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Abstract: In the curved space-time, the neutral test particle is not affected by any other force except for
the influence of the curved space-time. Similar to the free sub in the flat space, the Lagrangian of the
test particle only contains the kinetic energy term—the kinetic energy term of the four-dimensional
curved space-time. In the case of small space-time curvature, linear approximation can be made. That
is, under the weak field approximation, the Lagrangian quantity degenerates into the Lagrangian
quantity in the axisymmetric gravitational field in Newtonian mechanics. In this paper, the curved
space-time composed of axisymmetric equidistant black holes is taken as a model. We study the
geodesic motion of the test particles around three black holes with equal mass and static axisymmetric
distribution, including time-like particles and photons. The three extreme Reissner–Nordstrom black
holes are balanced by electrostatic and gravitational forces. We first give the geodesic motion equation
of particles in Three black holes space-time, give the relativistic effective potential, discuss the possible
motion state of particles, and classify their motion trajectories. Then, the particle motion of the special
plane (equatorial plane) is studied. The circular orbits of the two types of particles in the symmetric
plane are studied, respectively. The circular orbits outside the symmetric plane are also studied, and
their stability is also discussed. We will show the influence of the separation distance of the three
black holes on the geodesic motion and explore the change of the relativistic effective potential. Then,
the relationship between the inherent quantity and the coordinate quantity in space-time is analyzed.
Finally, the chaos of the test particle orbit is explored.

Keywords: effective potential; RN black holes; chaos; test particle; curved space-time

1. Introduction

In curved space-time, the motion of the test particle is entirely determined by the
space-time metric. In cases where the curvature of spacetime is not obvious, that is, in a
weak field, such as our own in the solar system, we usually think of it as flat spacetime.
Classical mechanics was sufficient to explain most phenomena, and Newton’s gravitation
was used to explain the motion of the planets, a very good approximation, with great
success. However, essentially the motion of the planets is determined by the nature of the
four-dimensional space-time around the sun that is curved by the sun.

The study of black hole theory is not perfect so far. On one hand, because the classical
theory ignores the quantum effect in the small scale, the black hole theory itself is still
developing and improving. On the other hand, due to the unidirectional membrane
characteristics of the black hole, it is difficult to obtain direct observation data, it is mainly
to infer the existence of objects that conform to the characteristics of black holes by observing
the abnormal behavior of surrounding stars. However, with the discovery of ultra-dense
celestial neutron stars, scientists became convinced that black holes were abundant in the
universe because the degenerate neutron pressure of a neutron star greater than 3.2 solar
masses was no longer strong enough to resist gravity and would collapse into a black
hole. In fact, in 2015, LIGO detected gravitational waves from a binary black hole [1,2].
This observation confirmed the existence of a binary black hole system in nature [3,4]. So
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far, 10 black hole mergers and one neutron star merger have been detected, with more
to come. These findings have given a powerful impetus to the study of the phenomenon
of binary black hole systems. The actual binary black hole systems are dynamic and it
is useful to describe the phenomena in these systems by means of numerical relativity.
On the other hand, it is also important to use analytical methods to understand these
phenomena qualitatively. However, due to the dynamic characteristics of the binary black
hole system, there is no analytical expression for it. Therefore, we often use static (or static)
and axisymmetric binary black hole space-time as models. Einstein equations (or Einstein–
Maxwell equations) have a number of binary black hole solutions with these symmetries,
which are Weyl space-time [5] or Majumdar–Papapetrou (MP) space-time [6–8], the double
kerr space-time [9], etc. We can learn a lot from such space-time phenomena. For example,
although the formation of binary black hole shadows requires a completely nonlinear
numerical relativistic simulation, we can use the (quasi-static) space-time of binary black
holes to identify certain characteristics [10–15]. The study of measuring particle motion
in strong gravitational fields is of great significance in astrophysics and gravity theory.
Even in a binary black hole system, it remains one of the most fundamental problems.
In fact, the formation of these black hole shadows is a matter of massless particle dynamics.
Binary black hole systems in the universe are highly dynamic systems without analytical
solutions. Therefore, a numerical calculation method is needed to analyze the geodesic
motion around these systems to obtain the numerical solutions of the test particles. On
the other hand, the dynamics of a large number of particles in a binary black hole system
have been discussed in the context of gravitational wave radiation caused by the third
object effect [16–19] and the formation of multiple accretion disks [20,21]. Among these
phenomena, a stable circular orbital sequence is crucial, especially the innermost stable
circular orbit (ISCO), which is considered to be the inner edge of an accretion disk [22].
Additionally, an inspiralling compact binary transits into the merging phase there [23,24].
There is also much research on the binary immovable black holes as follows: Chandrasekhar
as early as 1989 [25] had studied radiation scattering from the two extremes of the RN
black hole. These are the two fixed central problems of classical mechanics, which have
many applications in celestial mechanics, and the main interest of this problem is that
it is classically integrable, but in relativity it is not integrable, and the system is chaotic.
In 1990 and 1991 [26,27], Contoplous studied the ordered and chaotic geodesic orbits of
particles around the double stationary black holes. Others studied the circular orbits of
two black holes of equal mass in the equatorial plane and the circular orbits outside the
symmetric plane [28]. This paper [29] studies the bound orbits of particles around a single
rotating black ring. It is proved that there are stable helical orbits near the “axis” of the
ring, and in special cases, stable circular orbits on the axis. If the ring thickness is less than
a critical value, the stable bound orbit can have arbitrarily large dimensions. The bound
orbits of free particles around a single rotating black ring are studied. Using the Poincare
diagram, we find that there are chaotic motions of particles bound by gravity to the black
ring [30]. The geodesic motion of massless particles in a single rotating black ring is studied.
When the thickness parameter of the black ring is less than the critical value, the stable
geostationary orbit of the ring-helical massless particle is found. In addition, there are
non-stationary massless particles in the finite region beyond the horizon. This is the first
example of a massless particle in a stable constrained orbit around a black object [31].

The study of ISCO is of great importance, for three reasons. First, the geometry of
space-time can be reflected by the innermost stable circular orbit reaction of the particle.
Second, a binary system of test particles and a black hole can be a source of gravitational
waves [32–34]. More importantly, the study of ISCO allows us to understand accretion
disks and the associated radiation spectrum [35,36]. For a massive particle with no charge
and no spin, we know that the radius of its ISCO is 6M, and M is the mass of the black
hole when it re-orbits the Schwarzschild black hole [37]. The ISCO radius of a RN black
hole ranges from 4m (corresponding to an extreme black hole) to 6m (corresponding to
the Schwarzschild limit) [38]. Things become a little more complicated when particles



Symmetry 2023, 15, 702 3 of 28

move around the Kerr black hole. Under the background of an extreme Kerr black hole,
the rISCO = M of the co-rotating orbit and rISCO = 9M of the reverse rotating orbit [39]. The
ISCO study of Kerr–Newman (KN) black holes can be seen as a combination of the RN
case and the Kerr case [40]. Other studies on ISCO can be found in the literature [41–66],
including the motion of charged particles around the KN black hole [67]. In fact, a classical
test particle might have spin angular momentum. The papers [68,69] studied the influence
of spin on the orbits of ISCO in Schwarzschild black holes, [69,70] studied the influence of
spin on the orbits of ISCO in Kerr black holes, and [71] studied the influence of spin on the
orbits of ISCO in KN black holes. In addition, the study of particle motion near the black
hole can also provide a valuable reference for the study of astrophysical events [44] and
high-energy events [72] related to the black hole.

