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1. Introduction

The concept of quantum calculus or q-calculus is ordinary calculus without the notion
of limits. Recently, due to its wide applications in applied sciences [1–3], the area of q-
calculus has attracted the serious attention of researchers [4–7]. Jackson [8,9] was the first
who initiated the study of q-calculus by introducing q-analogue of ordinary derivative
and integral. He defined and studied q-difference operator and q-integral operator in
a systematic way. Ismail et al. [10] used the q-difference operator for the first time in
geometric function theory by introducing the class of q-starlike functions. Later the study
of q-calculus in geometric function theory was developed by many authors [11–14]. Several
researchers studied the subclasses of analytic functions associated with the q-difference
operator [13,15–19]. Raghavendar and Swaminathan [20] defined and studied some basic
properties of q-close-to-convex functions. Agrawal and Sahoo [21] introduced the family
of q-starlike functions of the order α. The aim of the present work is to explore some
properties of a subclass of analytic functions associated with q-Janowski functions involving
a q-difference operator.

Let A denote the family of functions f of the form

f (z) = z + ∑∞
n=2 anzn, (1)

which are analytic in the open unit disc E = {z ∈ C : |z| < 1}. Any function f is said to be
univalent in a domain D if it never takes the same value twice in D. Let us denote by S the
subclass of A consisting of univalent functions in E. For two functions f and g ∈ A, we say
that f is subordinate to g , written as f ≺ g , if there exists a Schwartz function w(z) which
is analytic in E with w(0) = 0 and |w(z)| < 1, for all z ∈ E, such that f (z) = g(w(z)), z ∈ E.
If g(z) is univalent in E, then f ≺ g ⇔ f (0) = g(0) and f (E) ⊂ g(E). For any function
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f defined by Equation (1) and g ∈ A given by g(z) = z + ∑∞
n=2 bnzn, the convolution or

Hadamard product of f and g is defined by

( f ∗ g)(z) = z + ∑∞
n=2 anbnzn, z ∈ E. (2)

For 0 < q < 1, the q-difference operator of a function f ∈ A is defined as

Dq f (z) =


f (z)− f (qz)

z− qz
, if z 6= 0,

f ′(0), if z = 0.
(3)

For q ∈ C, |q| ≤ 1, a natural generalization of Equation (3) is given by the convolution
operator

Dq f (z) =
1
z

{
f (z) ∗ z

(1− z)(1− qz)

}
,

which for q = 1, becomes the derivative f ′ and for q ∈ R, 0 < q < 1, is equivalent to
Equation (3). For f given by Equation (1), we have

Dq f (z) = 1 + ∑∞
n=2[n]qanzn−1, (4)

where
[n]q =

1− qn

1− q
= 1 + ∑n−1

k=1 qk, n ∈ N. (5)

From Equations (4) and (5), it can be noted that limq→1− Dq f (z) = f ′(z) and
limq→1− [n]q = n.

We denote by P, the class of analytic functions p with

p(z) = 1 + ∑∞
n=1 cnzn, (6)

such that Re(p(z)) > 0 in E. Any function of the form in Equation (6) is said to be in the
class P[A, B] if and only if

p(z) ≺ 1 + Az
1 + Bz

, z ∈ E,

where −1 ≤ B < A ≤ 1. The class P[A, B] was introduced by Janowski [22].
A function f ∈ S is said to belong to the class S∗ of starlike functions if, and only if,

Re
(

z f ′(z)
f (z)

)
> 0, z ∈ E,

which is equivalent to
z f ′(z)

f (z)
≺ 1 + z

1− z
, z ∈ E. (7)

Let S∗[A, B] denote the subclass of S, defined by

S∗[A, B] =
{

f ∈ S :
z f ′(z)

f (z)
≺ 1 + Az

1 + Bz
, z ∈ E

}
.

It is known that S∗[1− 2α,−1] = S∗(α) is the class of starlike functions of the order
α (0 ≤ α < 1). This class consists of the functions f ∈ S with the property that

Re
(

z f ′(z)
f (z)

)
> α, z ∈ E. (8)
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Chand and Singh [23] introduced and studied the class S∗[m] of starlike functions
with respect to m-symmetric points, consisting of the functions f ∈ S such that

z f ′(z)
fm(z)

≺ 1 + z
1− z

, z ∈ E, (9)

where fm(z) =
1
m ∑m−1

j=0 ε
−j
m f (εj

mz) , εm = exp( 2πι
m ) and m ∈ N. It can be noted that

fm(z) = z + ∑∞
n=2 δm,nanzn, (10)

where

δm,n =


0 if

n− 1
m
6∈ N,

1 if
n− 1

m
∈ N.

