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Abstract: Motivated by the recent work on the symmetric domains, this article investigates certain
features of symmetric domain which are caused by the secant hyperbolic functions. Geometric
characteristics of analytic functions associated with secant hyperbolic functions are discussed, which
include the inclusion results, structural formula, certain sharp radii results such as radius of starlike-
ness and convexity of order α. It also finds a radius for ratios of analytic functions associated with
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1. Introduction

Denoted byAm, the class of functions f(ς) = ς+ am+1ςm+1 + am+2ςm+2 + · · · , analytic
in D = {ς ∈ C : |ς| < 1} and A1 = A denote the class of analytic functions having the
series form

f(ς) = ς +
∞

∑
m=2

amςm, ς ∈ D. (1)

The subclass S of A contains univalent functions (one to one) in D. Moreover,
S∗ and C represent classes of starlike and convex functions in D, respectively. These
classes are defined for the functions f analytically by the relation Re(ςf ′(ς)/f(ς)) > 0 and
Re(1 + ςf ′′(ς)/f ′(ς)) > 0 in D, respectively. A function f analytic in D is subordinated by
analytic function g denoted by f ≺g if there exists a Schwarz function w which maps D to
itself with w(0) = 0 such that f(ς) = g(w(ς)). If g is univalent in D and f(0) = g(0), then
f(D) ⊂ g(D).

The concept of subordination was applied by Ma and Minda [1] to introduce general-
ized subclasses S∗(Ψ) and C(Ψ) of starlike and convex functions, respectively, which are
analytically defined as:

S∗(Ψ) :=
{
f ∈ A :

ςf ′(ς)

f(ς)
≺ Ψ(ς)

}
,

and

C(Ψ) :=
{
f ∈ A : 1 +

ςf ′′(ς)

f ′(ς)
≺ Ψ(ς)

}
.

The function Ψ is an analytic and univalent in D. It maps D onto the convex set
in C with Ψ(0) = 1 and Re{Ψ′(ς)} > 0 in D. The classes S∗(Ψ) and C(Ψ) unify many
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subclasses of S∗ and C. We write a few of these by taking the particular Ψ. The classes
S∗[a, b] := S∗((1 + aς)/(1 + bς)) and C[a, b] := C((1 + aς)/(1 + bς)), −1 ≤ b < a ≤ 1
represent the Janowski starlike and Janowski convex functions [2]. By choosing a =
1 − 2γ and b = −1, the classes S∗[a, b] and C[a, b] reduce to the starlike and convex
functions of order γ ∈ [0, 1). The class SS∗β := S∗[(1 + ς)/(1− ς)]β represents the strongly
starlike functions of order β ∈ (0, 1]. The class S∗s := S∗(1 + sin(ς)) serves as the class
of starlike functions related with sine function [3]. Sokół and Stankiewicz [4] defined
the class S∗L := S∗(

√
1 + ς). The class S∗L(γ) performs as a subclass of S∗L with order

γ [5]. Similarly, the class S∗
(√

2− (
√

2− 1)
√

1−ς

1+2(
√

2−1)ς

)
is represented by S∗RL [6].

The class S∗C := S∗
(

1 + 4ς
3 + 2ς2

3

)
is a subclass of S∗ related to a cardioid [7]. The class

S∗l
(

1 +
√

2ς + ς2

2

)
is a class related with limacon [8–10]. The class S∗e = S∗(eς) was

defined by Mendiratta et al. [11]. The class S∗cos = S∗(cos(ς)) represents the starlike
functions related to the cosine function; see [12,13]. The class S∗∆ := S∗

(
ς +

√
1 + ς2

)
was

introduced and studied in [14], while the class BS∗(γ) := S∗
(
1 + ς/

(
1− γς2)), γ ∈ [0, 1]

was given by Kargar et al. [15]. For some more recent work in the same direction, we refer
to [16–22] and the references therein.

Recently, some authors have explored the geometry of certain generating functions
for well-known numbers and connected them with certain subclasses of S . For instance,
Sokół [23] defined a subclass of S∗ by using Fibonacci numbers. Some applications of
these numbers were given by Dziok et al. [24,25]. Certain coefficient bounds for starlike
functions related to generalized telephone numbers were given by Deniz [26]; also see [27].
A subclass of S∗ related with Bell numbers was studied in [28,29]. The subclasses of S∗
and C related to Bernoulli numbers were studied by Raza et al. [30].

Motivated by the given above progress, we take the function

ΨE(ς) = sec h(ς) =
2

eς + e−ς
=

∞

∑
m=0

Em

m!
ςm,

where the Euler’s numbers Em satisfy the relation E2m+1 = 0, m = 0, 1, 2, · · · . It is clear
that E0 = 1, E2 = −1, E4 = 5 and E6 = −61. The numbers Em are closely connected
with other well-known numbers such as the Genocchi numbers, the Bernoulli numbers,
the Stirling numbers of two kinds, the tangent numbers, the Riemann zeta function and
the Euler polynomials, and therefore are very useful in number theory and combinatorics;
see [31–34] and references therein.

The generating function ΨE of Euler numbers is univalent in D with Re{ΨE(ς)} > 0
in D. Therefore, by using the function ΨE, we define the class S∗E in D as follows:

S∗E :=
{
f ∈ A :

ςf ′(ς)

f(ς)
≺ ΨE(ς)

}
.

The function ΨE is symmetric about the real axis, as given in Figure 1.
In other words, let p(ς) ≺ ΨE(ς). Then f is in the class S∗E if and only if it can be

written as

f(ς) = ς exp
(∫ ς

0

p(t)− 1
t

dt
)

. (2)

Now we provide few examples in the class S∗E. Consider

p1(ς) = 1 +
ς

3
, p2(ς) =

4 + 2ς

4 + ς
, p3(ς) = 1 +

ς

6
.