This paper is organized as follows, in Section 2, there are many different configurations
of three stationary black holes, equidistant collinear, unequal collinear, equilateral triangle,
isosceles triangle, general triangle, etc. We select axisymmetric coordinate system, according
to the test amount of relativity Lagrangian particle, starting from the Lagrange equation,
this paper derived the space-time three black holes (TBH) class particles and photons
geodesic equation of motion, and according to several conservation quantity, effective
potential energy is given, and on the symmetry plane of the particle orbit are classified, and
then gives the symmetry plane of Hamilton canonical equation. Of course, in this section we
have calculated the expressions of the fundamental geometric quantities in TBH spacetime
and even discussed the event horizon problem. In Section 3, we discuss the effect of mass
ratio on effective potential. In Section 4, we use the phase plane analysis method to discuss
the stability of symmetric plane orbits and give the constraint conditions.In Section 5, we
give the conditions satisfied by the stable circular orbit in TBH space-time, and give the
space-time stability region diagram under specific parameters. In Section 6, we derive the
gravitational red shift expression of TBH space-time and give the relationship between
the coordinate quantity and the intrinsic quantity. In Section 7, we discuss the chaotic
properties of the test particle in this space-time. In Section 8, we summarize the conclusion
of the article.

2. Space-Time Metric and Equations of Motion
2.1. TBH Space-Time Metric

The general Reissner–Nordström metric expression is as follows:

ds2 =−
(

1− 2M
r

+
Q2

r2

)
dt2 +

(
1− 2M

r
+

Q2

r2

)−1

dr2

+ r2
(

dθ2 + sin2 θdφ2
)

.

(1)

For a black hole with a mass of M and a charge of |Q|= M, the black hole is called an
extreme black hole, and its space-time metric can be simplified as:

ds2 =−
(

1− M
r

)2
dt2 +

(
1− M

r

)−2
dr2

+ r2
(

dθ2 + sin2 θdφ2
)

.
(2)

In isotropic coordinates (r̄ ≡ r−M), we can further simplify:

ds2 = −
(

1 +
M
r̄

)−2
dt2 +

(
1 +

M
r̄

)2
(β) (3)

β = [dr̄2 + r̄2
(

dθ2 + sin2 θdφ2
)
]. (4)

where β is the Euclidean flat metric.It is not difficult to find that the metric function 1 +
M/r̄ in Equation (2) satisfies the Laplace equation in space and has the form of a harmonic
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function in Euclidean space. Surprisingly, when 1 + M/r̄ is replaced by a more general
harmonic function, the metric of Equation (3) is still the solution to the Einstein–Maxwell
equations. This is the metric first discovered by Majumdar and Papapetrou [6–8], and we
will talk about this space-time.

The Majumdar–Papapetrou space-time metric has the following form:

ds2 = −U−2(~r)dt2 + U2(~r)d~r · d~r, (5)

d~r · d~r = dx2 + dy2 + dz2, (6)

Rµν −
1
2

gµνR = κTµν. (7)

When solving equations, Tµν = 0. The U here satisfies the Einstein field Equation (7),
which can be directly reduced to the Laplace Equation (8).

52U =
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2 = 0. (8)

The corresponding solution was given in Hawking’s paper [8]:

U(x) = 1 + ∑
i

mi
ri

, (9)

ri =
[
(x− xi)

2 + (y− yi)
2 + (z− zi)

2
] 1

2 . (10)

where i goes from 1 to 3. Here, ~r represents the position vector in the plane of three-
dimensional space, which is called the background space. For example, in Cartesian coordi-
nates,~r = (x, y, z). In the subsequent theoretical analysis, an appropriate coordinate system
should be selected according to the model for the convenience of calculation. Here, it is
more appropriate to select column coordinates for TBH space-time. TBH space-time itself
has spatial rotation symmetry. Here, we choose cylindrical coordinate system so that there
can be more cyclic coordinates. The metric and the gauge field of the TBH spacetime in
isotropic coordinates are given by:

ds2 = gµνdxµdxν =
−dt2

U2 + U2(dρ2 + ρ2dφ2 + dz2). (11)

For the convenience of subsequent calculations, the covariant components of the
metric are listed:

gtt = −U−2. (12)

gρρ = U2. (13)

gφφ = U2ρ2. (14)

gzz = U2. (15)

Aµdxµ = Aνgµνdxµ = ΦU−2dt = U−1dt. (16)

Φ(~r) = U(~r). (17)

Equation (17) shows that electrostatic potential is equal to gravitational potential. In
the space-time satisfying this equation, the position of the black hole can be arbitrarily
placed. As long as the black hole has the same charge, these black holes can be relatively
static, thus forming the static space-time. After coordinate transformation, we give the
specific expression of U in a cylindrical coordinate system.

U(ρ, z) = 1 +
M1√

ρ2 + (z− a)2
+

M2√
ρ2 + (z + a)2

+
M3√

ρ2 + z2
, (18)
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where Mi (i = 1, 2, 3) are masses of three extremal Reissner–Nordström black holes, M1, M2
are located at z = ±a(a ≥ 0), and M3 is located at z = 0. Note that we choose cylindrical
coordinates on the spatial geometry, x = ρ cos φ and y = ρ sin ϕ, where x and y are the
Cartesian coordinates.