Kwon and Sim [24] studied the class S∗[m, A, B] which consists of the functions f ∈ S
such that

z f ′(z)
fm(z)

≺ 1 + Az
1 + Bz

, z ∈ E. (11)

In [10], Ismail et al. introduced the class S∗q as:

Definition 1. A function f ∈ A is said to belong to the class S∗q if∣∣∣∣ zDq f (z)
f (z)

− 1
1− q

∣∣∣∣ ≤ 1
1− q

,

or equivalently
zDq f (z)

f (z)
≺ 1 + z

1− qz
, z ∈ E. (12)

It can be noted that if q = 1 then Equation (12) coincides with Equation (7), that is,
for q = 1, S∗q = S∗.

By taking motivation from above-mentioned work and using a q-difference operator
Dq , for 0 < q ≤ 1 , we introduce the following new subclasses of analytic functions.

Definition 2. A function f ∈ A is said to be in class S∗q [m] if∣∣∣∣ zDq f (z)
fm(z)

− 1
1− q

∣∣∣∣ ≤ 1
1− q

,

or equivalently
zDq f (z)

fm(z)
≺ 1 + z

1− qz
, z ∈ E. (13)

Definition 3. A function f ∈ A is in class S∗q [m, A, B] if

zDq f (z)
fm(z)

≺
1 + Aqz
1 + Bqz

, z ∈ E, (14)

where,

Aq =
(A + 1) + (A− 1)q

2
, Bq =

(B + 1) + (B− 1)q
2

,

and −1 ≤ B < A ≤ 1.

It is important to note that −q ≤ Bq < Aq ≤ 1.
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Remark 1. It is worth mentioning that the functions in class S∗q [m, A, B] are not necessarily to be

univalent in E. For example, f (z) = z +
3
5

z2 is not univalent in E but one can easily verify that it

belongs to classes S∗0.5[2, 1,−0.4] and S∗0.5[1, 0.95, 0.5].

1.1. Special Cases

1. For m = 1, S∗q [m] = S∗q is the class studied by Ismail et al. [10].
2. For q = 1 , S∗q [m] = S∗[m] is the class studied by Chand and Singh [23].
3. For m = 1 and q = 1 , S∗q [m] = S∗ is the familiar class of starlike functions.
4. S∗q [m, 1,−1] = S∗q [m] is the class of q-starlike functions with respect to m-symmetric

points defined by Equation (13).
5. For q = 1 , S∗q [m, A, B] = S∗[m, A, B] is the class studied by Kwon and Sim [24].
6. For q = 1 , S∗q [1, A, B] = S∗[A, B] is the class studied by Janowski [22].
7. For q = 1 , S∗q [1, 1− 2α,−1] = S∗(α) is the class of starlike functions of the order α,

defined and studied by Roberston [25].
8. For q = 1 , S∗q [1, 1,−1] = S∗ is the class of starlike functions defined by Alexander [26].
9. For q = 1 , S∗q [2, 1,−1] = S∗[2] is the class of odd starlike functions studied by

Sakaguchi [27].

1.2. Geometrical Interpretation

A function f ∈ A is in the class S∗q [m, A, B] if, and only if,
zDq f (z)

fm(z)
takes all values in

the circular domain centred at
1− AqBq

1− B2
q

and radius
Aq − Bq

1− B2
q

.

2. A Set of Lemmas

The following lemmas are needed to prove our main results in the subsequent section.

Lemma 1 ([28]). If p(z) = 1 + c1z + c2z2 + · · · is an analytic function with a positive real part
in E and µ is a complex number, then |c2 − µc2

1| ≤ 2 max{1, |2µ− 1|}. This result is sharp for the
functions given by

p(z) =
1 + z
1− z

, p(z) =
1 + z2

1− z2 , z ∈ E.

Lemma 2 ([29]). If p(z) = 1 + c1z + c2z2 + · · · is an analytic function with a positive real part
in E, then |cn| ≤ 2. This result is sharp for the function given by

p(z) =
1 + z
1− z

, z ∈ E.

Lemma 3 ([30]). Let −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1. Then

1 + A1z
1 + B1z

≺ 1 + A2z
1 + B2z

, z ∈ E.

