on the right. The forest formula
can be easily proven by noting that every forest that does not contain G itself has certain
disjoint maximal elements M1 . . . Ms and can be partitioned into forests of the M1 . . . Ms.
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Based on this, the equivalence to the recursive formula can be established by induction over
the number of loops.

Now, we turn to the announced elegant simplification of the forest formula due to the
sector decomposition. We need to know one additional statement about sectors relevant
for combinations like

Tγ · G = G/γ · T(γ) = ∑
(C1,σ1)

for G/γ

∑
(C2,σ2)

for γ

(G/γ)(C1,σ1)
· T(γ(C2,σ2)

) . (247)

The statement is that there is a one-to-one correspondence between such combinations
for sectors (C1, σ1), (C2, σ2) for the graphs G/γ and γ and sectors (C, σ) for the full graph
with the constraint that γ ∈ C. Then, we can split the forest formula into sectors as follows:

R(G) = ∑
F=forest

of G

∑
(C,σ) for G which

contain all γ ∈ F

∏
γi∈F

(−Tγi |subsector ) · G|subsector , (248)

where it is used that every sector (C, σ) with the given constraint generates appropriate
subsectors for all subtraction operators Tγi and the remaining reduced graph and that
all possible subsectors are generated in this way. Abbreviating slightly, we can then
rearrange as

R(G) = ∑
F

∑
C⊇F

∏
γi∈F

(−Tγi ) · G

= ∑
C

∑
F⊆C

∏
γi∈F

(−Tγi ) · G

= ∑
C

∏
γi∈C

(1− Tγi ) · G . (249)

The last step used that the sum over all possible forests F , which are contained in C,
effectively generates the power set of C, i.e., the set of all possible subsets of C. This simply
leads to the last line, which contains only a summation over all maximal forests C and the
factors (1− Tγi ). In this way, the forest formula becomes

R(G) = ∑
(C,σ)
R(G)(C,σ) , (250a)

R(G)(C,σ) = ∏
γi∈C

(1− Tγi ) · G|(C,σ) . (250b)

The ordering of the (1− Tγi )-operators is as in the original forest formula, according
to the nesting of subgraphs.

This represents an important improvement. The operators (1− Tγi ) have the effect
of replacing an object by the one without the subdivergences from the subgraph γi (in the
appropriate sector). Intuitively, every such operator improves the finiteness. On a more
technical level, consider what any specific Tγ for a multiloop subgraph γ acts on. In the
original forest formula, there are terms such as Tγ · G, which lead to G/γ · T(γ). The T(γ)
is the divergence of the unrenormalized multiloop graph γ, which is typically a very
complicated expression, non-polynomial in momentum-space, or non-local in position
space. In contrast, in the forest formula modified for sectors, any such multiloop Tγ only
acts on expressions where all subdivergences corresponding to subgraphs of γ have already
been subtracted:

Tγ ∏
γi∈C,γi(γ

(1− Tγi ) · G(C,σ) = T

(
∏

γi∈C,γi(γ

(1− Tγi ) · γ
)
· G(C,σ) (251)
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Hence, here, the left-most T actually acts on the fully subrenormalized expression
R(γ) in the appropriate subsector, which can be hoped to have simpler, polynomial/local
divergences. These properties of the forest formula help in setting up an inductive proof
of renormalization.

5.2.5. Ingredient 3: Sector Variables and Formula for the Integral

Introducing sectors into the α integrations required for Feynman graph integrals has
further important advantages. Besides yielding the simpler forest formula, the sectors allow
rewriting the actual integrals such that the power counting and the structure of divergences
are isolated in a quite transparent way. Here, we illustrate this in a very simple case; then
we provide the general result and give comments.

Let us focus on the integral (144), (4π)−D/2i1−D/2
∫ ∞

0 dα1dα2U−D/2eiW , and consider
the sector α1 ≤ α2. In this sector, we introduce sector-specific variables: the largest α in
the sector is replaced by a new variable t2; the other α is rewritten as t2β in terms of a
scaling variable β, which runs from 0 to 1. In total, we carry out the following substitution
of variables and the integration measure in the sector:

α2 = t2 , (252a)

α1 = t2β , (252b)
∫

0≤α1≤α2

dα1dα2 = 2
∫ ∞

0
dtt(2I−1)

∫ 1

0
dβ , (252c)

where I = 2 is the number of internal lines. The integral (144) depends on two functions,
the Symanzik polynomial U and the exponent W given in Equation (147). After the variable
substitution, the Symanzik polynomial takes the value:

U = M = t2(1 + β) , (253)

and we observe that we can factor out the variable t2. This is no accident. As already
mentioned in Section 3.2.4, the behavior of U if some αs vanish reflects the ultraviolet
behavior of the original Feynman integral. If all αs simultaneously vanish ∝ t2, U generally
behaves as t2L, where L is the number of loops in the graph. We can exhibit this behavior
by defining a new function d̃:

U = t2d̃ , d̃ = 1 + β ≥ 1 . (254)

The indicated inequality provides a very important lower bound on the function d̃.
A second observation is that we can essentially eliminate the t-variable from the

exponent W by rescaling the physical variables p, u1,2, and m as

p̃ = t p , (255a)

m̃ = t m , (255b)

ũ1,2 = t−1 u1,2 . (255c)

The rescaled variables are dimensionless. In terms of these variables, we can write the
exponent as

W =
p̃2β− βũ2 · p̃ + ũ1 · p̃− 1

4 (ũ1 + ũ2)
2

(1 + β)
+ (it2ε− m̃2)(1 + β) , (256)

where, indeed, t does not appear explicitly, except in the product t2ε.
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Using all these ingredients, we can rewrite the α integral (144) in the considered
sector as

(−i)2(4π)−D/2i1−D/22
∫ ∞

0
dtt−D+2I−1

∫ 1

0
dβd̃−D/2eiW , (257)

where we record the following observations:

• The power-like behavior of
∫

dtt−D+2I−1 corresponds to the superficial ultraviolet
power counting of the original loop integral (144), which behaves like

∫
dDkk−2I .

• The remaining integrand d̃−D/2eiW has essentially no explicit dependence on t at all;
it only depends on t via the rescaled variables (255) and via t2ε.

• If ε > 0 in the +iε prescription, eiW decreases exponentially for large t, and the full
dependence of the integrand on the rescaled variables (255) and on β is of the C∞-type.
The result of the β integration is still C∞ in the rescaled variables.

We need a second example to shape our understanding of the general case. Let us consider
again the six-loop diagram of Section 5.2.3 and fix the same sector (C, σ) discussed there; see
Equation (239). Which variable substitutions analogous to Equations (252) and (255) should
we now choose? The sector is defined by a maximal forest with six subgraphs, each subgraph
containing one specific labeled line, and for each subgraph, there is an inequality stating that the
labeled α is the largest. The idea, generalizing the one-loop case, is to introduce one ti-variable
for each subgraph Hi and to define the labeled αs in terms of these ti-variables. The t6 ≡ tG-
variable corresponding to the full graph runs from 0 to ∞, and all the other ti run from 0 to 1.
Then, all inequalities for the labeled αs are implemented by the following scheme:

subgraph: labelled α substitution: rewrite

H1 α14 = t2
1t2

6 t2
1ξ2

1 (258a)

H2 α3 = t2
2t2

3t2
5t2

6 t2
2ξ2

2 (258b)

H3 α7 = t2
3t2

5t2
6 t2

3ξ2
3 (258c)

H4 α11 = t2
4t2

5t2
6 t2

4ξ2
4 (258d)

H5 α8 = t2
5t2

6 t2
5ξ2

5 (258e)

H6 α16 = t2
6 t2

6ξ2
6 (258f)

where also abbreviation variables ξi were introduced; they are products of all the “other
ti”, as appropriate. In the next step, we introduce βk-variables for all the remaining, non-
labeled, αs, where the βk all run from 0 to 1. We remark that t6 ≡ tG is dimensionful, while
all other ti and β variables are dimensionless. In addition, we introduce two further useful
notations, illustrated in the graph in Figure 3. First, for each subgraph in C, we define
a reduced subgraph H̄i = Hi/M(Hi)

, whereM(Hi) is the set of maximal elements in C,
which are properly contained in Hi. The lines in H̄i are the lines specific to Hi, i.e., the
lines contained in Hi, but in no smaller subgraph in C. Clearly, the full graph is partitioned
into H̄i, i.e., every line is in one unique H̄i. Second, we denote by q

Hi
a set of independent

external momenta of H̄i, where we, in principle, allow nonzero incoming momenta into all
vertices of the graph (the graph is drawn as if it has only two external momenta, but the



Symmetry 2023, 15, 622 65 of 113

renormalization procedure becomes more systematic if every graph is generalized to allow
arbitrary incoming momenta into all vertices). This leads to the following scheme:

red. subgraph: αs indep. ext. momenta

H̄1 = H1 {α15, α14} = {β15, 1} × t2
1ξ2

1 p8 (259a)

H̄2 = H2 {α4, α3} = {β4, 1} × t2
2ξ2

2 p3 (259b)

H̄3 = H3/H2 {α2,5,6, α7} = {β2,5,6, 1} × t2
3ξ2

3 p2, p5, p11 (259c)

H̄4 = H4 {α10,12, α11} = {β10,12, 1} × t2
4ξ2

4 p6, p7 (259d)

H̄5 = H5/H3∪H4 {α9, α8} = {β9, 1} × t2
5ξ2

5 p6 + p7 + p12 (259e)

H̄6 = H6/H5∪H1 {α1,13,17, α16} = {β1,13,17, 1} × t2
6ξ2

6 p1, p8 + p9, p10 (259f)

3

4

1211
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987

65

4

3

21

H̃2
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H̃1

1
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7 10
13

14
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Figure 3. Illustration of sectors and sector variables t and β in Equations (258) and (259). The example
is the 6-loop diagram and its subdiagrams already used in Equation (235) and Figures 1 and 2. Here,
we chose six different colors for the reduced subdiagrams H̄i (i = 1 . . . 6) into which the diagram can
be partitioned.

The reduced subgraphs H̃i are formed solely by the lines proper to them, and the lines
shared amongst the Hi are shrunk to a point. The subgraphs H1, H2, H4 are identical to
the reduced ones and, hence, take the obvious form as depicted in Figure 3. In the case
of H3, H5, H6, the reduced subgraphs are obtained by shrinking different subgraphs to a
point. Let us illustrate this by specifying the form of these reduced subgraphs as follows:

H̃3 H̃5 H̃6

.
(1)

.
(2)

.
(1)

.
(4)

.
(1)

p2

2

5

p5

6

p11

11

p2 + p3 + p4

+ p5 + p11

8

p6 + p7 + p12

9

p1 1

7∑
i=2

pi + p11 + p12

13 16

p8 + p9

p10

17

(260)

The crossed dots of order (n) denote the counterterm insertion due to shrinking
the respective n-loop subgraph to a point. Since we assumed that, to each vertex Vi,
there is associated an entering momentum pi, shrinking a subgraph comprised of vertices
Vi1 , . . . , Vik leads to a combination of incoming momenta pi1 + · · ·+ pik for that counterterm
vertex, as indicated in the graphs. In choosing independent momenta, we can make use
of momentum conservation. For a reduced subgraph with n vertices, it is sufficient to
specify n− 1 incident momenta to the vertices. They uniquely characterize the momenta of
a given reduced subgraph. What is more, all momenta of the graph can be reconstructed
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by linear combinations of these independent external momenta. A specific choice is given
in Equation (259). Clearly, in this way, all inequalities of the sector (239) are implemented,
and the combination of all the selected independent incoming momenta of the H̄i span all
independent incoming momenta of the full graph and can be used as independent variables
in the result. The variable substitution leads to the following replacement of the integration
measure, analogous to Equation (252):

∫

(C,σ)
dα1 . . . dα17 = 2L

∫
t6=0...∞

t1...5=0...1

6

∏
i=1

dtit
(2IHi

−1)
i

∫ 1

0
∏

k
dβk , (261)

where IHi is the number of internal lines in Hi.
This example provides us with sufficient information to construct the general result

for the integral representation of a general 1PI graph G in a specific sector (C, σ). As in the
example, the sector defines a chain of subgraphs Hi (as many as there are loops; one of
them is equal to the full graph G). The sector also defines a particular replacement of all αs
in terms of ti and βk; for each subgraph Hi, it is also useful to define the variable ξi for the
product of all the “other ti”. All lines of G are partitioned into lines of the reduced graphs
H̄i, and for each H̄i, one can choose a set of independent incoming momenta q

Hi
, which in

total span all incoming momenta of the full graph. Since each line carries one mass variable
and one u-variable, we can also partition these variables into sets of masses mHi and sets of
us, uHi , corresponding to the respective H̄i.

With these variables, we can rescale physical quantities, generalizing Equation (255) as

q̃
Hi

= tiξiqHi
, (262a)

m̃Hi = tiξimHi , (262b)

ũHi = (tiξi)
−1uHi . (262c)

We allow the integral to contain a numerator expressed as a derivative with respect to
u-variables as in Equations (145) and (146a), but we assume that the derivative operator Z
in the numerator is a product of ZHi , where each ZHi only depends on variables specific
to H̄i. This is always the case in actual Feynman diagrams. For simplicity, we follow
Reference [4] and assumed that all ZHi are homogeneous polynomials in the variables
∂/∂uHi and mHi of some degree rH̄i

. Then, we can write

Z̃Hi = (tiξi)
rH̄i ZHi (263)

where Z̃Hi is the same homogeneous polynomial expressed with ∂/∂ũHi and m̃Hi . Writing
D = 4− 2ε, we can finally define a power-counting degree of each reduced subgraph H̄i
and the complete (sub)graphs Hi as

ωH̄i
= 4LH̄i

− 2IH̄i
+ rH̄i

, (264a)

ωHi = ∑
H′⊆Hi
H′∈C

ωH̄′ . (264b)

This clearly corresponds to the superficial power-counting degree of the original
momentum integral.

With these building blocks, we can formulate the general result for the integral
specified in Equations (145) and (146a). Decomposing the integral into sectors as in
Equation (241),

TG = ∑
(C,σ)
TG,(C,σ) , (265)
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and setting again D = 4− 2ε, the result for each sector can be written as

TG,(C,σ) = cL
D2L

∫
tL=0...∞

t1...L−1=0...1

L

∏
i=1

dti
ti
(tiξi)

−ωH̄i
+2εZ̃Hi

×
∫ 1

0
∏

k
dβk d̃−D/2

G eiWG

∣∣∣∣∣
u=0

. (266)

The properties of the appearing objects are:

• All variables ti, ξi, and βk, the rescaled physical variables q̃
Hi

, m̃Hi , and ũHi , and the
power-counting degrees ωH̄i

are defined above.
• The explicit powers of ti correspond to the original superficial power-counting degrees

of the momentum integrals over the subdiagrams Hi. For each ti integral, a factor
(tiξi)

2ε was split off, which may be viewed as the essence of the D-dimensional
integration measure.

• The remaining integrand d̃−D/2
G eiWG has no explicit dependence on tL at all. It depends

on tL only via the rescaled physical variables. The other ti with i = 1 . . . L− 1 typically
appear explicitly, however.

• The function d̃G is a rescaled Symanzik polynomial, which satisfies d̃G ≥ 1 in the
integration region.

• For ε > 0 in the +iε prescription, the function eiWG is exponentially decreasing for
large tL.

• The product d̃−D/2
G eiWG , therefore, is analytic in ε and C∞ in ti, βk, and the rescaled

physical variables q̃
Hi

, m̃Hi , and ũHi .

This statement is the starting point for the inductive proof of renormalization in DReg
given in Reference [4], and it is a direct consequence of Lemma 4 of that Reference.

5.2.6. Ingredient 4: Integrand Relation between Graphs and Subgraphs

An important step in the proof is the application of subtraction operators TH to a
graph G. In order to analyze this operation, relationships between the original graph G,
the reduced graph G/H , and the subgraph H are needed. These relationships are again
essentially independent of D-dimensional treatments. They rely on detailed analysis of the
graphs themselves and the relationships between graphs and the α-parametrizations.

The required theory involves incidence matrices and graph theoretical representations
of the Symanzik polynomial U , or d̃G, and the exponent WG. Although the theory is
very elegant and not too difficult, we do not develop it here. Hence, we only list several
important statements without proof. For the proofs, we refer to Reference [4] and the
references therein. Further discussions were given, e.g., in References [51,69,124]

Consider the Symanzik polynomial UG for a graph G, and let H be a subgraph of
G. U is a homogeneous polynomial in all αs of degree L. Consider the case where all αs
corresponding to the subgraph H are rescaled by a factor ρ, while all other αs remain fixed.
Then, for small ρ, we have

UG(αs in H rescaled by ρ) = UG/H︸ ︷︷ ︸
ρ-independent

UH︸︷︷︸
∝ρLH

+O(ρLH+1) , (267)

i.e., at the lowest nonvanishing order, the Symanzik polynomial factorizes into the two
individual Symanzik polynomials for the reduced graph and the subgraph. If G and H are
part of an integration sector as defined above, then variables tG, tH (and possibly further, ti),
and βk exist, and rescaled Symanzik polynomials d̃ can be defined for each of these graphs.
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In this case, d̃G for the full graph cannot depend on tG, but it can depend on tH , while d̃G/H

and d̃H can neither depend on tG nor on tH . Their relationship is the factorization:

d̃G|tH=0 = d̃G/H d̃H . (268)

A similar relationship can be established for the exponent WG appearing in the general
result of the integral (266). Defining WH and WG/H using the same variable transformations
for the sector (C, σ), suitably adapted to the subgraph and reduced graph, the relationship is

WG|tH=0 = WG/H + WH |tH=0 , (269)

if all these quantities are expressed in terms of rescaled variables q̃, ũ, and m̃. This prop-
erty can be established in an elementary way once the exponents are constructed via
incidence matrices.