Since the function ΨE(ς) is univalent in D with pi(0) = ΨE(0) = 1, (i = 1, 2, 3) and
pi(D) ⊂ ΨE(D), therefore pi(ς) ≺ ΨE(ς).
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We intend to prove that the following functions are in the class S∗E.

f1(ς) = ςe
ς
3 , f2(ς) = ς +

ς2

4
, f3(ς) = ςe

ς
6

We also intend to establish connections of newly defined class S∗E of analytic functions
associated with secant hyperbolic functions with many other classes of analytic functions.
These connections are given by radii problems and inclusion results. We emphasize and
thoroughly study the radii problems for starlikeness and convexity of the class S∗E. For that,
we need the following classes of analytic functions and certain established results which
are given below in Section 2. All the proved results are sharp, which is justified by giving
suitable extremal functions.

 

Figure 1. Graph of ΨE.

The classM(β) is defined for the functions f ∈ A such that Re( ςf ′(ς)
f(ς) ) < γ, γ > 1.

The class Pm[a, b] for −1 ≤ b < a ≤ 1 is defined as

Pm[a, b] :=

{
p(ς) = 1 +

∞

∑
k=m

ckςk : p(ς) ≺ 1 + aς

1 + bς

}
.

In particular, Pm[1− 2γ.− 1] := Pm(γ) for γ ∈ [0, 1), Pm := Pm(0) and P1 = P ,
the well-known classes having functions with positive real parts in D. Any function p ∈ P
has the series form

p(ς) = 1 +
∞

∑
m=1

qmςm, ς ∈ D. (3)

Let S∗E,m = Am ∩ S∗E, S∗m[a, b] = Am ∩ S∗[a, b] and Mm(γ) := Am ∩ M(γ).
Ali et al. [35] studied the classes Sm and CSm(γ). These are defined as

Sm := {f ∈ Am :
f(ς)

ς
∈ Pm}

and

CSm(γ) :=
[
f ∈ Am :

f(ς)

g(ς)
∈ Pm, g ∈ S ∗m(γ)

]
.

2. Preliminary Results

We utilize the following results in our study.
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Lemma 1. [36] If p ∈ Pm(γ), then, for |ς| = s,∣∣∣∣ ςp′(ς)p(ς)

∣∣∣∣ ≤ 2(1− γ)msm

(1− sm)(1 + (1− 2γ)sm)
.

Lemma 2. [37] If p ∈ Pm[a, b], then, for |ς| = s,∣∣∣∣p(ς)− 1− abs2m

1− b2s2m

∣∣∣∣ ≤ (a− b)sm

1− b2s2m .

In particular, if p ∈ Pm(γ), then, for |ς| = s,∣∣∣∣p(ς)− (1 + (1− 2γ))s2m

1− s2m

∣∣∣∣ ≤ 2(1− γ)sm

1− s2m .

3. Starlikeness and Convexity

Firstly, we study the starlikeness and strong starlikeness of order γ and order β,
respectively, for the class S∗E. We start with the following result, which is useful in proving
our inclusion results.

Lemma 3. Let ΨE(ς) = sec h(ς). Then for s ∈ (0, 1),

min
|ς|=s

ReΨE(ς) = ΨE(s) = min
|ς|=s
|ΨE(ς)| = sec h(s),

and
max
|ς|=s

ReΨE(ς) = sec(s) = max
|ς|=s
|ΨE(ς)|.

Proof. For ς = seiy, y ∈ [0, 2π] and 0 < s < 1, the function

ReΨE(ς) =
cos(s sin(y)) cosh(cos(y))

[sinh(s cos(y))]2 + [cos(s sin(y))]2

has minimum value at y = 0 and π and maximum at y = π/2. Hence,

min
|ς|=s

ReΨE(ς) = ΨE(s) = sec h(s),

and
max
|ς|=s

ReΨE(ς) = sec(s).

Additionally, the function

[cos(s sin(y)) cosh(s cos(y))]2 + [sin(s sin(y)) sinh(s cos(y))]2[
(sinh(s cos(y)))2 + (cos(s sin(y)))2)

]2

has minimum value at y = 0 and π and maximum at y = π/2. Hence, we conclude that

min
|ς|=s
|ΨE(ς)| = ΨE(s) = sec h(s),

and
max
|ς|=s
|ΨE(ς)| = sec(s).
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Theorem 1. The class S∗E satisfies the following inclusion:

1. S∗E ⊂ S∗(γ), for 0 ≤ γ ≤ sec h(1),
2. S∗E ⊂M(γ) for γ ≥ sec(1),
3. S∗E ⊂ SS

∗(β), whenever β0 ≤ β ≤ 1, where β0 ≈ 0.7949056270.

Proof. 1. Let f ∈ S∗E. Then we can write

ςf ′(ς)

f(ς)
≺ sec h(ς).

By using Lemma 3, we conclude that

min
|ς|=1

Re(sec h(ς)) < Re
ςf ′(ς)

f(ς)
< max
|ς|=1

Re(sec h(ς)),

Hence,

sec h(1) < Re
ςf ′(ς)

f(ς)
< sec(1). (4)

Thus, S∗E ⊂ S∗(γ), where 0 ≤ γ ≤ sec h(1).
2. Result follows from (4).
3. Let f ∈ S∗E. Then,∣∣∣∣arg

ςf ′(ς)

f(ς)

∣∣∣∣ < max
|ς|=1

arg(sec h(ς)) =

max
|ς|=1

{
− arctan

(
sin(sin(y)) sinh(cos(y))
cos(sin(y)) cosh(cos(y))

)}
.

Let

h(y) = − arctan
(

sin(sin(y)) sinh(cos(y))
cos(sin(y)) cosh(cos(y))

)
.

Then, h′(y) = 0 has two roots in [0, π], namely

y0 ≈ 0.9583580911 and y1 ≈ 2.183234562.

A simple computation shows that h′′(y1) = −1.979302776. Therefore, we conclude
that max(h(y)) = h(y1) = 0.5060526392. Thus,

f ∈ SS∗
(

2
π

h(y1)

)
.

Theorem 2. The S∗(γ)-radii, for S∗E is s0 = arc sec h(γ) with sec h(1) ≤ γ < 1.

Proof. Since f ∈ S∗E, then by using Lemma 3, we have

sec h(s) ≤ Re
(

ςf ′(ς)

f(ς)

)
≤ sec(s).