Lemma 4 ([31]). Let p(z) = 1 + ∑∞
n=1 pnzn , q(z) = 1 + ∑∞

n=1 qnzn and p ≺ q in E. If q(z) is
convex univalent in E, then

|pn| ≤ q1, for all n ≥ 1.

3. Main Results

Theorem 1. Let f ∈ S∗q [m, A, B], then fm ∈ S∗q [1, A, B].
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Proof. Since f ∈ S∗q [m, A, B], therefore

zDq f (z)
fm(z)

≺
1 + Aqz
1 + Bqz

, z ∈ E.

Replacing z by zε
j
m where j = 0, 1, 2, . . . , m− 1, we have

ε
j
mz(Dq f )(εj

mz)

fm(ε
j
mz)

≺
1 + Aqε

j
mz

1 + Bqε
j
mz
≺

1 + Aqz
1 + Bqz

, z ∈ E.

Using the properties fm(ε
j
mz) = ε

j
m fm(z) and (Dq f )(εj

mz) = ε
−j
m (Dq( f (εj

mz))), we
obtain

ε
−j
m zDq( f (εj

mz))
fm(z)

≺
1 + Aqz
1 + Bqz

, z ∈ E.

Since
1 + Aqz
1 + Bqz

is a convex function, therefore applying summation ∑m−1
j=0 and dividing

by m, we obtain

zDq( fm(z))
fm(z)

≺
1 + Aqz
1 + Bqz

, z ∈ E.

That is fm ∈ S∗q [1, A, B].

Theorem 2. If −1 ≤ D ≤ B < A ≤ C ≤ 1, then S∗q [m, A, B] ⊂ S∗q [m, C, D].

Proof. The proof follows directly by using −q ≤ Dq ≤ Bq < Aq ≤ Cq ≤ 1, and applying
Lemma 3.

Theorem 3. Let f ∈ A be given in Equation (1) and satisfies

∑∞
n=2

(
([n]q − δm,n) + |Aqδm,n − Bq[n]q|

)
|an| ≤ Aq − Bq, (15)

then f ∈ S∗q [m, A, B].

Proof. Let the Inequality (15) hold. Then from Equations (4) and (10)

∣∣∣∣∣∣∣∣
zDq f (z)

fm(z)
− 1

Aq − Bq
zDq f (z)

fm(z)

∣∣∣∣∣∣∣∣ =
∣∣∣∣ zDq f (z)− fm(z)

Aq fm(z)− BqzDq f (z)

∣∣∣∣
=

∣∣∣∣ (z + ∑∞
n=2[n]qanzn)− (z + ∑∞

n=2 δm,nanzn)

Aq(z + ∑∞
n=2 δm,nanzn)− Bq(z + ∑∞

n=2[n]qanzn)

∣∣∣∣
=

∣∣∣∣∣ ∑∞
n=2([n]q − δm,n)anzn−1

(Aq − Bq) + ∑∞
n=2(Aqδm,n − Bq[n]q)anzn−1

∣∣∣∣∣
≤ ∑∞

n=2|[n]q − δm,n||an||zn−1|
(Aq − Bq)−∑∞

n=2|Aqδm,n − Bq[n]q||an||zn−1|

≤ ∑∞
n=2([n]q − δm,n)|an|

(Aq − Bq)−∑∞
n=2|Aqδm,n − Bq[n]q||an|

≤ 1,
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then by maximum modulus theorem

zDq f (z)
fm(z)

≺
1 + Aqz
1 + Bqz

, z ∈ E.

Using q = 1 and m = 1 in Theorem 3, we obtain the results of Ahuja [32].

Corollary 1. If the function f defined by Equation (1) satisfies the inequality

∑∞
n=2((n− 1) + |A− nB|)|an| ≤ A− B,

then f ∈ S∗[A, B].

Using q = 1 and m = 1, A = 1− 2α, B = −1 in Theorem 3, we obtain the following
result of Silverman [33].

Corollary 2. If the function f defined by Equation (1) satisfies the inequality

∑∞
n=2(n− α)|an| ≤ 1− α,

then f ∈ S∗(α).

Theorem 4. For any l, k ∈ N with l ≤ k , the polynomial functions

pl(z) = z +
Aq − Bq

k
(
1 + |Bq

∣∣) ∑l+1
n=2

zn

[n]q
, (16)

belong to the class S∗q [m, A, B] for all m ≥ k.