2.2. Test Particle Motion Equation

The Lagrangian of a flat space-time free particle is

L =
1
2

mv2. (19)

Through such an analogy, it can be seen that the Lagrangian of the freely tested
particles in curved space-time is:

L =
1
2

gµν ẋµ ẋν =
1
2

[
− ṫ2

U2 + U2
(

ρ̇2 + ρ2φ̇2 + ż2
)]

. (20)

The point here is the derivative of the affine parameter. Since the TBH space-time
is static axisymmetric, t and angular φ are not obvious in Lagrangian, resulting in the
conservation of energy and angular momentum. Now we introduce a common killing
vector to introduce two conserved quantities. Hypothesis:

ξµ = δ
µ
ν . (21)

Where the value of ν is determined. The infinitesimal mapping generated by this
Killing vector is:

x̃µ = xµ, (µ 6= ν)x̃µ = xµ + ε, (µ = ν). (22)

The coordinate xν of the corresponding point has only changed by a small amount.
This mapping is an equal metric mapping, which means that the metric field is independent
of xν. In this case, we call xν the cyclic coordinates of the metric field, and when xν is
the cyclic coordinates, the corresponding conserved quantities of the test particles are
as follows:

pµξµ = pµδ
µ
ν = pν. (23)

Note that the conserved quantity is the corresponding component of the covariance
quantity. Now, back in TBH space time, it is not difficult to find that t and φ are cyclic
coordinates, so the conserved quantities of the moving particles are pt and pφ.

pt = gtν pν = gtt pt = − 1
U2 ṫ (24)

pφ = gφν pν = gφφ pφ = ρ2U2φ̇. (25)

E =
ṫ

U2 , L = ρ2U2φ̇. (26)

where we may assume that E > 0. The Lagrangian equation is:

d
dt

∂L
∂q̇α
− ∂L

∂qα
= 0. (27)

Now we can write the equations of motion corresponding to z and ρ in the four
space-time coordinates according to the Lagrange equation as follows:

U2z̈− [ṫ2U−3 + U(ρ̇2 + ρ2φ̇2 + ż2)]Uz = 0. (28)
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U2ρ̈− [U2φ̇2ρ + (U−3 ṫ2 + U(ρ̇2 + ρ2φ̇2 + ż2))Uρ] = 0. (29)

where Uz and Uρ are partial derivatives of the potential energy function U with respect to
the coordinates z and ρ.

2.3. Contact and Curvature

Of course, we could have given the equation of motion directly from the geodesic
equation of motion (30), but we need to calculate in advance all the non-zero components
of the Kirschner sign using the metric and the Christopher sign relation (31).

ẍi + Γi
jk ẋj ẋk = 0 (30)

Γi
jk(x) =

1
2

gil(
∂glk

∂xj +
∂gjk

∂xl −
∂gik

∂xj ). (31)

Now by comparing the coefficients of the equations of motion with the geodesic
equations, we can calculate the non-zero points of all Christopher symbols at:

Γt
tρ = −U−1Uρ (32)

Γt
tz = −U−1Uz (33)

Γφ
ρφ = U−1Uρ + ρ−1 (34)

Γφ
zφ = U−1Uz (35)

Γz
ρz = U−1Uρ (36)

Γz
tt = −U−5Uz (37)

Γz
ρρ = −UzU−1 (38)

Γz
φφ = −Uzρ2U−1 (39)

Γz
zz = UzU−1 (40)

Γρ
tt = −U−5Uρ (41)

Γρ
ρρ = UρU−1 (42)

Γρ
φφ = −(ρ + Uρρ2U−1) (43)

Γρ
ρz = U−1Uρ (44)

Γρ
zz = −UρU−1. (45)

So far, we have found thirteen components of the TBH space-time connection, the rest
of which are zero. The curvature tensor is an intrinsic property that reflects the degree of
curvature in space-time, and with the Christopher symbol, the curvature tensor in Riemann
space can be calculated. It is not only related to the planeness of space, but also an important
indicator of the relative acceleration of two points in time and space, which can be reflected
by the geodesic deviation equation. Their relationship is as follows:

Rρ
λµν = Γρ

λµ,ν − Γρ
λν,µ + Γρ

λσµΓσ
λν − Γρ

λσνΓσ
λµ (46)

aµ = Rρ
λµνTµTρSσ. (47)

This equation, also known as the Jacobi equation, tells us that the relative acceleration
between two geodesics is proportional to the curvature, where Tµ is the tangent vector
of the geodesic, Sσ is the deviation vector, and aµ is the four-dimensional acceleration. It
can be seen that curvature is very important. We obtain 19 non-zero components in TBH
space-time:
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Rz
ttρ = −6U−6UρUz + U−5Uzρ (48)

Rz
ttz = UzzU−5 − 4U−6UzUz (49)

Rz
ρρz = U−1Uρρ −U−1Uzz − (2 + ρ2)U2

z −U−1U2
ρ (50)

Rz
φφρ = 2U−2ρ2UρUz − 3U−1ρUz − (U−1ρ2 + U−2)Uzρ (51)

Rz
φφz = Uzzρ2U−1 + U−2ρ2U2

z + U−2ρ2U2
ρ + U−1ρUρ (52)

Rz
ρzρ = U−2(U2

z −U2
ρ) + U−1(Uρρ −Uzz) (53)

Rz
ρzφ = −U−2UzUρ + 2U−1Uρz + U−2ρ4U2

z (54)

Rt
ρtρ = −3U−2U2

ρ + U−1Uρρ −U−2U2
z (55)

Rt
ρtz = −U−2UρUz + U−1Uρz − 3U−2UzUρ (56)

Rt
ztρ = U−1Uzρ − 4U−2UzUρ (57)

Rt
ztz = U−2U2

ρ + U−1Uzz − 3U−2U2
z (58)

Rφ
ρφρ = −U−1Uρρ + 2U−2U2

ρ (59)

−U−2U2
z − ρ−1U−1Uρ

Rφ
ρφz = −U−1Uzρ + U−2U2

ρ + ρ−1U−1Uρ (60)

+U−2UzUρ − ρ−1U−1Uz

Rφ
zφz = U−2U2

z −U−1Uzz −U−2U2
ρ − ρ−1U−1Uρ (61)

Rφ
zφρ = 2U−2UρUz −U−1Uzρ (62)

Rρ
zzρ = U−1Uzρ −U−2(U2

z + U2
ρ) (63)

Rρ
ttρ = −3U−6U2

ρ + U−5Uρρ −U−6U2
z (64)

Rρ
φφρ = −U−2U2

ρρ2 + U−1ρUρ (65)

+ρ2UρρU−1 + ρ2U2
z U−2

Rρ
φφz = Uρzρ2U−1 − 2UρUzρ2U−2. (66)

After obtaining the curvature tensor, the Ricci tensor can be obtained by shrinking the
index of the curvature tensor.