For the same conditions, a further, more intricate property can also be established and
is important. It is the following property involving derivatives:

d
dtH

d̃−D/2
G eiWG

∣∣∣∣∣
tH=0

= ξHUH

[
d

dtH
d̃−D/2

H eiWH

]

tH=0
· d̃−D/2

G/H
eiWG/H . (270)

Here, UH [X] denotes an insertion operator that effectively inserts its argument X as a
vertex into a bigger graph. To achieve this insertion, the external momenta of the argument
X must become internal momenta of the bigger graph, in this case of G/H . Technically, UH
acts by shifting in its argument the momentum variables q̃

H
by terms involving derivatives

with respect to u-variables for the bigger graph G/H .
This is a statement of pivotal importance for the full proof of the theorem stated

in Section 5.2.1 since it allows relating the divergences of a full graph to divergences of
counterterm graphs and, thus, allows making manifest the cancellation of subdivergences.
It is essentially the content of Lemma 5 of Reference [4].

5.2.7. Ingredient 5: Simple Integrals and Non-Analytic Functions of D− 4

Now, we discuss several simple integrals and special functions that arise in DReg
due to the D dimensionality of spacetime. They encapsulate how the regularization acts,
how divergences arise as 1/(D− 4) poles, and how divergences cancel by adding suitable
counterterms. We set again D = 4− 2ε.

First, we discuss a simple type of integral, defined as

f (z) =
∫ ∞

0
dttz−1g(t) , (271)

where z is a complex variable and g(t) is a C∞ function, which either decreases exponentially
for t → ∞ or which involves the step function θ(1− t) cutting off the integral at t = 1. This
simple integral appears in the general result (266), but also in the one-loop example (257). In all
these cases, the t-integration involves one factor, which is of the form tn−1+2ε, where n is an
integer. This corresponds to the above form for z = n + 2ε. This factor is nonanalytic in t
around t = 0. The remaining t-dependences in Equations (266) and (257) are complicated, but
are C∞ functions in t, which indeed fulfil the requirements on g(t) listed above. In the case of
the tL integration, the remaining integrand exponentially decreases, and in the case of all other
ti integrations, the integration stops at ti = 1.

The above function f (z) is a generalization of the Γ-function, where g(t) = e−t. The Γ-
function is known to have simple poles at z = 0, z = −1, z = −2, . . . . It is easy to see
that the same is true for the more general f (z). Clearly, when for Re(z) > 0, the integral
defining f (z) converges and defines an analytic function. To study negative Re(t), we can
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add to and subtract from g(t) a Taylor polynomial ∑ g(k)(0)tk/k!, where g(k) denotes the
k-th derivative. Integrating this polynomial from 0 to 1, we obtain

f (z) =
∫ ∞

0
dttz−1

[
g(t)− θ(1− t)

n

∑
k=0

g(k)(0)
k!

tk

]
+

n

∑
k=0

g(k)(0)
k!

1
z + k

. (272)

For any non-negative integer n and for Re(z) > 0, the value and convergence prop-
erties of the integral are not changed. However, the square bracket behaves like tn+1 for
small t; hence, the integral now converges even for negative z, as long as Re(z) > −n− 1.
Hence, this formula represents an analytic continuation of f (z) onto the entire complex
z plane. It makes also manifest that this analytically continued f (z) has single poles at
z = −0, z = −1, z = −2, . . . .

We can rewrite the result in the form of an integration rule for the typical t-integrals
appearing in DReg by replacing z = −n + 2ε with integer non-negative n and ε ≈ 0. We
then have the rule:

∫ ∞

0
dtt−n−1+2εg(t) =

1
n!

(
d
dt

)n
g(t)

∣∣∣∣∣
t=0

1
2ε

+ regular expression , (273)

where the form of the regular expression can be read off from Equation (272). The t-integrals
in the general formula (266) are to be analytically continued in this way. Hence, this rule
immediately shows that any t-integration can only lead to single 1/ε-poles and not to more
complicated divergences as ε→ 0.

Next, we consider two special simple classes of nonanalytic functions of t. They are
defined as the two kinds of sets (for integer K, L):

K < L : JL
K =

{
f (t, ε) =

c1t2ε + . . . + cLt2Lε

εK = finite for ε→ 0
}

, (274a)

K ≤ L : J̃L
K =

{
f (t, ε) =

c0 + c1t2ε + . . . + cLt2Lε

εK = finite for ε→ 0
}

. (274b)

In the definitions of the sets, the lower index K refers to the ε-power in the denominator,
and the upper index L can be thought of as the loop number at which the functions become
of interest. The coefficients ci are arbitrary except for the constraint that the defined
functions are finite for ε→ 0.

Let us illustrate how such functions can appear by considering a 2-loop diagram G with
a 1-loop subdiagram H. We imagine a calculation not only of the diagrams themselves, but
of the entire renormalization procedure, taking into account suitable counterterm diagrams
canceling subdivergences. In the imagined calculations, we use the general formula (266).
If the one-loop diagram H is computed in isolation, it involves one t1-integral whose
essential nonanalytic part is simply

t2ε
1 ∈ J1

0 , (275)

which is an element of the set J1
0 and which may be attributed to the D-dimensional measure.

The result of the t1-integration via the rule (273) then leads particularly to a 1/(2ε) pole,
and a counterterm for diagram H can be defined that cancels this divergence. In the 2-loop
calculation of G, the 1-loop diagram H appears as a subdiagram with corresponding t1
integration. Here, the t1 variable is accompanied by ξ1, which is here simply ξ1 = t2.
After the t1 integration, the nonanalytic factor ξ2ε

1 remains and combines with the 1/(2ε)
pole. In the corresponding counterterm diagram, where the subdiagram H is replaced by
the counterterm canceling its 1/(2ε) pole, there is no t1 integration and no appearance of
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the variable ξ1. Therefore, after the t1 integration and after combining with the counterterm
diagram canceling the subdivergence, a combined function:

t2ε
2 − 1

2ε
∈ J̃1

1 (276)

appears. The finiteness of functions in the set J̃1
1 reflects the successful cancellation of the

subdivergence. Proceeding with the computation of the two-loop diagram G, this function
is combined with the measure factor, such that the interesting nonanalytic part of the
t2-integrand is

t2ε
2

t2ε
2 − 1

2ε
∈ J2

1 . (277)

This example illustrates the general idea: Functions in JL
K are the functions that actually

appear as the nonanalytic factors in the tL integrations at the L-loop level during the
renormalization procedure. After carrying out a tL integral and after combining with the
suitable counterterm contribution, a function in the set J̃L

K+1 appears. At the next loop level,
the integrand needs to be prepared by suitable rearrangements and combined with the
measure factor t2ε

L+1 to produce a function of the set JL+1
K+1, and so on.

For this reason, it is helpful to study the properties of functions in these sets on their
own, before tackling the actual loop integrations. Some particularly useful properties are
as follows:

(i) Any function f ∈ JL
K has the limit f (t, 0) = const× (ln t)K.

(ii) For a function f ∈ JL
K, the integral

∫ t
1

dt′
t′ f (t′, ε) produces an element of the next

set J̃L
K+1.

(iii) The converse is also true, i.e., every element of J̃L
K+1 can be written in terms of such

an integral.
(iv) A function f ∈ JL

K where the first argument is a product can be factorized as f (ξt, ε) =

∑j f1j(ξ, ε) f2j(t, ε), where all functions on the right-hand side are elements of fnj ∈ JL
Knj

,
where K1j + K2j = K. This property is obviously important to prepare higher-loop
integrands such that t integrals act on isolated functions depending only on t, not
on ξ.

(v) There is a simple product rule f L1
K1

f L2
K2
∈ JL1+L2

K1+K2
for functions f Li

Ki
∈ JLi

Ki
. This property

is also important on the multiloop level in case a multiloop diagram contains two
disjoint divergent subdiagrams.

The properties can all be proven using elementary integration tricks and l’Hopital’s
rule for limits. Such properties of these functions are the content of Lemma 2 of
Reference [4].

5.2.8. Sketch of Proof by Induction

All explained ingredients are important in the full proof of the central Theorem 1 in
Reference [4] and stated in Section 5.2.1. Here, we give a sketch of this proof. The proof
applies the α parametrization of integrals decomposed into sectors as in Equation (241).
The renormalization procedure is then expressed in terms of the forest formula (250). This
formula provides the basis for an inductive proof, where a graph G and a sector are fixed,
and then, all factors (1− THi ) in the forest formula are successively applied in the correct
ordering. The base case of the induction is provided by the general formula (266). The
induction step needs to carry out the actual integration over one t variable and some β
variables corresponding to the next (1− THi ) factor. The step uses the properties of the
special functions of ε defined in Section 5.2.7, and the relationships between the graph,
subgraph, and reduced graph described in Section 5.2.6.

Obtaining the precise form of the induction hypothesis is highly nontrivial, but it can
be motivated using all the developed insight. It can be formulated as follows. Consider a
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1PI graph G and a sector (C, σ). All the following quantities are specific to this sector, but
for brevity, we will omit all indices denoting this dependence. The graph has LG loops, and
the sector contains LG subgraphs H1, . . . , HLG . Without loss of generality, we assume the
labeling such that the subgraphs are already ordered according to their allowed appearance
in the forest formula (250), such that if Hj ⊇ Hi, then also j ≥ i (the ordering is not unique).
Then, after evaluating L ≤ LG factors in the forest formula, we obtain the expression
(suppressing the dependence on the sector (C, σ)):

RX(G) ≡ (1− THL) · . . . · (1− TH2) · (1− TH1) · G . (278)

This represents a partially renormalized graph where L loops and L subgraphs have
already been treated in previous induction steps. Section 5.2.4 gave arguments that this
expression should have simple divergence properties when acted upon by further THi
operators. Despite this, the partially renormalized expression on its own clearly can have
a very complicated analytical structure and can still have non-polynomial divergences,
which the proof needs to deal with. The label X denotes the set of all subgraphs that
have already been treated, and we also define X0 as the subset of X, which contains only
maximal subgraphs, i.e.,

X = {H1, . . . , HL} , X0 = {M1, . . . , MS, HL} , (279)

where it is used that HL itself is necessarily a maximal subgraph in X and where names
have been given to all other elements of X0.

The induction hypothesis states that, after evaluating all ti and βk integrals corre-
sponding to lines in the already treated graphs in X, we obtain

RX(G) = sum of terms like
∫

≥L+1
∏

M∈X0

ξ
−ωM
M f̃M(ξM, ε)gG,X

∣∣∣∣∣
ũ=0

, (280)

where the integration factors for the remaining integrals are abbreviated as

∫

≥L+1
= cLG−L

D

∫ LG

∏
i=L+1

dti
ti
(tiξi)

−ωH̄i
+2ε

∫
∏

k∈G/X0

dβkZ̃Hi . (281)

Here, the integration boundaries of the ti and βk integrals are as in Equation (266),
and the notation k ∈ G/X0 corresponds to all indices k corresponding to any line outside the
already treated graphs in the set X. In the product over the maximal subgraphs M (which
includes the case M = HL), each M is equal to one particular Hj(M), and for simplicity, we
identified the indices ξM ≡ ξ j(M).

We provide the following comments on the induction hypothesis:

• The “sum of terms like” refers to the expression in the integrand, which really is of
the form ∑a ∏M f̃M,agG,X,a. Since the proof can be carried out for each such term, we
drop the index a and this summation.

• The integration variables ti and βk and the ũk variable for the already treated graphs
do not exist anymore, since they have been integrated over/set to zero. Hence, the
only appearing ti, βk, and ũk are the ones for i = L + 1, . . . , LG and for k ∈ G/X0 .

• The sets of physical variables q̃
Hi

, m̃Hi and the remaining ũHi (for Hi /∈ X) are rescaled
only by the remaining tis, i.e., Equation (262) applies in a modified form where, on the
right-hand side, ti = 1 ∀i ≤ L and where the ũHi for i ≤ L do not exist.

• The particularly nontrivial and interesting part of the statement is the integrand in
Equation (280). It displays the analytic structure of the partially renormalized graph
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and the result of all the evaluated ti and βk integrals. The result is a product of
functions f̃M, which are nonanalytic in the remaining ti, and the function gG,X .

• Each function f̃M is an element of a set J̃L
K with K ≤ L. These functions are thus

nonanalytic in the remaining ti, but have a finite limit for ε → 0, reflecting the
successful subtraction of subdivergences. The functional form of each f̃M is further
specific to the chain of subgraphs XM = {H′ ⊆ M, H′ ∈ C} and does not depend
on any details of graphs or a part of graphs outside M. Only the argument ξM has a
dependence on ti variables corresponding to bigger graphs.

• The function gG,X carries the complicated dependence on all physical variables and all
other ti and βk variables. gG,X is C∞ in all these remaining integration variables and
all the physical variables q̃

Hi
, m̃Hi , and ũHi rescaled as defined above. It is analytic in ε,

again reflecting the cancellation of subdivergences, and it has no explicit dependence
on tLG corresponding to the full graph G (except for the product t2

LG
ε, similar to

Equation (256)). Its functional form is specific to the full graph G and the treated
graphs Hi ∈ X.

The induction base case is the one where L = 0 and no subgraph has been treated yet.
In this case, the sets X and X0 are empty, andRX(G) simply refers to the unrenormalized
result TG. The form of the unrenormalized result is given in Equation (266), and it directly
confirms the induction hypothesis (280) with gG,∅ = 2LG d̃−D/2eiWG .

For a sketch of the induction step, we assumed L ≥ 1 and assumed the partial
renormalization was carried out up to loop number L− 1 and that the induction hypothesis
holds at loop number L− 1. It is then useful to introduce the notation for the previously
treated subgraphs and previously treated maximal subgraphs. We write

X′ = {H1, . . . , HL−1} X′0 = {m1, . . . , ms} ∪ {M1, . . . , MS} , (282)

and we keep the definitions of Equation (279) such that X = X′ ∪ {HL} and such that the
subgraphs mi are the maximal subgraphs of HL. The remaining subgraphs are HL, as well
as Hi with i ≥ L + 1; the lines and βk are the ones with k ∈ G/X′0

or, equivalently, the
ones with k ∈ G/X0 or with k ∈ H̄L. The induction hypothesis for loop number L− 1 can,
therefore, be cast into the form:

RX′(G) = sum of terms like
∫

≥L+1
∏

M∈X0\{HL}
ξ
−ωM
M f̃M(ξM, ε)

× cD

∫ dtL
tL

(tLξL)
−ωH̄L

+2εZ̃HL

∫
∏

k∈H̄L

dβk

×∏
mi

ξ
−ωmi
mi f̃mi (ξmi , ε)gG,X′

∣∣∣∣∣
ũ=0

. (283)

In this way of writing, the role of the graph HL, which is to be treated next, is exhibited,
while the factors in the first line contain the same integration factors and almost the same
f̃M factors as Equation (280). The physical variables appearing here inside Z̃Hi and gG,X′

are rescaled with all ti for i ≤ L, and all comments made for the induction hypothesis apply
with suitable modifications.

In the induction step, we need to assume the validity of Equation (283) and carry
out the next step, construct RX(G), and prove that it takes the form (280) with all listed
properties. The construction involves the evaluation of all integrals in the last two lines of
Equation (283). It also involves the application of the next subtraction operator (1− THL),
which also only affects the last two lines of Equation (283), in particular because the
integration factors

∫
L+1 stay unchanged if the subgraph HL is replaced by its counterterm.

We begin with several immediate simplifications of the factors in the last two lines
of Equation (283). First, we observe that all the ξmi in the last line are equal to each other,
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and they are equal to ξmi = tLξL. The reason is that the ξmi are the products of tj for
all subgraphs in C that contain mi and that the mi are maximal subgraphs of HL. One
consequence is that the ωH̄L

- and ωmi -dependent terms combine simply to (tLξL)
ωHL . A

less trivial consequence is that all nonanalytic functions and the measure factor for tL can
be combined as

fHL(tLξL, ε) = (tLξL)
2ε ∏

mi

f̃mi (tLξL, ε) , (284)

which is an element of the set JL
K for some K < L thanks to the properties of the functions

discussed in Section 5.2.7. Second, after the βk integrations and after applying the derivative
operator Z̃HL and setting ũHL = 0, we obtain

ḡG,X′ = Z̃HL

∫
∏

k∈H̄L

dβkgG,X′

∣∣∣∣∣
ũHL=0

. (285)

This function is still C∞ in the remaining variables and analytic in ε. Hence, the last
two lines of Equation (283) can be written as

cD

∫ dtL
tL

(tLξL)
−ωHL fHL(tLξL, ε)ḡG,X′ . (286)

The more difficult part of the induction step is the evaluation of the tL integral and
the application of the (1− THL) subtraction operator. Two cases need to be distinguished.
The first case is when the next step is the final step of renormalization, i.e., when L = LG
and HL = G. The second case is when L < LG and HL is still a proper subgraph of the full
graph G.

To sketch the first case with L = LG and HL = G, we note that, in this case, the second
line of Equation (283) is just the factor one, since there are no remaining integrations and
there are no other maximal subgraphs M. Likewise, the remaining ξL = 1, and from the
induction hypothesis, we know that the variable tL = tLG does not appear explicitly in
ḡG,X′ ; this variable only enters via rescaled physical variables q̃Hi and m̃Hi , i.e., via the
products of tL and physical momenta and masses. Plugging in the general form of the
function fHL yields a sum of terms as

∑
n

cnt2nε
L

εK ḡG,X′ , (287)

which need to be integrated over tL with the measure
∫

dtLt
−ωHL−1
L . This integral is

performed via the general rule (273). This rule leads to a regular expression and a singular
term. The regular expression can be shown to be analytic in ε and C∞ in all other variables.
The singular term contains poles in ε and takes the form:

∑
n

cn

2nεK+1
1

ωHL !