Proof. By choosing an =
Aq − Bq

k(1 + |Bq|)[n]q
for n = 2, 3 . . . , l + 1 and an = 0 for n ≥ l + 2 in

Equation (15) and then applying Theorem 3 we obtain the required result.

Theorem 5. For any l, k ∈ N with l ≤ k , the polynomial functions

pl(z) = z + ∑l+1
n=2

zn

k[n]q
, (17)

belong to the class S∗q [m] for all m ∈ N.

Proof. By choosing A = 1, B = −1, an =
1

k[n]q
for n = 2, 3 . . . , l + 1 and an = 0 for n ≥

l + 2 in Equation (15) and then applying Theorem 3 we obtain the required result.

Theorem 6. Let f ∈ S∗q [m, A, B] is given by Equation (1) then

|a2| ≤
Aq − Bq

[2]q − δm,2
, (18)

and

|a3| ≤


Aq − Bq

[3]q − δm,3
, for all m ≥ 2 or m = 1 with A < b,

(Aq − Bq[2]q)(Aq − Bq)

([2]q − 1)([3]q − 1)
, if m = 1 and A ≥ b,

(19)
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where b = (1 + q)B +
3q− q2

1 + q
.

Proof. Let f ∈ S∗q [m, A, B] is given by Equation (1) then

zDq f (z)
fm(z)

=
1 + Aqw(z)
1 + Bqw(z)

. (20)

From Equations (4) and (10) we have

zDq f (z)
fm(z)

= 1 + ([2]q − δm,2)a2z + (([3]q − δm,3)a3

+ (δ2
m,2 − [2]qδm,2)a2

2)z
2 + · · · (21)

Similarly for w(z) = w1z + w2z2 + w3z3 + · · · , we have

1 + Aqw(z)
1 + Bqw(z)

= 1 + (Aq − Bq)w1z + ((Aq − Bq)w2 − Bq(Aq − Bq)w2
1)z

2 + · · ·

Next we calculate the values of w1 and w2. Taking

1 + w(z)
1− w(z)

= p(z) = 1 + c1z + c2z2 + · · · , (22)

we obtain
1 + 2w1z + (2w2 + 2w2

1)z
2 + · · · = 1 + c1z + c2z2 + · · · . (23)

Comparing Equations (22) and (23), we have

w1 =
c1

2
and w2 =

1
2

(
c2 −

c2
1

2

)
. (24)

Therefore,

1 + Aqw(z)
1 + Bqw(z)

= 1 +
(

Aq − Bq

2

)
c1z

+

(
Aq − Bq

2

)(
c2 − (1 + Bq)

c2
1

2

)
z2 + · · · . (25)

From Equations (21) and (25), we see that

([2]q − δm,2)a2 =
(Aq − Bq)

2
c1, (26)

and

([3]q − δm,3)a3 + (δ2
m,2 − [2]qδm,2)a2

2 =
(Aq − Bq)

2

(
c2 − (1 + Bq)

c2
1

2

)
. (27)

From Equation (26), we obtain

a2 =
(Aq − Bq)

2([2]q − δm,2)
c1. (28)
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Using Equation (28) in Equation (27) we obtain

a3 =
(Aq − Bq)

2([3]q − δm,3)
c2 −

[2]q(1 + Bq)− δm,2(1 + Aq)

4([2]q − δm,2)([3]q − δm,3)
(Aq − Bq)c2

1

=
(Aq − Bq)

2([3]q − δm,3)

(
c2 −

(
[2]q(1 + Bq)− δm,2(1 + Aq)

2([2]q − δm,2)

)
c2

1

)
. (29)

Applying Lemma 2, we obtain the first part of the result. For the second part, using
Lemma 1 we obtain

|a3| ≤
(Aq − Bq)

[3]q − δm,3
max

{
1,
∣∣∣∣ [2]qBq − δm,2 Aq

[2]q − δm,2

∣∣∣∣}.

Note that ∣∣∣∣ [2]qBq − δm,2 Aq

[2]q − δm,2

∣∣∣∣ ≤ 1 for all m ≥ 2 or m = 1 with A < b,∣∣∣∣ [2]qBq − δm,2 Aq

[2]q − δm,2

∣∣∣∣ ≥ 1 if m = 1 and A ≥ b.

Hence, the result follows.