Rµν = Rλ
µλν. (67)

Then, we can calculate the curvature scalar according to the Ricci tensor we have
obtained. Here we need to contract again. The order of the tensor will be 0 (scalar):

R = gµνRµν = Rµ
µ (68)

Rµ
µ = Rt

t + Rρ
ρ + Rφ

φ + Rz
z (69)

Rt
t = gttRtt (70)

Rρ
ρ = gρρRρρ (71)

Rφ
φ = gφφRφφ (72)

Rz
z = gzzRzz. (73)

2.4. Hamiltonian Canonical Equation

According to the four velocity normalization, we have this relational expression:
gµν ẋµ ẋν = −κ, where κ = 1 for time-like particles and κ = 0 for photons. Four motion
integrals for the motion of the test particle in TBH space-time have been found, and they
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are, respectively: E, L, κ, z = 0. Then we give the Hamiltonian for the test particle. First, we
define the covariance:

Pα =
∂L
∂ẋα

= gαβ ẋβ. (74)

According to Legendre transformation, we can obtain the Hamiltonian from Lagrangian:

H =
1
2

gαβPαPβ. (75)

H =
1
2
(gttP2

t + gρρP2
ρ + gφφP2

φ + gzzP2
z ). (76)

After calculation, we can obtain four expressions of covariance, which are, respectively:

Pt = gtt ṫ = −U−2 ṫ (77)

Pρ = gρρρ̇ = U2ρ̇ (78)

Pφ = gφφφ̇ = U2ρ2φ̇ (79)

Pz = gzz ż = U2ż. (80)

Due to the symmetry of the metric time and coordinates, the relationship between
contravariant and covariant metrics becomes very simple. They are reciprocal of each other.
The components of the metric tensor are the only diagonal elements that are non-zero. The
contravariant metric is obtained as follows:

gtt = −U2 (81)

gρρ = U−2 (82)

gφφ = U−2ρ−2 (83)

gzz = U−2. (84)

By plugging in the calculated contravariant metric and covariance, we can accurately
obtain the Hamiltonian of the test particle in TBH space-time:

H =
1
2
(−U2E2 + U−2P2

ρ + U−2ρ−2L2 + U−2P2
z ). (85)

With the Hamiltonian, we can directly write the Hamiltonian equation:

dxα

dτ
=

∂H
∂pα

,
dpα

dτ
= − ∂H

∂xα
. (86)

By substituting the space-time coordinates, we can obtain 8 ordinary differential
equations of first order, which are, respectively:

dt
dτ

=
∂H
∂pt

= gttPt,
dpt

dτ
= −∂H

∂t
= 0. (87)

By combining the two first-order differential equations in Formula (86), a second-order
motion equation can be obtained:

ẗ = 0. (88)

dρ

dτ
=

∂H
∂pρ

= gρρPρ,
dpρ

dτ
= −∂H

∂ρ
. (89)
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In the same way:

ρ̈ = −gρρ ∂H
∂ρ

. (90)

dφ

dτ
=

∂H
∂pφ

= gφφPφ,
dpφ

dτ
= −∂H

∂φ
. (91)

φ̈ = 0. (92)

dz
dτ

=
∂H
∂pz

= gzzPz,
dpz

dτ
= −∂H

∂z
. (93)

z̈ = −gzz ∂H
∂z

. (94)

Because of the equivalence of Hamiltonian mechanics and Lagrangian mechanics, (19)
(20) and (75) (76) must be equivalent. Combining the conservation of energy and the
normalization of four velocities, we can obtain: L = − 1

2 andH = − 1
2 . Here, L =H can be

derived from the Legendre transformation in mathematics, or can be explained in physics,
because both L andH represent only the same energy, and the deeper reason is that gravity
is geometrized, and the potential energy terms in both L andH are 0.

2.5. Horizon of Space-Time

TBH space-time is a Riemannian space-time with a sign difference of +2. In this kind
of space-time similar to a Minkowski space-time with an indefinite metric, it is possible to
have a special hypersurface. Now let us examine whether TBH space-time has an event
horizon, that is, a zero surface that preserves space-time symmetry. First of all, let us define
a zero hypersurface. Now, let us assume that

f (xµ) = f (x1, x2, x3, x4) = 0, µ = 1, 2, 3, 4. (95)

Is a three-dimensional hypersurface in four-dimensional space-time, where the normal
vector is defined as

nµ =
∂ f
∂xµ . (96)

The length of the normal vector is defined as:

nµnµ = gµνnµnν = gµν ∂ f
∂xµ

∂ f
∂xν

. (97)

If the following conditions are satisfied:

gµν ∂ f
∂xµ

∂ f
∂xν

= 0. (98)

Then the surface is a zero hypersurface whose normal vector length is zero. TBH space-
time is statically axisymmetric, and the horizon, as a surface preserving the symmetry of
space-time, should also be statically spherically symmetric. Therefore, if the TBH space-
time horizon exists, its hypersurface expression f (xµ) should be independent of t and φ,
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and can only be a function of ρ. Substituted into the TBH space-time metric, the following
equation can be obtained:

gρρ(
∂ f
∂ρ

)2 + gzz(
∂ f
∂z

)2 = 0 (99)

U−2((
∂ f
∂ρ

)2 + (
∂ f
∂z

)2) = 0. (100)

This is obvious ( ∂ f
∂ρ )

2 6= 0( ∂ f
∂z )

2 6= 0. Therefore, we can only obtain: U−2 = 0.
The solutions of Equation (100) are three points corresponding to the spatial coordi-

nates of the three black holes, respectively, that is to say, the zero hypersurface of TBH is
three points, and the space-time has no horizon.

2.6. One-Dimensional Effective Potential

Different initial values have different orbits. Here, we simplify the problem. We mainly
discuss the motion of the particles to be measured on the TBH space-time symmetry plane
(z = 0, ż = 0), which can be divided into three orbits: bound state, scattering state and
absorption state. The orbit type and total energy of the particles, and the relativity of the
particles on the symmetry plane are closely related to the effective potential V(ρ, a). Here,
we fix a = 10. Firstly, according to the normalized relationship, energy conservation and
angular momentum conservation, the following relationship can be obtained:

ρ̇2 + ż2 + V = E2. (101)

E is the total energy per unit of the static mass (the sum of the static energy and kinetic
energy) that a static observer at infinity can obtain when observing a particle locally. For
a unit static mass particle that exists at infinity, E1 (moving particle E > 1, stationary
particle E = 1); for unit static-mass particles located in the gravitational field, E is the total
energy including gravitational potential energy (the sum of static energy, kinetic energy and
gravitational potential energy), E is a conserved quantity on geoid r(τ). L is the equivalent
angular momentum per unit static mass of the particle, φ(τ) is the conserved quantity.
Here, we obtain the expression of the effective potential:

V
(

ρ, z; L2
)
=

L2

ρ2U4 +
κ

U2 . (102)

Because (z = 0, ż = 0), we know z̈ = 0 from the equation of motion. Now, fixed
angular momentum L = 5, for time-like particle κ = 1, we can obtain the relationship
between the effective potential and radius:

V(ρ, 0, 10, 5) =
25

ρ2U4 +
1

U2 . (103)

Figure 1 fixed the angular momentum parameter L = 5, making the separation distance
parameter a = 0, 3, 5, 8. Observe the change of the effective potential with a single variable
ρ. Figure 2 fixes the separation distance a = 7, making angular momentum L = 0, 1, 2 . . . 10.
Observe the change of the effective potential with a single variable L. As ρ goes to infinity,
it is clear from the two diagrams that the relativistic effective goes to 1, and the Newtonian
potential of a free particle at infinity from the gravitational source should be equal to zero,
and we usually specify that the Newtonian potential at infinity is equal to zero, and that is
where the relativistic effective potential is different from the Newtonian potential. Since
we take c = 1, m = 1 per unit mass, and the total energy of a free class particle at infinity
is its rest energy, according to Einstein’s equation of mass and energy, we can very well
explain why relativistic efficiency tends to number 1, whether it is changing the angular
momentum or changing the separation distance. When ρ is 0 in the effective potential
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energy expression, it corresponds to the effective energy of the photon. Now, take a = 0
and the angular momentum L as 1, 4, 8, 12, 16, respectively, and the effective energy of a
single RN black hole with a mass of 3 can be obtained, as shown in Figure 3:

0 5 10 15 20 25 30 35 40

0.0

0.5

1.0

1.5

 

 

v
 a=0
 a=3
 a=5
 a=8

Figure 1. This is a one-dimensional effective potential image of the test particle on the ρ− z plane.
Since this is a special case (L = 5), we observe it by changing the angular momentum. The different
values of a are given: a = 0, a = 3, a = 5, a = 8.