Hence,

Re
(

ςf ′(ς)

f(ς)

)
≥ sec h(s) ≥ γ

for s = arc sec h(γ). Thus, the radius s0 of S∗(γ) for S∗E is the positive and smallest root
s0 ∈ (0, 1) of the equation sec h(s)− γ = 0.
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Theorem 3. The C(γ)-radius for the class S∗E is s0, where s0 is the positive and smallest root of the
equation

(1− s2) cos(s)[sec h(s)− γ]− s sinh(s) = 0.

Proof. Since f ∈ S∗E, therefore for an analytic function ω with ω(0) = 0 and |ω(ς)| ≤ |ς|,
we can write

ςf ′(ς)

f(ς)
= sec h(ω(ς)). (5)

By taking logarithmic differentiation of (5) it follows that

1 +
ςf ′′(ς)

f ′(ς)
= sec h(ω(ς))− ςω′(ς) sinh(ω(ς))

cosh(ω(ς))
. (6)

From (6), we may write

Re
(

1 +
ςf ′′(ς)

f ′(ς)

)
≥ Re(sec h(ω(ς)))− | sinh(ω(ς))||ςω′(ς)|

| cosh(ω(ς))| . (7)

For the minimum value, we assume ω(ς) = Reiy with R ≤ |ς| = s,−π ≤ y ≤ π. A
simplification shows that

Re(sec h(ω(ς))) =
cos(R sin(y)) cos h(R cos(y))

[sin h(R cos(y)]2 + [cos(R sin(y))]2
= Φ(y).

Since Φ(y) = Φ(−y), therefore we only consider y ∈ [0, π] and the equation Φ′(y) = 0
has namely 0, π/2 and π roots. It implies that

min{Φ(0), Φ(π/2), Φ(π)} = Φ(0) = Φ(π) = sec h(R),

and
max{Φ(0), Φ(π/2), Φ(π)} = Φ(

π

2
) = sec(R).

This implies that

Re(sec h(ω(ς)))) ≥ sec h(R) ≥ sec h(s). (8)

Now consider

| cosh(Reiy)|2 = [cos(R sin(y)) cosh(R cos(y))]2 + [sin(R sin(y)) sinh(R cos(y))]2 = Φ1(y).

We see that the equation Φ′1(y) = 0 has 0, ±π
2 and ±π roots. Since Φ1(y) = Φ1(−y),

therefore we take y ∈ [0, π]. It is easy to see that Φ1(0) = Φ1(π) = cosh2(R) and Φ1(
π
2 ) =

cos2(R). Now

max{Φ1(0), Φ1(π/2), Φ1(π)} = Φ1(0) = Φ1(π) = cosh2(R).

Therefore,
cos(s) ≤ cos(R) ≤ | cosh(Reiy)| ≤ cosh(R) ≤ 1. (9)

Additionally, it is easy to see that

| sinh(Reiy)| ≤ sinh(R) ≤ sinh(s). (10)

Using (8), (9) and (10) along with the result due to Nehari [38] for Schwarz function
ω such that

|ω′(ς)| ≤ 1− |ω(ς)|2
1− |ς|2 =

1−R2

1− |ς|2 ≤
1

1− |ς|2 ,
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we have

Re
(

1 +
ςf ′′(ς)

f ′(ς)

)
≥ sec h(s)− s sinh(s)

(1− s2) cos(s)
≥ γ

for (1− s2) cos(s)[sec h(s)− γ]− s sinh(s) ≥ 0. Thus, the C(γ)-radius s0 for the class S∗E is
the root of the equation

(1− s2) cos(s)[sec h(s)− γ]− s sinh(s) = 0.

Corollary 1. The C radius for S∗E is s0 ≈ 0.623081.

4. Inclusion Results

This section deals with inclusion results for the class S∗E and certain subclasses of
starlike functions.

Theorem 4. For S∗E, the following inclusion relations hold:

1. S∗L(γ) ⊂ S∗E, for γ ≥ sec h(1),
2. S∗qc ⊂ S

∗
E, for 0 < c ≤ 1− [sec h(1)]2,

3. S∗[1− γ, 0] ⊂ S∗E, for sec h(1) ≤ γ ≤ 1.

Proof. 1. To show the function f ∈ S∗L(γ) lies in the class S∗E, we use the result ([5], Lemma
2.1), that gives

γ < Re
(

ςf ′(ς)

f(ς)

)
< γ + (1− γ)

√
2.

Let f ∈ S∗L(γ). Then,

ςf ′(ς)

f(ς)
≺ γ + (1− γ)

√
1 + ς, 0 ≤ γ < 1.

The function f ∈ S∗E if either γ ≥ sec h(1) or γ + (1− γ)
√

2 ≤ sec(1). Thus, f ∈ S∗E for
γ ≥ sec h(1).

2. Let f ∈ S∗qc (0 < c ≤ 1). Then ςf ′(ς)
f(ς) ≺

√
1 + cς and

√
1− c < Re

(
ςf ′(ς)

f(ς)

)
<
√

1 + c.

We see that
√

1 + c <
√

2 < sec(1). Thus, the function f ∈ S∗E if
√

1− c ≥ sec h(1).
This gives c ≤ 1− [sec h(1)]2.

3. Proceeding as in part (ii), we see that the function f ∈ S∗[1− γ, 0] lies in the class
S∗E if

sec h(1) ≤ γ < Re
(

ςf ′(ς)

f(ς)

)
< 2− γ ≤ sec(1),

which holds for γ ≥ sec h(1).

5. Radius Problems

In the following result, we establish the radius for the smallest and largest disks with
center (λ, 0) such that the domain ∆E := sec h(D) contains the largest disk and is contained
in the smallest disk.