Theorem 7. If f ∈ S∗q [m, A, B] is given by (1), then

|an| ≤
Aq − Bq

[n]q − δm,n
∏n−1

j=2

(
1 +

δm,j(Aq − Bq)

[j]q − δm,j

)
, for all n ≥ 3. (30)

Proof. Let
zDq f (z)

fm(z)
= p(z). (31)

Using Equations (4), (10) and p(z) = 1 + ∑∞
n=1 pnzn in Equation (31), we have

z + ∑∞
n=2[n]qanzn =

(
1 + ∑∞

n=1 pnzn
)(

z + ∑∞
n=2 δm,nanzn

)
. (32)

Comparing the coefficients of zn, we obtain

([n]q − δm,n)an = pn−1 + ∑n−2
k=1 δm,k+1ak+1 pn−k−1. (33)

Since

p(z) ≺
1 + Aqz
1 + Bqz

= 1 + (Aq − Bq)z− Bq(Aq − Bq)z2 + · · · , (34)

therefore, by Lemma 4
|pn| ≤ Aq − Bq for all n ≥ 1. (35)

Taking the absolute value of Equation (33) and using Equation (35), we obtain the
following inequality

|an| ≤
Aq − Bq

[n]q − δm,n

(
1 + ∑n−2

k=1 δm,k+1|ak+1|
)

. (36)

We shall use principle of mathematical induction to prove Equation (30). By taking
n = 3 in Equation (36) and using Equation (18), we have

|a3| ≤
Aq − Bq

[3]q − δm,3

(
1 +

δm,2(Aq − Bq)

[2]q − δm,2

)
, (37)
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which shows that Equation (30) is true for n = 3. Let us suppose Equation (30) holds for all
n ≤ s. For n = s + 1 from Equation (36), we see that

|as+1| ≤
Aq − Bq

[s + 1]q − δm,s+1
(1 + δm,2|a2|+ δm,3|a3|+ · · ·+ δm,s|as|)

≤
Aq − Bq

[s + 1]q − δm,s+1

{
1 +

δm,2(Aq − Bq)

[2]q − δm,2
+

δm,3(Aq − Bq)

[3]q − δm,3

(
1 +

δm,2(Aq − Bq)

[2]q − δm,2

)

+ · · ·+ δm,s
Aq − Bq

[s]q − δm,s
∏s−1

j=2

(
1 +

δm,j(Aq − Bq)

[j]q − δm,j

)}

≤
Aq − Bq

[s + 1]q − δm,s+1
∏s

j=2

(
1 +

δm,j(Aq − Bq)

[j]q − δm,j

)
,

which shows the result is true for n = s + 1. Hence Equation (30) holds for all n ≥ 3.

Theorem 8. Let f ∈ S∗q [m, A, B], then for any µ ∈ C, we have

|a3 − µa2
2| ≤

(Aq − Bq)

[3]q − δm,3
max{1, |2λ− 1|},

where

λ =
[2]q(1 + Bq)− δm,2(1 + Aq)

2([2]q − δm,2)
+ µ

(Aq − Bq)([3]q − δm,3)

2([2]q − δm,2)2 . (38)

Proof. From Equations (28) and (29) we have

a3 − µa2
2 =

(Aq − Bq)

2([3]q − δm,3)
c2 −

[2]q(1 + Bq)− δm,2(1 + Aq)

4([2]q − δm,2)([3]q − δm,3)
(Aq − Bq)c2

1

− µ

(
(Aq − Bq)c1

2([2]q − δm,2)

)2

=
(Aq − Bq)

2([3]q − δm,3)

(
c2 − λc2

1

)
,

where λ is given by Equation (38). Applying Lemma 1, we obtain the required result.

For m = 1 and q = 1, we obtain the following result for the class defined by
Janowski [22].

Corollary 3. Let f ∈ S∗[A, B] then

|a3 − µa2
2| ≤

A− B
2

max{1, |2B− A + 2µ(A− B)|}.

For m = 1, A = 1− 2α, B = −1 and q = 1 , we obtain the following result which is a
special case of the result proved in [34] and can be found in [35].

Corollary 4. Let f ∈ S∗(α), then

|a3 − µa2
2| ≤ (1− α)max{1, |3− 2α− 4µ(1− α)|}.

For m = 1, A = 1, B = −1 and q = 1, we obtain the following familiar Fekete–Szego
inequality for starlike functions.

Corollary 5. Let f ∈ S∗, then |a3 − µa2
2| ≤ max{1, |3− 4µ|}.
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Theorem 9. If f ∈ S∗q [m, A, B] given by Equation (1) is univalent, then f (E) contains an open
disc of radius

r0 =
[2]q − δm,2

2([2]q − δm,2) + (Aq − Bq)
.