[(
d

dtL

)ωHL
ḡG,X′

]

tL=0
. (288)

This singular term can be shown to have all desirable properties. The poles in ε are at
most of degree 1/εLG . The coefficients are polynomials in the physical variables, masses,
and momenta, of degree ωHL . Here, and in Reference [4], the factor of the dimensional
regularization scale µ2ε is omitted from the definition of renormalized amplitudes. If this
factor is included, it is also possible to prove that the divergent polynomial is independent
of µ. It is, therefore, possible to define the subtraction operator (1− TG) for this sector
such that it subtracts this polynomial divergence; the resulting finite remainder satisfies all
properties listed after the induction hypothesis (280). It is further possible to define the full
divergent part of the full diagram, TRG, as the sum of all these singular terms arising in
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this way in all sectors. This object has all properties required for a possible contribution to
a counterterm Lagrangian: in position-space, it is local; it has the correct power-counting
degree; its value depends only on the graph G and not on its embedding into bigger graphs.

Finally, we also sketch the remaining induction step for the case L < LG and HL 6= G. Here,
evaluating the tL integral and applying the subtraction operator (1− THL) to Equation (286)
lead to three terms: the regular expression from the tL integration, the singular expression from
the tL integration, and the counterterm contribution from THL , where THL is defined via the
full renormalization of the graph HL in isolation. All terms need to be rearranged by using the
properties of the f functions discussed in Section 5.2.7, in particular of the factorization property
of these functions. Furthermore, the singular expression of the tL integration has to be rearranged
by using properties such as (270) for the relationships between graphs, subgraphs, and reduced
graphs. In these ways, it is possible to show that the combination of all terms acquires the form
of the induction hypothesis (280) and that all announced properties are fulfilled.

In this way, all properties announced in Section 5.2.1 are established, except for
the equivalence to BPHZ. Illustrating this point requires comparing the structure of the
appearing integrals in the DReg and the BPHZ approaches. For this, we refer to the original
literature [4,22].

6. Renormalization and Symmetry

In the preceding section, we saw how the renormalization program allows subtracting
the divergences from Feynman diagrams. Importantly, the subtraction terms are polyno-
mials in momenta constrained by power counting, and the subtraction is equivalent to
adding certain counterterms to the Lagrangian. By choosing a certain renormalization
scheme, the remaining ambiguities of finite counterterms can be fixed, and the Lagrangian
supplemented by those counterterms defines a finite four-dimensional theory.

In this section, we consider the problem of renormalization in the presence of symme-
tries, specifically gauge invariance. On the one hand, symmetries put additional restrictions
on certain quantities, which allows for simplifications. On the other hand, we also have
to ask about the compatibility of symmetries and regularization and whether they can be
restored if intermediately broken. Since regularization may, in general, spoil the classical
symmetry, we shall require its validity as part of the definition of our theory. The sym-
metry of interest for us is gauge invariance promoted to BRST invariance as described in
Section 2.3. On the level of Green functions, this symmetry is implemented by the Slavnov-
Taylor identity as described in Section 2.5. In a more compact notation (cf. Equation (92)), it
can be written as

S(Γren) =
∫

d4x
δΓren

δφ(x)
δΓren

δKφ(x)
!
= 0. (289)

Here, we assumed for simplicity that all symmetry transformations, i.e., both linear
and nonlinear, are coupled to sources Kφ. The Slavnov–Taylor identity is the pivotal tool in
the proof of the renormalizability of quantized Yang–Mills gauge theories, including the
proof that the quantum theory actually is physically sensible.

The first proofs of the renormalizability of non-Abelian gauge theories were given by
’t Hooft, Lee, and Zinn-Justin in References [125–130], all employing various versions of
Slavnov–Taylor identities. These proofs establish not only the finiteness and validity of the
Slavnov–Taylor identity, but also the interpretation of the quantum theory with a unitary
and gauge-fixing independent S-matrix defined on a Hilbert space of quantum states with
a positive norm. Later, the proofs were generalized by Becchi, Rouet, Stora, and Tyutin
(BRST) to the case where nothing is known about the symmetry properties of the employed
regularization scheme, establishing the approach of algebraic renormalization [41–44]; see
also the reviews by Piguet/Rouet and Piguet/Sorella [47,119]. A particularly satisfactory
formulation was achieved with the Kugo/Ojima formalism [45], where the existence of a
nilpotent operator QB was derived from the Slavnov–Taylor identity. QB generates BRST
transformations on the level of asymptotic states, and its role on the level of quantum states
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is similar to the role of the BRST operator s on the classical level; see Equations (46)–(49). It
may be used to define the physical Hilbert space as the quotient space:

Hphys = (ker QB)/(im QB) . (290)

Hence, two states are equivalent if they differ by a total QB-variation. A single state is
called physical if QB|ψ〉 = 0, provided it is not some total variation, i.e., |ψ〉 6= QB|χ〉 for
some |χ〉, in which case it would be equivalent to the zero vector. The fields act Lorentz
covariantly on the whole space including unphysical states, and because of the Slavnov–
Taylor identity, QB commutes with the S-matrix. Hence, the physical S-matrix defined on
the physical Hilbert space maps physical states to physical states; it is Lorentz-invariant,
unitary, and causal. All these properties can be shown in a very elegant way [45]. We thus
see that, if we make sure that the Slavnov–Taylor identity is obeyed after renormalization,
we are guaranteed a consistent quantum field theory.

Hence, the logic now is the following. In Section 2, we defined gauge theories that
classically satisfy the BRST symmetry. Then, we established dimensional regularization
as a framework for treating such theories perturbatively in loop orders. Now, we are
in a position to define our renormalized theory with the fundamental Slavnov–Taylor
identity intact and study the possible obstructions posed by regularization. To this end, we
shall first discuss the counterterm structure for manifestly preserved symmetries during
renormalization in Section 6.1. Then, in Section 6.2, we give a brief overview of the field of
algebraic renormalization, which is the appropriate setting in which to discuss the breaking
and restoration of symmetries. Finally, we discuss how the general analysis of algebraic
renormalization can be specialized to the case of dimensional regularization in Section 6.3.

6.1. Counterterms in Symmetry-Preserving Regularization

We first recall the simple case where a symmetry is manifestly preserved at all steps
of the calculation. This is the standard case often encountered in textbook discussions
and practical calculations using DReg in QED and QCD, for reasons described already in
Section 4.3. There, one frequently uses so-called renormalization transformations of the
generic form:

g→ g + δg (291a)

φi →
√

Zij φj, (291b)

for coupling constants g and quantum fields φi with associated parameter and field renor-
malization constants δg and δZij = Zij − δij. The renormalization constants are to be
understood as power series in loop orders or, equivalently, in the renormalized parameters.

This procedure is applied onto the classical action S0 and, thereby, defines a bare action
Sbare (cf. (109)), itself giving rise to the counterterm action:

Sct = Sbare − S0. (292)

The divergent parts of these generated counterterms cancel the UV divergences of
loop diagrams, and the finite parts of the counterterms can be used to fulfil certain renor-
malization conditions, as mentioned in Section 3.1.

In terms of the Slavnov–Taylor identities, the standard case is expressed by the statement

S(Γreg) = 0, (293)

which, as explained in Section 4.3, means that the regularized Green functions already
satisfy the Slavnov–Taylor identity. If applicable, similar equations should hold for other
identities such as the ones discussed in Section 2.6 (e.g., ghost equation). This is indeed the
case in QED and QCD in DReg at all orders. The basis of this statement was explained in
Section 4. The manifest symmetry at the regularized level (293) has two implications for the
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structure of renormalization. First, the possible divergences are restricted by Equation (293),
which, in turn, also restricts the structure of counterterms needed to cancel divergences.
Second, possible finite counterterms are also restricted by Equation (293), together with
the ultimate requirement (289) for the renormalized theory. Both implications can be
simultaneously evaluated as follows. Assuming that the theory has been renormalized up
to order O(h̄n−1), we are interested in the O(h̄n)-order counterterms Ln

ct and the O(h̄n)
divergences of the regularized theory. The renormalized theory at order O(h̄n) can be
written as

Γ(n)
ren = Γ(n)

reg,fin + Γn
reg,div + Sn

ct. (294)

For further analysis, it is customary to introduce the linearized Slavnov–Taylor op-
erator sΓ, defined by expanding the Slavnov–Taylor operator S(Γ) for both linearly and
nonlinearly transforming fields φ and Φ, respectively:

S(Γ) =
∫

d4x
δΓ

δKi(x)
δΓ

δΦi(x)
+
∫

d4x sφi(x)
δΓ

δφi(x)
, (295)

as follows:
S(Γ + ζF ) = S(Γ) + ζsΓF +O(ζ2), (296)

for some functional F . Its concrete form is given by

sΓ =
∫

dx
(

δΓ
δKi(x)

δ

δΦi(x)
+

δΓ
δΦi(x)

δ

δKi(x)
+ sφi(x)

δ

δφi(x)

)
. (297)

Of special interest is the case of the classical action Γcl, for which we define

b ≡ sΓcl , (298)

as the linearized Slavnov–Taylor operator based on the classical action. In agreement with
the nilpotency of the BRST operator (49), the algebraic structure of the Slavnov–Taylor
operator leads to two nilpotency relations:

sΓS(Γ) = 0, (299)

sΓsΓ = 0 if S(Γ) = 0. (300)

Substituting the decomposition of Equation (294) into Equations (293) and (289), we
first obtain

b Γn
reg,div = 0. (301)

This establishes the restriction on the possible divergences. Second, we obtain

b Sn
ct = 0, (302)

both for the divergent and the finite parts. The most-general solution of this equation in
terms of admissible counterterm actions yields the counterterm structure, which is sufficient
to cancel the divergences and required to establish the symmetry. The corresponding
calculations were carried out in the original references on the renormalization of Yang–
Mills theories cited at the beginning of this section; textbook discussions can be found, e.g.,
in the textbooks by Zinn-Justin, Weinberg, and Böhm/Denner/Joos [32,34,50].

For most theories of interest including the SM, the outcome is the familiar statement
cited in the beginning (cf. Equation (291)) that all counterterms can be obtained by renor-
malization transformation of the classical action. A second related outcome is then that any
two consistent regularization/renormalization prescriptions that both fulfil the symmetry
requirement (289) can only differ by a reparametrization of the form (291). This latter
result is a stronger statement than the one of Equation (228) because a smaller number of
parameters is affected.
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6.2. Broken Symmetries and Algebraic Renormalization

Now, we turn to the case of interest for, e.g., chiral gauge theories in which the
symmetry is not manifestly preserved by the regularization. This case is characterized by

S(Γreg) 6= 0, (303)

in contrast to Equation (293). Clearly, the required structure of the counterterms is more
complicated. Now, the divergences and required divergent counterterms may be non-
symmetric and not fulfil Equation (301). In this case, one has to determine them by explicit
calculation of the divergences of Green functions instead of reading off their structure from
a renormalization transformation such as (291). In this way, the theory can be rendered
finite despite the broken symmetry (303).

Even on the finite level, the symmetry breaking (303) might still persist. Finite coun-
terterms then have to be determined such that the fully renormalized theory fulfills the
basic requirement (289). In some cases, it can actually be impossible to find such coun-
terterms; the symmetry is then said to be broken by an anomaly. Since we considered the
Slavnov–Taylor identity as part of the definition of the theory, an anomalous breaking of
the Slavnov–Taylor identity means that the theory is inconsistent and not renormalizable.
In cases without an anomaly, it is indeed possible to recover the symmetry by appropriately
chosen finite counterterms.

Even though the precise form of the symmetry breaking depends on the regularization,
it is possible to study the general case of (303) in a regularization-independent way. This
study is the content of algebraic renormalization, pioneered by BRST [41–44]; see also
the reviews [47,119]. The main insight of the procedure is that the possible breakings are
restricted in two ways. On the one hand, they are restricted by the Slavnov–Taylor identity
itself, similar to the possible divergent structures in Equation (301). On the other hand, they
are restricted by a regularization-independent version of the quantum action principle.

Those two restrictions taken together provide a regularization-independent analysis
of the renormalization of gauge theories. In the following, we shall first sketch the quan-
tum action principle in the BPHZ framework of renormalization, where it was originally
established and subsequently used for algebraic analysis, as well as exhibit a connection to
the regularized quantum action principle of DReg. The central point is then to review how
the aforementioned restrictions can be used to restore the broken symmetry by suitable
counterterms provided there are no anomalies.

6.2.1. The Quantum Action Principle in BPHZ

As discussed in Section 5.1, the BPHZ approach to renormalization constituted one of
the first full discussions of all-order renormalization, rigorously establishing the possibility
to obtain finite Green functions and S-matrix elements in agreement with basic postulates
such as causality and unitarity. In this framework, Lowenstein and Lam derived various
theorems now summarized as the quantum action principle [106–110]. The theorems
are similar to the regularized quantum action principle in DReg discussed in Section 4.
The difference is that the theorems discussed here are valid in strictly four dimensions,
for the fully renormalized theory.

Furthermore, this form of the quantum action principle is generally valid not only
in the BPHZ framework, but in all regularization/renormalization frameworks that are
equivalent; hence, it also applies to results obtained using DReg, if the LIMD→4 defined in
Equation (113) has been taken. The algebraic method is based on this general formulation,
and its results hold for all such equivalent frameworks. In BPHZ, finite expressions and the
Gell–Mann–Low formula are defined by an iterative operation on momentum-space inte-
grals whereby Taylor series contributions up to some UV subtraction degree are subtracted
from the integrands, giving finite integrals by power counting. Further, normal products,
i.e., products of fields and their derivatives at the same spacetime point, may be defined
as finite parts of certain Wick-ordered insertions into the Green function. One can derive
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so-called Zimmermann-identities, which linearly relate over-subtracted normal products,
i.e., of a higher UV degree than the canonical operator dimension, to minimally subtracted
ones. These prove a powerful tool in, e.g., deriving field equations and studying anomalies.

A first version of the quantum action principle can be used to express the relation of
some infinitesimal variation of Green functions, or equivalently generating functionals,
with the insertion of a normal product. Reference [107] considered differential vertex oper-
ations (DVOs), which are insertions of integrated normally ordered local field polynomials
into the Gell–Mann–Low formula corresponding to the respective Green function:

∆ · Gi1,...,in(x1, . . . , xn) = 〈0|T
∫

dy N[P(y)]φi1(x1) . . . φin(xn)|0〉. (304)

Then, one can connect the variation of the Green function with respect to some
parameter with those DVOs, i.e., taking some infinitesimal variation as Lint → Lint +

∑k εkPk(x), it follows:
∂Gε

∂εk

∣∣∣∣
ε=0

= i∆ · G. (305)

This result is valid for BPHZ-renormalized disconnected, connected, and 1PI Green
functions and, therefore, also for the corresponding generating functionals.

It can be used to derive the renormalized QAP for a generic parameter of the theory λ:

∂Γ
∂λ

= i∆λ · G, (306)

where ∆λ =
∫

dx N[ ∂L
∂λ ].

There are several further versions of the quantum action principle with regard to
variations of parameters or (external) fields. In particular, References [108–110] established
a version of the action principle with respect to variations of dynamical fields (see, e.g.,
Reference [108], Equation (5.4)). The left-hand side being equal to zero due to the conser-
vation of some current, the resulting relation corresponds to Equation (89) for the more
general case of a non-invariant Lagrangian δL 6= 0 under some symmetry transformation.
It is rigorously established in terms of the generating functional for general Green functions
renormalized in the BPHZ framework, and it can be connected to the generating functional
of 1PI Green functions via Legendre transformation.

Thus, the finite BPHZ framework is a setting in which the formally derived identities
among generating functionals such as the ones described in Sections 4.1 or 2.5 can be given
a sensible all-order meaning.

In addition, in any regularization/renormalization procedure in agreement with the
basic postulates, there is a way to cancel divergences and to obtain finite Green functions.
These may differ from the ones obtained in BPHZ (or any other regularization), but in
view of the theorems discussed in Section 5.1, the differences can only amount to local
counterterms at each order.

In the following, we summarize important statements of the quantum action principle
valid for any such finite Green functions defined via any consistent regularization and
subtraction of divergences. The statements can be cast in a variety of forms, similar to
Section 4.1. Here, we provide the formulation for the effective action Γ, as reviewed in
Reference [47]. First, the equations of motion for the generating functionals can be written as

δΓ
δφi(x)

− ∆i(x) · Γ = 0 . (307)

For variations with respect to the parameters, we have

∂Γ
∂λ

=
∫

dx ∆(x) · Γ . (308)
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As discussed in Sections 2.4 and 2.5, in the case of nonlinear symmetry transformations,
it is useful to couple the composite operators to some external field, say ρa(x). Then, one can
arrive at the following version of the quantum action principle relevant for such nonlinear
symmetry transformations:

δΓ
δρa(x)

δΓ
δφi(x)

= ∆ai(x) · Γ . (309)

In all previous Equations (307)–(309), the quantities ∆ denote insertions of local com-
posite field operators, whose dimensions are bounded by power counting and whose
tree-level value is fixed in terms of the classical expression Γcl. For example, in the case
of Equation (307), ∆i is a local composite field operator whose dimension is bounded by
(D− di), where di denotes the power-counting dimension of the corresponding field φi, and

∆i =
δΓcl
δφi

+O(h̄) . (310)

6.2.2. Comparing Quantum Action Principles in BPHZ and DReg

The quantum action principles discussed in the previous subsection for BPHZ and in
Section 4 for DReg are similar, but different. Here, we briefly comment on their relationship.
The BPHZ version is valid for any regularization/renormalization procedure, including
DReg. However, it is valid for the finite theory, in DReg for the theory after taking LIMD→ 4
as defined in Equation (113). The definition of this limit includes setting evanescent
quantities (such as the (D− 4)-dimensional metric ĝµν) to zero. The insertions ∆ appearing,
e.g., in Equations (309) are always finite, four-dimensional normal product insertions into
the finite Green functions.

In contrast, in the DReg case, the counterpart Equation (205) is valid for general D 6= 4,
including evanescent quantities. In addition, if the identity corresponds to a symmetry
such as the Slavnov–Taylor identity, which is valid at the tree level and in four dimensions,
then the insertion ∆ appearing in Equation (205) is purely evanescent.