Lemma 4. Let sech(1) < λ < sec(1). Then,

{ω ∈ C : |ω− λ| < sλ} ⊆ ∆E ⊆ {ω ∈: |ω− λ| < Rλ},
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where

sλ =

{
λ− sech(1), sech(1) < λ ≤ 1

2 (sech(1) + sec(1)),
Section (1)− λ, 1

2 (sech(1) + sec(1)) ≤ λ < sec(1),

andRλ be given by

Rλ =


sec(1)− λ, sec h(1) < λ ≤ λ∗,√

l(yλ), λ∗ < λ ≤ λ∗∗,
λ− sec h(1), λ∗∗ ≤ λ < sec(1),

where λ∗ ≈ 1.2448601986 and λ∗∗ ≈ 1.27292765302578.

Proof. Firstly, we consider the distance of any point on the boundary ∆E to (λ, 0). The square
of this distance is given as

l(t) =

(
λ− cosh(cos(y)) cos(sin(y))

[cos(sin(y))]2 + [sinh(cos(y))]2

)2

+

(
sinh(cos(y)) sin(sin(y))

[cos(sin(y))]2 + [sinh(cos(y))]2

)2

(11)

To obtain the radius for the largest disk in ∆E, we only prove that min
0≤y≤π

√
l(y) = sλ.

Since l(y) = l(−y), therefore we take 0 ≤ y ≤ π. We have the following cases:
Case 1. When sec h(1) < λ ≤ λ∗, the equation l′(y) = 0 has 0, π

2 and π roots.
Moreover, the function l′ is positive when y ∈

(
0, π

2
)

and negative for y ∈
(

π
2 , π

)
. Hence,

we conclude that minimum of l exists at 0 and π. This implies that

min
0≤y≤π

√
l(y) =

√
l(0) =

√
l(π) = λ− sec h(1).

Case 2. When λ∗ < λ ≤ λ∗∗, the equation l′(y) = 0 has 0, yλ1 , π
2 , yλ2 and π roots.

Here the roots yλ1 and yλ2 depend upon λ. Furthermore, the function l′ is increasing for
t ∈

(
0, yλ1

)
, decreasing for y ∈

(
yλ1 , π

2
)
, increasing for y ∈

(
π
2 , yλ2

)
and again decreasing

for y ∈
(
yλ2 , π

)
. Therefore,

min
0≤y≤π

√
l(y) = min

{√
l(0),

√
l(

π

2
),
√

l(π)

}
.

We also observe from the graph of the function l that when λ∗ < λ ≤ (sec h(1) + sec(1))/2,
the function l has minimum value at 0 and π. This implies that

min
0≤y≤π

√
l(y) = min

{√
l(0),

√
l(

π

2
),
√

l(π)

}
=
√

l(0) =
√

l(π) = λ− sec h(1).

Additionally, we see that when (sec h(1) + sec(1))/2 ≤ λ ≤ λ∗∗,

min
0≤y≤π

√
l(y) = min

{√
l(0),

√
l(

π

2
),
√

l(π)

}
= l(

π

2
) = sec(1)− λ.

Case 3. When λ∗∗ < λ ≤ sec(1), the equation l′(y) = 0 has 0, π
2 and π roots.

Moreover, the function l′ is negative when y ∈
(
0, π

2
)

and positive for y ∈
(

π
2 , π

)
. Hence,

we conclude that

min
0≤y≤π

√
l(y) =

√
l
(π

2

)
= sec(1)− λ.

Using the same argument, we obtain the result forRλ.
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Theorem 5.

1. A function f(ς) = ς + νς2 is in S∗E if and only if |ν| ≤ 1−sec h(1)
2−sech(1) ,

2. The function f(ς) = ς
(1−νς)2 ∈ S∗E if and only if |ν| ≤ 1−sech(1)

1+sech(1) .

Proof. 1. If f ∈ S∗E ⊂ S∗, so we have |ν| ≤ 1
2 . Using Lemma 2 for ω = ςf ′(ς)

f(ς) = 1+2νς
1+νς , it

will map D onto the disc ∣∣∣∣∣ω− 1− 2|ν|2

1− |ν|2

∣∣∣∣∣ < |ν|
1− |ν|2

.

As |ν| ≤ 1
2 , so we have 1−2|ν|2

1−|ν|2
< sec h(1) and |ν|

1−|ν|2
≤ 1−2|ν|2

1−|ν|2
− sec h(1), which gives

|ν| ≤ 1− sech(1)
2− sech(1)

.

Conversely, if |ν| ≤ 1−sech(1)
2−sech(1) , then

|ν|
1− |ν|2

≤ 1− 2|ν|2

1− |ν|2
− sech(1).

In view of Lemma 4, we see that f ∈ S∗E.
2. If ν = 1, then ς

(1−ς)2 does not belong to the class f ∈ S∗E, so ν 6= 1. Then, by using

Lemma 2 the following bilinear transformation ω = ςf ′(ς)
f(ς) = 1+νς

1−νς maps D onto the disc,

where f(ς) = ς
(1−νς)2 . ∣∣∣∣∣ω− 1 + |ν|2

1− |ν|2

∣∣∣∣∣ ≤ 2|ν|
1− |ν|2

with diameter end points xL = 1−|ν|
1+|ν| and xR = 1+|ν|

1−|ν| . If f ∈ S∗E, then xL ≥ sech(1),

after simplifying it gives us |ν| ≤ 1−sech(1)
1+sech(1) . Conversely, if |ν| ≤ 1−sech(1)

1+sech(1) , then in the light
of Lemma 4, we have

1 + |ν|2

1− |ν|2
< sec(1),

and

λ +
2|ν|

1− |ν|2
=

1 + |ν|
1− |ν| < sec(1).

From the above equation, it is clear that

2|ν|
1− |ν|2

≤ Section (1)− λ.

See the sharpness of the result in Figure 2.
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Figure 2. Graph of 1+νz
1−νz for |ν| ≤ − −1+sech(1)

1+sech(1) to be contained in S∗E.

Theorem 6. The S∗E radii for the classes S∗L , S∗RL, S∗C, S∗lim, BS(γ), SL∗(γ) andW are given
as follows.

