A Generalised Time-Dependent Mathematical Formulation for Magnetoelectrically Coupled Soft Solids at Finite Strains
Abstract
:1. Introduction
1.1. Remark
1.2. Kinematics
1.3. Electromagnetic Field Equations
1.3.1. Maxwell Equations
1.3.2. Lagrangian Electric and Magnetic Variables
1.3.3. Continuity Conditions
1.4. Balance of Mass and Equation of Motion
2. Constitutive Equations
2.1. The Amended Energy Function and the Total Stress Tensor
2.2. Continuity Condition in Terms of the Total Stress
3. Spectral Invariants
4. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Li, S.; Bai, H.; Shepherd, R.F.; Zhao, H. Bio-inspired Design and Additive Manufacturing of Soft Materials, Machines, Robots, and Haptic Interfaces. Angew. Chem. Int. Ed. 2019, 58, 11182–11204. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Luo, L.; Liu, Y.; Leng, J. Direct Ink Writing Based 4D Printing of Materials and Their Applications. Adv. Sci. 2020, 7, 2001000. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 2012, 8, 5154–5163. [Google Scholar] [CrossRef] [PubMed]
- Bednarek, S. The giant magnetostriction in ferromagnetic composites within an elastomer matrix. Appl. Phys. A 1999, 68, 63–67. [Google Scholar] [CrossRef]
- Hu, W.; Lum, G.Z.; Mastrangeli, M.; Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554, 81–85. [Google Scholar] [CrossRef]
- Bastola, A.K.; Hossain, M. A review on magneto-mechanical characterizations of magnetorheological elastomers. Compos. Part B Eng. 2020, 200, 108348. [Google Scholar] [CrossRef]
- Eerenstein, W.; Mathur, N.D.; Scott, J.F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765. [Google Scholar] [CrossRef]
- Fetisov, Y.K.; Bush, A.A.; Kamentsev, K.E.; Ostashchenko, Y.A.; Srinivasan, G. Ferritepiezoelectric multilayers for magnetic field sensors. IEEE Sensors J. 2006, 6, 935–938. [Google Scholar] [CrossRef]
- Liu, L.; Sharma, P. Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology. Phys. Rev. E 2013, 88, 040601. [Google Scholar] [CrossRef] [Green Version]
- Liu, L. An energy formulation of continuum magneto-electro-elasticity with applications. J. Mech. Phys. Solids 2014, 63, 451–480. [Google Scholar] [CrossRef]
- Bustamante, R.; Shariff, M.H.B.M.; Hossain, M. Mathematical formulations for elastic magneto-electrically coupled soft materials at finite strains: Time-independent processes. Int. J. Eng. Sci. 2021, 159, 103429. [Google Scholar] [CrossRef]
- Shariff, M.H.B.M. Anisotropic stress softening of electromagnetic Mullins materials. Math. Mech. Solids 2023, 28, 154–173. [Google Scholar] [CrossRef]
- Pao, Y.H. Electromagnetic Forces in Deformable Continua. Mech. Today 1978, 4, 209–306. [Google Scholar]
- Eringen, A.C.; Maugin, G.A. Electrodynamics of Continua; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Kovetz, A. Electromagnetic Theory; University Press: Oxford, UK, 2000. [Google Scholar]
- Shariff, M.H.B.M. On the Smallest Number of Functions Representing Isotropic Functions of Scalars, Vectors and Tensors. arXiv 2023, arXiv:2207.09617. [Google Scholar] [CrossRef]
- Bustamante, R.; Shariff, M.H.B.M. New sets of spectral invariants for electro-elastic bodies with one and two families of fibres. Eur. J. Mech.-A/Solids 2016, 58, 42–53. [Google Scholar] [CrossRef]
- Shariff, M.H.B.M. Spectral derivatives in continuum mechanics. Q. J. Mech. Appl. Math. 2017, 70, 479–496. [Google Scholar] [CrossRef]
- Ogden, R.W. Non-Linear Elastic Deformations; Dover: New York, NY, USA, 1997. [Google Scholar]
- Dorfmann, A.; Ogden, R.W. Magnetoelastic modelling of elastomers. Eur. J. Mech. A/Solids 2003, 22, 497–507. [Google Scholar] [CrossRef]
- Dorfmann, A.; Ogden, R.W. Nonlinear electroelasticity. Acta Mech. 2005, 174, 167–183. [Google Scholar] [CrossRef]
- Spencer, A.J.M. Theory of invariants. In Continuum Physics; Eringen, A.C., Ed.; Academic Press: New York, NY, USA, 1971; Volume 1, pp. 239–353. [Google Scholar]
- Zheng, Q.S. Theory of representation for tensor function. A unified invariant approach to constitutive equations. Appl. Mech. Rev. 1994, 47, 545–587. [Google Scholar] [CrossRef]
- Smith, G.F. On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Eng.Sci. 1971, 9, 899–916. [Google Scholar] [CrossRef]
- Merodio, J.; Rajagopal, K.R. On Constitutive Equations For Anisotropic Nonlinearly Viscoelastic Solids. Math. Mech. Solids 2007, 12, 131–147. [Google Scholar] [CrossRef]
- Holzapfel, G.A.; Ogden, R.W. On planar biaxial tests for anisotropic nonlinearly elastic solids: A continuum mechanical framework. Math. Mech. Solids 2009, 14, 474–489. [Google Scholar] [CrossRef]
- Shariff, M.H.B.M. Nonlinear transversely isotropic elastic solids: An alternative representation. Q. J. Mech. Appl. Math. 2008, 61, 129–149. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shariff, M.H.B.M.; Bustamante, R.; Hossain, M. A Generalised Time-Dependent Mathematical Formulation for Magnetoelectrically Coupled Soft Solids at Finite Strains. Symmetry 2023, 15, 628. https://doi.org/10.3390/sym15030628
Shariff MHBM, Bustamante R, Hossain M. A Generalised Time-Dependent Mathematical Formulation for Magnetoelectrically Coupled Soft Solids at Finite Strains. Symmetry. 2023; 15(3):628. https://doi.org/10.3390/sym15030628
Chicago/Turabian StyleShariff, Mohd Halim Bin Mohd, Roger Bustamante, and Mokarram Hossain. 2023. "A Generalised Time-Dependent Mathematical Formulation for Magnetoelectrically Coupled Soft Solids at Finite Strains" Symmetry 15, no. 3: 628. https://doi.org/10.3390/sym15030628
APA StyleShariff, M. H. B. M., Bustamante, R., & Hossain, M. (2023). A Generalised Time-Dependent Mathematical Formulation for Magnetoelectrically Coupled Soft Solids at Finite Strains. Symmetry, 15(3), 628. https://doi.org/10.3390/sym15030628