It may not be immediately obvious how this can be reconciled with the purely four-
dimensional case of BPHZ. This is, however, important as we shall be making use of general
considerations following from the algebraic framework while working in DReg. In fact,
both versions of the quantum action principle are valid and useful. The BPHZ version
is useful to establish general existence proofs, which we can rely on also within DReg,
but the DReg version is useful for explicit computations since, there, the explicit form of
the insertion ∆ is known.

The key is provided by the Bonneau identities established in References [73,74].
These identities precisely state that the insertion of an evanescent operator in DReg as in
Equation (205) may in the LIMD→4 be rewritten as an insertion of a finite, four-dimensional
operator as in Equation (309). In this way, the BPHZ quantum action principle can also be
rederived from the one in DReg.

On the technical level, the Bonneau relationship also provides the coefficients in the
expansion of evanescent operator insertions in terms of four-dimensional, finite insertions.
They are given by the residue of the simple 1/(D− 4) pole of the insertion of the evanescent
operator into Green functions. The proof is essentially achieved by taking dimensionally
renormalized amplitudesRG associated with a graph G and comparing the vertex inser-
tions ĝµν[Oµν · RG], on the one hand, with the vertex insertions with [ĝµνOµν] · RG, on the
other hand.

At the one-loop level, the Bonneau identities are not surprising since evanescent quan-
tities can only contribute in the LIMD→4 if they hit 1/(D− 4) poles, which, at the one-loop
level, have local coefficients, which may be interpreted as a four-dimensional local opera-
tor. However, their validity lies in their all-order nature. We mention here that Bonneau
identities can also be used to obtain information on renormalization group equations in the
presence of symmetry breakings of the regularization; see, e.g., References [25,28,131].
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6.2.3. Algebraic Renormalization and Symmetry Restoration

With the quantum action principle at our disposal, we can now describe the logic of
the algebraic renormalization of gauge theories. The starting point is the possible breakings
of the Slavnov–Taylor identity (or similar identities) as given by Equation (303) due to
the regularization. The quantum action principle provides a useful tool in restricting
the structure of the breaking and in determining whether the symmetry can be restored,
i.e., whether there are anomalies. For that, we proceed inductively order by order in
perturbation theory. The goal is to determine the required finite, symmetry-restoring
counterterms Sn

ct step by step for each n.
At the lowest order, at the classical level n = 0, the Slavnov–Taylor identity is valid

by construction. This forms the basis of the inductive procedure. Let us then suppose the
theory is renormalized completely; hence, it is finite, and the Slavnov–Taylor identity is
fulfilled at some order n− 1. In addition, at the next order n, the divergences are already
canceled by appropriate singular counterterms. Hence, we have

S(Γ(n),fin
subren) = O(h̄

n), (311)

where we have introduced the notation:

Γ(n),fin
subren = Γ(n)

subren + Sn
sct, (312)

which denotes the effective action finite at order n after subrenormalization and adding
the necessary divergent n-loop counterterms. This quantity corresponds to the set of finite
Green functions for which the validity of the quantum action principle in BPHZ has been
proven, and it can be defined in any other regularization scheme equivalent to BPHZ.

The task is then to study the possible breakings on the RHS of Equation (311), as
well as the possible structure of the counterterms. As mentioned before, the breaking is
restricted in two ways. First, we may employ the quantum action principle to find

S(Γ(n),fin
subren) = h̄n∆ · Γ(n),fin

subren = h̄n∆ +O(h̄n+1). (313)

The important point is that ∆ is a local polynomial in fields and derivatives, also
restricted by power counting. This property was announced in Section 2.5, where the
Slavnov–Taylor identity was formally derived from the path integral.

Second, applying the linearized BRST operator sΓcl ≡ b to Equation (313) using
Equation (299) and extracting the O(h̄n) terms, we arrive at a consistency condition (also
called the Wess–Zumino consistency condition):

b∆ = 0. (314)

Hence, the possible breaking ∆ is restricted very similarly (cf. Equation (301)) to the
possible divergences Γdiv in Section 6.1. Both Γdiv in Equation (301) and ∆ in Equation (314)
are local polynomials restricted by power counting, which are annihilated by b, but Γdiv is
of ghost number 0, whereas ∆ has ghost number 1. Now, one can make a distinction. If ∆ is
a b-exact term, i.e., if there exists another local polynomial ∆

′
with

∆ = b∆
′
, (315)

it is called a trivial element of the cohomology of the BRST operator. In this case, we can
supplement the original action with a new n-loop order counterterm:

Sn
fct = Sn

fct,non-inv + Sn
fct,inv = −∆

′
+ Sn

fct,inv, (316)
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where the last term reflects the freedom to add to the action any finite, symmetric counter-
term, obeying b Sn

fct,inv = 0. Hence, we end up with

S(Γ(n),fin
subren + h̄nSn

fct) = S(Γ
(n),fin
subren) + b h̄nSn

fct +O(h̄
n+1) = O(h̄n+1), (317)

where the last step follows from the induction hypothesis. Compatibility with ghost and
gauge fixing equation was shown in Reference [47].

Hence, under the condition (315), we can find a counterterm action Sn
fct,non-inv that

defines finite, non-invariant counterterms that repair the symmetry. Furthermore, it is
possible to add any number of finite, invariant counterterms to the action as they satisfy
b Sfct,inv = 0 and, hence, do not disturb the STI. These invariant counterterms behave
like the finite counterterms discussed in Section 6.1 and can be used to satisfy certain
renormalization conditions.

One task of the algebraic renormalization program is, therefore, to determine the
most-general solution of the equation b∆ = 0. If all possible solutions are b-exact, then this
constitutes a proof that the Slavnov–Taylor identity can be established at all orders in the
renormalized theory.

However, if we cannot write the breaking ∆ as a b-exact term, the symmetry cannot be
repaired. This is an anomaly. In the case of the Slavnov–Taylor identity, such an anomaly is
disastrous since it destroys the interpretation of the theory as a sensible quantum theory;
see the discussion at the beginning of the present section. Anomalies are thus nontrivial
elements of the cohomology of the b-operator, i.e., expressions that are annihilated by b,
but are not b-exact.

The previous remarks constitute crucial insights into the BRST formalism [41–44].
The analysis of whether a gauge theory is renormalizable, i.e., whether the Slavnov–Taylor
identity can be restored at each order, can be made on a purely classical level, by finding all
possible solutions of Equation (314) and checking whether they are all b-exact.

The actual computation can be found in the original references and in the
reviews [47,119]. It can be sketched as follows. From the Wess–Zumino consistency
condition (314) and the nilpotency of the BRST operator, one can derive a set of equations,
the so-called descent equations. Solving these gives a general expression of the possible
anomalies of a theory. In the present case of interest for a generic Yang–Mills theory, it
can be shown that the consistency condition simplifies to s∆(G, c) = 0 (see, e.g., [47])
with dependence on the gauge and the ghost field only. Writing ∆ as an integrated local
product and solving the descent equations lead to the famous Adler–Bell–Jackiw gauge
anomaly first discovered in References [6–8] (note the different relative sign of the first term
of Equation (318) compared to [47], which comes from a different sign convention in the
covariant derivative; see Equation (6)),

∆ = L× εµνρσTr
∫

d4x ca∂µ

(
−gdabc

A ∂νGρ
b Gσ

c + g2Dabcd
A
12

Gν
b Gρ

c Gσ
d

)
, (318)

where L is a coefficient that can be determined from explicit calculations and which depends
on the theory inputs. The group symbols are given by

dabc
A = Tr

(
Ta

adj
{

Tb
adj, Tc

adj
})

, (319)

and
Dabcd

A = dnab
A f ncd + dnac

A f ndb + dnad
A f nbc, (320)

where Ta
adj denotes adjoint generators under which ghosts and gauge fields transform;

cf. Equation (2). Expression (318) must vanish by itself, i.e., it cannot be absorbed by the
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counterterms, for the theory to be consistent. In the case of a single left-handed fermion, it
can be shown by a one-loop calculation that the anomaly is proportional to

1
2

dabc
A Tr(Ta{Tb, Tc}), (321)

which means that its cancellation depends on an appropriate choice of the matter con-
tent of the theory. The famous Adler–Bardeen theorem guarantees that, if the gauge
anomaly vanishes at one-loop order, it also vanishes at all orders; cf. [47]. The expression in
Equation (321) cannot vanish by itself, but in such a theory with a family of left-handed
fermions, their charges may add up to zero, as is the case in the SM. For some gauge groups
such as SU(2), the above expression vanishes identically due to the vanishing of some
group symbols. Hence, there can be no anomaly.

In summary, we have sketched how algebraic renormalization allows identifying the
general structure of the breaking of the Slavnov–Taylor identity. It constitutes a setting in
which the restoration of the symmetry can be proven to all orders for trivial elements of the
BRST cohomology such as spurious breakings introduced by the BMHV algebra. In the case
of non-spurious breakings, e.g., the gauge anomaly, one can derive explicit conditions for
its cancellation that a sensible theory must satisfy. Further, nonrenormalization theorems,
as in the case of the Adler–Bardeen theorem, can be shown and allow evaluating the gauge
anomaly in a simple way. The main technical tool that serves to establish these findings is
the general quantum action principle valid in many equivalent subtraction schemes. A key
advantage of the algebraic proof is that there is no need for an invariant regularization,
which for, e.g., chiral gauge theories does not exist.

6.2.4. Outlook and Further Remarks on Anomalies and Algebraic Renormalization

At this point, we interject with a brief outlook on anomalies and further applications
of the techniques of algebraic renormalization. Next to the perturbative chiral gauge
anomalies discussed above and discovered in References [6–8], there exist global chiral
anomalies [132] and perturbative mixed gauge–gravitational anomalies [133–135]. A chiral
gauge model can be renormalized only if all these chiral anomalies cancel, which may be
achieved by a proper choice of fermion representations of the chiral model; for example,
see Reference [11] and the references therein. Equation (318) is necessary, but not sufficient
if gravity and nonperturbative effects are taken into account.

Important theories such as the Standard Model of particle physics are renormalizable.
In particular, the electroweak SM was completely treated in algebraic renormalization in
Reference [57], establishing the SM as a fully all-order consistent, renormalizable theory.
Reference [56] gave a similar proof using the background field gauge (see footnote 3),
and Reference [59] gave a similar proof for the supersymmetric SM. These papers comple-
ment earlier extensive discussions of the renormalization of the electroweak SM by, e.g.,
References [60,136]; see also Reference [137].

The validity of the Slavnov–Taylor identity and the techniques of algebraic renormal-
ization can also be used to establish further interesting physics properties of quantum
gauge theories such as the renormalized electroweak SM, e.g., charge universality can be
established based on both gauge choices [48,136]; see also Reference [137] for further dis-
cussions. As another example, the renormalization of the Higgs vacuum expectation values
in spontaneously broken gauge theories can be controlled via a suitable Slavnov–Taylor
identity [138,139].

6.3. Algebraic Symmetry Restoration in the Context of DReg

So far in this section, we have studied the role of symmetries in the process of renor-
malization. If the symmetry is respected by the regularization, this implies a great sim-
plification for the UV counterterms. If it is not, algebraic renormalization constitutes a
general setup that allows identifying symmetry violations and restoring the symmetry.
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Here, we specialize the general procedure to the case of DReg. We use the BMHV scheme
with non-anticommuting γ5 in which gauge invariance may be broken.

6.3.1. Formulation of Symmetry and Symmetry Breaking in DReg

The ultimate symmetry requirement is the Slavnov–Taylor identity expressing the
BRST invariance of the full renormalized theory, Equation (289). In the context of DReg,
this requirement can be formulated as

LIM
D→ 4

(SD(ΓDRen)) = 0. (322)

As defined in Section 3.1, ΓDRen denotes the renormalized effective action, still in
D dimensions, but including all counterterms canceling 1/ε divergences and restoring
symmetries. The limit refers to the operation of letting ε→ 0, as well as putting evanescent
quantities such as ĝµν to zero.

In order to discuss the inductive procedure, we considered some order n and supposed
the theory has been renormalized and all counterterms have been constructed up to the
previous order n− 1. This provides us with

Γ(n)
subren , (323)

again using the notation of Section 3.1. At this point, we know from Section 5 that the
divergences at the n-th order can be canceled by adding a local counterterm action Sn

sct.
It may or may not be true that the divergences follow the simple pattern described in
Section 6.1. In general, we can always write

Sn
sct = Sn

sct,inv + Sn
sct,non-inv , (324)

where the first term corresponds to symmetric counterterms as described in Section 6.1 and
the second term corresponds to whatever other divergent counterterms are required.

After subtracting these divergences, the theory is finite at the order n, and the Slavnov–
Taylor identity may be written as

SD(Γ
(n)
subren + Sn

sct) = h̄n∆D +O(h̄n+1) , (325)

where ∆D is a possible finite breaking term, still evaluated in D dimensions. The subrenor-
malized and finite effective action introduced for the algebraic analysis in Equation (312) is
now given by LIMD→ 4(Γ

(n)
subren + Sn

sct), and the counterpart of Equation (313) is given by
the four-dimensional limit:

LIM
D→ 4

∆D = ∆from Eq. (313) . (326)

This finite quantity ∆ is the one constrained by algebraic renormalization and dis-
cussed after Equation (313). That is, it is a local breaking term that satisfies the Wess–
Zumino consistency conditions and that can be canceled by adding suitable counterterms
(we assumed that there is no genuine anomaly).

The practical question is then how to obtain, first, the breaking term ∆ and, then, the
symmetry-restoring counterterms. There are two strategies for this. The first, obvious
option is to evaluate all Green functions appearing on the LHS of Equation (325) including
their finite parts, plug them into the Slavnov–Taylor identity, and determine the potentially
nonvanishing breaking. This straightforward procedure is convenient in that it operates
on ordinary Green functions. Its drawback is that most finite parts of Green functions—in
particular, parts that are non-polynomial in the momenta—will be in agreement with the
symmetry and, hence, drop out of Equation (325), such that the calculation can become un-
necessarily complicated. Nevertheless, this direct approach has been used in the literature,
e.g., in References [140–144] on applications on chiral gauge theories and supersymmetric
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gauge theories. In the subsequent Section 7.4.1, we will also illustrate this approach with a
concrete example.

A second, alternative approach is provided by using the regularized quantum action
principle in DReg, described in Section 4. This theorem guarantees that we can rewrite the
LHS of Equation (322) as

SD(ΓDRen) = (∆̂ + ∆ct) · ΓDRen. (327)

The possible breaking of the Slavnov–Taylor identity is, thus, rewritten as an operator
insertion of the composite operator ∆̂ + ∆ct, which is defined as

∆̂ = SD(S0) , (328a)

∆̂ + ∆ct = SD(S0 + Sct) , (328b)

In this approach, the breaking ∆ may be computed in terms of the RHS of (327). The ad-
vantage lies in significantly restricting possible nonvanishing contributions. In particular,
∆̂ is evanescent; hence, it can contribute in the LIMD→4 only in combination with the 1/ε
singularities of Feynman diagrams.

The RHS of (327) can be expanded in loop orders as

∆̂ +
∞

∑
i=1

h̄i

(
∆̂ · Γi

DRen +
i−1

∑
k=1

∆k
ct · Γ

(i−k)
DRen + ∆i

ct

)
. (329)

Plugging the previous definitions into Equation (322), we arrive at an equation ex-
pressing the symmetry requirement exactly at the order n:

LIM
D→ 4

(
∆̂ · Γn

DRen +
n−1

∑
k=1

∆k
ct · Γn−k

DRen + ∆n
ct

)
= 0, (330)

for all n ≥ 1. The individual terms in this equation have divergent and finite parts,
but by construction, the entire expression is finite; hence, the cancellation of divergences
may be used as a consistency check of practical calculations. For the determination of
symmetry-restoring counterterms, Equation (330) should be viewed as follows. At the order
n and after subrenormalization and adding divergent n-loop counterterms, everything
in Equation (330) is already known except the finite counterterms of order n. They enter
via ∆n

ct, which in turn depends on the to-be-determined counterterms. The following
subsubsection will make the dependence explicit. Hence, Equation (330) can be regarded
as the optimized defining relation for the symmetry-restoring counterterms in DReg.

We close with the remark that Equation (330) does not fully determine all finite
counterterms. It only determines the required form of counterterms in order to restore the
symmetry. However, Equation (330) is blind to several types of counterterms: finite and
symmetric counterterms (which often correspond to a renormalization transformation as
described in Section 6.1) drop out; such counterterms can, therefore, still be adjusted at will,
e.g., to satisfy the renormalization conditions corresponding to an on-shell or a different
desirable renormalization scheme. In addition, evanescent and finite counterterms also
drop out and may be added to optimize the counterterm action.

6.3.2. Practical Restoration of the Symmetry

Here, we illustrate the blueprint for the practical restoration of the symmetry, if
Equation (330) is used as a basis.
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We begin at the one-loop level and start from the regularized but unrenormalized
effective action Γ(1).14 At the one-loop level, the regularized action plus counterterms, as
well as the symmetry breaking induced by the counterterms at one-loop order are given by

Γ(1)
DRen = Γ(1) + S1

sct + S1
fct , (331a)

∆1
ct = SD(S0 + Sct)

1 = bDS1
sct + bDS1

fct , (331b)

where the last part of the last equation is a specific rearrangement possible at the one-loop
level and where the linearized Slavnov–Taylor operator bD is defined in analogy to b in
Equation (298). The general equations establishing the cancellation of divergences and
symmetry restoration, (330), become

S1
sct + Γ1

div = 0 , (332a)
(
∆̂ · Γ1 + ∆1

ct
)

div = 0 , (332b)

LIM
D→ 4

(
∆̂ · Γ1 + ∆1

ct
)

fin = 0 . (332c)

Compared to the general Equation (330), terms that vanish at one-loop order were
dropped. The quantities that need to be explicitly computed here are the one-loop diver-
gences Γ1

div and the one-loop diagrams with one insertion of the evanescent operator ∆̂,
∆̂ · Γ1. The first of these equations then determines the divergent one-loop counterterms
S1

sct, and the second equation provides a consistency check of the divergences. In view of
Equation (331b), the last line contains bDS1

fct and, thus, determines the symmetry-restoring
one-loop counterterms.