0 5 10 15 20 25 30 35

0.0

0.5

1.0

 
 

V

  L=2
  L=3
  L=4
  L=5

Figure 2. This is a one-dimensional effective potential image of the test particle on the ρ− z plane.
Since this is a special case a = 7, we observe it by changing the angular momentum. The different
values of L are given: L = 2, L = 3, L = 4, L = 5.

0 20 40 60

0.0

0.8
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v

 L=1
 L=4
 L=8
 L=12
 L=16

Figure 3. This is a one-dimensional effective potential image of the photons on the ρ− z plane. Since
this is a special case (a = 0), we observe it by changing the angular momentum. The different values
of L are given: L = 1, L = 4, L = 8, L = 12, L = 16.



Symmetry 2023, 15, 702 12 of 28

It is not difficult to find that the peak of the effective potential energy increases with the
increase of L, and it can also be seen that the photon energy at infinity is 0, corresponding to
the residual energy of the photon. When the separation parameter a = 7, other conditions
remain unchanged, and only the angular momentum is changed, as shown in Figure 4:

0 20 40 60

0

5

10

 

 

v

 L=1
  L=4
  L=8
  L=12
  L=16

Figure 4. This is a one-dimensional effective potential image of the photons on the ρ− z plane. Since
this is a special case (a = 7), we observe it by changing the angular momentum. The different values
of L are given: L = 1, L = 4, L = 8, L = 12, L = 16.

First of all, we can obtain the same rule as Figure 5. Secondly, we find that when the
angular momentum is constant, the effective potential energy will increase more obviously
with the increase of a.

Now, we classify the time-like free particle motion orbits with different energies in
symmetric plane motion with an angular momentum of 6 and separation distance of 5.
First, we give its effective potential diagram:

0 5 10 15 20 25 30

ρ

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

V

z=0  L=6  a=5

X: 0.8314

Y: 1.293

X: 7.136

Y: 0.7339

Figure 5. We obtain an image of the effective potential in this case, in which z = 0, L = 6, a = 5.

We find that the curve of the potential function has two stationary points, which can
be obtained by the partial derivative of the potential function equal to zero and marked in
the graph. The conditions are as follows:

Vρ = 0. (104)

After calculation, we obtain the value of stagnation point as ρ1 = 0.8314, ρ2 = 7.136,
respectively. The corresponding effective potential is V1 = 1.293, V2 = 0.7339 respectively.
Now, let us classify the possible orbits of this particle. (1) If E2 > V1, then if the particle
starts to move away from the black hole, the particle will continue to move towards infinity.
If the particle starts to move towards the black hole, the particle will eventually fall into the
black hole. (2) If E2 = V1, then the particle moves in an unstable circular orbit. In other
words, if the particle is disturbed inward, the particle will no longer move in a circular orbit,
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but will spiral into the black hole. If the particle is disturbed outward, the particle will
run to infinity. (3) If 1 ≤ E2 < V1, the particle is in a scattering state. No matter whether
the particle starts out in a direction towards or away from the black hole, the particle
ends up heading for infinity. (4) If V2 < E2 < 1, the particle is in a bound state, and the
particle moves in an elliptical orbit. (5) If E2 = V2, then the particle moves in a stable
circular orbit, that is, any small disturbance will not make the particle deviate from the
circular orbit, and the particle will eventually continue to move in a circular orbit. (6) If
E2 < V2, obviously, at this point the particle can only fall into the black hole, regardless of
its initial state.

3. The Effect of M1M2 on the Equilibrium Position

We found that when the M1 = M2 on the z axis of radius equal to 0, z = 0 is a balance,
but here there is a black hole, we generally do not consider the situation, no matter wjether
for photon M1 or M2, how for quality, there is no balance, but for class particles there
is such a point, and the premise is the angular momentum from 0. We first study the
M1:M2 = 2:1, and draw the effective potential along with the change of z, ρ = 0, a = 5, L = 7.

Veff(z) =
1

2U2(z)
(105)

U(ρ = 0, z) = 1 +
1

((z− 5)2)
1
2
+

1

((z + 5)2)
1
2
+

1

(z2)
1
2

. (106)

According to Formula (18), we adjust the mass ratio M2:M1= 1:1, 3:1, 5:1, 7:1, 1:3, 1:5,
1:7, respectively, and draw the picture as shown in Figure 6:
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0.0

0.2

0.4

 

 

v

z

 1:1
 3:1
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 7:1
 1:3
 1:5
 1:7

Figure 6. We give the effective potential at different mass ratios of black holes on the z-axis.

It is clear from the graph that there is a stable equilibrium point at z = 0, but there
is a black hole, so it is not necessary to discuss stability here. We also found that there is
an unstable equilibrium point between 0 and 5 and 0 and −5, and when the mass ratio
changes, we find that the equilibrium point changes, always in favor of the small mass
black hole. Now, let us look at the separation distance between the black holes when the
masses are the same a pair, and the effective potential is the effect of the energy curve.

It can be seen from Figure 7 that the change of separation distance a does not change
the shape of the effective potential. The separation distance a of Vz only changes the peak
value. When the value of a is relatively small, the equilibrium position of the effective
potential is small. When the value of a is relatively large, the equilibrium position of the
effective potential is higher. The reason is very simple. Similar to Newtonian mechanics,
the lifted object has gravitational potential energy. When the separation distance a is larger,
it is equivalent to the higher the object is lifted, the greater the gravitational potential energy
will be, so the effective potential peak here will also become larger.
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Figure 7. We obtain the effective potential for different separation distances at the same mass, which
a = 0, 3, 5, 7, 10.