1. RS∗E(S
∗
L) = 1− sech(1)2 ≈ 0.58002,

2. RS∗E(S
∗
RL) =

(2−3sech(1)+sech(1)2)2
√

2+5−8sech(1)+3sech(1)2

(2−2sech(1)+sech(1)2)2
√

2+5−8sech(1)+2sech(1)2 ≈ 0.63147,

3. RS∗E(S
∗
C) =

2−
√

6sech(1)−2
2 ≈ 0.31291,

4. RS∗E(S
∗
lim) =

√
2
(

1−
√

sech(1)
)
≈ 0.27576,

5. RS∗E(S
∗
L(γ)) =

1−2γ+2γ sech(1)−sech(1)2

(sech(1)−1)2 ,

6. RS∗E(BS(γ)) =
2(1−sech(1))

1+
√

1+4sech(1)−8sech(1)2+4sech(1)3 ,

7. RS∗E(W) = 1−sech(1)

1+
√

2−2sech(1)+sech(1)2 .

Proof. 1. For the functions f ∈ S∗L , we have ςf ′(ς)
f(ς) ≺

√
1 + ς. Thus, for |ς| = s, we have by

Lemma 4, ∣∣∣∣ ςf ′(ς)f(ς)
− 1
∣∣∣∣ ≤ 1−

√
1− s ≤ 1− sech(1),

whenever the inequality s ≤ 1− sech(1)2 holds. The sharpness is obtained for the function

f0(ς) =
4ς exp(2

√
1 + ς− 2)

(1 +
√

1 + ς)2 ,

which is in class S∗L . Since ςf ′0(ς)
f0(ς)

=
√

1 + ς = sech(1) at point ς = RS∗E(S
∗
L), (see Figure 3).

2. For functions f ∈ S∗RL, we have

ςf ′(ς)

f(ς)
≺
√

2− (
√

2− 1)

√
1− ς

1 + 2(
√

2− 1)ς
.

This implies that∣∣∣∣ ςf ′(ς)f(ς)
− 1
∣∣∣∣ ≤ 1−

√
2 + (

√
2− 1)

√
1 + s

1− 2(
√

2− 1)s
≤ 1− sech(1),
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provided

s ≤ (2− 3sech(1) + sech(1)2)2
√

2 + 5− 8sech(1) + 3sech(1)2

(2− 2sech(1) + sech(1)2)2
√

2 + 5− 8sech(1) + 2sech(1)2 .

For sharpness, we consider the function f1 given as

f1(ς) = ς exp
(∫ ς

0

q1(t)− 1
1

dt
)

,

where

q1(ς) =
√

2− (
√

2− 1)

√
1− ς

1 + 2(
√

2− 1)ς
.

At point ς = RS∗E(S
∗
RL), we have

ςf ′1(ς)

f1(ς)
=
√

2− (
√

2− 1)

√
1− ς

1 + 2(
√

2− 1)ς
= sech(1),

(see Figure 3).

                                      

 

 

                                     

                                            (a)𝑆𝐿
∗                                                           (b)  𝑆𝑅𝐿

∗                                                                          
Figure 3. S∗E radius for S∗L (left figure), S∗RL (right figure).

3. For the functions f ∈ S∗C, we have ςf ′(ς)
f(ς) ≺ 1 + 4ς

3 + 2ς2

3 . Thus, for |ς| = s, we have
by Lemma 4, ∣∣∣∣ ςf ′(ς)f(ς)

− 1
∣∣∣∣ ≤ 4s

3
− 2s2

3
≤ 1− sech(1),

whenever the inequality s ≤ 2−
√

6 sech(1)−2
2 holds. Consider the function

f2(ς) = ς exp
4ς + ς2

3
.

Since ςf ′2(ς)
f2(ς)

= 1 + 4ς
3 + 2ς2

3 , so f ∈ S∗C and at point ς = −RS∗E(S
∗
C), we have ςf ′2(ς)

f2(ς)
=

sech(1). Hence, the result is sharp, see Figure 4 (left).

4. For the functions f ∈ S∗lim, we have ςf ′(ς)
f(ς) ≺ 1 +

√
2ς + ς2

2 . Thus, for |ς| = s, we
have by Lemma 4, ∣∣∣∣ ςf ′(ς)f(ς)

− 1
∣∣∣∣ ≤ √2s− s2

2
≤ 1− sech(1),

whenever the inequality s ≤
√

2
(

1−
√

sech(1)
)

holds. Consider the function

f3(ς) = ςe
√

2ς+ ς2
4 .
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Since ςf ′3(ς)
f3(ς)

= 1 +
√

2ς + ς2

2 , so f ∈ S∗C and at point ς = −RS∗E(S
∗
C), we have ςf ′3(ς)

f3(ς)
=

sech(1). Hence, the result is sharp, see Figure 4 (centered).
5. Let f ∈ S∗L(γ). Then ςf ′(ς)

f(ς) ≺ γ + (1− γ)
√

1 + ς. Now we have∣∣∣∣ ςf ′(ς)f(ς)
− 1
∣∣∣∣ ≤ ∣∣∣γ + (1− γ)

√
1 + ς− 1

∣∣∣
≤ (1− γ)(1−

√
1− s)

≤ 1− sec h(1).

This holds for

s ≤ 1− 2γ + 2γsech(1)− sech(1)2

(sech(1)− 1)2 .

The sharpness can be obtained for f4, given by the relation

ςf ′4(ς)

f4(ς)
= γ + (1− γ)

√
(1 + ς)

and
ςf ′4(ς)

f4(ς)
= sec h(1),

for ς = 1−2γ+2γ sech(1)−sech(1)2

(sech(1)−1)2 . For γ = 0, the sharpness is shown in Figure 4 (right).

6. For f ∈ (BS(γ), we have ςf ′(ς)/f(ς) ≺ 1 + ς/(1− γς2), which gives∣∣∣∣ ςf ′(ς)f(ς)
− 1
∣∣∣∣ ≤ s

1− γs2 ,

for |ς| < s. By using Lemma 4, we obtain s/(1− γs2) ≤ 1− sech(1) and it simplifies to
s ≤ −2(−1+sech(1))

1+
√

1+4sech(1)−8sech(1)2+4sech(1)3 , for 0 < γ < 1. Take the function f5 given by

f5(ς) = ς

(
1 +
√

γς

1−√γς

)1/(2
√

γ)

.