Next, we consider the two-loop order. At the two-loop level, the corresponding
equations for the effective action and the symmetry breaking of counterterms are

Γ(2)
DRen = Γ(2)

subren + S2
sct + S2

fct , (333a)

∆2
ct = SD(S0 + Sct)

2 = SD(S0 + S1
ct)

2 + bDS2
sct + bDS2

fct , (333b)

where the upper index 2 corresponds to extracting the two-loop terms. The last equation
exhibits the appearance of the genuine two-loop counterterms in a way specific to the
two-loop level. The equations corresponding to finiteness and symmetry restoration read

S2
sct + Γ2

subren,div = 0 , (334a)
(
∆̂ · Γ2

subren + ∆1
ct · Γ1 + ∆2

ct
)

div = 0 , (334b)

LIM
D→ 4

(
∆̂ · Γ2

subren + ∆1
ct · Γ1 + ∆2

ct
)

fin = 0 . (334c)

Here, we have to calculate, first, the two-loop divergences to obtain the two-loop
divergent counterterms. Then, we have to calculate diagrams with insertions of ∆̂ up
to the two-loop level (and including one-loop subrenormalization), as well as one-loop
diagrams with insertions of bD-transformed one-loop counterterms. The second equa-
tion must automatically hold and provides a check. The third equation then determines
the genuine finite two-loop symmetry-restoring counterterms bDS2

fct, which appear via
Equation (333b) in ∆2

ct.
In summary, the recipe is as follows:

• UV-renormalize the theory, previously renormalized up to order n− 1, at order n to
obtain the singular counterterms;

14 We slightly simplify the notation and use Γ(1) in the following equations of this subsubsection to denote the
unrenormalized effective action up to one-loop order. According to the general notational scheme defined in

Section 3.1, this could also be called Γ(1)
subren.
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• Calculate genuine n-loop Green functions with one-time insertion of ∆̂ for their diver-
gent and finite part;

• Calculate the k-loop order insertion into (n− k)-loop order graphs, and determine
their divergent and finite contributions;

• Check that the divergences thus obtained sum up to zero;
• Collect the finite contributions, and choose monomials X such that bD X cancels them.

This is always possible, as discussed in the previous subsections.

6.3.3. The Counterterm Lagrangian in the BMHV Scheme

The output of the regularization/renormalization program is the renormalized ef-
fective action and the required counterterm action consisting of singular and finite coun-
terterms. In the context of the BMHV scheme, the previous subsections showed that the
counterterm action can, in general, contain five different kinds of terms:

Sct = Ssct,inv + Ssct,non-inv + Sfct,inv + Sfct,restore + Sfct,evan. (335)

This equation is a more detailed version of the generic decomposition explained in
Section 3.1 into singular and finite counterterms. For both the singular and the finite coun-
terterms, we may isolate a symmetry-invariant piece, which has the pattern of symmetric
counterterms discussed in Section 6.1 and typically corresponds to counterterms generated
by a renormalization transformation as

S0
ren. transf. (291)−→ S0 + Ssct,inv + Sfct,inv. (336)

In general, the conditions of Section 6.1 are not met, and symmetry-violating countert-
erms are required. Accordingly, the next type of counterterms

Ssct,non-inv

corresponds to additional singular counterterms needed to cancel additional 1/ε poles
of loop diagrams that cannot be canceled by symmetry-invariant counterterms. They
may be evanescent and, starting from the two-loop order, also four-dimensional (non-
evanescent). They cannot be obtained by renormalization transformations. We note that
the subtraction of evanescent 1/ε poles is a necessity for the consistency of higher orders
(see also Reference [5] for a review discussing this point).

Next,
Sfct,restore

corresponds to finite counterterms needed to restore the Slavnov–Taylor identity and, thus,
the underlying gauge invariance. They are the central objects of the present discussion and
the outcome of the practical recipe of Section 6.3.2. Determining these counterterms is one
of the key tasks in the usage of the BMHV scheme. Once those counterterms are found,
the theory can be considered to be renormalized.

As mentioned before, the symmetry-restoring counterterms are not unique. Clearly,
they may be modified by shifting around any symmetry-invariant counterterm between
Sfct,inv and Sfct,non-inv, since invariant terms would drop out of Equations (330), (332c)
and (334c). The overall sum of Sfct,inv + Sfct,non-inv can only be fixed by imposing a renormal-
ization scheme (such as, e.g., the on-shell scheme), and the split into Sfct,inv and Sfct,non-inv
can only be fixed by picking a convention. To illustrate this point, let us assume the
counterterm Lagrangian must contain a non-gauge-invariant term zAµ� Aµ, where z is a
coefficient and Aµ a gauge field. Two different options for the counterterm Lagrangians
would then be

Lfct,non-inv = zAµ� Aµ, Lfct,inv = δZ(Aµ� Aµ + (∂A)2), (337a)

Lfct,non-inv = −z(∂A)2, Lfct,inv = (δZ + z)(Aµ� Aµ + (∂A)2). (337b)
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The invariant counterterm here corresponds to an invariant counterterm generated
by a field renormalization from the usual gauge-invariant kinetic term FµνFµν. According
to the assumption, both options restore the symmetry, and they lead to the identical
renormalized theory. The field renormalization constant δZ can be used to adopt a desired
renormalization condition.

Finally,
Sfct,evan

corresponds to additional counterterms that are both finite and evanescent. Adding or
changing such counterterms can change, e.g., a purely four-dimensional counterterm
Aµψ̄γ̄µψ to a fully D-dimensional counterterm Aµψ̄γµψ. These counterterms vanish in the
four-dimensional limit, but they can affect calculations at higher orders. They also drop
out of Equations (330), (332c) and (334c). Hence, one viable option is that the symmetry-
restoring counterterms Sfct,restore are always defined by using strictly four-dimensional
quantities only. However, this is not the only option; in concrete cases, elevating four-
dimensional terms to fully D-dimensional ones may simplify the expressions appearing at
higher orders. At any rate, each such choice generates a different, valid, renormalized theory.
From a practical point of view, it is desirable to make a computationally simple choice.

7. Practical Treatment of Chiral Gauge Theories in the BMHV Scheme of DReg

In recent years, the treatment of chiral gauge theories with the non-anticommuting γ5
BMHV scheme has received increasing interest. Applications in the SM at the multiloop
level and in effective field theories with additional operators involving chiral fermions
have become more important; see, e.g., the discussions in [137,145–147]. Accordingly, the
usefulness of regularization/renormalization schemes for which ultimate consistency is
fully established is becoming more appreciated. After the pioneering one-loop discussion
of gauge theories with chiral fermions in References [131,148], Reference [25] extended the
analysis to general chiral gauge theories including scalar fields and Yukawa couplings to
chiral fermions. Reference [26] pioneered the application of the BMHV scheme to chiral
gauge theories at the two-loop level with a first, Abelian example. Reference [27] extended
the one-loop analysis to the case of the background field gauge fixing and to the full
gauge–fermion sector of the electroweak SM.

In this section, we give concrete illustrations of how to treat chiral gauge theories in
the BMHV scheme with non-anticommuting γ5. The discussion is based on our results
in [25,26]. The following Section 7.1 provides an extended overview of the procedure and a
guide for the present section.

7.1. Overview and Guide to the Present Section

In Section 2, we discussed the basic defining gauge invariance of gauge theories and
reformulated it in terms of BRST symmetry and the Slavnov–Taylor and Ward identities.
In Section 6, we explained how these symmetry identities are elevated to defining properties
of the renormalized theory at higher orders. For the gauge theories we study here,
it is known that these defining symmetry identities can be fulfilled in any consistent
regularization/renormalization procedure, by appropriately defining the counterterms.
In Section 3, we explained the definition of dimensional regularization and the BMHV
scheme for γ5, which in general breaks gauge invariance in the presence of chiral fermions.
In Section 5, we explained the proof that dimensional regularization constitutes one of the
consistent regularization/renormalization procedures.

As a result, it was in principle established that the dimensional regularization including
the BMHV scheme for γ5 may be used for chiral gauge theories. Further, Section 6.3 also
provided a blueprint for how to determine the required counterterm structure in concrete
calculations. In this section, we carry out such concrete calculations and illustrate all
required steps in detail.

In the Abelian chiral gauge theory defined below, we expect the validity of simple
QED-like Ward identities; the simplest one corresponds to the transversality of the photon
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self-energy. It turns out that, in the BMHV scheme, the actual one-loop self-energy violates
this transversality (see Equation (372)). The violation affects both the divergent and the
finite part in the BMHV scheme of dimensional regularization. The breaking, however, is a
polynomial in the momentum; hence, it can be canceled by adding a local counterterm to the
Lagrangian—in line with the general existence statement mentioned above. After adding
this counterterm, the required transversality is fulfilled. The concrete required form of the
counterterm can be found in Equations (376) and (378).

A question is then what is the most-efficient way to determine such symmetry break-
ings in general. Answers were given in Section 6.3.1 and can be illustrated as follows. One
way in principle is to explicitly evaluate all Green functions and test the validity of all Ward
and Slavnov–Taylor identities between all Green functions. The explicit computation of the
non-transverse terms in Equation (372) provides an example. Given that there are, in prin-
ciple, infinitely many identities between Green functions and given that the computation
of Green functions involves also complicated non-local terms that cannot contribute to the
symmetry violation, this strategy is not the most efficient.

Section 6.3.1 also explained a shortcut that is based on the regularized quantum action
principle of dimensional regularization discussed in Section 4. Staying with the example of
the photon self-energy, the terms violating the transversality in Equation (372) and then in
Equation (374) may be equivalently obtained by computing one special Feynman diagram,
shown in Equations (381) and (382). This diagram involves an insertion of the operator ∆̂,
which reflects the breaking of chiral gauge invariance in D dimensions, and the quantum
action principle guarantees that the evaluation of this diagram reproduces directly the
breaking of the transversality of the photon self-energy. The simplification is threefold:
First and foremost, since ∆̂ is evanescent, only the ultraviolet divergent part of the diagram
can contribute—hence, the evaluation is simpler (the degree of simplification dramatically
increases for more complicated Green functions and at higher orders). Second, in the general
case, there are much fewer diagrams with insertions of ∆̂ than ordinary diagrams. Third,
since only divergent parts contribute, it is clear that the symmetry breaking/restoration
procedure requires only the computation of power-counting divergent diagrams with
insertions of ∆̂.

This more efficient, but less obvious strategy based on the quantum action principle
was applied to chiral gauge theories at the one-loop level in References [25,27,131,148] with
and without the scalar sector and to an Abelian chiral gauge theory at the two-loop level
in Reference [26]. It was also applied to the case of supersymmetric gauge theories in the
context of dimensional reduction at the two- and three-loop level in References [102,105].

In the largest part of the present section, we focus on the simpler case of an Abelian
chiral gauge theory. We begin in Section 7.2 by defining the considered model and collecting
all relevant symmetry identities. Then, we discuss the subtleties in the continuation to D
dimensions and determine the insertion operator ∆̂. Section 7.3 provides a more technical
overview of the procedure to determine the symmetry-restoring counterterms than the
previous remarks. In Section 7.4, we then discuss the explicit computations in the Abelian
model in detail. We begin with the case of the photon self-energy mentioned above
and illustrate both strategies to determine the symmetry-restoring counterterms, then
we progress to other Green functions and to the two-loop level. Thereafter, Section 7.5
discusses the case of non-Abelian Yang–Mills theories and presents explicit calculations
and results at the one-loop level.

7.2. Definition of an Abelian Chiral Gauge Theory

Here, we define a concrete Abelian chiral gauge theory, which will be used in explicit
calculations. It is first defined in four dimensions along with its symmetry requirements in
Section 7.2.1; then, the definition is extended to D dimensions within the framework of the
BMHV γ5 scheme, and the resulting BRST symmetry breaking is exhibited in Section 7.2.2.
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7.2.1. Chiral Electrodynamics in Four Dimensions

Following Section 2.6, the four-dimensional classical Lagrangian for quantum electro-
dynamics (QED) is given by

LQED = iψi /Dijψj −
1
4

FµνFµν −
1

2ξ
(∂µ Aµ)2 − c̄∂2c + ρµsAµ + R̄isψi + Risψi, (338)

with the U(1) ghost and external BRST sources included. In contrast to Section 2.6, we
already integrated out the Nakanishi–Lautrup field B(x), i.e., we used B = −(∂µ Aµ)/ξ
already in the Lagrangian. The only generator in this theory is the real and diagonal charge
Qij = Qiδij, so that the covariant derivative reads

Dµ
ij = ∂µδij + ieAµQij . (339)

We now define a similar, but chiral Abelian gauge theory. We separated the fermionic
content into left-handed and right-handed chirality parts:

ψR/L = PR/Lψ, PR/L =
1± γ5

2
, (340)

and allowed only purely right-handed fermions to appear as dynamical fields. This was
a choice made to simplify the discussion, e.g., the U(1)Y sector of the SM contains both
left-handed and right-handed fermions with different gauge quantum numbers. It could
be treated similarly. The four-dimensional and purely right-handed classical Lagrangian of
the model then reads

LχQED = iψRi /DijψR j −
1
4

FµνFµν −
1

2ξ
(∂µ Aµ)2 − c̄∂2c + ρµsAµ + R̄isψRi + RisψRi, (341)

where the interaction, coupling only to the right-handed fermions, is defined by the covari-
ant derivative as

Dµ
ij = ∂µδij + ieAµYRij . (342)

Emphasizing the similarity with the U(1)Y sector of the Standard Model, we call the
generator YRij = YRiδij the hypercharge. It can be seen that the left-handed fermions ψL are
now decoupled from the theory. In order to avoid triangle anomalies, we need to impose
the following additional anomaly cancellation condition to the hypercharge:

Tr(Y3
R) = 0 . (343)

Following Section 2, the nonvanishing BRST transformations for this model are

sAµ = ∂µc , (344a)

sψi = sψRi = −i e cYRijψR j , (344b)

sψi = sψRi = −i e ψR jcYR ji (344c)

sc = B ≡ −1
ξ

∂A, (344d)

where s is the nilpotent generator of the BRST transformations, which acts as a fermionic
differential operator. This four-dimensional tree-level action:

S(4D)
0 =

∫
d4xLχQED (345)

satisfies the following Slavnov–Taylor identity:

S(S(4D)
0 ) = 0 , (346)
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where the Slavnov–Taylor operator, with the field content we considered, was already
given in Equation (106).

At this point, we emphasize two additional functional identities that hold in four dimen-
sions and that were derived and discussed in Section 2.6. The first is the ghost equation:

(
δ

δc̄
+ ∂µ

δ

δρµ

)
S(4D)

0 = 0 . (347)

The second is the functional form of the Abelian Ward identity:
(

∂µ δ

δAµ(x)
+ ieY j

R ∑
Ψ
(−1)nΨ Ψ(x)

δ

δΨ(x)

)
S(4D)

0 = −�B(x) , (348)

suitably adapted to the present theory χQED and its field content. The summation extends
over the charged fermions and their sources, Ψ ∈ {ψR j, ψR j, Rj, R̄j} and nΨ ∈ {0, 1, 0, 1}.
Here, we kept the Nakanishi–Lautrup field B(x) explicitly. However, one could integrate it
out here as well using B = −(∂µ Aµ)/ξ.

Functional relations such as the ghost equation and the local Ward identity are part
of the definition of our theory in four dimensions. Once we perform the regularization
and renormalization procedure, the requirement that those identities still hold imposes
important restrictions, as we will soon see in the explicit loop calculations. However, first,
we extend the model to D dimensions and examine the consequences of this extension.

7.2.2. Definition of Chiral Electrodynamics in DReg

We can immediately see that the extension of χQED to D dimensions is not unique
due to the right-handed chiral current ψRiγ

µψR j. The extension to D dimensions of this
term has three inequivalent choices, each of them equally correct:

ψiγ
µPRψj , ψiPLγµψj , ψiPLγµPRψj . (349)

They are different because PLγµ 6= γµPR in D dimensions. Each of these choices leads
to a valid D-dimensional extension of the model that is renormalizable using dimensional
regularization and the BMHV scheme and is expected to produce the same final results
in physical four dimensions after the renormalization procedure is performed. However,
the intermediate calculations and the D-dimensional results will differ, depending on the
choice for this interaction term. The third option, which is equal to

ψPLγµPRψ = ψPLγµPRψ = ψRγµψR , (350)

is the most symmetric one and leads to the simplest intermediate expressions. Notice that
this choice is actually the most-straightforward one since it preserves the information that
right-handed fermions were present on the left and on the right sides of the interaction
term before the extension, see also the review [15].

The second, more serious problem, is that, as it stands, the pure fermionic kinetic term
iψRi /∂ψRi = iψiPL /∂PRψi projects only the purely four-dimensional derivative, leading to a
purely four-dimensional propagator:

iPR /p PL

p̄2 , (351)

and to unregularized loop diagrams. As discussed in Section 3.4, the only valid choice for
the propagator in the D-dimensional theory in the context of dimensional regularization is

i /p
p2 , (352)
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so we are thus led to consider the full Dirac fermion ψ with both a left- and right-handed
component and used instead the fully D dimensional covariant kinetic term iψi /∂ψi. It can
be re-expressed in terms of projectors as follows:

iψi /∂ψi = iψi /∂ψi + iψi /̂∂ψi

= i(ψiPL /∂PRψi + ψiPR /∂PLψi) + i(ψiPL /∂PLψi + ψiPR /∂PRψi)
(353)

Notice that the fictitious, sterile left-chiral field ψL is introduced, which appears only
within the kinetic term and nowhere else; it does not interact, so it does not couple in
particular to the gauge bosons of the theory, and we enforced it to be invariant under
gauge transformations.