Proof. Let ω0 6= 0 be a complex number such that f (z) 6= ω0 for z ∈ E. Then

g(z) =
f (z)

1− f (z)
ω0

=
ω0 f (z)

ω0 − f (z)
= z +

(
a2 +

1
ω0

)
z2 + ..... (39)

is analytic and univalent, therefore, ∣∣∣∣a2 +
1

ω0

∣∣∣∣ ≤ 2. (40)

The triangle inequality yields ∣∣∣∣ 1
ω0

∣∣∣∣− |a2| ≤ 2.

Using Equation (18) we obtain∣∣∣∣ 1
ω0

∣∣∣∣ ≤ 2([2]q − δm,2) + (Aq − Bq)

[2]q − δm,2
,

which implies

|ω0| ≥
[2]q − δm,2

2([2]q − δm,2) + (Aq − Bq)
, (41)

which shows the image of E under f (z) must cover an open disk with centre at the origin
and radius r0.

Theorem 10. If f ∈ S∗q [m, A, B], then

1
z

{
f (z) ∗

(
z

(1− z)(1− qz)
(1 + Bqeiθ)− (1 + Aqeiθ)h(z)

)}
6= 0, (42)

where h(z) = z + ∑∞
n=2 δm,nzn and 0 ≤ θ < 2π. The converse holds if

fm(z)
z
6= 0 for all z ∈ E.

Proof. Assume that f ∈ S∗q [m, A, B],, then we have
zDq f (z)

fm(z)
≺

1 + Aqz
1 + Bqz

if, and only if,

zDq f (z)
fm(z)

6=
1 + Aqeiθ

1 + Bqeiθ for all z ∈ E and 0 ≤ θ < 2π. The last condition can be written as

1
z

{
zDq f (z)(1 + Bqeiθ)− fm(z)(1 + Aqeiθ)

}
6= 0. (43)

On the other hand,

zDq f (z) = f (z) ∗ z
(1− z)(1− qz)

and

fm(z) = z + ∑∞
n=2 δm,nanzn = (z + ∑∞

n=2 anzn) ∗ (z + ∑∞
n=2 δm,nzn) = f (z) ∗ h(z).
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Substituting values in Equation (43), we have

1
z

{
f (z) ∗ z

(1− z)(1− qz)
(1 + Bqeiθ)− f (z) ∗ h(z)(1 + Aqeiθ)

}
6= 0, (44)

which implies Equation (42).

Conversely, if the assumption in Equation (42) holds for 0 ≤ θ < 2π and
fm(z)

z
6= 0

for all z ∈ E, then the function g(z) =
zDq f (z)

fm(z)
is analytic in E and g(0) = 1. Since we

have shown that Equations (42) and (43) are equivalent, therefore

zDq f (z)
fm(z)

6=
1 + Aqeiθ

1 + Bqeiθ . (45)

For ψ(z) =
1 + Aqz
1 + Bqz

and z ∈ E, Relation (45) shows that g(E) ∩ ψ(∂E) = φ. Therefore,

the simply connected domain g(E) is contained in a connected component of C− ψ(∂E).
Using the fact that g(0) = ψ(0) together with the univalence of function ψ, it follows that
g ≺ ψ which shows that f ∈ S∗q [m, A, B].

4. Conclusions

The q-calculus is an important area of study in the field of mathematics. It usually
deals with the generalization of differential and integral operators. In recent years, it
has attracted many researchers due to its wide range of applications in different fields of
sciences such as quantum mechanics, physics, special functions, orthogonal polynomials,
combinatorics and the related areas. This article concerns a generalization of the class
of starlike functions using the q-difference operator and the concepts of m-symmetrical
points. This work includes sufficiency criteria, coefficient estimates, bounds for Fekete–
Szego functional and convolution results for a newly defined class. During this study, it
is noted that the classes defined by the q-difference operator are larger than that defined
by ordinary derivatives because they also contains non-univalent functions. For example,

the function f (z) = z +
3
5

z2 is not univalent in E but this belongs to classes S∗0.5[2, 1,−0.4]

and S∗0.5[1, 0.95, 0.5]. By using the technique presented in this article, an infinite sequence of
functions can be generated for a wide range of subclasses of analytic functions which are
special cases of the newly defined class. Hopefully, the results proved in this article will be
beneficial to researchers in the field of geometric function theory.
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