4. The Stability of Symmetric Plane Orbits is Discussed by Phase Plane Analysis

Now the orbital stability on the symmetric plane is analyzed by the method of phase
plane analysis. Now, the orbital stability on the symmetric plane is analyzed by the method
of phase plane analysis. Now, select the plane z = 0, and Formula (101) can be written as:

ρ̇2 = E2 −V, (107)

Due to the

ρ̇ =
dρ

dφ

dφ

dτ
=

dρ

dφ
φ̇. (108)

Combined with Equation (91), the following equation can be obtained:

ρ̇ =
dρ

dφ

L
ρ2U2 . (109)

Therefore, (109) can be rewritten as:

(
dρ

dφ
)2 =

ρ4U4

L2 (E2 −V). (110)

Then we perform the transformation R = 1
ρ , dR = dρ−1

(
dR
dφ

)2 =
U4(R)

L2 (E2 −V(R)). (111)

Among them:

U(R) = 1 +
2√

1
R

2
+ a2

+ R. (112)

V(R) =
R2L2

U4(R)
+

κ

U2R
. (113)

Now we are going to do the last transformation x = R y = dR
dφ

y2 =
U4(x)

L2 (E2 −V(x)). (114)
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When theta dR
dφ = 0, we can define a new effective potential Y.

Y = 1 +
U4(x)

L2(E2 −V(x))
. (115)

When dY
dx = 0, the particle’s trajectory is circular. When the trajectory of the particle is

a stable circular orbit, this condition needs to be met:

dY2

dx2 ≥ 0. (116)

5. Stability Conditions for Test Particle Circular Orbit in TBH Space-Time

We study time-like particles that move in a circular motion on a symmetric plane,
which needs to satisfy these conditions: (1) z = 0. (2) The radius and ordinate of the circular
orbit of the particle do not change with proper time ρ̇ = ż = 0. Obviously, the acceleration
term should also be equal to 0, (3) ρ̈ = z̈ = 0. From this, we can derive:

Vz = 0 (117)

Vρ = 0. (118)

where Vi = ∂iV(i = z, ρ). Hence, the circular orbits are realized at stationary points of V
where the values of V are positive. After simplification, we can obtain these equations:

Uz = 0 (119)

Uρ = − ρ

(ρ2 + z2)
3
2
− ρ

(ρ2 + (z− a)2)
3
2
− ρ

(ρ2 + (z + a)2)
3
2

. (120)

L2 = L2
0(ρ, z) := −

ρ3U2Uρ

U + 2ρUρ
. (121)

E2 = E2
0(ρ, z) := V

(
ρ, z; L2

0

)
. (122)

Here, we require that the square of angular momentum is greater than 0, so the effective
potential energy must also be greater than 0. Finally, we find that the particle’s motion
along the circular orbit needs to meet the following requirements: Uz = 0, L2 = L2

0 ≥ 0,
and E2 = E2

0.Then we analyze the stability of the circular orbit. According to the stability
analysis theory, if the effective potential of the circular orbit is at a minimum, we call it a
stable circular orbit. When the effective potential is at the local maximum or saddle point,
we call it unstable circular orbit. In order to determine whether the circular orbit is stable,
we need to introduce the Hessian matrix, whose matrix elements are as follows :Vij = ∂i∂jV,
and then define the determinant and trace of the Hessian matrix :

h
(

ρ, z; L2
)
= det Vij = VρρVzz −VρzVzρ (123)

k
(

ρ, z; L2
)
= Tr Vij = Vρρ + Vzz. (124)

According to the above definition, we now summarize the stability analysis of circular
orbits as follows : (1) A circular orbit is stable at a stagnation point of V is equivalent to
h > 0 and k > 0 . (2) A circular orbit is unstable at a stagnation point of V is equivalent
to h > 0 and k < 0 , or h < 0. When a stable circular orbit sequence becomes an unstable
circular orbit sequence at a certain radius, we call the circular orbit at this radius an edge-
stable circular orbit, and V has an inflection point (i.e., h = 0). It is worth noting that we call
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the smallest edge stable circular orbit the innermost stable circular orbit. In the rest of the
article, we study the circular orbits of equal mass M1 = M2 = M3 in TBH spacetime. We
use units of Mi = 1, i = 1, 2, 3. In this particular case, Equation (119) can be simplified as :

2a− 2z

2(ρ2 + (a− z)2)
3
2
− 2a + 2z

2(ρ2 + (a + z)2)
3
2
− z

(ρ2 + (z)2)
3
2
= 0. (125)

Now, we define the trace and determinant of the Hessian matrix that satisfies the
circular orbit:

h0(ρ, z) = h
(

ρ, z; L2
0

)∣∣∣
Uz=0

(126)

k0(ρ, z) = k
(

ρ, z; L2
0

)∣∣∣
Uz=0

. (127)

From this, we can infer the region of motion in the circular orbit of the example:

D =
{
(ρ, z)|h0 > 0, k0 > 0, L2

0 > 0
}

. (128)

The feasible region of D when a = 5 is given as Figure 8:

 a=5  h>0
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ρ
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V

Figure 8. The stable circular orbital interval satisfies a = 5.

6. Coordinate Quantities and Intrinsic Quantities in TBH Spacetime
6.1. Coordinate Distance and Proper Distance

TBH space-time is orthogonal to the time axis, that is:

g0i = 0, i = 1, 2, 3. (129)

We know that the simultaneous plane can be established and the unified coordinates
can be determined in space-time. According to the orthogonality of the time axis, the
expression of space distance is as follows:

dl2 = γikdxidxk (130)

γik = gik −
g0kg0i

g00
. (131)

Simplify to the following formula

dl2 = gikdxidxk. (132)
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Now, write the proper distance expression in the three directions of ρ, φ, z:

dlρ = Udρ (133)

dlφ = Uρdφ (134)

dlz = Udz. (135)

It can be seen from the three expressions (133)–(135) that the coordinate distance is not
equal to the proper distance. There is an additional proportional function U, which is a
function of the space-time point. In other words, the three coordinate distances have no
measurement significance.

6.2. Coordinate Time and Proper Time

Now, the observer at rest with respect to a coordinate system xµ is investigated to find
the relationship between its coordinate time and proper time:

dτ =
ids
c

=

√
−gµνdxµdxν

c
(136)

=

√−g00dx0

c
=
√
−g00dt.

By combining Equations (11) and (12):

dτ = U−1dt. (137)

Thus, it can be seen that proper time and coordinate time are also separated by a
proportional function except for the case of infinity, where the value of the function is
equal to 1 and the coordinate time is equal to proper time. Therefore, TBH space-time
coordinate time is generally not of measurement significance. Because the time axis is
orthogonal, TBH space-time can establish a unified coordinate time, so that the coordinates
of all points in space-time are the same. It can be seen from the above formula that within
the same coordinate time interval, standard clocks at different points in space-time will
travel through different proper times.