Unfortunately, the choice of the D-dimensional propagator, crucial for loop regulariza-
tion, that led to the introduction to the left-handed component in the kinetic term breaks the
gauge invariance of the fermionic part of the Lagrangian, which is evident if we separate it
in this way:

Lfermions = Lfermions,inv + Lfermions,evan , (354a)

Lfermions,inv = iψi /∂ψi − eYRijψRi /AψR j , (354b)

Lfermions,evan = iψi /̂∂ψi , (354c)

where the first term contains purely four-dimensional derivatives and gauge fields and
preserves the gauge and BRST invariance, since the fictitious left-chiral field ψL is a gauge
singlet. The invariant term can also be written as a sum of purely left-chiral and purely
right-chiral terms involving the four-dimensional covariant derivative as

Lfermions,inv = iψLi /∂ψLi + iψRi /∂ψRi − eYRijψRi /AψR j (355a)

= iψLi /∂ψLi + iψRi /DψRi , (355b)

where the gauge invariance is obvious. The second term in Equation (354a) is purely
evanescent, i.e., it vanishes in the four-dimensional limit. If we rewrite the evanescent
term as

Lfermions,evan = iψLi /̂∂ψRi + iψRi /̂∂ψLi , (356)

it can be easily seen that it mixes left- and right-chiral fields with different gauge trans-
formation properties. This causes the breaking of gauge and BRST invariance—the central
difficulty of the BMHV scheme.15

We can summarize this symmetry property and the symmetry breaking as

sDLfermions,inv = 0 , (357a)

sDLfermions,evan 6= 0 , (357b)

where sD is the obvious extension of the BRST operator (344) to D dimensions.

15 We remark that the problem is not specific to the case where the left-handed fermion is sterile. As Equation (356)
shows, the problem generally exists if the left-handed and right-handed fermions have different gauge
quantum numbers. References [27,131] considered this case and ended up with essentially the same breaking
of BRST invariance in D dimensions and the same further consequences.
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Since the extension of BRST transformation of fields in D dimensions is straightfor-
ward, our D-dimensional action is then

S0 =
∫

dDx
(

iψi /∂ψi + eYRijψRi /AψR j −
1
4

FµνFµν −
1

2ξ
(∂µ Aµ)2

− c̄∂2c + ρµ(∂µc) + i e R̄icYRijψR j + i e ψRicYRijR
j
)

≡ ∑
i

Si
ψψ

+ ∑
i

Si
ψR AψR

+ SAA + Sg-fix + Sc̄c + Sρc + SR̄cψR
+ SRcψR

,

(358)

where, also, useful abbreviations for the individual terms were introduced. Similar to the
fermion Lagrangian, the full D-dimensional action may be written as the sum of two parts,
an “invariant” and an “evanescent” part:

S0 = S0,inv + S0,evan , (359a)

S0,evan =
∫

dDx iψi /̂∂ψi . (359b)

The second part S0,evan consists solely of one single, evanescent fermion kinetic term,
the remnant of the D-dimensional propagator.

Now, we quantify the symmetry breaking caused by the BMHV scheme, the non-
anticommuting γ5, and the resulting evanescent term in the action. Acting with the
D-dimensional BRST operator on the D-dimensional tree-level action, Equation (358) gives

sDS0 = sDS0,inv + sDS0,evan = 0 + sD

∫
dDx iψi /̂∂ψi ≡ ∆̂, (360)

where the nonvanishing integrated breaking term ∆̂ is given by

∆̂ = −
∫

dDxeYRij c

{
ψi

(←
/̂∂PR +

→
/̂∂PL

)
ψj

}
≡
∫

dDx ∆̂(x). (361)

Acting with the D-dimensional Slavnov–Taylor operator SD on the tree-level action,
we obtain

SD(S0) = sDS0,inv + sDS0,evan = 0 + ∆̂ ; (362)

hence, the Slavnov–Taylor identity in D dimensions is violated by the same BRST breaking
term at the tree level.

The simpler linear Equations (100)–(103) specific for Abelian theories are manifestly
valid also in D dimensions. We will not discuss them further, but they have the conse-
quence that higher-order corrections, including counterterm actions, cannot depend on the
ghost/antighost and source fields. For this reason, the linearized Slavnov–Taylor operator
here reduces to BRST transformations, bD = sD.

As mentioned in the overview Section 7.1, this breaking term will be a crucial tool
in practical calculations. This breaking will be used as a composite operator insertion
in Feynman diagrams. It generates an interaction vertex whose Feynman rule (with all
momenta incoming and derived from the combination i∆̂) is:

̂∆ c

p2
ψjβ

p1

ψ
i
α

= − e
2
YRij(( /̂p1 + /̂p2) + ( /̂p1 − /̂p2)γ5)αβ

= −eYRij( /̂p1PR + /̂p2PL)αβ .
(363)
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As discussed in the context of Equation (80), in this way, the functional derivatives of
i∆̂ · Γ correspond to 1PI Feynman diagrams with one insertion of the Feynman rule (363).
An analogous Feynman rule is derived for charge-conjugated fermions.

It is important to notice that this breaking ∆̂ is evanescent, i.e., it vanishes in the
four-dimensional limit. This results from the evanescent original term (359b) and has
the consequence that insertions of ∆̂ can only contribute in power-counting divergent
Feynman diagrams.

7.3. Symmetry Restoration Requirements

Before beginning the explicit calculations, we recall and collect the required symmetry
identities and the strategy for symmetry restoration in a more technical way than in the
overview Section 7.1. We begin by collecting the required symmetry identities.

Symmetry identities expressing gauge/BRST invariance are considered part of the defini-
tion of the theory. Hence, they are required to be fulfilled at all orders; see Sections 2.6 and 6.2
for detailed discussions.

The symmetry requirements are defined for the renormalized and finite four-dimensional
effective action of the form

Γren = S(4D)
0 +O(h̄), (364)

where we again highlight that the effective action coincides with the classical action up to
higher-order corrections and that loop corrections are of higher order in h̄; see Equation (76)
and Section 3. The first symmetry requirement is BRST (and underlying gauge) invariance,
which is expressed as the Slavnov–Taylor identity:

S(Γren) = 0, (365)

for the renormalized theory. Notice that, in χQED, the fields c, c̄, and ρµ do not have
higher-order corrections, so relations

δΓren

δc(x)
=

δS(4D)
0

δc(x)
,

δΓren

δc̄(x)
=

δS(4D)
0

δc̄(x)
,

δΓren

δρµ(x)
=

δS(4D)
0

δρµ(x)
. (366)

hold trivially, since the respective derivatives of the tree-level action are linear in the
dynamical fields as described in Section 2.6. The fact that the ghost does not have higher
loop corrections will play a part in reducing the number of diagrams appearing in higher
orders, compared to an analogous Yang–Mills theory. The local Ward identity:

(
∂µ δ

δAµ(x)
+ ieY j

R ∑
Ψ
(−1)nΨ Ψ(x)

δ

δΨ(x)

)
Γren = −�B(x) , (367)

is an automatic consequence of the Slavnov–Taylor identity, as we have shown in Section 2.6.
We record here the application of the Ward identity to the photon self-energy as an

example that will later be illustrated in explicit computations. If we rewrite the Ward
identity in the momentum-space representation and take a variation with the respect to
photon field, we obtain the requirement:

ipν
δ2Γ̃ren

δAµ(p)δAν(−p)
= 0 , (368)

which corresponds to the transversality of the photon self-energy.
All previous symmetry identities must hold after regularization and renormalization at

each loop order. If the symmetries are broken in the intermediate regularization procedure,
as is the case when we used the BMHV scheme, they must be restored order by order in
perturbation theory, by adding suitable counterterms.
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The symmetry identities are covered by the general analysis of algebraic renormaliza-
tion discussed in Section 6.2.3, and the theory has no gauge anomaly; see Equation (343).
This guarantees that the procedure of symmetry restoration works at all orders.

Now, we recapitulate the practical strategies for the concrete determination of symmetry-
restoring counterterms, following the detailed outline given in Section 6.3. The application
will be discussed in the subsequent subsections, where we treat not only the chiral model
χQED, but also compare it with the familiar case of ordinary QED to highlight the features
of the BMHV treatment of γ5.

The first obvious difference is that ordinary QED is a vector-like gauge theory, and DReg
preserves all relevant symmetry identities manifestly at each step: the counterpart to the
tree-level breaking ∆̂ in Equation (361) vanishes as already discussed in Section 4.3. Hence,
generating counterterms by a renormalization transformation is sufficient; see the discus-
sion in Section 6.1 and Equation (291).

For the case of χQED, the existence of a tree-level symmetry breaking, ∆̂ 6= 0, necessi-
tates symmetry-restoring counterterms. Hence, generating counterterms by a renormal-
ization transformation is not sufficient, and the general structure is the one discussed in
Section 6.3.3, i.e., the combination:

Ssct,inv + Ssct,non-inv + Sfct,inv + Sfct,restore + Sfct,evan . (369)

Section 6.3 presented two basic strategies to carry out the required computations of
the crucial symmetry-restoring counterterms Sfct,restore. The first is based on the explicit
computation of ordinary Green functions and explicitly checking symmetry identities. Its
essential equation is Equation (325), which requires computing

SD(Γ
(n)
subren + Sn

sct)

at each new order n. If this expression is nonzero, finite counterterms have to be found and
added to the action such that the symmetry breaking is canceled.

The second strategy is based on using the regularized quantum action principle and
represented by Equation (330):

LIM
D→ 4

(
∆̂ · Γn

DRen +
n−1

∑
k=1

∆k
ct · Γn−k

DRen + ∆n
ct

)
= 0.

The computation of full Green functions and evaluating Slavnov–Taylor identities is
replaced by the computation of Green functions with insertions of breaking operators such
as ∆̂. This equation is specialized to Equations (332) and (334) at the one- and two-loop level.

In the following subsections, we illustrate Feynman diagrammatic computations for
both strategies. The more efficient second strategy is illustrated also at the two-loop level.
We then see how the desired symmetry-restoring counterterms are determined.

7.4. Explicit Calculations and Results in the Abelian Chiral Gauge Theory

In this section, explicit calculations in the Abelian chiral gauge theory defined above in
Section 7.2 are performed in the BMHV scheme of DReg, and all necessary counterterms are
provided up to the two-loop level. In particular, the evaluation of the photon self-energy at
the one-loop (Sections 7.4.1 and 7.4.2) and the two-loop level (Section 7.4.3) is highlighted,
and the results are compared to the ordinary QED. As announced in Section 7.1, there are
two different ways of determining symmetry-restoring counterterms. While the method
in Section 7.4.1 amounts to the explicit evaluation of the full photon self-energy, i.e., a full
Green function, including its finite part, Section 7.4.2 employs the direct method based on
the regularized quantum action principle, where the symmetry breaking is determined via
special Feynman diagrams with an insertion of the ∆̂-operator, which reflects the breaking
of chiral gauge invariance. Section 7.4.2 then concludes by providing the full one-loop
counterterm action for chiral QED in the BMHV scheme. Similarly, in Section 7.4.3, the two-
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loop counterterms for the photon self-energy are obtained using the latter method based on
the regularized quantum action principle, but are verified by comparing with the explicit
result for the full-photon self-energy including its finite part. Concluding, Section 7.4.4
provides the full two-loop renormalization of the chiral QED in the BMHV scheme.

7.4.1. One-Loop Photon Self-Energy and Symmetry-Restoring Counterterms

To better understand the features of the BMHV scheme, we now focus on explicit loop
calculations. We take the photon self-energy and compare its results in ordinary QED and
chiral QED. The photon self-energy is subject to the simplest Ward identity (368); it must
be transverse, to guarantee the correct physical interpretation of the theory describing a
massless spin one particle with two transverse polarizations.

The photon self-energy is denoted as

iΓ̃νµ
AA(p) =

Aµ Aνp

.

We used the notation explained in Section 2.4, corresponding to the one-particle
irreducible diagrams with external fields and momentum as indicated.16

We begin by recalling the well-known one-loop result of the ordinary QED with
massless fermions as defined in Equation (338),

iΓ̃νµ
AA(p)|1div,QED =

ie2

16π2ε

4 Tr(Q2)

3
(pµ pν − p2gµν) , (370a)

iΓ̃νµ
AA(p)|1fin,QED =

ie2

16π2
2 Tr(Q2)

3

[(
10
3
− 2 ln

(
−p2

))
(pµ pν − p2gµν)

]
. (370b)

Here and in all following results, we set D = 4− 2ε and suppress the dimensional
regularization scale µ̄2 = µ2 4πe−γE in dimensionful logarithms. We see that the result
is transverse and satisfies the Ward identity (368), both in its divergent and finite parts.
Adding the counterterm action:

S1
sct,QED =

−h̄ e2

16π2ε

4Tr(Q2)

3
SAA + . . . , (371)

where the dots denote terms unrelated to the photon self-energy, cancels the divergences
and preserves the validity of the Ward identity. The factor h̄ was explicitly restored to high-
light that the counterterm action is of one-loop order. As is well known, this counterterm
action can be generated via a photon field renormalization transformation.

In comparison, the result for the one-loop photon self-energy diagram in χQED with
massless fermions as defined in Equation (341) reads

iΓ̃νµ
AA(p)|1div,χQED =

ie2

16π2ε

2 Tr(Y2
R)

3

[
(pµ pν − p2gµν)− 1

2
p̂2gµν

]
, (372a)

iΓ̃νµ
AA(p)|1fin,χQED =

ie2

16π2
Tr(Y2

R)

3

[(
10
3
− 2 ln

(
−p2

))
(pµ pν − p2gµν)

−
(

p2 + p̂2
(8

3
− ln

(
−p2

)))
gµν

]
. (372b)

16 However, in this subsection, we use a slightly simpler notation than in Section 3.1 for unrenormal-
ized/subrenormalized expressions. We drop the subscript subren and simply write Γ1 for the unrenormalized
one-loop effective action and Γ2 for the subrenormalized two-loop effective action. Accordingly, the following
equations correspond to the unrenormalized one-loop photon self-energy.
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From this illustrative example, we can extract several interesting comments. First,
and most obviously, transversality is violated by the last terms in Equations (372). This will
be our main focus. However, also the transverse part shows two differences compared to
the ordinary QED. Since the interaction vertex in χQED differs from the one given in the
standard QED by

VQED → −ieγµQij, VχQED → −ieγ̄µPRYR,ij, (373)

it projects the fermion loop content, so the transverse part becomes purely four-dimensional,
explaining the appearance of the covariants gµν and pµ in Equations (372). Further, due to
this projection, only half the number of fermionic degrees of freedom appear in the loop for
the chiral case, resulting in the relative factor of two with respect to the ordinary QED.

Let us now focus on the breaking of transversality in the photon self-energy. The diver-
gent breaking term in Equation (372a) is proportional to p̂2, i.e., it is evanescent. In contrast,
the finite breaking term in Equation (372b) contains finite expressions that do not vanish in
the four-dimensional limit. The finite breaking also contains evanescent terms that vanish
in LIMD→4; these will be ignored in the following.

We can exhibit the breaking explicitly by plugging the photon self-energy into the
Ward identity (368); we obtain

ipνΓ̃νµ
AA(p)|1div+fin,χQED =

ie2

16π2
Tr(Y2

R)

3

[
− 1

ε
p̂2 pµ − p2 pµ

]
6= 0 . (374)

Here, we ignored the finite, evanescent term, as announced. In line with the derivation of
the Ward identity from the Slavnov–Taylor identity via derivatives with respect to a ghost field
(see Equation (107)), the result is equivalent to the violation of the Slavnov–Taylor identity:

[S(Γ)]1Aµc =
ie2

16π2
Tr(Y2

R)

3

[
− 1

ε
p̂2 pµ − p2 pµ

]
, (375)

where the left-hand side denotes functional derivatives in momentum-space, similarly to
the notation of ΓAA.

A decisive feature of the breaking terms is their locality: the breaking terms in all
the previous equations are polynomials of the momentum in momentum-space, and this
translates into local expressions on the level of the (effective) action. This locality is in line
with the general statement discussed in Section 6.2.3, which forms the basis of algebraic
renormalization. This means that a local counterterm can be defined that cancels the
symmetry breaking.

In view of the explicit results, the required counterterms for the sector of the pho-
ton self-energy can be read off as follows. We first discuss the divergent counterterms.
The divergent counterterms can be split into an invariant and a non-invariant part as in
Equation (369) as Ssct = Ssct,inv + Ssct,non-inv such that the one-loop parts relevant for the
photon self-energy in χQED read

S1
sct,inv,χQED =

−h̄ e2

16π2ε

2Tr(Y2
R)

3
SAA + . . . , (376a)

S1
sct,non-inv,χQED =

−h̄ e2

16π2ε

Tr(Y2
R)

3

∫
dDx

1
2

Āµ∂̂2 Āµ + . . . , (376b)

where the dots denote terms unrelated to the photon self-energy. As in the case of the ordi-
nary QED, the divergences are canceled, and the invariant counterterm can be generated
via a photon field renormalization transformation. In contrast to the ordinary QED, how-
ever, the non-invariant term is required, and it cannot be obtained from a renormalization
transformation, but must be read off by hand.
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Obviously, adding these counterterms does not only cancel the divergences of the
photon self-energy, but it also cancels the divergences in the breaking of the Ward/Slavnov–
Taylor identities (374) and (375). Specifically, adding the counterterms to the action modifies
the Slavnov–Taylor identity S(Γ) to S(Γ + S1

sct,χQED) = S(Γ) + sDS1
sct,χQED + . . ., where

the dots denote higher-order terms and where

sDS1
sct,χQED = ∆1

ct
∣∣
div = − h̄

16π2ε

e2Tr(Y2
R)

3

∫
dDx (∂µc) (∂̂2 Āµ) . (377)

In momentum-space, with incoming Aµ momentum p, this is precisely the negative of
the divergent term in Equation (375). This is an automatic consequence of the finiteness.