At ς = −RS∗E(BS(γ)), the quantity ςf ′5(ς)/f5(ς) = sec h(1) is obtained.

7. Let f ∈ W . Then f(ς)
ς ∈ P , for all ς ∈ D. Let us define function p ∈ P such that

p(ς) = f(ς)/ς. Then,
ςf ′(ς)

f(ς)
= 1 +

ςp′(ς)

p(ς)
.

Thus, we have ∣∣∣∣ ςf ′(ς)f(ς)
− 1
∣∣∣∣ ≤ 2s

1− s2 .

By using Lemmas 1 and 4, the function f ∈ S∗E for |ς| < s if 2s/(1− s2) < 1− sec h(1).
This simplifies to s ≤ 1−sech(1)

1+
√

2−2 sech(1)+sech(1)2 . Sharpness can be seen for the function f6(ς) =

ς(1 + ς)/(1− ς). For this function, we have

ςf ′6(ς)

f6(ς)
= sec h(1) at ς =

1− sech(1)

1 +
√

2− 2sech(1) + sech(1)2
.
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                    (c) 𝑆𝐶
∗                                                           (d) 𝑆𝑙𝑖𝑚

∗                                                               (e)   𝑆𝐿∗(𝛼) 
Figure 4. S∗E radius for S∗C (left figure), S∗lim (centered figure), SL∗(0) (right figure).

Theorem 7. Let −1 ≤ b < a ≤ 1, with b < 0. Let

R1 = min

(
1,

√
−b[2a− bsech(1)− bsec(1)][−2 + sech(1) + sec(1)]

b[bsech(1) + bsec(1)− 2a]

)
.

R2 = min
(

1,
1− sech(1)

a− b sec h(1)

)
and

R3 = min
(

1,
sec(1)− 1

a− b sec(1)

)
.

Then, S∗E radius for S∗[a, b] is given by

RS∗E(S
∗
E[a, b]) =

{
R2, i f R2 ≤ R1,
R3, i f R2 > R1.

Proof. Let f ∈ S∗[a, b], then by Lemmas 2 and 4, we have∣∣∣∣ ςf ′(ς)f(ς)
− 1− abs2

1− b2s2

∣∣∣∣ ≤ (a− b)s
1− b2s2 .

We have to determine the numbers R1, R2 and R3. Now s ≤ R1, if and only if
1−abs2

1−b2s2 ≤
sech(1)+sec(1)

2 . This yields us s ≤
√
−b[2a−bsech(1)−bsec(1)][−2+sech(1)+sec(1)]

b[bsech(1)+bsec(1)−2a] . Similarly
s ≤ R2 if and only if

(a− b)s
1− b2s2 ≤

1− abs2

1− b2s2 − sech(1).

The above equation gives us s ≤ 1−sech(1)
a−b sec h(1) . Also s ≤ R3 if and only if

(a− b)s
1− b2s2 ≤ Section (1)− 1− abs2

1− b2s2 .

A simple calculation yields

s ≤ sec(1)− 1
a− b sec(1)b

.
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Theorem 8. The S∗E,m-radius for Sm is

R(S∗E,m)(Sm) :=

 1− sech(1)

m +
√

m2 + 1− 2sech(1) + [sech(1)]2

 1
m

.

Proof. Take the function h: D → C given by h(ς) = f(ς)
ς . Then h∈ Pm and ςf ′(ς)

f(ς) − 1 =

ςh′(ς)
h(ς)

. Applying Lemma 1, it will give us the following disc∣∣∣∣ ςf ′(ς)f(ς)
− 1
∣∣∣∣ ≤ 2msm

1− s2m .

By Lemma 4, the above disc is contained in ∆E if

2msm

1− s2m ≤ 1− sech(1),

which gives

s ≤ R :=

− −1 + sech(1)

m +
√

m2 + 1− 2 sech(1) + sech(1)2

 1
m

.

Consider the function f1 defined by f1(ς) =
ς(1+ςm)

1−ςm . It is easy to check that Re f1(ς)ς > 0
in D. Thus, f1 ∈ Sm and

ςf ′1(ς)

f1(ς)
− 1 =

2mςm

1− ς2m .

Furthermore, the function f1 gives the sharpness as at ς = R(S∗E)(Sm), we have

ςf ′1(ς)

f1(ς)
− 1 =

2mςm

1− ς2m = 1− sech(1).

Theorem 9. Let

R1 =

(√
(2− 4 γ + sech(1) + sec(1))(−2 + sec(1) + sech(1))

2− 4 γ + sech(1) + sec(1)

) 1
m

,

R2 =

 1− sec h(1)

1 + m− γ +
√

m(m− 2γ + 2) + γ2 − 2γsech(1) + sech(1)2

 1
m

,

and

R3 =

 1− sec(1)

γ− 1−m−
√

m(m− 2γ + 2) + γ2 + sec(1)2 − 2γ sec(1)

 1
m

.

Then S∗E,m-radius for CSm(γ) is given by

RS∗E,m
(CSm(γ)) =

{
R2, i f R2 ≤ R1,
R3, i f R2 > R1.
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Proof. Let f ∈ CSm(γ) and define h(ς) = f(ς)
g(ς) , where g ∈ S ∗m(γ). Then h ∈ Pm. Therefore,

ςf ′(ς)

f(ς)
=

ςg′(ς)

g(ς)
+

ςh′(ς)

h(ς)
.

Using Lemma 2, we have∣∣∣∣ ςg′(ς)g(ς)
− 1 + (1− 2γ)s2m

1− s2m

∣∣∣∣ ≤ 2(1− γ)sm

1− s2m .

Therefore, ∣∣∣∣ ςf ′(ς)f(ς)
− 1 + (1− 2γ)s2m

1− s2m

∣∣∣∣ ≤ 2(1 + m− γ)sm

1− s2m .

For 0 ≤ γ < 1 and 0 < s < 1, we are going to find the values ofR1, R2 andR3. Here,
s ≤ R1 if and only if

1 + (1− 2γ)s2m

1− s2m ≤ sech(1) + sec(1)
2

.