6.3. The Natural Velocity of Light and the Coordinate Velocity of Light

The radial velocity and tangential velocity of light in TBH space-time are now dis-
cussed. Suppose the tangential natural velocity of the photon at any point in TBH space-
time is:

vτ =
dlτ
dτ

=
Uρdφ + Udz

dτ
. (138)

The radial natural velocity is:

vρ =
dlρ
dτ

=
Udρ

dτ
. (139)

For a photon its space time interval is zero:

ds2 =
−dt2

U2 + U2ρ2dφ2 + U2dz2 = 0 (140)

ds2 =
−dt2

U2 + U2dρ2 = 0. (141)

Thus, it can be obtained that:

vρ = vτ = 1. (142)
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Obviously, the tangential and radial natural velocities are both c. Therefore, at any
point in the TBH space-time, the measured speed of light is independent of the direction of
light. As with Minkowski, the speed of light in TBH space-time is still isotropic. In order to
calculate the coordinate light speed of TBH space-time, the following definition is given.
The radial coordinate light speed can be defined as:

vcρ =
dρ

dt
= U−1. (143)

The tangential coordinate speed of light can be defined as:

vcτ =
dlτ
dt

= U. (144)

It can be found that the radial coordinate velocity is equal to the speed of light at
infinity, but it can be much less than the speed of light near the three black holes, and the
tangential coordinate velocity is also equal to the speed of light at infinity, but it can be
much more than the speed of light near the three black holes. Visible coordinate speed of
light anisotropy. Now, we multiply Equations (143) and (144), and we are surprised to find
that the product of tangential and radial coordinate velocities is exactly equal to the speed
of light squared:

vcτvcρ = 12. (145)

This equation reflects the conservation of energy in a certain sense. However, the
coordinate speed of light is only a formal definition, so there is no practical significance, of
practical significance is the proper speed of light, which can be verified by experimental
detection.

6.4. Red Shift in TBH Space-Time

Because the TBH space-time metric is time independent, that is:

∂gµν

∂t
= 0, µ, ν = 0, 1, 2, 3. (146)

And satisfying (146), we can say that TBH spacetime is steady-state. We now discuss
the standard time in stationary space-time. It is assumed that there are two points A and
B in space-time, which are a stationary light source and stationary observer, respectively.
The light source at A emits an optical signal at coordinate time t1, and the observer at B
receives the optical signal at coordinate time t2. The coordinate difference is:

δt = t2 − t1. (147)

Then, the light source at A emits an optical signal at coordinate time t′1, and the
coordinate when the signal is received at B is t′2. The coordinate difference is:

δt′ = t′2 − t′1. (148)

In the TBH space-time, there is no time coordinate t, which satisfies the Equation (146),
so the space-time is stable. We can infer that the time difference between the two coordinates
must be equal:

δt = δt′. (149)

This is equivalent to:

t2 − t1 = t′2 − t′1. (150)
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Then, the following relation can be obtained:

dt2 ≡ t2 − t1 (151)

dt1 ≡ t′2 − t′1 (152)

dt1 = dt2. (153)

where dt1 is the coordinate time difference between the two optical signals at A, and dt2
is the coordinate time difference between the two optical signals at B. The relationship
between them and their own inherent time is:

dτ1 =
√
−g00(A) = dt1 (154)

dτ2 =
√
−g00(B) = dt2. (155)

Thus, the proper time relationship between A and B can be obtained:

dτ2 =

√
−g00(B)√
−g00(A)

dτ1. (156)

Now suppose: U(A) > U(B), According to Formula (5), we can obtain:

dτ2 =
U(A)

U(B)
dτ1. (157)

Where the gravitational potential is high, proper time moves slowly, while where
the gravitational potential is low, proper time moves fast. When B takes infinity, U(B)
approaches 1, and we can obtain:

dτ2 = dt = U(A)2dτ1. (158)

Atomic clocks at two different locations in space-time cannot be compared directly,
but the frequency of light can still be used to verify the change in proper time. The spectral
lines emitted by atoms have an inherent frequency, which reflects some natural vibration
frequency of atoms. The vibration of atoms can be regarded as a metronome, N is the
number of times the metronome vibrates. Its frequency is:

ν =
dN
dτ

. (159)

According to the same number of atomic vibration in A and B, it can be obtained that:

dN1 = dN2, ν1dτ1 = ν2dτ2. (160)

Combined with Formulas (158) and (159), the following equation can be obtained:

ν2 =

√
−g00(A)√
−g00(B)

ν1. (161)

ν2 =
U(B)
U(A)

ν1. (162)
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It is clear that where the gravitational potential is low, the light frequency is low,
and if we assume that B goes to infinity then U(B) goes to 1, that is a much more
obvious conclusion:

ν =
1

U(A)
ν0. (163)

ν0 is the photon frequency near the black hole, ν is the frequency measured by the observer
at the infinite distance, the fundamental reason is that the standard clock at different time
and space points moves at different speeds.

7. The Order and Chaos Orbits of Particle

In order to describe the order and chaos of particles, two methods are used to deter-
mine whether particles are in order or chaos. One method is the Poincare cross section
method. If the Poincare interface is a closed curve with no intersection point, then the
orbit is in order; if the Poincare interface diagram has scattered points, then the orbit
is chaotic. The other is the Fast Lyapunov Indicator (FLI), in which the fast Lyapunov
Indicator formula is as follows:

FLI = log10
d(τ)
d(0)

. (164)

If the FLI curve increases exponentially, then the particle orbit is chaotic; if it grows
slowly, then the particle orbit is orderly. If the two methods are used together, the order and
chaos of particles can be judged more clearly. Now, we study under a set of determined
parameters, a = 30, E = 0.98, L = 7, M1 = M2 = M3 = 1, r = 46, pr = 0.1, z = 0, and
pz = 0.2. Using the RK algorithm of order 8 (9) to solve the space-time regular equation,
we can obtain the Lyapurov exponential graph and Poincare cross section graph as follows:

As can be seen from Figure 9a,b, FLI rises rapidly and the scattered points of the
Poincare cross-section are obvious. Therefore, we can determine that under this initial
condition, we find the chaotic orbit of the particle, which can also be seen from the two-
dimensional space projection of the particle, as shown in Figure 9c.

When the initial position r is not at the same time has a great influence on the particle’s
chaotic sex, on the basis of the above parameters, makes the r = 50, as can be seen from
Figure 10a, the FLI agreed slow growth, present the linear growth, while in the Poincare
section Figure 10b shows a closed elliptical orbit, combining space projection Figure 10c we
found that the projection is orderly orbit, so we found an orderly track, and the result in
changes of the particle’s chaotic orbit is the initial position of r.

The change of the separation distance a of the three static distribution black holes also
affects the chaos of the particle orbit. Now, take a = 20, and the graph is as follows.