Now, we discuss the required finite counterterms to the photon self-energy. The explicit
result (372b) shows that the transversality is restored by the following finite counterterm:

S1
fct,χQED =

h̄
16π2

∫
d4x
−e2Tr(Y2

R)

6
Āµ∂

2
Āµ + . . . (378)

In momentum-space, this counterterm cancels the non-transverse p2-term of (372b)
(we recall that the remaining non-transverse finite terms are evanescent and vanish in
the LIMD→4). On the level of the Slavnov–Taylor identity, adding the finite counterterm
modifies the Slavnov–Taylor identity S(Γ) by the term:

sDS1
fct,χQED = − h̄

16π2

∫
dDx

e2Tr(Y2
R)

3
(∂µc)(∂

2
Āµ) . (379)

In momentum-space, this is the negative of the finite term in Equation (375).
In total, after adding all counterterms (376) and (378) to the photon self-energy and

taking LIMD→4, the renormalized one-loop photon self-energy is

iΓ̃νµ
AA(p)|1ren, χQED =

ie2

16π2
Tr(Y2

R)

3

[(
10
3
− 2 ln

(
−p2

))
(pµ pν − p2gµν)

]
. (380)

It is finite, defined in four dimensions, and it is properly transverse. One may still
add further, finite, symmetric counterterms. These can be derived from usual field and
parameter renormalization, but are not our focus here.

7.4.2. One-Loop Photon Self-Energy—Direct Computation of Symmetry Breaking

In the previous subsection, we determined the required counterterms (376) and (378)
by carrying out an explicit computation of a Green function, including its finite part, and by
explicitly evaluating the breaking of the relevant symmetry identity. We now show how
the determination of the counterterms can be performed in a simpler way. We still illustrate
it for the one-loop photon self-energy, but the advantage of that simplification will become
more and more prominent for higher orders and more complicated Green functions.

Instead of evaluating the full-photon self-energy including its finite part (372), the fol-
lowing is sufficient: First, we need the divergent part of the photon self-energy, i.e.,
only (372a). This, of course, determines the divergent counterterms (376) unambiguously.

Second, we need the violation of the symmetry, expressed in terms of Equation (375).
This violation can be obtained in a more direct way, by using the regularized quantum
action principle discussed in Section 4. This tells us that the violation S(Γ) 6= 0 is directly
given by diagrams with insertions of the composite operator ∆̂, corresponding to the tree-
level violation of the Slavnov–Taylor identity in D dimensions. For the photon self-energy,
the violation (375) can be obtained directly by computing the Green function [∆̂ · Γ̃µ

Ac], i.e.,
the one-particle irreducible Green function with an insertion of ∆̂ and external Aµ and
c fields.
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At one-loop order, there is only one diagram.

i[∆̂ · Γ̃µ
Ac]

(1) =

̂∆ c

p1Aµ

(381)

The result of this single diagram is

i[∆̂ · Γ̃µ
Ac]

1
div =

e2

16π2ε

Tr(Y2
R)

3
p̂1

2 p1
µ , (382a)

i [∆̂ · Γ̃µ
Ac]

1
fin =

e2

16π2
Tr(Y2

R)

3
p2

1 pµ
1 . (382b)

We see that the result of this diagram indeed agrees with the right-hand side of
Equation (375), as it is guaranteed by the regularized quantum action principle.

The important point is the technical simplification: the computation of this diagram is
technically easier than the computation of the finite part of the photon self-energy since
only power-counting divergent parts of the loop integrals are relevant. We reiterate that
the technical advantage is much more dramatic at higher orders and for more complicated
Green functions.

It is instructive to rewrite the result in coordinate space:

[∆̂ · Γ](1)div =
e2

16π2ε

Tr(Y2
R)

3

∫
dDx(∂µc)(∂̂2 Āµ) + . . . , (383a)

[∆̂ · Γ](1)fin =
e2

16π2
Tr(Y2

R)

3

∫
dDx (∂µc)(∂

2
Āµ) + . . . . (383b)

The dots denote terms unrelated to the photon self-energy.
The divergent part provides no independent information, but a check. As discussed after

Equation (377), the expression sDS1
sct,χQED must automatically cancel the divergent part of the

symmetry breaking. Using our new result, this means that sDS1
sct,χQED + [∆̂ · Γ](1)div = 0 must

automatically hold. Clearly, this is true, and the check is passed.
The important new information is in the finite part of the ∆̂-insertion diagram

Equations (382) and (383). Its result is equal to the finite part of the violation of the Slavnov–
Taylor identity (375), thus eliminating the need to explicitly evaluate the Slavnov–Taylor identity.

The finite, symmetry-restoring counterterm may now be obtained from solving
the equation:

sDS1
fct,χQED = −[∆̂ · Γ](1)fin . (384)

For the sector of the photon self-energy, the result is the one given in Equation (378).
In summary, there, the result was obtained from inspecting the finite part of the photon self-
energy; here, the result can be obtained from evaluating Equation (382) and then solving
the defining condition (384).

To conclude the section, we summarize the full one-loop results for the counterterm
structure of χQED. First, all divergences of all one-loop diagrams need to be evaluated,
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generalizing Equation (372a). The negative of these results defines unambiguously the
one-loop divergent counterterms, generalizing Equation (376). The result reads

S1
sct,χQED =

−h̄ e2

16π2ε

(
2Tr(Y2

R)

3
SAA + ξ ∑

j
(Y j

R)
2
(

Sj
ψψR

+ Sj
ψR AψR

)

+
Tr(Y2

R)

3

∫
dDx

1
2

Āµ∂̂2 Āµ

)
.

(385)

Most terms are similar to their counterparts in the ordinary QED and can be obtained
by a renormalization transformation of the fields and parameters as in Equation (291),
where it is noteworthy that only the physical, right-handed fermion is renormalized, while
the sterile, left-handed fermion is not. However, this renormalization transformation does
not generate the last term involving the ∂̂2 operator, and it generates the full D-dimensional
photon kinetic term SAA instead of its four-dimensional version SAA. Hence, the ∂̂2-term
and the difference SAA − SAA correspond to symmetry-breaking singular counterterms.
These counterterms become particularly important in the context of two-loop calculations,
where they are necessary for the proper subrenormalization.

Second, all one-loop symmetry breakings need to be determined, generalizing either
Equation (375) or Equation (383). We used the method based on the regularized quantum
action principle. In this case, the full symmetry breaking is given by the complete set of all
one-loop diagrams with a ∆̂ insertion. Since only power-counting divergent diagrams can
provide nonvanishing contributions, there are only precisely four contributing diagrams:
with external fields cA, cAA, cAAA, or cψ̄ψ. One of them vanishes due to the anomaly
cancellation condition (343). The full result of the symmetry breaking is

∆̂ · Γ1 =
1

16π2

∫
dDx

[
e2Tr(Y2

R)

3

(
1
ε
(∂µc) (∂̂2 Āµ) + (∂µc)(∂

2
Āµ)

)
(386)

+
e4Tr(Y4

R)

3
c ∂µ(Āµ Ā2)

− (ξ + 5)e3

6 ∑
j
(Y j

R)
3 c ∂

µ
(ψjγµPRψj)

]
.

Using the defining condition (384) for the finite, symmetry-restoring counterterms,
we obtain

S1
fct =

h̄
16π2

∫
d4x

{
−e2Tr(Y2

R)

6
Āµ∂

2
Āµ +

e4Tr(Y4
R)

12
Āµ Āµ Āν Āν

+
5 + ξ

6
e2 ∑

j
(Y j

R)
2iψjγ

µ∂µPRψj

}
.

(387)

This is the complete result for the symmetry-restoring counterterms of the χQED
model at the one-loop level. Each of the terms has a clear and simple interpretation. The
first finite counterterm restores the transversality of the photon self-energy as discussed
before. The second term restores a similar transversality identity for the photon four-point
function. The last term restores the QED-like Ward identity relating the fermion self-energy
with the fermion–photon three-point function.

These three counterterms must be inserted in higher-order calculations. They give
additional contributions to loop diagrams compared to the renormalization in vector-like
theories or to a naive γ5 treatment, where gauge invariance is manifestly preserved.
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7.4.3. Two-Loop Photon Self-Energy and Corresponding Breaking Diagram

Now, we illustrate the determination of two-loop counterterms in χQED using the
BMHV scheme. We immediately follow the more direct strategy explained in Section 7.4.2
based on diagrams with ∆̂-insertions.

At the 2-loop level, diagrams contributing to the subrenormalized photon self-energy
are, on the one hand, genuine 2-loop diagrams and, on the other hand, 1-loop diagrams with
counterterm insertions. Both the singular counterterms (385), as well as finite symmetry-
restoring counterterms (387) must be used. The result for the divergent part of the sub-
renormalized two-loop photon self-energy is given by (we still used the simplified notation
described in footnote 16, where Γ2 denotes the subrenormalized two-loop effective action.)

iΓ̃νµ
AA(p)|2div,χQED =

ie4

256π4
Tr(Y4

R)

3

[
2
ε
(pµ pν − p2gµν) +

(
17
24ε
− 1

2ε2

)
p̂2gµν

]
, (388a)

which can be compared to the result in ordinary QED

iΓ̃νµ
AA(p)|2div,QED =

ie4

256π4ε
2 Tr(Q4)(pµ pν − p2gµν) . (388b)

Notice again that the transverse part for QED is fully D-dimensional, but projected
to four dimensions in the chiral case, and in the chiral case, an evanescent term is present,
again spoiling gauge and BRST invariance. Unlike at the 1-loop level, the global factor in
front of the chiral transversal part is not half of the QED case, since the additional diagram
with finite 1-loop counterterm insertion spoils this relationship.

From this singular part of the two-loop diagrams, we reconstruct an equivalent result
in coordinate space:

Γ2,AA
div =

e4

256π4
Tr(Y4

R)

3

[1
ε

Aµ(∂
2
gµν − ∂

µ
∂

ν
)Aν + Aµ∂̂2 Aµ

( 1
4ε2 −

17
48ε

)]
, (389)

which results in the required singular counterterm of the form:

S2
sct = −

(
h̄ e2

16π2

)2
Tr(Y4

R)

3

[
2
ε

SAA +

(
1

4ε2 −
17
48ε

) ∫
dDxAµ∂̂2 Aµ

]
+ . . . , (390)

which cancels the divergences. Clearly, this counterterm also breaks BRST symmetry at the
two-loop level by

∆2
sct = sDS2

sct =
−h̄2e4

256π4
Tr(Y4

R)

6

(
1
ε2 −

17
12ε

) ∫
dDx(∂µc)(∂̂2 Aµ

) + . . . . (391)

Now, we use the regularized quantum action principle and determine the symmetry
breaking at the two-loop level in the photon self-energy sector. Hence, we need to evaluate

the Green function
(
[∆̂ + ∆1

ct] · Γ̃
)2

Aµc
at the two-loop level.

Compared to the one-loop level, there are several new features. There are four types
of two-loop level diagrams; see Figure 4. The diagrams in the first column of the figure are
genuine two-loop diagrams with one insertion of the tree-level breaking ∆̂. The diagrams
in the second column are one-loop diagrams with one insertion of a one-loop singular
counterterm, denoted as a circled cross. The third column contains a one-loop diagram
with an insertion of a one-loop symmetry-restoring counterterm obtained from the fermion
self-energy operator, denoted by a boxed F, and a one-loop diagram with an insertion of
the one-loop breaking ∆1

ct.
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̂∆ c

p1Aµ

̂∆ c

p1Aµ

∆
(1)
ct c

p1Aµ

̂∆ c

p1Aµ

+ loop on the other fermion
propagator.

̂∆ c

p1Aµ

+ fermion counterterm on
the other fermion

propagator.

̂∆ c

p1Aµ

F

+ fermion finite
counterterm on the other

fermion propagator.

Figure 4. List of Feynman diagrams for the ghost–photon breaking contribution given in Equation (392).

The total two-loop breaking in this sector, i.e., the result of the diagrams in Figure 4, is

i
(
[∆̂ + ∆1

ct] · Γ̃
)2

Aµc
=

1
256π4

e4Tr(Y4
R)

6

[(
1
ε2 −

17
12ε

)
p̂2

1 pµ
1 −

11
4

p2
1 pµ

1 +O(.̂)
]

. (392)

The result contains 1/ε2 poles and 1/ε poles with local, evanescent coefficients and a
finite, non-evanescent term.

Like at the one-loop level, we first use the result to check the cancellation of the UV
divergences as prescribed by Equation (334).17 Using this simplification, we can confirm
that the expected cancellation of UV divergences with sDS2

sct given in Equation (391) indeed
occurs as

∆2
sct = sDS2

sct = −
(
[∆̂ + ∆1

ct] · Γ
)2

div
. (393)

The remaining finite part can then be evaluated in strictly four dimensions:

∆2
fct = − LIM

D→4

{(
[∆̂ + ∆(1)

ct ] · Γ
)(2)

+ sDS(2)
sct

}

=
e4

256π4 Tr(Y4
R) s

(
11
48

∫
d4xĀµ∂

2
Āµ

)
+ . . . .

(394)

The defining relation for the finite, symmetry-restoring counterterm is then

LIM
D→4

sDS2
fct = −∆2

fct . (395)

From this, we reconstruct the corresponding finite counterterm as

S2
fct =

(
h̄

16π2

)2 ∫
d4x e4Tr(Y4

R)
11
48

Āµ∂
2
Āµ + . . . . (396)

17 As mentioned above in Section 7.2.2, in the Abelian case considered here we have bD = sD , and therefore in
Equation (334) we can simplify and use ∆2

ct = sDS2
ct.
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As before, we only display terms related to the photon self-energy. Adding this
counterterm restores the photon self-energy transversality at the two-loop level.

At this point, the determination of the two-loop counterterms of this sector is com-
plete, and the counterterms of other sectors can be determined analogously. The required
computations were the ones of the divergent part of the photon self-energy and of the finite
part of the diagrams of Figure 4.

Nevertheless, we now confirm the result by comparing with the explicit result for
the finite part of the photon self-energy. The finite part of the photon self-energy at the
two-loop level (including one-loop counterterms, but excluding two-loop counterterms) is
given by

iΓ̃µν
AA(p)

∣∣∣
2

fin
=

ie4

256π4
Tr(Y4

R)

3[(
673
23
− 6 log

(
−p2

)
− 24ζ(3)

)
(pµ pν − p2gµν) +

11
8

pµ pν

]
.

(397)

Similar to the one-loop result (372), the non-local log
(
−p2) and transcendental ζ(3)

parts are by themselves transversal and, so, do not break the gauge invariance. The last
term breaks the transversality, but this breaking term is local.

Plugging the result into the Ward or Slavnov–Taylor identity, we obtain

i pν Γ̃µν

A(−p)A(p)

∣∣∣
2

fin
=

ie4

256π4
Tr(Y4

R)

6
11
4

p2 pµ (398a)

= −
(
[∆̂ + ∆1

ct] · Γ̃
)2

fin, Aµ(−p)c(p)
. (398b)

The first of these equations is obtained by direct computation using the finite parts in
Equation (397). The second equation is then observed by comparison with Equation (392).
Hence, we confirmed that the violation of the symmetry is restored by our finite counterterm
evaluated from breaking diagrams.

7.4.4. Full Two-Loop Renormalization of Chiral QED

In the previous sections, we performed the full one-loop renormalization with singular
and finite, symmetry-restoring counterterms (385) and (387), respectively, and studied the
photon self-energy and the corresponding breaking at the two-loop level; cf. Section 7.4.3.
In this section, we present the full two-loop renormalization of chiral QED based on our
results in Reference [26].

A list of all divergent 1PI two-loop Green functions together with the individual
results is to be found in Chapter 7 of Reference [26]. From the singular part of these Green
functions, we obtain the singular counterterm action at the two-loop level:

S2
sct =−

(
h̄e2

16π2

)2 Tr(Y4
R)

3

[
2
ε

SAA +

(
1

4ε2 −
17
48ε

) ∫
dDx Āµ∂̂2 Āµ

]

+

(
h̄e2

16π2

)2

∑
j
(Y j

R)
2
[(

1
2ε2 +

17
12ε

)
(Y j

R)
2 − 1

9ε
Tr(Y2

R)

](
Sj

ψψR
+ Sj

ψR AψR

)

−
(

h̄e2

16π2

)2

∑
j

(Y j
R)

2

3ε

(
5
2
(Y j

R)
2 − 2

3
Tr(Y2

R)

)
Sj

ψψR
(399)

which cancels the divergences. Comparing (399) with its one-loop counterpart in
Equation (385), we see that its structure is the same up to the term in the last line, which
breaks the BRST invariance by a non-evanescent amount and is, thus, a new feature emerg-
ing at the two-loop level.
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This two-loop counterterm action (399) generates the BRST breaking:

∆2
sct = sDS2

sct

= − h̄2e4

256π4
Tr(Y4

R)

6

(
1
ε2 −

17
12ε

) ∫
dDx (∂µc)(∂̂2 Āµ) (400)

− h̄2e5

256π4
1
3ε ∑

j
(Y j

R)
3
(

5
2
(Y j

R)
2 − 2

3
Tr(Y2

R)

) ∫
dDx c ∂µ

(
ψγ̄µPRψ

)
.

Compared to the previous Section 7.4.3, we this time provided the full two-loop result
explicitly and see that, in contrast to the one-loop case (377), this BRST breaking contains a
non-evanescent contribution given by the last line of (400).

Following the restoration procedure described in Sections 6.3 or 7.3 and analogous
to the ghost–gauge boson contribution (392) in the previous Section 7.4.3, we additionally
need to calculate ([∆̂ + ∆1

ct] · Γ̃)2 for the ghost–fermion–fermion, the ghost–double gauge
boson, and the ghost–triple gauge boson contributions (i.e. with external fields cψψ̄, cAA,
cAAA, respectively). It turns out that the ghost–double gauge boson contribution vanishes
and the ghost–triple gauge boson contribution does not contain UV divergences, but only
finite terms. In total the result is

([
∆̂ + ∆1

ct
]
· Γ
)2

=
e4

256π4

∫
dDx

{
−

Tr(Y4
R)

6

[(
1
ε2 −

17
12ε

)
c ∂µ∂̂2 Āµ − 11

4
c ∂µ∂

2
Āµ

]

+ e ∑
j

(Y j
R)

3

3

[
1
ε

(
5
2
(Y j

R)
2 − 2

3
Tr(Y2

R)

)
(401)

+
127
12

(Y j
R)

2 − 1
9

Tr(Y2
R)

]
c ∂µ

(
ψjγ̄

µPRψj
)

+
3e2Tr(Y6

R)

2
c ∂µ

(
Āµ Āν Āν

)}
+O(.̂)

for the full two-loop breaking of the Slavnov–Taylor identity of two-loop subrenormalized
1PI Green functions. Comparing this with the corresponding one-loop contribution (386),
we see that the structure of the terms is the same.