This yields us

s ≤
(√

(2− 4 γ + sech(1) + sec(1))(−2 + sec(1) + sech(1))
2− 4 γ + sech(1) + sec(1)

) 1
m

.

Next, we determineR2 such that s ≤ R2 if and only if

2(1 + m− γ)sm

1− s2m ≤ 1 + (1− 2γ)s2m

1− s2m − sech(1),

provided

s ≤

 1− sec h(1)

1 + m− γ +
√

2m + m2 − 2mγ + γ2 − 2γsech(1) + sech(1)2

 1
m

.

We determineR3 such that s ≤ R3 if and only if

2(1 + m− γ)sm

1− s2m ≤ Section (1)− 1 + (1− 2γ)s2m

1− s2m

provided

s ≤

 1− sec(1)

γ− 1−m−
√

2m + m2 − 2mγ + γ2 + sec(1)2 − 2γ sec(1)

 1
m

.

Theorem 10. The class S∗m[a, b] is in the class S∗E,m if either of the following relations is satisfied.

1. 2(1− b2) sec h(1) < 2(1− ab) ≤ (sec(1) + sec h(1))(1− b2) and (1− b) sec h(1) ≤
(1− a),

2. (sec(1) + sec h(1))(1− b2) < 2(1− ab) < 2 sec(1)(1− b2) and (1+ a) ≤ (1+ b) sec(1).

Proof. From the definition of the class S∗m[a, b], we have ςf ′(ς)
f(ς) ∈ Pm[a, b]. By using

Lemma 2, we can write ∣∣∣∣p(ς)− 1− ab
1− b2

∣∣∣∣ ≤ a− b
1− b2 .



Symmetry 2023, 15, 737 16 of 21

The above relation gives us a disc with center (1− ab)/
(
1− b2) and radius (a− b)/

(
1− b2).

In view of Lemma 4, we have to show that∣∣∣∣p(ς)− 1− ab
1− b2

∣∣∣∣ ≤ s =

{
1−ab
1−b2 − sec h(1), sec h(1) < 1−ab

1−b2 ≤
sec(1)+sec h(1)

2 ,

sec(1)− 1−ab
1−b2 , sec(1)+sec h(1)

2 ≤ 1−ab
1−b2 < sec(1).

This implies that

a− b
1− b2 ≤ s =

{
1−ab
1−b2 − sec h(1), sec h(1) < 1−ab

1−b2 ≤
sec(1)+sec h(1)

2 ,

sec(1)− 1−ab
1−b2 , sec(1)+sec h(1)

2 ≤ 1−ab
1−b2 < sec(1).

which is equivalent to either

a− b
1− b2 ≤

1− ab
1− b2 − sec h(1) and sec h(1) <

1− ab
1− b2 ≤

sec(1) + sec h(1)
2

or
a− b

1− b2 ≤ sec(1)− 1− ab
1− b2 and

sec(1) + sec h(1)
2

≤ 1− ab
1− b2 < sec(1).

Simple calculations establish the required result.

Theorem 11. The S∗E,m-radius forMm(γ) is given by

RS∗E,m
(Mm(γ)) =

(
sech(1)− 1

1− 2 γ + sech(1)

) 1
m

.

The result is sharp.

Proof. Let f ∈ Mm(γ). Then by using Lemma 2, we have∣∣∣∣ ςf ′(ς)f(ς)
− 1 + (1− 2γ)s2m

1− s2m

∣∣∣∣ ≤ 2(γ− 1)sm

1− s2m .

Clearly λ := 1+(1−2γ)s2m

1−s2m < sec(1)+sech(1)
2 for γ > 1, Then from Lemma 4, it follows that

2(γ− 1)sm

1− s2m ≤ 1 + (1− 2γ)s2m

1− s2m − sech(1).

provided

s ≤
(

sech(1)− 1
1− 2γ + sech(1)

) 1
m

.

Consider the function f given by

f(ς) =
ς

(1− ςm)
2(1−γ)

m

.

since ςf ′(ς)
f(ς) = 1+(1−2γ)ςm

1−ςm = sech(1), at point ς = RS∗E,m
(Mm(γ)). Hence, the sharpness is

obtained.

6. Radius Problems for Ratios of Analytic Functions

In this section, we find radii problems of class S∗E,m for some ratios of analytic functions.
Consider the function

F1 =

{
f ∈ Am : Re

(
f(ς)

g(ς)

)
> 0 and Re

(
g(ς)

ς

)
> 0, g ∈ Am

}
.
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Theorem 12. The sharp S∗E,m-radii for the functions in the class F1 is

RS∗E,m
(F1) =

 1− sech(1)

2m +
√

4m2 + 1− 2sech(1) + sech(1)2

 1
m

.

Proof. Let f ∈ F1. Then we define functions p, h : D → C given by p(ς) = g(ς)
ς and

h(ς) = f(ς)
g(ς) . Then, p, h ∈ Pm. Since f(ς) = ςp(ς)h(ς), and therefore from Lemmas 1 and 4,

it follows that ∣∣∣∣ ςf ′(ς)f(ς)
− 1
∣∣∣∣ ≤ 4msm

1− s2m ≤ 1− sech(1),

for s ≤
(

1−sech(1)

2 m+
√

4 m2+1−2 sech(1)+sech(1)2

) 1
m

= RS∗E,m
(F1). For the sharpness, consider the

functions

f∗(ς) = ς

(
1 + ςm

1− ςm

)2
and g∗(ς) = ς

(
1 + ςm

1− ςm

)
.

Thus, clearly

Re
(
f∗(ς)

g∗(ς)

)
> 0 and Re

(
g∗(ς)

ς

)
> 0.

This shows that f∗ ∈ F1. Now at ς = RS∗E,m
(F1)e

iπ
m

ςf ′∗(ς)

f∗(ς)
= 1 +

4mςm

1− ς2m = sech(1).

This guarantees sharpness.

Next, consider the class F2 of functions f ∈ Am satisfying the inequality

Re
(
f(ς)

g(ς)

)
> 0

for some g ∈ Am with

Re
(
g(ς)

ς

)
>

1
2

.