According to the diagram, it can be clearly seen that the FLI agreed on in Figure 11a
rises faster, but in Figure 9a, the rising speed is slower, the scatter distribution is not obvious,
but the outgoing scatter curve is crossed. Combined with the trajectory of the test particle
in Figure 9c, it can be judged that the trajectory of the test particle becomes smaller, and the
test particle is still a chaotic orbit under the same conditions, but the chaos is weak. As a
becomes smaller, let us see what happens to the orbital chaos of the test particles. Now take
a = 5, as shown in Figure 12:
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Figure 9. (a) is the fast Lyapunov index diagram, (b) is the Poincare section, and (c) is the spatial
trajectory projection. Which a = 30, E = 0.98, L = 7, M1 = M2 = M3 = 1, r = 46, pr = 0.1, z = 0,
pz = 0.2.
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Figure 10. (a) is the Fast Lyapunov Index diagram, (b) is the Poincare section, and (c) is the spatial
trajectory projection. Which a = 30, E = 0.98, L = 7, M1 = M2 = M3 = 1, r = 50, pr = 0.1, z = 0,
pz = 0.2.
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Figure 11. (a) is the Fast Lyapunov Index diagram, (b) is the Poincare section, and (c) is the spatial
trajectory projection. Which a = 20, E = 0.98, L = 7, M1 = M2 = M3 = 1, r = 46, pr = 0.1, z = 0,
pz = 0.2.
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Figure 12. (a) is the Fast Lyapunov Index diagram, (b) is the Poincare section, and (c) is the spatial
trajectory projection. Which a = 5, E = 0.98, L = 7, M1 = M2 = M3 = 1, r = 46, pr = 0.1, z = 0,
pz = 0.2.

It is obvious that FLI rises slowly rather than exponentially in Figure 12a. Looking at
the Poincare cross-section in Figure 12b, it is a closed curve. Combined with the projection
trajectory in Figure 12c, it can be concluded that this particle orbit is an ordered orbit. That
is to say that when a is a small value, the particle’s orbit goes from chaotic to ordered.

Now let’s select another set of determined parameters a = 100, E = 0.98, L = 7,
M1 = M2 = M3 = 1, r = 60, pr = 0.1, z = 0, pz = 0.1 for discussion. The figure is as
follows: Figure 13,
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Figure 13. (a) is the Fast Lyapunov Index diagram, (b) is the Poincare section, (c) is the spatial
trajectory projection, (d) is a long time space projection. Which a = 100, E = 0.98, L = 7, M1 = M2 =

M3 = 1, r = 60, pr = 0.1, z = 0, pz = 0.1.

According to Figure 13a, it can be seen that the FLI agreed explosive growth, Poincare
Figure 13b a scatter scattered, and can be seen from the two track projection particle
movement desultorily, trajectory Figure 13c,d, respectively, for a short time and long time
integral effect, it can be seen that the longer the particle movement, the more chaos, thus it
can be concluded that this type of chaos is strong!

Then, what changes will be brought by changing the initial position R of the particle in
the case of strong chaos? Now select r = 30, 40, 50, 60, 70, 80, and make Figure 14 as follows:
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Figure 14. This is the fast Lyapunov index diagram, which a = 100, E = 0.98, L = 7, M1 = M2 =

M3 = 1, r = 30, 40, 50, 60, 70, 80, pr = 0.1, z = 0, pz = 0.1.

According to Figure 14 FLI alone, it can be seen that the growth pattern of the FLI
curve is almost the same even if the initial position R of the tested particle is different.
Therefore, it can be judged that the change of initial position R has almost no influence on
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the chaos of the particle under strong chaos. Next, we will discuss whether the change of A
under the above determined parameters can influence the chaos of the particle. Now, take
a = 20, 50, 100 and draw the figure as follows.

According to Figure 15 FLI, the growth rate of FLI becomes slow with the decrease of
a, so it can be inferred that the orbital chaos of the test particle weakens with the decrease
of a.
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Figure 15. This is the fast Lyapunov index diagram, in which a = 20, 50, 100, E = 0.98, L = 7,
M1 = M2 = M3 = 1, r = 60, pr = 0.1, z = 0, pz = 0.1.

Then, we test whether the energy change of particles will have an impact on chaos.
Now we choose a = 7, L = 4.8, M1 = M2 = M3 = 1, r = 38, pr = 0.1, z = 0 and pz = 0.1 for
discussion. Take the energy E = 0.95, 0.96, 0.97 and 0.98 as the figure below.

It can be seen from Figure 16 that when the energy is 0.95, the Poincare cross-section is
a closed blue curve, indicating that this is an ordered orbit. When the energy is 0.96, the red
curve is no longer closed and scattered points appear, and weak chaos has been generated.
Look at the Figure 17 again now, when the energy is 0.95, the FLI agreed indicators were
not puffed up, also indicates the orderly orbit, but when energy increase to 0.96, the red
FLI agreed in a significantly upward curve, as E = 0.97, 0.98, and became warped on the
more obvious, at this time as the chaotic orbits, combined with the Poincare section and
the FLI, which agreed to a qualitative description when the experimental particle energy
increases, the particle tracks may vary from order to chaos.
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Figure 16. This is the Poincare section, in which a = 7, E = 0.95, 0.96, 0.97, 0.98, L = 4.8, M1 = M2 =

M3 = 1, r = 38, pr = 0.1, z = 0, pz = 0.1.
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Figure 17. This is the fast Lyapunov index diagram, in which a = 7, E = 0.95, 0.96, 0.97, 0.98, L = 4.8,
M1 = M2 = M3 = 1, r = 38, pr = 0.1, z = 0, pz = 0.1.

8. Conclusions

We study the space-time properties of the TBH, including giving the space-time metric,
calculating the Christoffel symbol, and the Riemann curvature tensor, which facilitates our
further understanding and research on the TBH curved space-time. For the TBH space-time
horizon, we reach the conclusion that the space-time has no horizon, and the three exposed
singular points are located at the coordinates of the three black holes, which are z = 0,
−a, a, (see Equation (100)), respectively. The relationship between the coordinate quantity
and the intrinsic quantity and the redshift expression in space-time are also given (see
Equation (161)). On the analysis of the effective potential of the test particles moving in
the three static black holes, we reach some qualitative conclusions. The peak value of
the effective potential energy increases with the increase of a and L, and the mass also
has a great influence on the effective potential energy of the plane with ρ = 0. This is
similar to Newton’s potential energy balance, in which the side of the celestial body mass
increases, and the equilibrium point will tend to this side. In the future, we will analyze
the two-dimensional effective potential energy of the particles in more detail, which is
more convenient for us to study the more general motion trajectory of the test particles. We
give the stability condition of the particle’s circular orbit motion in the symmetric plane
by the phase plane analysis method, and then use the Hessian matrix to further analyze
the two-dimensional effective potential of the particle, and give the stability condition of
the particle’s circular orbit in space. Finally, the numerical calculation is used to explore
the order and chaos of the test particles in space-time (see Figures 12 and 13). It is found
that the initial energy of the experimental particles is the main factor affecting the chaos of
the particles. Most of the test particles with low energy are in an ordered orbit. When the
energy increases, the particle orbit will move from order to chaos (see Figures 16 and 17).
In future research, we hope to study TBH space-time more deeply.
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