For the symmetry restoration at the two-loop level, we first note that ∆2
sct in

Equation (400) completely cancels the UV divergent terms in Equation (401). In addi-
tion to that, we need to determine the finite, symmetry-restoring counterterms at the
two-loop as indicated in Equation (394). Thus, our choice for the full finite counterterm
action, which restores the Slavnov–Taylor identity at the two-loop level, is

S2
fct =

(
h̄

16π2

)2 ∫
dDx e4

{
Tr(Y4

R)
11
48

Āµ∂
2
Āµ + 3e2 Tr(Y6

R)

8
Āµ Āµ Āν Āν

−∑
j
(Y j

R)
2
(

127
36

(Y j
R)

2 − 1
27

Tr(Y2
R)

)(
ψji/̄∂PRψj

)}
. (402)

Similar to its one-loop counterpart in Equation (387), S2
fct consists of three kinds of

terms, or in other words, the same three field monomials are involved. These three terms
correspond to the restoration of the Ward identity relations for the photon self-energy,
the photon four-point function, and the fermion self-energy/photon–fermion–fermion
interaction. Reference [26] also gave a discussion of the explicit results for these three
Ward identity relations, similar to the discussion at the end of Section 7.4.3. In all cases,
the breaking terms of the Ward identity are explicitly exhibited, and the cancellation with
the symmetry-restoring counterterms (402) is made manifest.
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7.5. Non-Abelian Chiral Yang–Mills Theory and Comparison with the Abelian Chiral Theory at the
One-Loop Level

In this section, we review the application of the BMHV scheme to non-Abelian chiral
gauge theories and present the differences to the Abelian chiral QED discussed above.
In particular, we study a massless chiral Yang–Mills theory at the one-loop level based on
References [25,131]. Note that, in our publication [25], the considered theory also contained
real scalar fields. Here, similar to Reference [131], scalar fields were omitted in order to
focus on the key points of the BMHV scheme in the framework of chiral gauge theories
and the differences compared to the Abelian case discussed above.

As discussed in Section 2.1, the group generators of the Yang–Mills theories satisfy the
nontrivial commutation relations (1); in particular, they are not simultaneously diagonal-
izable. These algebraic structures of the non-Abelian gauge group of Yang–Mills theories
lead to new effects, such as more interaction terms and nonlinear BRST transformations of
the gauge fields and the ghosts, compared to the Abelian case; cf. Section 2.6. Especially,
gauge boson self-interactions, interactions of the Faddeev–Popov ghosts with the rest of
the theory, and the renormalization of the BRST transformations distinguish non-Abelian
Yang–Mills theories from the Abelian case above.

The outline of this section is analogous to the Abelian case discussed above. First,
we briefly introduce the Lagrangian of the theory and the BRST transformations using
the notations from Section 2. Second, we discuss the analytical continuation of the the-
ory to D dimensions in DReg treating γ5 with the BMHV scheme and comment on the
BRST breaking induced by this scheme. Finally, we present the results for the singular
and the symmetry restoring counterterms at the one-loop level (cf. [25,131]) necessary to
consistently renormalize the theory, and discuss the differences to the Abelian theory.

7.5.1. Definition of the Non-Abelian Chiral Yang–Mills Theory

Following the conventions of Section 2.3, the Lagrangian in four dimensions can be
written as

LχYM = Linv + Lfix,gh + Lext . (403)

The physical part of the Yang–Mills Lagrangian reads

Linv = −1
4

Ga
µνGa,µν + i ψRi /DijψR j , (404)

with covariant derivative Dµ
ij = ∂µδij + igGa,µ Ta

Rij and field strength tensor Ga
µν = ∂µGa

ν −
∂νGa

µ − g f abcGb
µGc

ν, leading to three- and four-point gauge boson self-interactions. The gauge-
fixing and ghost Lagrangian, already presented in Equation (55), is

Lfix,gh = s
[

c̄a
(
(∂µGa

µ) +
ξ

2
Ba
)]

= Ba(∂µGa
µ) +

ξ

2
BaBa − c̄a∂µDab

µ cb, (405)

with Dab
µ = ∂µδab + g f abcGc

µ, implying ghost–antighost–gauge boson interactions, which
is a consequence of the nonlinear gauge transformations of the gauge fields Ga

µ, as shown
below in (407). The Lagrangian of the external sources, as introduced in Section 2.3, is

Lext = ρa,µsGa
µ + ζasca + R̄isψRi + RisψRi . (406)
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The BRST transformations are given by

sGa
µ(x) = Dab

µ cb(x) = ∂µca(x) + g f abccb(x)Gc
µ(x) , (407a)

sψi(x) = sψRi(x) = −igTa
Rijc

a(x)ψR j(x) , (407b)

sψi(x) = sψRi(x) = −igψR j(x)ca(x)Ta
R ji , (407c)

sca(x) =
1
2

g f abccb(x)cc(x) , (407d)

sc̄a(x) = Ba(x) , (407e)

sBa(x) = 0 . (407f)

In contrast to the Abelian case, the BRST transformations of the gauge boson Ga
µ

and the Faddeev–Popov ghost ca are nonlinear, which means that nontrivial quantum
corrections are expected.

Hence, the tree-level action of the considered chiral Yang–Mills theory in four dimen-
sions is given by

S(4D)
0 =

∫
d4xLχYM (408)

and satisfies the tree-level Slavnov–Taylor identity:

0 = S
(
S(4D)

0
)

=
∫

d4x

(
δS(4D)

0
δρaµ(x)

δS(4D)
0

δGa
µ(x)

+
δS(4D)

0
δζa(x)

δS(4D)
0

δca(x)
(409)

+
δS(4D)

0
δR̄i(x)

δS(4D)
0

δψRi(x)
+

δS(4D)
0

δRi(x)
δS(4D)

0
δψRi(x)

+ Ba(x)
δS(4D)

0
δc̄a(x)

)
,

which just manifests the BRST invariance of S(4D)
0 .

The different group invariants, which will be employed in the following results below,
(follow the notations of [25]) and are provided by

C2(R)1 = Ta
RTa

R , S2(R) δab = Tr
(
Ta

RTb
R
)
, (410)

with an irreducible representation R of the gauge group for the right-handed fermions with
corresponding Hermitian group generators Ta

R. The adjoint representation of the gauge
group is denoted by G, and its Casimir index is C2(G).

7.5.2. Chiral Yang–Mills Theory in DReg

To regularize the theory, we employ dimensional regularization, treating γ5 with the
BMHV scheme. Analogous to the Abelian case above, there are two problems regarding the
continuation of the chiral Yang–Mills theory (408) to D dimensions, as already discussed
in Section 7.2.2 for the Abelian case and extensively discussed in [25] for chiral Yang–
Mills theories.

First, there is an ambiguity in extending the fermion–gauge interaction term in
Equation (404), which involves the right-handed chiral current ψRiγ

µψR j, to D dimensions.
Again, there are three inequivalent choices for the D-dimensional version of this chiral cur-
rent (cf. Equation (349)), which are all equally correct. Analogous to the Abelian case above,
we resolved this problem by choosing the most-symmetric version; cf., Equation (350).

Second, the purely fermionic kinetic term iψRi /∂ψRi projects only the purely
4-dimensional derivative, leading to a purely 4-dimensional propagator and, thus, to
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unregularized loop diagrams, as explained above in Section 7.2.2. Hence, we again intro-
duce a gauge-singlet left-chiral field ψL with trivial BRST transformations:

sψLi(x) = 0, sψLi(x) = 0, (411)

which appears solely in the fermionic kinetic term and nowhere else and which is thus
completely decoupled from the rest of the theory. Using it we obtain a fully D-dimensional
covariant kinetic term iψi /∂ψi.

Finally, we can again separate the D-dimensional fermionic Lagrangian into an invari-
ant and an evanescent part, analogous to Equations (354a)–(357b). Hence, we may write
the D-dimensional action as

S0 = S0,inv + S0,evan

= (SGG + SGGG + SGGGG) + ∑
i

(
Si

ψψ
+ Si

ψRGψR

)
+ Sg-fix (412)

+ (Sc̄c + Sc̄Gc) + (Sρc + SρGc + Sζcc + SR̄cψR
+ SRcψR

) ,

having it separated into an “invariant” and an “evanescent” part in the first line (cf.
Equation (359) in Section 7.2.2) and having used the notation of [25,26] and of Equation (358)
to present the D-dimensional action as a sum of its integrated field monomials in the last
two lines.

Similar to the Abelian case in Section 7.2.2, we quantify the symmetry breaking caused
by the BMHV scheme, the non-anticommuting γ5, and the evanescent term S0,evan by acting
with the D-dimensional BRST operator sD on the D-dimensional tree-level action S0. Thus,
for the BRST breaking, we obtain

sDS0 = sDS0,inv + sDS0,evan = 0 + sD

∫
dDx iψi /̂∂ψi ≡ ∆̂ , (413)

which leads to a breaking of the Slavnov–Taylor identity of the form:

SD
(
S0
)
= ∆̂ , (414)

with the nonvanishing integrated breaking:

∆̂ = −
∫

dDxg Ta
Rij ca

{
ψi

(←
/̂∂PR +

→
/̂∂PL

)
ψj

}
≡
∫

dDx ∆̂(x). (415)

As in the Abelian case, this breaking term will be a crucial tool in practical calculations
and will be used as a composite operator insertion in the Feynman diagrams. It generates
an interaction vertex whose Feynman rule (with all momenta incoming) is

̂∆ ca

p2
ψjβ

p1

ψ
i
α

= − g
2

Ta
Rij(( /̂p1 + /̂p2) + ( /̂p1 − /̂p2)γ5)αβ

= −g Ta
Rij( /̂p1PR + /̂p2PL)αβ .

(416)

For charge-conjugated fermions, an analogous Feynman rule can be derived.
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7.5.3. One-Loop Singular Counterterm and Symmetry-Restoring Counterterm Action in
Chiral Yang–Mills Theory

In this subsection, we present the results of the one-loop renormalization of the above
introduced chiral Yang–Mills theory based on the results of [25], but also already discussed
in [131].18

The basic renormalization procedure is the same as in the Abelian theory discussed
above. The difference is that there are more interaction terms; in particular, the gauge
bosons interact with themselves and the Faddeev–Popov ghosts. The fact that the ghosts
now participate in the interactions, and thus may propagate as internal particles in loop
diagrams, leads to a nontrivial renormalization of the field monomials including external
sources. Besides this, the renormalization procedure is also more demanding than in an
Abelian theory, due to the larger number of loop diagrams and the more complicated
algebraic structures of the non-Abelian gauge group.

After computing all UV divergent one-loop 1PI Feynman diagrams, which can be
found in Section 5 of [25] with detailed individual results, the singular one-loop counterterm
action is given by

S(1)
sct =

h̄g2

16π2ε

{
− 2S2(R)

3
(
SGG + SGGG + SGGGG

)
− ξC2(R)

(
SψψR

+ SψGψR

)

+
13− 3ξ

6
C2(G)SGG +

17− 9ξ

12
C2(G)SGGG +

2− 3ξ

3
C2(G)SGGGG

− 3 + ξ

4
C2(G)SψGψR

+
3− ξ

4
C2(G)

(
Sc̄c + Sρc

)
(417)

− ξC2(G)

2
(
Sc̄Gc + SρGc + Sζcc + SR̄cψR

+ SRcψR

)}

− h̄g2

16π2ε

S2(R)
3

∫
d4x

1
2

Ḡa,µ∂̂2Ḡa
µ,

such that it cancels all UV divergences. The structure has similarities with the Abelian
counterpart, Equation (385). Again, most terms can be obtained by a renormalization
transformation of the kind (291), and only the right-handed fermions renormalize. How-
ever, again, also non-symmetric singular counterterms appear.

Comparing Equations (417) and (385) in detail, we can see many additional contribu-
tions. Only the SGG, SψψR

and SψGψR
terms in the first line of the RHS of (417), as well as the

explicit evanescent operator in last line of (417) have Abelian counterparts. All other terms
in (417) do not appear in the Abelian theory and are, thus, new effects of the non-Abelian
Yang–Mills theory due to additional interaction terms, as mentioned above. In particular,
we can see new contributions to the field monomials including the Faddeev–Popov ghosts
and the external sources in the last term of the third line and the penultimate line of (417),
as announced at the beginning of this subsection.

Similar to the Abelian result (385), we have just one explicit evanescent operator
in the last line of (417) in the considered Yang–Mills theory, generating the Feynman
rule −i p̂2gµνδab. This is specific to our choice for the fermion-gauge interaction term,
corresponding to the most symmetric version of Equation (350). We would have obtained
many more evanescent operators if we used another D-dimensional choice instead.

Following the algebraic renormalization procedure described in Section 6, as well as
in Section 6 of [25], specifically for the considered case, we need to check that

0 = LIM
D→ 4

([
∆̂ · Γ(1)](1)

div + bDS(1)
sct +

[
∆̂ · Γ(1)](1)

fin + bDS(1)
fct,restore

)
. (418)

18 Note the different sign convention with respect to the covariant derivative Dµ
ij in this review compared to [25].

This influences some signs, such as the relative sign in the forthcoming Equation (420) and the relative sign in
the brackets of the last term of Equation (421).
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In other words, we need to check that the bD-variation of the singular countert-
erms (417) cancels the divergent part of the symmetry breaking [∆̂ · Γ(1)]

(1)
div, and we need

to determine finite symmetry-restoring counterterms S(1)
fct,restore whose bD-variation cancels

the finite part of the symmetry breaking [∆̂ · Γ(1)]
(1)
fin .

The bD-variation of the singular counterterms (417), calculated in [25], is provided by

bDS(1)
sct =

−h̄
16π2ε

{
g2 ξC2(G)

2
∆̂ + g2 S2(R)

3
bD

∫
dDx

1
2

Ḡa,µ∂̂2Ḡa
µ

}
, (419)

where, in the last term, bD acts like the BRST transformation, leading to

bD

∫
dDx

1
2

Ḡa,µ∂̂2Ḡa
µ =

∫
dDx

(
sDḠa,µ)∂̂2Ḡa

µ

=
∫

dDx
(

∂
µ

ca − g f abcḠb,µcc
)

∂̂2Ḡa
µ . (420)

Indeed, (419) is a pure 1/ε singular term and perfectly cancels the nonvanishing
contribution:

[
∆̂ · Γ

](1)
div =

1
16π2ε

{
g2 ξC2(G)

2
∆̂ + g2 S2(R)

3

∫
dDx

(
∂

µ
ca − g f abcḠb,µcc

)
∂̂2Ḡa

µ

}
, (421)

as explicitly shown in [25].
Now, the finite symmetry-restoring counterterms S(1)

fct,restore need to be determined
following (418) in order to cancel the remaining finite part of the symmetry breaking, which
was explicitly performed in Section 6 of [25] with the result:

S(1)
fct, restore =

h̄
16π2

{
g2 S2(R)

6

(
5SGG −

∫
d4x Ga,µ∂2Ga

µ

)

+ g2 (TR)
abcd

3

∫
d4x

g2

4
Ga

µGb,µGc
νGd,ν + g2

(
1 +

ξ − 1
6

)
C2(R)Sψψ

+ g2 S2(R)
6

SGGG − g2 ξC2(G)

4
(
SR̄cψR

+ SRcψR

)}
, (422)

where (TR)
a1···an ≡ Tr[Ta1

R · · · T
an
R ]. Comparing (422) with the Abelian result (387), we can

again see that only the first two lines of (422) have Abelian counterparts, whereas the terms
in the last line of (422) do not appear in an Abelian theory. The new terms in the last line
of (422) are due to triple gauge boson contributions and contributions including external
sources. The latter implies that, again, Green functions with external sources have to been
evaluated, this time with a ∆̂-vertex insertion, which stands in contrast to the Abelian case.

These finite counterterms (422) are necessary and sufficient to restore the BRST sym-
metry at the one-loop level in the BMHV scheme, if the (non-spurious) anomalies cancel,
which are given by [25]

− g2

16π2

(
− S2(R)

3
dabc

R

∫
d4x gεµνρσca(∂ρGb

µ

)(
∂σGc

ν

)

+
Dabcd

R
3× 3!

∫
d4x g2caεµνρσ∂σ

(
Gb

µGc
νGd

ρ

))
, (423)

with fully symmetric dabc
R ≡ Tr[Ta

R{Tb
R, Tc

R}] and fully antisymmetric

Dabcd
R ≡ (−i)3!Tr[Ta

RT[b
R Tc

RTd]
R ] for the R-representation. This result, of course, agrees

with the general result (318) obtained by the analysis of algebraic renormalization, and it
provides an explicit result for the coefficient L appearing there. To ensure the renormaliz-
ability of the theory, the fermionic content and their associated group representations have
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to be chosen such that these anomalies cancel, i.e., such that the expression (321) vanishes,
which equivalently means that dabc

R vanishes. This then also implies the vanishing of Dabcd
R ;

see Equation (320). It becomes apparent that also the possible anomalies are more complex
than in the Abelian model.

These finite counterterms (422), purely four-dimensional and non-evanescent, are not
gauge-invariant. They modify all self-energies, as well as some specific interactions: the
gauge boson self-interactions and the interactions between gauge bosons and fermions.

Concluding, we see that the resulting counterterm action, not only for the Abelian
case at the one- and two-loop level, but also for non-Abelian Yang–Mills theories, may be
written in a relatively compact way. Thus, treating γ5 rigorously in the BMHV scheme does
not lead to extraordinarily lengthy or complicated results, but, in fact, to counterterms,
which can easily be implemented in computer algebra systems.
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