Theorem 13. The sharp S∗E,m-radii for the functions in the class F2 is

RS∗E,m
(F2) =

 2(1− sech(1))

3 m +
√

9m2 + 4m− 4msech(1) + 4− 8sech(1) + 4sech(1)2

 1
m

Proof. Let f ∈ F2. Then, we introduce functions p, h : D → C by p(ς) = g(ς)
ς and

h(ς) = f(ς)
g(ς)

. Then, p ∈ Pm and h ∈ Pm(
1
2 ). Since f(ς) = ςp(ς)h(ς), it follows from

Lemma 1 that ∣∣∣∣ ςf ′(ς)f(ς)
− 1
∣∣∣∣ = ∣∣∣∣ ςp′(ς)p(ς)

− ςh′(ς)

h(ς)

∣∣∣∣ = msm(3 + sm)

1− s2m .

By Lemma 4 ςf ′(ς)
f(ς) ∈ ∆E if msm(3+sm)

1−s2m ≤ 1− sech(1), provided

s ≤

 2(1− sech(1))

3m +
√

9m2 + 4m− 4msech(1) + 4− 8sech(1) + 4sech(1)2

 1
m

.
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Consider the functions

f∗∗(ς) =
ς(1 + ςm)

(1− ςm)2 and g∗∗(ς) =
ς

1− ςm .

Then clearly Re( f∗∗(ς)g∗∗(ς)
) > 0 and Re( g∗∗(ς)ς ) > 1

2 and hence f ∈ F2.

Let F3 represent functions f ∈ Am, satisfying∣∣∣∣ f(ς)g(ς)
− 1
∣∣∣∣ < 1

for g ∈ Am and

Re
(
g(ς)

ς

)
> 0.

Theorem 14. The sharp S∗E,m-radii for the function in the class F3 is

RS∗E,m
(F3) =

 2(1− sech(1))

3m +
√

9m2 + 4m− 4msech(1) + 4− 8sech(1) + 4sech(1)2

 1
m

.

Proof. Let f ∈ F3. Then we define functions p, h by p(ς) = g(ς)
ς and h(ς) = g(ς)

f(ς) . Then,

p ∈ Pm. We see that
∣∣∣ 1
h(ς)

∣∣∣ < 1 if and only if Re(h(ς)) > 1
2 and hence h ∈ P( 1

2 ). By using
Lemma 1, we have ∣∣∣∣ ςf ′(ς)f(ς)

− 1
∣∣∣∣ ≤ 3msm + ms2m

1− s2m .

The remaining part of the proof is same as of Theorem 13. For sharpness, we consider
a functions given by

f0(ς) =
ς(1 + ςm)2

1− ςm and g0(ς) =
ς(1 + ςm)

1− ςm ,

where f0 ∈ F3. Now at ς = RS∗E,m
(F3)e

iπ
m , we have

ςf ′0(ς)

f0(ς)
− 1 =

3mςm + mς2m

1− ς2m = 1− sech(1).

This confirms the sharpness of the result.

Let F4 be the class of functions f ∈ Am satisfying the inequality∣∣∣∣ f(ς)g(ς)
− 1
∣∣∣∣ < 1

for some convex function g ∈ Am.

Theorem 15. Let

R1 =

(√
(sech(1) + sec(1))(−2 + sech(1) + sec(1))

sech(1) + sec(1)

) 1
m

,

R2 =

− 2(−1 + sech(1))

m + 1 +
√

m2 + 6 m + 1− 4 m sech(1) + 4 sech(1)2 − 4 sech(1)

 1
m
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and

R3 =

(
sec(1)− 1
m + sec(1)

) 1
m

.

Then S∗E,m-radii for the functions in the class F4 is

RS∗E,m
(F4) =

{
R2, i f R2 ≤ R1,
R3, i f R2 > R1.

Proof. Let f ∈ F4. Define functions h as h(ς) = g(ς)
f(ς) on open unit disk, where g ∈ Am

is convex function. Since every convex function is starlike of order half, therefore using
Lemma 1, we can write ∣∣∣∣ ςg′(ς)g(ς)

− 1
1− s2m

∣∣∣∣ ≤ sm

1− s2m .

Here, h ∈ Pm(
1
2 ). Using Lemma 4, we have∣∣∣∣ ςf ′(ς)f(ς)

− 1
1− s2m

∣∣∣∣ = ∣∣∣∣ ςg′(ς)g(ς)
− 1

1− s2m

∣∣∣∣+ ∣∣∣∣ ςh′(ς)h(ς)

∣∣∣∣ ≤ sm

1− s2m +
msm

1− sm .

This gives us ∣∣∣∣ ςf ′(ς)f(ς)
− 1

1− s2m

∣∣∣∣ ≤ (1 + m)sm + ms2m

1− s2m .

Here we find the result by determining the three numbersR1, R2 andR3. We have r ≤ R1,

if and only if 1
1−s2m ≤

sech(1)+sec(1)
2 . This yields us s ≤

(√
(sech(1)+sec(1))(−2+sech(1)+sec(1))

sech(1)+sec(1)

) 1
m

.

We determineR2, such that s ≤ R2, if and only if (1+m)sm+ms2m

1−s2m ≤ 1
1−s2m − sech(1). The positive

root of the above inequality is

sm =
2(1− sech(1))

m + 1 +
√

m2 + 6 m + 1− 4msech(1) + 4sech(1)2 − 4sech(1)
.

Next, we determineR3 such that s ≤ R3 if and only if

(1 + m)sm + ms2m

1− s2m ≤ Section (1)− 1
1− s2m ,

The positive root of the above inequality is

sm =
sec(1)− 1
m + sec(1)

.

7. Conclusions

In this article, we have linked the generating function for Euler numbers with a class
of starlike functions. We have also linked this class with various subclasses of univalent
functions by inclusion and radius results. All the radii problems are sharp. This work covers
the study of class S∗E regarding its connection with other classes of analytic functions. Its
certain interesting characteristics are yet to be explored, which includes coefficient estimates
such as coefficient bounds, Hankel determinants, inverse coefficients and logarithmic
coefficients for class S∗E.
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